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Abstract

We present a non-parametric statistic based on a linearity measure of the
P-P plot for the two-sample problem by adapting a known statistic proposed
for goodness of fit to a univariate parametric family. A Monte Carlo com-
parison is carried out to compare the method proposed with the classical
Wilcoxon and Ansari-Bradley statistics and the Kolmogorov-Smirnov and
Cramér-von Mises statistics the two-sample problem, showing that, for cer-
tain relevant alternatives, the proposed method offers advantages, in terms
of power, over its classical counterparts. Theoretically, the consistency of
the statistic proposed is studied and a Central Limit Theorem is established
for its distribution.
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Resumen

Se presenta un estadístico no-paramétrico para el problema de dos mues-
tras, basado en una medida de linealidad del gráfico P-P. El estadístico
propuesto es la adaptación de una idea bien conocida en la literatura en el
contexto de bondad de ajuste a una familia paramétrica. Se lleva a cabo una
comparación Monte Carlo con los métodos clásicos de Wilcoxon y Ansari-
Bradley, Kolmogorov-Smirnov y Cramér-von Mises para el probelam de dos
muestras. Dicha comparación demuestra que el método propuesto ofrece una
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potencia superior frente a ciertas alternativas relevantes. Desde el punto de
vista teórico, se estudia la consistencia del método propuesto y se establece
un Teorema del Límite Central para su distribución.

Palabras clave: estadísticos no-paramétricos, gráfico P-P, problema de dos
muestras.

1. Introduction

Probability plots, usually refered to as P-P plots, are, together with quantile-
quantile plots, among the most commonly used tools for informal judgement of
the fit of a data set to a hypothesized distribution or parametric family.

Gan & Koehler (1990) propose statistics that can be interpreted as measures
of linearity of the P-P plot, for use in goodness of fit testing of univariate data
sets to parametric families. They offer, as well, an interesting discussion on how
the difference between a distribution and a hypothesized model will be reflected
on the corresponding P-P plot. Their discussion is relevant to interpret the results
in Section 3 below.

In order to describe the statistic that we will adapt to the two-sample problem,
let X1, . . . , Xm denote a univariate i.i.d. sample from a distribution that, we
believe, might belong in the location-scale parametric family

F (
x− µ
σ

), µ ∈ RI , σ > 0 (1)

for a fixed, continuous distribution F . Let µ̂ and σ̂ be consistent estimators of µ
and σ. Let pi = i/(n + 1) and Z(i) = F ((X(i) − µ̂)/σ̂), i = 1, . . . ,m. Let Z and
p denote, respectively, the averages of the Z(i) and the pi. Except for a squared
power irrelevant in our case, one of the statistics proposed by Gan & Koehler
(1990) is the following:

k(X̂) =

∑n
i=1(Z(i) − Z)(pi − p)(∑n

i=1(Z(i) − Z)2
∑n
i=1(pi − p)2

)1/2 (2)

Here, X̂ denotes the X sample. The pi’s used above, are the expected values,
when we assume that the Xi has a fully specified distribution given by (1), of the
transformed order statistics F ((X(i)−µ)/σ). Different possibilities for the plotting
positions to be used in P-P plots (that is, for the choice of pi’s) are discussed in
Kimball (1960). k(X̂) measures the linear correlation between the vectors (Z(i))i≤n
and (pi)i≤n, which should be high (close to 1) under the null hypothesis. In their
paper, Gan & Koehler study some of the properties of k(X̂), obtain approxi-
mate (Monte Carlo) quantiles and, by simulation, perform a power comparison
with other univariate goodness of fit procedures, including the Anderson-Darling
statistic.

In order to adapt the statistic just described to the two-sample problem, one
can apply the empirical c.d.f. of one sample to the ordered statistics of the other,
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and substitute the values obtained for the Zi’s in formula (2). How this can be
done to obtain a fully non-parametric procedure for the univariate two-sample
problem is discussed in Section 2, where we consider, as well, the consistency of
the proposed statistic and establish a Central Limit Theorem for its distribution.
In Section 3, a Monte Carlo study is presented that investigates the convergence
of the finite sample quantiles of our statistic to their limiting values and compares,
in terms of power, the proposed method with the classical Wilcoxon and Ansari-
Bradley statistics for the two-sample problem.

2. Measures of Linearity for the Two-sample
Problem

We will consider the non-parametric adaptation of the statistic of Gan &
Koehler (1990), described above, to the univariate two-sample problem. In this
setting we have two i.i.d. samples: X1, . . . , Xm, produced by the continuous distri-
bution F (x) and Y1, . . . , Yn, coming from the continuos distribution G(y). These
samples will be denoted X̂ and Ŷ , respectively. Our null hypothesis is F = G
and the general alternative of interest is F 6= G. Let Fm(·) denote the empir-
ical cumulative distribution function (c.d.f.) of the X sample. By the classical
Glivenko-Cantelli Theorem, as m grows, Fm becomes an approximation to F and,
under our null hypothesis, to G. Therefore, if we apply Fm to the ordered statis-
tics for the Y sample, Y(1), . . . , Y(n), we will obtain, approximately (see below), the
beta distributed variables whose expected values are the pi of Gan and Koehler’s
statistics. Thus, the statistic that we will consider for the two-sample problem is

η(X̂, Ŷ ) =

∑n
i=1(Z(i) − Z)(pi − p)(∑n

i=1(Z(i) − Z)2
∑n
i=1(pi − p)2

)1/2 (3)

with Z(i) = Fm(Y(i)). Our first theoretical result is that η(·, ·), indeed, produces a
non-parametric procedure for the two-sample problem.

Theorem 1. Under the null hypothesis, the statistic η(X̂, Ŷ ), just defined, is
distribution free (non-parametric), for the two-sample problem, over the class of
i.i.d. samples from continuous distributions.

Proof . The argument follows the idea of the proof of Theorem 11.4.3 in Randles
& Wolfe (1979). Since the pi are constants, η(X̂, Ŷ ) is a function only of the
vector (Fm(Y1), Fm(Y2), . . . , Fm(Yn)) only. Thus, it is enough to show that the
distribution of this vector does not depend on F under the null hypothesis. Now,
for i1, i2, . . . , in in {0, 1, . . . ,m}, we have, by definition of Fm,

Pr(Fm(Y1) = i1/m,Fm(Y2) = i2/m, . . . , Fm(Yn) = in/m) =

Pr(X(i1) ≤ Y1 < X(i1+1), X(i2) ≤ Y2 < X(i2+1), . . . X(in) ≤ Yn < X(in+1)), (4)

where, if ij = 0, X(0) must be taken as −∞ and, similarly, if ij = m, X(m+1)

must be understood as +∞. Consider the variables Ui = F (Xi), for i ≤ m and
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Vj = F (Yj), for j ≤ n. Under the null hypothesis, the Ui and Vj are i.i.d. Unif(0,1)
and, since F is non-decreasing, the probability in (4) equals

Pr(U(i1) ≤ V1 < U(i1+1), U(i2) ≤ V2 < U(i2+1), . . . U(in) ≤ Vn < U(in+1))

which depends only on i.i.d. uniform variables, finishing the proof.

Theorem 11.4.4 in Randles &Wolfe (1979) identifies the distribution of Fm(Y(i))
as the inverse hypergeometric distribution whose properties were studied in Guen-
ther (1975). The study of these results in Randles & Wolfe (1979) is motivated
by the consideration of the exceedance statistics of Mathisen (1943) for the two-
sample problem.

Theorem 1 allows us to obtain generally valid approximate null quantiles to
the distribution of η(X̂, Ŷ ), in the two-sample setting, by doing simulations in just
one case: F = G = the Unif(0,1) distribution.

We will now study the consistency of η(X̂, Ŷ ) (and a symmetrized version of
it) as a statistic for the two sample problem. We begin by establishing a Strong
Law of Large Numbers (SLLN) for η(X̂, Ŷ ).

Theorem 2. Suppose that F and G are continuous distributions on RI . Then, as
m and n go to infinity, η(X̂, Ŷ )→ cor(F (Y ), G(Y )), almost sure (a.s.), where Y
has distribution G and ‘cor’ stands for ‘correlation’.

Proof . We will only verify that 1
n

∑n
i=1(Zi−Z)(pi−p) converges, a.s., as n,m→

∞, to Cov(F (Y ), G(Y )). The quantities in the denominator of η are studied
similarly. Let Gn(·) denote the empirical c.d.f. associated to the Y sample and
let, also, Fm = (1/m)

∑
Fm(Yi) and Gn = (1/n)

∑
Gn(Yi). Observe that pi =

(n/(n+ 1))Gn(Y(i)). It follows that

1

n

n∑
i=1

(Zi − Z)(pi − p) =
1

n+ 1

n∑
i=1

(Fm(Y(i))− Fm)(Gn(Y(i))−Gn)

=
1

n

n∑
i=1

(F (Yi)− EI F (Y1))(G(Yi)− EI G(Y1)) + rm,n

(5)

Repeated application of the Glivenko-Cantelli Theorem and the SLLN shows
that rm,n → 0, a.s., as m,n→∞, finishing the proof.

According to Theorem 2, when the null hypothesis: F = G holds, η(X̂, Ŷ )
will converge to 1. In order to have consistency of the corresponding statistic for
the two-sample problem, we would like to have the reciprocal of this statement to
hold: If F 6= G then the limit of η(X̂, Ŷ ) is strictly less than one. Unfortunately,
this is not the case, as the following example shows.

Example 1. Let F and G be the Unif(0,2) distribution and the Unif(0,1) distri-
bution, respectively. Then, cor(F (Y ), G(Y )) = 1 and, therefore, η(X̂, Ŷ ) applied
to samples from F and G will converge to 1.
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The counter-example just given suggests the consideration of a ‘symmetrized’
version of η in order to attain consistency of the statistic against the general
alternative F 6= G. For this purpose, one could define

ηsymm =
1

2
(η(X̂, Ŷ ) + η(Ŷ , X̂)) (6)

For ηsymm, we have the following result.

Theorem 3. Let the X and Y samples be obtained from the continuous distribu-
tions F and G with densities f and g, respectively, such that the sets Sf = {x :
f(x) > 0} and Sg = {x : g(x) > 0} are open. Then, ηsymm converges to 1, a.s., as
n,m→∞ if, and only if, F = G.

Proof . In view of Theorem 2, we only need to show that, if F 6= G, then either
corr(F (Y ), G(Y )) 6= 1 or corr(F (X), G(X)) 6= 1, where the variablesX and Y have
distributions F and G, respectively. Let λ denote Lebesgue measure in RI . Suppose
first that λ(Sg \ Sf ) > 0. Then, there is an interval J ⊂ RI such that g(x) > 0
for x ∈ J , while f(x) ≡ 0 on J . Suppose corr(F (Y ), G(Y )) = 1. Then, there are
constants a and b, with a 6= 0 such that, with probability 1, G(Y ) = aF (Y ) + b.
By the continuity of the distributions and the fact that g is positive on J , it follows
that

G(y) = aF (y) + b, for all y ∈ J (7)

Taking derivatives on both sides, we have, for all y ∈ J ,

0 < g(y) = a f(y) = 0

a contradiction. The case λ(Sf \ Sg) > 0 is treated similarly.
It only remains to consider the case when λ(Sf ∆ Sg) = 0, where ∆ denotes

“symmetric difference” of sets. In this case we will show that corr(F (Y ), G(Y )) = 1
implies F = G. Suppose that corr(F (Y ), G(Y )) = 1. For J any open interval
contained in Sg, we have, by the argument of the previous case, g(x) = a f(x) in
J . Since Sg is open, it follows that a f and g coincide on Sg. Since λ(Sf ∆ Sg) = 0
and f and g are probability densities, a must be 1 and F = G, as desired.

The result in Theorem 3 establishes the consistency of ηsymm against general
alternatives, and is, therefore, satisfactory from the theoretical viewpoint. Ac-
cording to the results given so far in this section, η would fail to be consistent
only in the case when one of the supports of the distributions considered is strictly
contained in the other and, in the smaller support, the densities f and g are pro-
portional, which is a very uncommon situation in statistical practice. Therefore,
we feel that, in practice, both the statistics η and ηsymm can be employed with
similar expectations for their performances. The results from the power analy-
sis in Section 3 support this belief, since the power numbers for both statistics
considered tend to be similar, with a slight superiority of ηsymm in some instances.

The purpose of next theorem is to show that an appropriate standarization of
the statistic η has a limiting Gaussian distribution, as m and n tend to infinite.
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This will allow the user to employ the Normal approximation for large enough
sample sizes. Of course, for smaller sample sizes the user can always employ Monte
Carlo quantiles for η, which are fairly easy to generate according to Theorem 1.
Some of these quantiles appear in the tables presented in Section 3.

Theorem 4. Suppose that the X and Y samples, of size m and n, respectively, are
obtained from the continuous distribution F (=G). Let N = m + n and suppose
that N → ∞ in such a way that m/N → α, with 0 < α < 1 (the “standard”
conditions in the two-sample setting). Let ξ1,0 = 0.00138̄ and ξ0,1 = 0.005̄/36,
where the bar over a digit means that this digit is to be repeated indefinitely. Let

D = D(X̂, Ŷ ) =
1

n

(
n∑
i=1

(Z(i) − Z)2
n∑
i=1

(pi − p)2
)1/2

D(X̂, Ŷ ) is the denominator of η(X̂, Ŷ ) after division by n. Then, as N →∞,
the distribution of

W = W (X̂, Ŷ ) =
√
N

(
η(X̂, Ŷ )− 1

12D

)
(8)

converges to a Gaussian distribution with mean 0 and variance

σ2
W = 144×

(
ξ1,0
α

+
9 ξ0,1
1− α

)
(9)

Proof . Let C = C(X̂, Ŷ ) = 1
n

∑n
i=1(Z(i) − Z)(pi − p). C is the numerator of

η(X̂, Ŷ ) after division by n. The idea of the proof is to show that, essentially, C
is a two sample V -statistic of degrees (1,3), and then to use the classical Central
Limit Theorem for V -statistics which, in the present case, gives the same limit dis-
tribution of the corresponding U -statistic. Then the result will follow by observing
that D satisfies a Law of Large Numbers.

Using, as in Theorem 2, that pi = Gn(Y(i)), we can show that, with probability
one (ignoring ties between sample points, which have probability zero)

C =
1

mn2(n+ 1)

∑
j,i,k,r

1l{Xj<Yi,Yk<Yi} − 1l{Xj<Yi,Yk<Yr} (10)

where, j goes from 1 to m, while i, k and r range from 1 to n. Thus, except for
an irrelevant multiplying factor of n/(n+ 1), C is the V -statistic associated to the
kernel

h∗(X;Y1, Y2, Y3) = 1l{X<Y1,Y2<Y1} − 1l{X<Y1,Y2<Y3} (11)

The symmetric version of this kernel is

h(X;Y1, Y2, Y3) =
1

6

∑
τ

1l{X<Yτ(1),Yτ(2)<Yτ(1)} − 1l{X<Yτ(1),Yτ(2)<Yτ(3)} (12)
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where τ runs over the permutations of {1, 2, 3}. It is easy to see that, under
the null hypothesis, the expected value of h(X;Y1, Y2, Y3) is γ = 1/12. By the
two-sample version of the Lemma in Section 5.7.3 of Serfling (1980), it follows
that the limiting distribution of C, after standardization, is the same as that for
the corresponding U -statistic, for which the sum in (10) runs only over distinct
indices i, j and k. Then, according to Theorem 3.4.13 in Randles & Wolfe (1979),√
N(C − γ) converges, in distribution, to a zero mean Normal distribution, with

variance
σ2
C =

ξ1,0
α

+
9 ξ0,1
1− α

where

ξ1,0 = Cov(h(X;Y1, Y2, Y3), h(X;Y ′1 , Y
′
2 , Y

′
3)) while

ξ0,1 = Cov(h(X;Y1, Y2, Y3), h(X ′;Y1, Y
′
2 , Y

′
3))

for i.i.d. X,Y1, Y2, Y3, X ′, Y ′1 , Y ′2 and Y ′3 with distribution F . These covariances
depend on the probabilities of certain sets of inequalities between the variables
involved. Since the vector of ranks of the variables involved has the uniform
distribution on the set S7 of permutations of seven elements, the required proba-
bilities can be computed by inspection on S7 (with the help of an ad hoc computer
program), to obtain the numbers given in the statement of the Theorem.

On the other hand, under the null hypothesis, using that F (Yi) has the U(0,1)
distribution, and following the procedure in the proof of Theorem 2, one can check
that both (1/n)

∑n
i=1(Z(i) − Z)2 and (1/n)

∑n
i=1(pi − p)2 converge, a.s. to 1/12.

It follows that D(X̂, Ŷ ) converges, in probability, to 1/12. Then, Theorem 2.4
follows from an application of Slutsky’s Theorem.

For small values of m and n, the distribution of W in (8) displays a negative
skewness, that makes inadequate the use of the Gaussian approximation given
by Theorem 4. Figure 1 displays the histogram of a sample of 10,000 values of
W obtained from simulated X and Y samples of size 500 (m = n = 500) from
the Unif(0,1) distribution. We see that for these sample sizes, the distribution of
W , displayed in Figure 1, is near the bell shape of the Gaussian family. For this
combination of m and n, the asymptotic variance of W , given by (9), is σ2

W =
0.8. Figure 2 shows the P-P plot obtained by applying the N(0,0.8) cummulative
distribution function to the order statistics of the W sample and plotting these
against the plotting positions, pi. The closeness to a 45◦ straight line suggests that
the Gaussian approximation is valid for this combination of m and n. We conclude
that, when the smaller of m and n is, at least, 500, the Gaussian approximation
given by Theorem 4 can be used for the distribution of η(X̂, Ŷ ), rejecting the
null hypothesis when W falls below a prescribed quantile, say 5%, of the N(0,σ2

W )
distribution.

3. Monte Carlo Evaluation of η(X̂, Ŷ )

All the simulations described here were programmed using the R Statistical
Language (see R Development Core Team 2011) on a laptop computer. Tables 1
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Figure 1. Histogram of W for m=n=500
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Figure 1: Histogram of W for m = n = 500.
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Figure 2: P-P plot of W for m = n = 500.

and 2 display Monte Carlo null quantiles for the statistics η and ηsymm, obtained
from 10,000 independent pairs of samples for each choice ofm and n, using, without
loss of generality, data with the Unif(0,1) distribution. Table 2 contains entries for
sample size pairs of the form m ≤ n only, since, by the symmetry of the statistic,
the quantiles are the same when the roles of m and n are interchanged. We see
in these tables the convergence towards 1 of all quantiles, as m and n grow, as
predicted by Theorem 3. We see, as well, that the quantiles are very similar for
both statistics.

In order to evaluate the performance of η and ηsymm as test statistics for the null
hypothesis of equality of distributions, we will consider their power against different
alternatives, in comparison to the classical non-parametric tests of Wilcoxon and
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Table 1: Monte Carlo null quantiles for η(X̂, Ŷ ).
m n 1% 2.5% 5% 10%
25 25 0.8956 0.9137 0.9290 0.9436
25 50 0.9203 0.9371 0.9469 0.9576
50 25 0.9235 0.9365 0.9472 0.9578
25 100 0.9363 0.9466 0.9555 0.9646
100 25 0.9360 0.9479 0.9569 0.9656
50 50 0.9471 0.9572 0.9644 0.9715
50 100 0.9624 0.9682 0.9740 0.9788
100 50 0.9598 0.9680 0.9735 0.9786
100 100 0.9744 0.9787 0.9822 0.9858

Table 2: Monte Carlo null quantiles for ηsymm.
m n 1% 2.5% 5% 10%
25 25 0.8969 0.9171 0.9313 0.9441
25 50 0.9248 0.9374 0.9482 0.9584
25 100 0.9348 0.9474 0.9565 0.9652
50 50 0.9483 0.9581 0.9649 0.9720
50 100 0.9602 0.9682 0.9738 0.9791
100 100 0.9743 0.9790 0.9823 0.9857

Ansari-Bradley, described, for instance, in Hollander & Wolfe (1999). Wilcoxon’s
test is specifically aimed at detecting differences in location while the statistic of
Ansari-Bradley is designed to discover differences in scale. We will also include
in our comparison two of the classical tests based on the empirical distribution
function (EDF), namely, the two-sample versions of the Kolmogorov-Smirnov and
Cramér-von Mises statistics, which are consistent against arbitrary differences in
the distribution functions of the samples. These EDF statistics are described in
Darling (1957). We will use the particular implementation of the Cramér-von
Mises statistic studied by Anderson (1962). As alternatives, we include first the
classical scenarios of difference in mean and difference in scale, between Gaussian
populations. More precisely, in our first alternative, denoted ∆-mean in the tables
below, the sample X̂ has a N(0, 1) distribution and Ŷ has the N(0.4, 1) distribu-
tion, while for our second alternative, denoted ∆-scale in the tables, X̂ has the
N(0, 1) distribution and Ŷ has a normal distribution with mean zero and variance
σ2
Y = 3. Our remaining alternatives seek to explore the advantages of η and ηsymm

when the X and Y distributions have the same mean and variance, but differ in
their shape. The Weibull distribution, as described in Johnson, Kotz & Balakr-
ishnan (1995), Chapter 21, with shape parameter a = 1.45 and scale parameter
b = 2.23, has mean and variance both nearly 2.0, and exhibits right skewness.
For our third alternative, denoted Gaussian vs. right-skewed, the sample X̂ has
the N(2, 2) distribution, while Ŷ has the Weibull distribution with parameters
(1.45,2.23). In order to produce a distribution with mean and variance equal 2

Revista Colombiana de Estadística 35 (2012) 1–14
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and left skewness, we take X = 4−Z, where Z has the Gamma distribution with
shape parameter a = 2 and scale s = 1. In our fourth scenario, denoted left-skewed
vs. Gaussian, the sample X̂ comes from the distribution just described, while Ŷ
has the N(2, 2) distribution. Finally, we consider the situation of right skewness
vs. left skewness, in which X̂ comes from the Weibull(1.45,2.23) distribution, while
Ŷ is distributed as 4− Z, with Z ∼ Gamma(2,1).

Tables 3 to 7 display, as percentages, the power against the alternatives just
described, of the six statistics compared, namely, Wilcoxon (W), Ansari-Bradley
(AB), Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), η, and ηsymm, at level
10%. The power is computed based on 1,000 independent pair of samples for each
m and n combination with the given alternative distributions, using as reference
the 10% quantiles given in Tables 1 and 2 for η and ηsymm.

Table 3: Monte Carlo power against ∆-mean at level 10%.
m n W AB KS CvM η ηsymm

25 25 38.5 8.5 32.4 36.1 22.8 23.5
25 50 47.9 10.0 43.7 45.0 29.5 27.0
50 25 49.3 10.6 42.9 44.1 24.3 28.1
50 50 63.9 10.1 58.3 61.5 36.2 39.8
50 100 73.4 9.8 65.3 70.0 43.2 44.6
100 50 72.2 9.4 63.0 69.7 44.2 43.8
100 100 87.3 10.2 80.7 85.3 55.5 56.1

Table 4: Monte Carlo power against ∆-scale at level 10%.
m n W AB KS CvM η ηsymm

25 25 10.9 66.6 25.4 24.0 13.9 22.3
25 50 7.9 77.2 33.2 28.9 13.9 22.1
50 25 14.7 76.1 39.7 32.0 21.8 29.2
50 50 6.3 88.0 47.5 50.0 27.4 35.6
50 100 8.1 96.2 56.4 62.9 36.1 34.9
100 50 13.1 95.1 56.7 64.8 42.7 45.6
100 100 11.5 99.2 77.6 85.5 61.7 56.1

In Table 3 we see, as expected, that for the shift in mean scenario, the Wilcoxon
test has the best performance, followed by the KS and CvM statistics. In this case
the performances of η and ηsymm are similar and inferior to that of the EDF
statistics, while the Ansari-Bradley statistic has practically no power beyond the
test level against the location alternative. The situation depicted in Table 4 (shift
in scale) is similar, but now the Ansari-Bradley statistic is the one displaying
the best power by far, followed by KS, CvM, ηsymm, and η, in that order, while
the Wilcoxon test shows basically no power against this alternative, as should be
expected.
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Table 5: Monte Carlo power for Gaussian vs. right-skewed at level 10%.
m n W AB KS CvM η ηsymm

25 25 9.4 10.3 16.0 14.3 23.5 22.3
25 50 10.9 10.9 18.5 14.8 28.8 29.6
50 25 9.9 12.9 18.8 14.6 25.9 27.6
50 50 11.9 10.8 19.6 19.1 35.3 35.3
50 100 11.8 10.5 24.5 22.5 41.5 42.8
100 50 13.3 13.7 23.0 22.1 41.8 43.9
100 100 14.3 14.1 27.6 24.4 55.8 53.2

Table 6: Monte Carlo power for left-skewed vs. Gaussian at level 10%.
m n W AB KS CvM η ηsymm

25 25 12.9 13.2 18.2 17.5 23.9 27.4
25 50 15.3 13.5 22.9 18.7 28.1 33.2
50 25 11.5 15.9 20.7 15.8 30.6 33.7
50 50 16.6 16.0 25.1 23.2 39.5 42.0
50 100 18.2 15.8 28.4 25.7 46.7 53.8
100 50 14.9 18.9 30.2 27.5 52.9 53.9
100 100 19.6 18.9 36.4 35.4 66.7 65.4

Table 7: Monte Carlo power for right-skewed vs. left-skewed at level 10%.
m n W AB KS CvM η ηsymm

25 25 17.7 14.7 31.5 28.7 53.7 54.1
25 50 22.4 15.4 43.3 38.3 69.1 70.5
50 25 20.5 15.2 43.9 38.1 65.4 70.9
50 50 25.9 15.0 50.4 48.4 84.5 85.2
50 100 30.7 15.8 60.2 60.8 92.6 93.0
100 50 27.8 17.7 60.3 61.7 93.2 92.0
100 100 38.2 15.4 80.5 83.2 98.7 98.8

In Tables 5, 6 and 7, in which the distributions considered have the same mean
and variance, with differences in their skewness, the results change significantly
respect to the previous tables. In these scenarios, the best power clearly corre-
sponds to ηsymm and η, which for some of the sample sizes nearly double the power
of the KS and CvM statistics, which come next in power after ηsymm and η. In
order to understand why the proposed statistics enjoy such good power in the
“difference in skewness” scenarios, the reader is advised to see Section 2 in Gan
& Koehler (1990), where through several examples (and figures) it is shown the
marked departure from linearity that differences in skewness can produce on a P-P
plot.

From the power results above, we conclude that η and ηsymm can be considered
a useful non-parametric statistic for the null hypothesis of equality of distributions,
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and its application can be recommended specially when differences in shape be-
tween F and G are suspected, instead of differences in mean or scale. The power
of the two statistics studied here tends to be similar, with ηsymm being slightly
superior in some cases.

We finish this section with the application of our statistic to a real data set. For
this purpose, we consider the well known drilling data of Penner & Watts (1991),
that has been used as illustrative example of a two-sample data set in Hand,
Daly, Lunn, McConway & Ostrowski (1994) and Dekking, Kraaikamp, Lopuhaa
& Meester (2005). In these data, the times (in hundreths of a minute) for drilling
5 feet holes in rock were measured under two different conditions: wet drilling,
in which cuttings are flushed with water, and dry drilling, in which cuttings are
flushed with compressed air. Each drilling time to be used in our analysis is
actually the average of three measures performed at the same depth with the same
method, except when some of the three values might be missing, in which case the
reported value is the average of the available measurements at the given depth.
The sample sizes for these data are m = n = 80. Figure 3 shows the P-P plot
for the drilling data. In this case, in order to compare the empirical cummulative
distribution for the two data sets, the plot consists of the pairs (Fm(z), Gn(z)),
where z varies over the combined data set and Fm and Gn are, respectively, the
EDFs for the dry drilling and wet drilling data. In this figure a strong departure
from linearity is evident. This is due to the fact that most of the smallest drilling
times correspond to dry drilling, while a majority of the largest drilling times
reported correspond to wet drilling, making the plot very flat in the left half and
steep in the right half.
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Fig. 3. P−P Plot for dry drilling vs. wet drilling data
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Figure 3: P-P Plot for dry drilling vs. wet drilling data.

In order to apply the statistic η to the drilling data, we compute first Monte
Carlo null quantiles for η in the case m = n = 80, using, as done for Table 1,
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10,000 pairs of samples of size 80 from the Unif(0,1) distribution. These quantiles
turn out to be the following

1% 2.5% 5% 10%
0.9664 0.9728 0.9777 0.9821

The value of η(X̂, Ŷ ), taking the dry drilling data as X̂, is 0.9508, which is
significant against the null hypothesis of equality of distributions, at the 1% level.
Furthermore, comparing the actual value of η(X̂, Ŷ ) for the drilling data with the
10,000 values calculated for the Monte Carlo null quantile estimation, we obtain
an approximate p-value for this data set of 0.0013. Thus, the evidence against
equality of distribution is strong in this case.

Statistics based on ideas similar to those leading to η(X̂, Ŷ ) have been con-
sidered in the multivariate case by Liu, Parelius & Singh (1999), who consider
statistics based on the Depth-Depth plot. Although generalization of η(X̂, Ŷ )
to the multivariate case is possible, we do not pursue this line of work, since in
the generalization, the full non-parametric character of the statistic is lost and
the computation of reference quantiles becomes computationally expensive, thus
losing the ease of computation that the statistic enjoys in the univariate case.

4. Conclusions

A modified non-parametric version of the statistic proposed by Gan & Koehler
(1990) for the goodness of fit of a univariate parametric family was presented
based on a linearity measure of the P-P plot for the two-sample problem. A
Monte Carlo comparison was carried out to compare the proposed method with
the classical ones of Wilcoxon and Ansari-Bradley for the two-sample problem
and the two-sample versions of the Kolmogorov-Smirnov and Cramer-von Mises
statistics, showing that, for certain relevant alternatives, the method proposed
offers advantages, in terms of power, over its classical counterparts. Theoretically,
the consistency of the statistic proposed was studied and a Central Limit Theorem
was established for its distribution.[

Recibido: febrero de 2010 — Aceptado: octubre de 2011
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