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Abstract

Changepoint regression models have originally been developed in connec-
tion with applications in quality control, where a change from the in-control
to the out-of-control state has to be detected based on the available random
observations. Up to now various changepoint models have been suggested
for differents applications like reliability, econometrics or medicine. In many
practical situations the covariate cannot be measured precisely and an al-
ternative model are the errors in variable regression models. In this paper
we study the regression model with errors in variables with changepoint
from a Bayesian approach. From the simulation study we found that the
proposed procedure produces estimates suitable for the changepoint and all
other model parameters.

Key words: Bayesian analysis, Changepoint models, Errors in variables
models.

Resumen

Los modelos de regresiéon con punto de cambio han sido originalmente
desarrollados en el ambito de control de calidad, donde, basados en un con-
junto de observaciones aleatorias, es detectado un cambio de estado en un
proceso que se encuentra controlado para un proceso fuera de control. Hasta
ahora varios modelos de punto de cambio han sido sugeridos para diferentes
aplicaciones en confiabilidad, econometria y medicina. En muchas situa-
ciones préacticas la covariable no puede ser medida de manera precisa, y un
modelo alternativo es el de regresiéon con errores en las variables. En este
trabajo estudiamos el modelo de regresién con errores en las variables con
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16 Olga Cecilia Usuga & Freddy Hernandez

punto de cambio desde un enfoque bayesiano. Del estudio de simulacion
se encontr6é que el procedimiento propuesto genera estimaciones adecuadas
para el punto de cambio y todos los demés parametros del modelo.

Palabras clave: anilisis bayesiano, modelos con errores en las variables,
modelos con punto de cambio.

1. Introduction

Linear regression is one of the most widely used statistical tools to analyze the
relationship between a response variable Y and a covariate x. Under the classic
model of simple linear regression the relationship between Y and z is given by

Yi=a+pBx;+e, i=1,...,n (1)

where « and 8 are unknown constants and e; ind N(0,02), for i = 1,...,n, where
N(a,b?) denotes the normal distribution with location parameter a and scale pa-
rameter b > 0. Usually it is assumed that x; is measured without error in many
practical situations this assumption is violated. Instead of observing x; is observed

Xi=xz,+u; i1=1,...,n (2)

where x; is the unobservable variable and u; ~ N(0,02). Measurements errors
(es,u;) are assumed independent and identically distribuited; see, for example,
Cheng & Van Ness (1999) and Fuller (1987).

Measurement error (ME) model (also called errors-in-variables model) is a
generalization of standard regression models. For the simple linear ME model,
the goal is to estimate from bivariate data a straight line fit between X and Y,
both of which are measured with error. Applications in which the variables are
measured with error are perhaps more common than those in which the variables
are measured without error. Many variables in the medical field, such as blood
pressure, pulse frequency, temperature, and other blood chemical variables, are
measured with error. Variables of agriculture such as rainfalls, content of nitrogen
of the soil and degree of infestation of plagues can not be measured accurately.
In management sciences, social sciences, and in many other sciences almost all
measurable variables are measured with error.

There are three ME models depending on the assumptions about x;. If the
x;s are unknown constan, then the model is known as a functional ME model;
whereas, if the z}s are independent identically distributed random variables and
independent of the errors, the model is known as a structural ME model. A third
model, the ultrastructural ME model, assumes that the z;s are independent ran-
dom variables but not identically distributed, instead of having possibly different
means, j;, and common variance o2. The ultrastructural model is a generalization
of the functional and structural models: if gy = - -+ = p,, then the ultrastructural
model reduces to the structural model; whereas if 02 = 0, then the ultrastructural
model reduces to the functional model (Cheng & Van Ness 1999).
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Bayesian Analysis for Errors in Variables with Changepoint Models 17

It is common to assume that all the random variables in the ME model are
jointly normal in this case the structural ME model, is not identifiable. This means
that different sets of parameters can lead to the same joint distribution of X and Y.
For this reason, the statistical literature have considered six assumptions about
the parameters which lead to an identifiable structural ME model. The six as-
sumptions have been studied extensively in econometrics; see for example Reiersol
(1950), Bowden (1973), Deistler & Seifert (1978) and Aigner, Hsiao, Kapteyn &
Wansbeek (1984). They make identifiable the structural ME model.

1. The ratio of the error variances, A = 02 /02, is known
. The ratio k, = 02/(c? + 02) is known

. 02 is known

€

2
3
4. o2 is known
5. The error variances, o2 and o2, are known
6

. The intercept, «, is known and E(X) # 0

Assumption 1 is the most popular of these assumptions and is the one with
the most published theoretical results; the assumption 2 is commonly found in the
social science and psychology literatures; the assumption 3 is a popular assumption
when working with nonlinears models; the assumption 4 is less useful and cannot
be used to make the equation error model or the measurement error model with
more than one explanatory variable identifiable; the assumption 5 frequently leads
to the same estimates as those for assumption 1 and also leads to an overidentified
model, and finally the assumption 6 does not make the normal model, with more
than one identifiable explanatory variable.

In the structural ME model, usually it is assumed that x; ~ N(pz,02), €; ~
N(0,02) and u; ~ N(0,02) with x;,e; and u; independent. A variation of the
structural ME model proposed by Chang & Huang (1997) consists in relaxing the
assumption of x; ~ N(uz,02), so that the x}s are not identically distributed.
Consider an example that can be stated as follows. Let z; denote some family’s
true income at time 7, let X; denote the family’s measured income, let Y; denote its
measured consumption. During the observations (X;, Y;), some new impact on the
financial system in the society may occur, for instance, a new economic policy may
be announced. The family’s true income structure may start to change some time
after the announcement; however, the relation between income and consumption
remains unchanged. Under this situation Chang & Huang (1997) considered the
structural ME model defined by and , where the covariate z; has a change
in its distribution given by:

x; ~ N(u,02) i=1,...,k
x; ~ N(ug,02) i=k+1,...,n

This model with change in the mean of x; at time k is called structural ME
model with changepoint.
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18 Olga Cecilia Usuga & Freddy Hernandez

The problems with changepoint have been extensively studied. Hinkley (1970)
developed a frequentist approach to the changepoint problems and Smith (1975)
developed a Bayesian approach. The two works were limited to the inference
about the point in a sequence of random variables at which the underlying dis-
tribution changes. Carlin, Gelfand & Smith (1992) extended the Smith approach
using Markov chain Monte Carlo (MCMC) methods for changepoint with continuos
time. Lange, Carlin & Gelfand (1994) and Kiuchi, Hartigan, Holford, Rubinstein
& Stevens (1995) used MCMC methods for longitudinal data analysis in AIDS
studies. Although there are works in the literature on changepoint problems with
Bayesian approach, the Bayesian approach for ME models has not been studied.
Hernandez & Usuga (2011) proposed a Bayesian approach for reliability models.
The goal of this paper is to propose a Bayesian approach to make inferences in
structural ME model with changepoint.

The plan of the paper is as follows. Section 2 presents the Bayesian formulation
of the model, Section 3 presents the simulation study and Section 4 presented an
application with a real dataset and finally some concluding remarks are presents
in Section 5.

2. Structural Errors in Variables Models with
Changepoint

The structural ME model with one changepoint that will be studied in this
paper is defined by the following equations:

Yi:al—i—ﬁlxi—i—ei Z:].,,k
} 3)

}/1':042+52Ii+61' z:k+1,,n

and

where X; and Y; are observable random variables, z; is an unobservable random
variable, e; and u; are random errors with the assumption that (e;,u;, z;)7 are

independents for i = 1,...,n with distribution given by:
€; 0 ng 0 0
Us; ~ N 0 , 0 0’21 0 , i=1,...,k
X; 1 0 O 0—21
€; 0 032 0 0
u; ~ N3 0 , 0 032 0 , i=k+1,...,n
X; 2 0 0 0'22
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Bayesian Analysis for Errors in Variables with Changepoint Models 19

The observed data (Y;, X;) have the following joint distribution fori =1,...,n.

: N 2 2 2 2
i\ i N, ar + B [ PBiom —;Uel Qﬂlazl2 ci=1,....k
X; 1251 /810—901 Oz + Ouy
Y: ii So% : :
f }\‘/d N, Ocz-i-,@zuz 7 520902 —;—Ueg 2/620z22 yi=k+1,...,n
X; K2 B20z, Oy t Ouy

The likelihood function L(6 | X,Y’), where 8 = (k,al,ﬂl,ul,agl,agl,ail,ag,
Ba, pa, 032, ng, aiz)T, X =(Xy,.... X)) and Y = (Y1,...,Y,)T can be written
as:

A
L] X,Y) x (5%012“‘731 + Uzlail + 031031)*’“/2 exp {C}
(5)

B
X (ﬁ%oizai + 052032 + 032052)_("_’“)/2 exp {_D}
where

k
(Xi — p1)? = 2B102, Z (Y — a1 — Brpun)(Xi — )

1 i=1

-

A=(Bio2, +o?))

K2

(Y; — ay — Br)?

M=

+ (02, +02)
1

.
Il

n

n
B =(B30%7, +02,) Z (Xi = p2)® = 2p202, Z (Yi — g — Bapin)(Xi — pi2)
i=k+1 i=k+1
n
+ (03, +ou,) Z (Y; — ag — Bap)’
i=k+1
C =2(Bioy, 03, + 02,00, + 07,00,
D =2(B303,0%, + 02,03, + 04,0¢,)

2.1. Prior and Posterior Distributions

It was considered the discrete uniform distribution for & in the range 1,...,n
allowing values of kK = 1 or kK = n, which would indicate the absence of change-
point. Also, it was considered inverse Gamma distribution for each of the variances
and normal distributions for the remaining parameters to obtain posterior distri-
butions. The above distributions with their hyperparameters are given below.

PK=k) =2, k=1,...,n,
p(k) = ( )= :
0, otherwise,

‘731 ~ GI(ae,,be,) ‘732 ~ GI(aey, be,)
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oo~ GI(ay,,by,) on, ~ GI(auy,buy)
02 ~Gl(ag,,by,) 02, ~GI(az,,by,)

Tay)
B2 ~ N(Boz,03,)
pi2 ~ N(poz, 7.,)

where GI(a,b) denotes the inverse Gamma distribution with shape parameter
a > 0 and scale parameter b > 0. The hyperparameters ae,, be,, Qey, ey, Quys
Durs Quys Duys Quys by Guy ¥ bays 01, 05,5 Q02, Tays Bot, 03,5 Boz, 04y, Hots O
o2 and 032 are considered as known. The prior distribution for the vector x is
denoted by 7(z) and it is based on the assumption of independence and normality

of the model.

The likelihood function based on complete data X, Y and & = (z1,...,2,)7
is denoted by L*(0 | X,Y) and can be expressed as

M

a1 ~ N(a1,0

B ~ (501705
p1 ~ N(por, 075,

o) a2~ N(aop,

)
)

n

201 XY x o2t o)t [T ottt )
i=1 i=k+1
where
E= _(Yi—an - Pr:)? (X = ;)? (- w)?
202, 202, 202,
F—_ (Y — g — Bou;)? _ (X; — 2;)? 3 (1 — po)?
202, 202, 202,

Based on the prior distributions for each parameter the posterior distribution
for O can be written as

k n
m(0,x| X,Y) x H H (o2, 032)7%61{1)(/@
=1 1=k+1 (7)
x m(ar) m(ag) m(B1) m(B2) m(p1) 7(p2)
x m(oz,)w(02,) m(oy,) w(og,) w(07,) n(o,) 7 ()
where
o (Yi—a = Bir)? (X —xy)?
G=- 21031 : B 202
g Yi—as— Bawi)?  (Xi — i)
202, 202,

The conditional posterior distributions for the parameters obtained from the
previous posterior distribution are given in Appendix. For almost all the parame-
ters posterior distributions with pdf known were obtained, except for the param-
eter k. The conditional posterior distribution of the changepoint k in the model
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has not pdf known, making it necessary to use the Gibbs sampler, introduced by
Geman & Geman (1984) to approximate this distribution. The sampler Gibbs is
an iterative algorithm that constructs a dependent sequence of parameter values
whose distribution converges to the target joint posterior distribution (Hoff 2009).

The procedure used to implement the Gibbs sampler to the problem was:

1. Generate appropriate initial values for each of the 13 parameters to create
the initial parameter vector @ = (01,...,6013)7.

2. Update the component j = 1,...,13 of 8 generating a random observation
for the parameter 6; using the corresponding posterior distribution of Ap-
pendix and the subset of parameters of @ present in the posterior distribution
of 9]‘.

3. Repeat step 2 a number of times until obtaining convergence in all the pa-
rameters.

3. Simulation Study

In this section we present the results of implementation of the Gibbs sampler
for the model given in equations and under three different assumptions of
the parameters. In the first case we analyze the model with a simulated dataset
considering A\ = 02 /o2 known; in the second case we consider the variances o2
and o2, known and equal, and in the third case we consider the variances o2,
and o7, known and equals. In addition to the above cases we also analized the
changepoint estimate of the model for different n values with the aim of observing

the behavior of the estimate of k with respect to its true value.

3.1. A Known

In Table [I] we present a dataset of n = 60 observations generated in R Deve-
lopment Core Team (2011) from the model given in equations (3)) and (4 with the
assumption of A = 1 considering the following set of parameters: k = 20, oy = 2,
ﬁl = 2, M1 = 1, 0'31 = 1, 0'31 = 15, O'Zl = 02 /)\, Qg = 71, ﬂg = 4, Mo = 5,
022 = 2, 032 = 2.5 and 052 = 022/)\. Figure [1f shows the scatter plot for the
data generated and there is not clear indication of the changepoint in the model
structure.

We use the Gibbs sampler to obtain estimates of the parameters. The prior
distributions used to run the Gibbs sampler were as follows: a1 ~ N(2,15), 81 ~
N(2,15), p1 ~ N(1,15), 02 ~ GI(2,5), 02, ~ GI(2,5), o, ~ GI(2,5), ay ~
N(=1,15), B2 ~ N(4,15), po ~ N(5,15), 02 ~ GI(2,5), 02, ~ GI(2,5) and
o2, ~ GI(2,5).
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TaBLE 1: Random sample of simulated data with A = 1.
X 005 434 1.18 0.65 1.47 —-0.57 242 0.78 1.63 —-1.02 —-0.78 0.48
Y 0.03 492 442 162 591 3.81 6.60 497 279 2.37 145 5.24
X 105 250 376 0.61 1.46 098 1.59 —-0.95 4.89 2.28 7.09 7.18
Y 174 6.07 696 6.65 2.08 2.63 5.55 1.39 17.84 9.15 16.82 25.40
X 658 485 6.23 530 7.29 6.73 6.78 7.46  2.86 3.33 3.80  9.66
Y 18.51 18.86 13.12 19.57 17.16 22.71 22.16 26.90 21.30 12.82 27.43 27.96
X 363 366 570 564 2.15 3.13  9.10 9.88 4.73 7.48 2.55 11.11
Y 9.53 12.68 18.54 19.15 20.43 21.36 3297 27.38 13.67 18.73 14.54 23.11
X 710 495 9.17 2.03 9.54 5.08 7.36 6.37 4.35 1.45 7.67 297
Y 25.54 21.00 27.77 9.75 27.62 22.29 19.45 17.34 23.68 13.99 25.15 11.38
o
30
o ° 0 &
25 @o
o]
0o o 3 ©
| o °
20 0% o 9
> ¢ ° ®
15 |
° ° oo ° °
o
10 %% o
fe) o]
5 - o OOOQ) © o
% 089
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T T T T T I
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X

FicURE 1: Scatter plot for simulated data with A = 1.

We ran five chains of the Gibbs sampler. Each sequence was run for 11000
iterations with a burn-in of 1000 samples. The vectors of initial values for each of
the chains were:

0\”) = (5,1.886,1.827,2.4,0.942,1.134, 1.015, —1.5,2.100, 1.3, 0.6, 0.893, 1.8)

6" = (10,2.537,1.225,2.2,1.404, 2.171,0.552, 0.2, 3.500, 4.3, 1.1,0.903, 3.4)

6 = (30,1.856,1.855,2.6,0.928, 1.087, 1.029, —0.3, 3.829, 4.5, 2.0, 0.900, 2.1)

0\ = (40,2.518,1.242, 2.8, 1.386, 2.142, 0.571, —2.0, 3.829, 3.5, 2.8, 0.901, 1.4)
6 = (50,2.516,1.244,1.8,1.383,2.138,0.573, —1.3,3.829, 2.5, 3.5, 0.899, 2.4)
The above vectors were obtained by the following procedure. For fixed values of

k = 5,10, 30,40, 50 numerical methods were used to determine the values of @ that

maximize the likelihood function given in . These estimates were obtained using
the function optim of R Development Core Team (2011), which uses optimization
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methods quasi-Newton such as the bounded limited-memory algorithm L-BFGS-
B (Limited memory, Broyden- Fletcher-Goldfarb-Shanno, Bounded) proposed by

Byrd, Lu, Nocedal & Zhu (1995).

In order to verify the convergence of the chains we use the diagnostic indicator
proposed by Brooks & Gelman (1998). The diagnostic value of R found in this case
was 1.04; values close to 1 indicate convergence of the chains. Additionally, for
each parameter, the posterior distribution was examined visually by monitoring
the density estimates, the sample traces, and the autocorrelation function. We
found not evidence of trends or high correlations. Figures 2] and |3| show the
Highest Density Region (HDR) graphics for the parameters of the chain 1. These
graphics show that the true values of the model parameters are in the Highest

Density Regions.

2 2 2
@ k7 k]
=4 =4 =4
Q Q )
a a [a]
2 2 2
[%) j%) [
=4 o =4
[ kY [
[a) [a] o

T T 17T 17T 177

0 2 4 6 8 02468 12

2 2
G x1 Cel

Ficure 2: HDR plot for ai, B1, p1, 031,051 and 031.

Table [2| presents the posterior mean and standard deviation (SD) for the model
parameters and the 90% HDR interval. Note that the true values parameters are
close to mean and are within the HDR interval.
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Ficure 3: HDR plot for a2, B2, ue2, 052,032 and 032.

TABLE 2: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-
rameters with A = 1.
Parameter Mean SD HDRlower HDRupper

k 19.99  0.10 - -
o 2.21 083 0.94 3.57
B1 1.50  0.54 0.64 2.38
pa 1.09  0.40 0.44 1.74
o2, 1.64 0.72 0.60 2.61
o2, 228 114 0.62 3.77
o2, 1.47  0.59 0.56 2.24
a2 0.17  2.54 —-3.97 4.46
B2 3.44 045 2.71 4.20
B2 572 0.38 4.10 5.34
o2, 2.86  0.94 1.39 4.22
o2, 3.77  2.68 0.53 7.32
o2, 3.18  0.81 1.86 4.42
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2 2
3.2. 0; and o;, Known

In this case we consider the structural ME model with 02 = o = 2. Table
shows a dataset of size n = 60 generated from the model given in equations
and with the following set of parameters: oy = 2, 51 = 2, 1 = 1, 031 =1,
02 =15, a=—1, s =4, pp =5, 02, =2 and o2, = 2.5. Figureshows the
scatter plot for the simulated data.

TABLE 3: Random sample of data simulated with cfﬁl = aiz =2.
2.03 2.16 1.68 —0.07 1.00 —0.82 142 —-042 336 088 0.12 0.80
5.11 4.31 5.33 2.73 0.33 1.69 7.48 3.06 265 048 1.82 5.37

2.84 4.15 —1.54 0.84 1.55 0.99 -0.27 4.16 6.13 5.01 5.09 1.12
042 5.20 3.75 4.88  3.87 0.73 6.01 8.41 20.03 18.82 15.29 8.10

5.40 3.28 8.06 5.78  5.68 3.26 2.48 3.72 285 6.13 2.85 8.47
8.55 16.47 26.13 15.54 16.11 14.48 11.52 21.86 9.55 24.49 14.44 24.76

3.18  3.90 2.58 7.58  5.59 6.79 7.20 4.01 6.10 5.73 1.82 795
20.74 15.84 4.54 20.84 20.96 24.59 2395 11.74 18.99 15.13 9.98 29.01

4.42 4.01 7.72 9.25 4.60 4.73 0.52 046 276 544 7.22 3.33
13.82 14.92 23.08 32.71 10.53 22.03 11.28 14.74 830 15.60 30.96 17.54

KKK X KK KX KX

o
o
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25 o o, o
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FIGURE 4: Scatter plot for the simulated data with aﬁl = 032 =2.

The prior distributions for aq, 81, u1, Ugl,agl,ag, Ba, 12, 022, and 022 were the
same considered in the case of A known. The vectors of initial values for the model
parameters in each of the five Markov chain were as follows:
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(5,1.0,2.305, 1.063, 0.189, 3.0, 2, —2.0, 4.071, 4.727, 2.0, 1.984, 2)
(10,1.5,2.800, 1.063,0.189, 1.7, 2, —2.0, 4.071, 3.300, 3.0, 1.980, 2)
(30,3.1,2.305, 0.300, 2.000, 2.0, 2, —0.5, 1.500, 3.200, 2.0, 2.700, 2)
(40, 3.1,1.900, 1.063, 1.400, 2.1, 2, —2.0,4.071,4.727, 1.4, 1.981, 2)
(50,2.9,0.500, 1.063,0.189, 2.6, 2,0.7, 2.400, 1.500, 3.1, 1.981, 2).

The diagnostic value of convergence R was 1.01 indicating the convergence of
the chains. A visual monitoring of the density estimates, the sample traces, and
the correlation function for each parameter in each of the chains did not show any
problem. In Figures [f] and [6] we present the HDR graphics for the parameters
in the chain 1. The graphics show that true values of the parameters model are
within the Highest Density Regions.

Density

Density

Density
Density

Density

0o 2 4 6 8 0o 5 10 15
szl 0291

Ficure 5: HDR plot for a1, Bi1, p1, 09251 and 031.

Table [4| shows the posterior mean and standard deviation (SD) for each of the
parameters model and the 90% HDR interval. It is noted again that the true
values of the parameters are close to the mean and within the HDR intervals.
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Density

2
G x2

Ficure 6: HDR plot for aq, B2, us, ai2 and 052.
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TABLE 4: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-
rameters with cri1 = 032.

Parameter

HDRupper

k
a1

Mean SD HDRIlower
19.25 0.61 -
2.48 1.24 0.48
0.89  0.99 —0.69
1.15 0.43 0.44
1.51 0.73 0.52
3.85 1.72 1.05
—1.00 2.31 —4.62
3.82  0.46 3.04
4.79 0.36 4.20
3.02 094 1.53
3.21 2.16 0.53

4.47
2.46
1.86
2.47
6.18
2.91
4.55
5.36
4.39
6.07

3.3. ¢2, and ¢, Known

In this case we consider the structural ME model with 02 = 02, = 2. Table
shows a dataset of size n = 60 generated from the model given in equations (3]
and considering the same parameters values of the case A known. Figur
presents the scatter plot of the simulated data.
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TABLE 5: Random sample of the simulated data with 051 = 052 =2.

X —=0.82 1.06 —2.25 0.76 1.71 —-0.93 050 —-0.08 1.12 —-0.14 1.59 0.99
Y 2.72 2.75 1.88 8.66 5.12 2.51 7.00 7.64 4.55 750 2.89 2.55
X —-1.69 -0.14 2.32 —1.42 299 0.70 0.99 0.06  5.20 2.18 6.69 8.79
Y 2.47 0.43 5.32 3.10 6.63 1.99 5.57 3.39 11.10 13.80 17.71 32.28
X 4.98 8.05 6.29 5.99 5.32 5.80 7.73 5.45  4.27 2.84 7.69 10.61
Y 16.11 19.64 16.59 17.86 16.14 19.01 34.01 19.65 19.77 21.84 23.58 30.02
X 5.90 3.51 2.15 3.10 9.42 3.31 4.06 1.44 7.18 1.72  6.61 5.28
Y 21.45 11.51 17.44 17.75 29.13 18.25 20.95 8.24 24.11 8.12 29.31 19.54
X 4.68 1.88 5.02 1.76  7.67 5.31 6.42 7.79  4.32 1.20 3.22 3.37
Y 1790 17.81 16.27 14.20 23.72 27.51 28.17 18.41 18.28 11.89 15.10 19.96
35
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FIGURE 7: Scatter plot for the simulated data with UZI = 032 =2.

The prior distributions for aq, 51,u1,031,051,a2,ﬁ2, Lo, O

2

2
2, and oy were the

same considered in the case of A known. The vectors of the initial values for each
of the five Markov chains were as follows:

6\ = (5,3.264, 2.650, 0.366, 0.437, 2.001, 1.276, 4.287, 3.0, 5.106, 3.793, 2.001, 2.394)

6y = (
65" = (
6y = (
65 = (

10, 1.000, 1.904, 1.500, 1.370, 2.001, 0.500, 4.512, 5.0, 2.000, 2.700, 2.001, 1.000
30, 2.500, 2.650, 1.000, 0.437, 2.001, 1.500, 4.286, 2.0, 4.000, 3.792, 2.001, 0.700
40,0.500, 1.904, 0.900, 1.369, 2.000, 2.000, 4.512, 1.8, 5.500, 4.000, 2.001, 2.100
50,3.600, 2.652, 1.900, 0.437, 2.000, 0.700, 4.287, 4.1, 4.200, 3.792, 2.001, 2.000

The diagnostic value of convergence was of 1.04 indicating the convergence of
the chains. In Figures [§ and [9] we present the HDR graphics of the parameters
for the chain 1. Note that the true values of the parameters model are within the
Highest Density Regions.
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Ficure 9: HDR plot for as, B2, us2, 032 and 032.

Table [6] shows the posterior mean and the standard deviation (SD) for the
model parameters and the 90% HDR interval. As in the previous cases the poste-
rior means are close to the true values and are within the HDR interval.
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TABLE 6: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-

rameters with 021 = 052.

Parameter Mean SD  HDRlower HDRupper

k 20.22 047 - -
o 2.95 0.62 0.96 2.98
B 2.09 061 1.09 3.02
p 0.59 0.37 —0.01 1.20
o 141  0.64 0.53 2.26
o2 1.76  0.64 0.80 2.64
g 0.60 2.62 —2.01 0.97
Bo 3.70 049 2.93 4.49
112 516  0.35 4.57 5.73
o2, 2.85 0.93 1.41 4.19
o2 2.62  0.63 1.59 3.53

Uz

3.4. Constant Sample Size and Variable Changepoint

In this case our objective was determine if the estimated changepoint of the
model given in equations and differs from its true value when n = 60 is
fixed. We generated nine random samples of size n = 60 based on the structure
considered in Section [3.1} the values of the parameters were the same ones used in
this section. The changepoint k for each nine random samples had different values,
and the values were k = 3,5, 10, 20, 30, 40, 50, 55 and 58. For each of the random
samples were run five Markov chains of size 150000 with a burn in of 15000. Table
[7] presents for the estimated changepoint k the posterior mean, standard deviation
and percentiles of 10% and 90% when n = 60. Note that posterior mean of
the changepoint is very close to the true value and the standard deviation tends
to increase as the changepoint approach to the extreme values. Also the Table [7]
shows that the distance between the percentiles 10% and 90% is at most 1%, which
indicates that the posterior distribution for the parameter k is highly concentrated
in one or two possible values and they match with the true value of k.

3.5. Sample Size and Changepoint Variable

In this case our objective was to determine if the estimated changepoint of the
model given in equations and (4] differs from its true value for differents values
of n. As in the previous case we generated nine dataset with the structure of the
Section[3.1] Each of the dataset had samples sizes of n = 20, 30, 40, 50, 60, 70, 80, 90
and 100. The true value for k in each of the nine set was k = n/2. Table
presents the posterior mean, standard deviation and 10% and 90% percentiles
for the estimated changepoint and the true values of k. Again we see that the
posterior mean of k is very close to the true values of k; it is also noted that the
standard deviation tends to increase as the size sample n decreases; this means
that if we have fewer observations the posterior distribution for k£ tends to have
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greater variability. As in the previous case the distance between the percentiles
10% and 90% is at most 1%, which means that the posterior distribution for the
parameter k is highly concentrated in one or two possible values and they match
the true value of k.

TABLE 7: Posterior mean, standard deviation (SD) and 10% and 90% percentiles of k
estimated when n = 60.

k Mean SD 10% 90%

3 3.16 0.67 3.00 4.00

5 5.03 0.43 5.00 5.00
10 9.95 0.30 10.00 10.00
20 19.89 0.31 19.00 20.00
30 2997 0.19 30.00 30.00
40  39.99 0.12 40.00 40.00
50 49.98 0.13 50.00 50.00
55 54.98 0.14 55.00 55.00
58 57.97 0.18 58.00 58.00

TABLE 8: Posterior mean, standard deviation (SD) and 10% and 90% percentiles of k.

n k Mean SD 10% 90%
20 10 994 0.29 10.00 11.00
30 15 1496 0.27 15.00 16.00
40 20 1998 0.21 19.00 20.00
50 25 2498 0.16 24.00 24.00
60 30 30.17 0.12 30.00 30.00
70 35 3499 0.10 35.00 35.00
80 40 39.99 0.10 39.00 39.00
90 45 4499 0.11 44.00 45.00
100 50 50.00 0.06 49.00 49.00

4. Application

This section illustrates the proposed procedure for the structural ME model
with changepoint using a dataset of imports in the French economy.

Malinvaud (1968) provided the data of imports, gross domestic product (GDP),
and other variables in France from 1949-1966. The main interest is to forecast the
imports given the gross domestic product of the country. Chatterjee & Brockwell
(1991) analyzed these data by the principal component method and found two
patterns in the data; they argued that the models before and after 1960 must
be different due to the fact the European Common Market began operations in
1960. Maddala (1992) considered a functional ME model; however, he ignored
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the possibility that some changes in the data may arise. Chang & Huang (1997)
considered a structural ME model with changepoint using the likelihood ratio
test based on the maximum Hotelling 72 for the test of no change against the
alternative of exactly one change and concluded that the changepoint ocurred in
1962. Table [9] presents the import data (Y) and gross domestic product (X).

TABLE 9: Imports and gross domestic product data from January 1949 to November
1966.

Year 1949 1950 1951 1952 1953 1954
GDP 149.30 161.20 171.50 175.50 180.80 190.70
Imports 1590 16.40 19.00 19.10 1880  20.40
Year 1955 1956 1957 1958 1959 1960
GDP 202.10 21240 226.10 231.90 239.00 258.00
Imports  22.70  26.50  28.10 27.60 26.30 31.10
Year 1961 1962 1963 1964 1965 1966
GDP 269.80 288.40 304.50 323.40 336.80 353.90
Imports  33.30 37.00 43.30 49.00 50.30  56.60

The data were reanalized under a Bayesian perspective by adopting the struc-
tural ME model with changepoint. We considered non informative prior distri-
butions for all parameters. Again as in the previous cases, we built five chains
with different initial values of size 11000 with a burn in of 1000 samples to avoid
correlations problems. We found the value R = 1.03, indicating the convergence
of the chains.

Figure [L0] shows the high concentration in the value 14 for the posterior dis-
tribution for the parameter k. The mean for this distribution is 13.92, which is
the same obtained by Chang & Huang (1997), indicating that the data present a
changepoint for the year 1962. Table [I0] presents estimates for the remaining pa-
rameters of the model. The values are also close to the results obtained by Chang
& Huang (1997). It is also noted that the means for 5, and S were 0.14 and 0.16,
which indicates no significant changes in the slope for the trend lines before and
after £k = 14. The means obtained for the parameters a; and as were —5.53 and
—2.23, not being to close these values, which indicate that the trend lines before
and after the change have different changepoints; this can be seen clearly in the

Figure

5. Conclusions

This paper proposes the Bayesian approach to study the structural ME model
with changepoint. Through the simulation study was shown that the proposed
procedure identifies correctly the point where the change comes to structure; note
also that the variability in the posterior distribution of k decreases as the number
of observations in the dataset increases. Another important aspect is that the
variability of the posterior distribution for k increases as the true value of k is
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Ficure 10: Posterior density for k.
TABLE 10: Posterior summary results.

Parameter Mean SD HDRlower HDRupper
Qi —5.53 1.95 8.77 —2.50
51 0.14 0.01 0.13 0.16
I3 16.33 3.88 9.99 22.67

03201 34601.81 13191.57 13641.42 51588.36
0'21 1.93 0.89 0.72 3.07
021 4.37 5.18 0.37 8.66
a9 —2.23 3.78 —8.35 3.96
B2 0.16 0.01 0.14 0.18
2 5.39 3.89 —1.02 11.82
022 70266.22  48727.80 1141.85 120582.77
032 5.43 4.61 0.72 10.16
032 5.14 13.70 - -

close to 1. For the other parameters the proposed procedure generated posterior
distributions with means very close to the real parameters in all cases considered.
The proposed procedure generates chains that converge to the true parameters,
regardless of whether or not identifiability assumptions.

Possible future works could consider other prior distributions such as non in-
formative and skew normal and also introduce multiple changepoints in Y and
X.

Revista Colombiana de Estadistica 35 (2012) 15



34 Olga Cecilia Usuga & Freddy Hernandez

—e— Trend before change o
--0- Trend after change 4

50 — g

X
FIGURE 11: Scatter plot for the application.
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Appendix. Conditional Posterior Distributions

1. Conditional posterior distribution of k

PUK =k |02 X.¥) = nL 0] X,Y)
> L0 X.Y)

k=1

where L*(6 | X,Y) is given in equation ().

2. Conditional posterior distribution of ay

oo, X (Yi = Bixy) +anol, 5
m(a1 |0 0y, X,Y,z) ~ N =1

oo
2 2
koz, + o2

10
’ 2 2
koZ + o2

where 0¢_p,y is the vector 8 without considering the parameter 0;.

3. Conditional posterior distribution of as

n

0'32 % I(Y; - 182x'b) + 0402‘722 2 92
T
m(az | 0(_py}, X, Y, ) ~ N ‘

0:,0
(?’L - k)gaz + 032

2~ a2

’ ('I’L - k)o(%z + 0'22

4. Conditional posterior distribution of 8y

k

o3, Z(Yz — a1)zi + Boroe,
m(B1]01-py, X, Y, x) ~ N =

2 2
Oe19p

I

k k
2 2 2 2 2 2
U/h.leiJrgel 061.21xi+061
1= 1=

5. Conditional posterior distribution of S

n

o5, > (Yi—a2)zi+ fo20l,

2 . A o2 o2
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6. Conditional posterior distribution of py

k
2 2
Opy D Ti+ f0107, 2 2
™ (1 | 0g-y, X, Y, ) ~ N i=12 2 R
kaﬂ1 + 0.11 kam + le
7. Conditional posterior distribution of ps
2 v 2
Oy 2o it Ho207, 2 2
i=k+1 Gﬂczguz

m(pe |Or_ oy, X, Y, @) ~ N ,
( {=p2} ) (n—Fk)o2, +02, " (n—k)o2, +02,

8. Conditional posterior distribution of 012“

k
k 1
T (031 | 0{_051},X,Y,:c) ~GI (2 a5 S(X - @)+ bm)
=1

2

9. Conditional posterior distribution of o7,

—k 1 &
T‘—(O—Zz |9{—032}7X7Y7w> NGI<(n2 ) +au27§ Z (Xi—$i)2+bu2>
i=k+1

10. Conditional posterior distribution of 051

2

k
k 1
s (ng | 0{_031}7X7Y7w) ~ GI <2 + ey = Z(YZ — Q] — ﬁlmi)Q + bq)
=1

11. Conditional posterior distribution of 02,

n—k 1 &
w(agze{JEQ},X,Y,m>~GI(( > )+a62,§ 3 (Yiagﬁgmi)2+be2)
i=k+1

12. Conditional posterior distribution of 021

k
k 1
W(Ugl |0{_U%1},X,Y,:B> ~ GI <2+a$1,22(1’iﬂl)2+bm1>
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13. Conditional posterior distribution of 02,

—k 1 o
m (Uiz ‘ 0{*052}7X7Y7w) ~GI <(n2> + Ay, 5 Z (xl - M2)2 + b:m)
i=k+1

14. Conditional posterior distribution of z;, with
r—; = (.T171'2, ey Li—15 L1y - - 7:1:].3)

™ (xl | 07X7Y,m—i) ~ N (“rwvar(uri))

where,
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15. Conditional posterior distribution of x;, with
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