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Abstract

For square contingency tables with ordered categories, the present paper
proposes a measure to represent the degree of departure from the extended
quasi-symmetry (EQS) model. It is expressed by using the Cressie-Read
power-divergence or Patil-Taillie diversity index. The present paper also
defines the maximum departure from EQS which indicates the maximum
departure from the uniformity of ratios of symmetric odds-ratios. The mea-
sure lies between 0 and 1, and it is useful for not only seeing the degree of
departure from EQS in a table but also comparing it in several tables.

Key words: Contingency table, Kullback-Leibler information, Quasi-symm-
etry, Shannon entropy.

Resumen

El presente artículo propone una medida para representar el grado de
alejamiento del modelo extendido cuasisimétrico (EQS, por su sigla en in-
glés) para tablas de contingencia con categorías ordenadas. Esta medida se
expresa mediante el uso de la divergencia de potencia de Cressie-Read o el
índice de diversidad Patil-Taillie. Nuestro trabajo también define el máximo
alejamiento de EQS, el cual indica el alejamiento máximo de la uniformidad
de razones de odds-ratios simétricos. La medida cae entre 0 y 1 y es útil
no solo para determinar el grado de alejamiento de EQS en una tabla, sino
también para comparar este grado de alejamiento en varias tablas.
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1. Introduction

Consider an R × R square contingency table with same row and column clas-
sifications. Let pij denote the probability that an observation will fall in the ith
row and the jth column of the table (i = 1, . . . , R; j = 1, . . . , R). Bowker (1948)
considered the symmetry (S) model defined by

pij = φij for i = 1, . . . , R; j = 1, . . . , R

where φij = φji (Bishop, Fienberg & Holland 1975, p. 282). Caussinus (1965)
considered the quasi-symmetry (QS) model defined by

pij = αiβjψij for i = 1, . . . , R; j = 1, . . . , R

where ψij = ψji. A special case of this model obtained by putting {αi = βi} is the
S model. For square tables with ordered categories, Tomizawa (1984) proposed
the extended quasi-symmetry (EQS) model defined by

pij = αiβjψij for i = 1, . . . , R; j = 1, . . . , R

where ψij = γψji (i < j). A special case of this model obtained by putting γ = 1
is the QS model. This is also expressed as, using the odds-ratios including the cell
probabilities on the main diagonal,

θ(i<j;j<k) = γθ(j<k;i<j) for i < j < k

where
θ(i<j;j<k) =

pijpjk
pjjpik

, θ(j<k;i<j) =
pjipkj
pkipjj

This indicates that the ratios of odds-ratios with respect to the main diagonal
of the table are uniform for all i < j < k. The EQS model may be expressed as

Dijk = γDkji for i < j < k,

where
Dijk = pijpjkpki, Dkji = pkjpjipik

For the analysis of square contingency tables, when a model does not hold, one
may be interested in measuring how far the degree of departure from the model
is. Thus some measures of various symmetry have been proposed. For example,
Tomizawa (1994) and Tomizawa, Seo & Yamamoto (1998) proposed the measures
to represent the degree of departure from the S model for square tables with nom-
inal categories. Tomizawa, Miyamoto & Hatanaka (2001) proposed the measure
for the S model for square tables with ordered categories. Tahata, Miyamoto &
Tomizawa (2004) proposed the measure to represent the degree of departure from
the QS model for square tables with nominal categories.
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Generally, when the EQS model does not hold, we may apply a model which
is extension of EQS model. Such models have been discussed by, e.g., Yamaguchi
(1990), Tomizawa (1990) and Lawal (2004). On the other hand, we are also in-
terested in measuring the degree of departure from the EQS model as described
above. However a measure, which represents the degree of departure from the
EQS model, does not exist. Therefore, we are interested in proposing a measure
to represent the degree of departure from the EQS model, for square tables with
ordered categories.

Table 1: Cross-classification of father and son social classes; taken from Hashimoto
(2003, p. 142).

(a) Examined in 1955
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 39 39 39 57 23 197
(2) 12 78 23 23 37 173
(3) 6 16 78 23 20 143
(4) 18 80 79 126 31 334
(5) 28 106 136 122 628 1020

Total 103 319 355 351 739 1867

(b) Examined in 1975
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 29 43 25 31 4 132
(2) 23 159 89 38 14 323
(3) 11 69 184 34 10 308
(4) 42 147 148 184 17 538
(5) 42 176 377 114 298 1007

Total 147 594 823 401 343 2308

(c) Examined in 1995
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 68 48 36 23 1 176
(2) 33 191 102 33 3 362
(3) 25 147 229 34 2 437
(4) 48 119 146 129 5 447
(5) 40 126 192 82 88 528

Total 214 631 705 301 99 1950

Consider the data in Table 1, taken from Hashimoto (2003, p. 142). These data
describe the cross-classification of father and son social classes in Japan, which
were examined in 1955, 1975, and 1995. Note that status (1) is Capitalist; (2)
New-middle; (3) Working; (4) Self-employed; and (5) Farming. For social mobility
data, one may be interested in considering the structure of symmetry instead of
independence between row and column variables. Thus, for example the S, QS
and EQS models would be useful for analyzing the data. For these data in Table
1, “i → j” denotes the move to the son’s class j from his father’s class i. Thus
{pij} could be interpreted as transition probabilities. The EQS model indicates

Revista Colombiana de Estadística 35 (2012) 55–65



58 Kouji Tahata & Keigo Kozai

that for a given order i < j < k, the product of transition probabilities that
connects a cyclic sequence of paths i → j → k → i (we shall call the probability
for right cyclic sequence of paths i → j → k → i for convenience), which includes
two upward moves i → j and j → k and one downward move k → i, is γ times
higher than the product of transition probabilities that represents a reverse cyclic
sequence of paths i → k → j → i (we shall call the probability for left cyclic
sequence of paths i → k → j → i), which includes one upward move i → k and
two downward moves k → j and j → i.

The EQS model can also be expressed as

D
(1)
ijk = D

(2)
ijk for i < j < k, (1)

where

D
(1)
ijk =

Dijk∑
s<t<uDstu

, D
(2)
ijk =

Dkji∑
s<t<uDuts

For the data in Tables 1a, 1b and 1c, D(1)
ijk is conditional probability that for

any three father-son pairs father’s class and his son’s class are (i, j), (j, k) and
(k, i), on condition that there is right cyclic sequence of paths. Similarly, D(2)

ijk is
conditional probability that for any three father-son pairs father’s class and his
son’s class are (j, i), (k, j) and (i, k), on condition that there is left cyclic sequence
of paths. In a similar manner to Tomizawa et al. (1998), we shall consider a
measure which represents the degree of departure from EQS because the equation
(1) states that there is a structure of symmetry between {D(1)

ijk} and {D(2)
ijk} for

i < j < k.
Section 2 proposes the measure to represent the degree of departure from the

EQS model. Section 3 gives the approximate confidence interval for the measure.
Section 4 shows an example.

2. Measure of Extended Quasi-Symmetry

Assume that
∑
s<t<uDstu 6= 0,

∑
s<t<uDuts 6= 0 and Dijk + Dkji > 0 for

i < j < k. Let

E
(1)
ijk =

D
(1)
ijk

D
(1)
ijk +D

(2)
ijk

, E
(2)
ijk =

D
(2)
ijk

D
(1)
ijk +D

(2)
ijk

for i < j < k

For the data in Tables 1a, 1b and 1c, E(1)
ijk is the proportion of the conditional

probability D(1)
ijk to the sum of the conditional probabilities D(1)

ijk+D
(2)
ijk. Similarly,

E
(2)
ijk is the proportion of D(2)

ijk to D(1)
ijk + D

(2)
ijk. The EQS model can be expressed

as

E
(1)
ijk = E

(2)
ijk =

1

2
for i < j < k
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Consider the measure defined by

Φ(λ) =
λ(λ+ 1)

2(2λ − 1)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
I
(λ)
ijk for λ > −1

where

I
(λ)
ijk =

1

λ(λ+ 1)

E(1)
ijk


(
E

(1)
ijk

1/2

)λ
− 1

+ E
(2)
ijk


(
E

(2)
ijk

1/2

)λ
− 1




and the value at λ = 0 is taken to be the limit as λ→ 0. Thus,

Φ(0) =
1

2(log 2)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
I
(0)
ijk

where

I
(0)
ijk = E

(1)
ijk log

(
E

(1)
ijk

1/2

)
+ E

(2)
ijk log

(
E

(2)
ijk

1/2

)

Note that a real value λ is chosen by the user. The I(λ)ijk is the modified power-

divergence and especially I(0)ijk is the Kullback-Leibler information. For more details
of the power-divergence, see Cressie & Read (1984). The measure Φ(λ) would
represent, essentially, the weighted sum of the power-divergence I(λ)ijk .

The measure may be expressed as

Φ(λ) = 1− λ2λ−1

2λ − 1

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
H

(λ)
ijk for λ > −1

where
H

(λ)
ijk =

1

λ

[
1−

(
E

(1)
ijk

)λ+1

−
(
E

(2)
ijk

)λ+1
]

with
Φ(0) = 1− 1

2(log 2)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
H

(0)
ijk

where
H

(0)
ijk = −E(1)

ijk logE
(1)
ijk − E

(2)
ijk logE

(2)
ijk

Note that H(λ)
ijk is the Patil & Taillie (1982) diversity index, which includes

the Shannon entropy when λ = 0. Therefore, Φ(λ) would represent one minus the
weighted sum of the diversity index H(λ)

ijk .

For each λ, the minimum value of H(λ)
ijk is 0 when E(1)

ijk = 0 (then E(2)
ijk = 1) or

E
(2)
ijk = 0 (then E(1)

ijk = 1), and the maximum value is (2λ− 1)/λ2λ (if λ 6= 0), log 2

(if λ = 0), when E(1)
ijk = E

(2)
ijk. Thus we see that Φ(λ) lies between 0 and 1. Also
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for each λ, (i) there is a structure of EQS in the table (i.e., E(1)
ijk = E

(2)
ijk = 1/2,

(thus D(1)
ijk = D

(2)
ijk) for any i < j < k) if and only if Φ(λ) = 0; and (ii) the degree

of departure from EQS is the largest, in the sense that E(1)
ijk = 0 (then E(2)

ijk = 1)

or E(2)
ijk = 0 (then E

(1)
ijk = 1) (i.e., D(1)

ijk = 0 (then D
(2)
ijk > 0) or D(2)

ijk = 0 (then

D
(1)
ijk > 0)) for any i < j < k, if and only if Φ(λ) = 1. Note that Φ(λ) = 1 indicates

thatD(1)
ijk/D

(2)
ijk =∞ for some i < j < k andD(1)

ijk/D
(2)
ijk = 0 for the other i < j < k,

and therefore it seems appropriate to consider that then the degree of departure
from EQS (i.e., from D

(1)
ijk/D

(2)
ijk = 1 for i < j < k) is largest.

According to the weighted sum of power-divergence or the weighted sum of
Patil-Taillie diversity index, Φ(λ) represents the degree of departure from EQS,
and the degree increases as the value of Φ(λ) increases.

3. Approximate Confidence Interval for Measure

Let nij denote the observed frequency in the ith row and jth column of the
table (i = 1, . . . , R; j = 1, . . . , R) with n =

∑∑
nij . Assume that {nij} have a

multinomial distribution. We shall consider an approximate standard error and
large-sample confidence interval for the measure Φ(λ) using the delta method as
described by Bishop et al. (1975, Section 14.6). The sample version of Φ(λ), i.e.,
Φ̂(λ), is given by Φ(λ) with {pij} replaced by {p̂ij}, where p̂ij = nij/n. Using
the delta method,

√
n(Φ̂(λ) − Φ(λ)) has asymptotically (as n → ∞) a normal

distribution with mean zero and variance

σ2 =

R−1∑
a=1

R∑
b=a+1

{
1

pab

(
A

(λ)
ab

)2
+

1

pba

(
B

(λ)
ab

)2}
−

{
R−1∑
a=1

R∑
b=a+1

(
A

(λ)
ab +B

(λ)
ab

)}2

where for λ > −1 and λ 6= 0,

A
(λ)
ab =

2λ−1

2λ − 1

∑
i<j<k

[
(E

(1)
ijk)λD

(1)
ijk

{
I(a=i,b=j) + I(a=j,b=k)

−
∑
s<t<u

D
(1)
stu(I(a=s,b=t) + I(a=t,b=u))

}
+ (E

(2)
ijk)λD

(2)
ijk

{
I(a=i,b=k) −

∑
s<t<u

D
(2)
stuI(a=s,b=u)

}
+ λ
(
D

(2)
ijk(E

(1)
ijk)λ+1 −D(1)

ijk(E
(2)
ijk)λ+1

){(
I(a=i,b=j) + I(a=j,b=k) − I(a=i,b=k)

−
∑
s<t<u

(D
(1)
stuI(a=s,b=t) +D

(1)
stuI(a=t,b=u) −D

(2)
stuI(a=s,b=u))

)}]
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and

A
(0)
ab =

1

2 log 2

∑
i<j<k

[
D

(1)
ijk(logE

(1)
ijk)
{
I(a=i,b=j) + I(a=j,b=k)

−
∑
s<t<u

D
(1)
stu(I(a=s,b=t) + I(a=t,b=u))

}
+D

(2)
ijk(logE

(2)
ijk)
{
I(a=i,b=k) −

∑
s<t<u

D
(2)
stuI(a=s,b=u)

}]
with

I(a=i,b=j) =

{
1 (a = i and b = j)

0 (otherwise)

and where B(λ)
ab for λ > −1 is defined as A(λ)

ab obtained by interchanging D(1)
ijk and

D
(2)
ijk and by interchanging E(1)

ijk and E(2)
ijk.

Although the detail is omitted, (i) when Φ(λ) = 0, we can get σ2 = 0 by noting
D

(1)
ijk = D

(2)
ijk and E(1)

ijk = E
(2)
ijk = 1/2 for i < j < k, and (ii) when Φ(λ) = 1, we can

get σ2 = 0 by noting D(1)
ijk = 0 (then E(1)

ijk = 0 and E(2)
ijk = 1) for some i < j < k

and D
(2)
ijk = 0 (then E

(1)
ijk = 1 and E

(2)
ijk = 0) for the other i < j < k. Thus we

note that the asymptotic distribution of Φ̂(λ) is not applicable when Φ(λ) = 0
and Φ(λ) = 1. Let σ̂2 denote σ2 with {pij} replaced by {p̂ij}. Then σ̂/

√
n is an

estimated approximate standard error for Φ̂(λ).

4. An Example
Consider the data in Table 1 again. Then, the maximum departure from the

EQS model indicates that for some i < j < k, the product of transition proba-
bilities that connects i → j → k → i is zero, (and then the product of transition
probabilities that represents i → k → j → i is not zero) and for the others the
product of transition probabilities that connects i → j → k → i is not zero (and
then the product of transition probabilities that represents i→ k → j → i is zero);
namely, the stochastic circular social mobility arises among any three father-son
pairs.

Now we consider comparing the degree of departure from the EQS model for
the data in Tables 1a, 1b and 1c. We choose λ = 0 because Φ(0) is expressed
as well known Kullback-Leibler information. Thus we apply the measure Φ(0) for
these data. Table 2 shows the estimated measure Φ̂(0), estimated approximate
standard error for Φ̂(0), and approximate 95% confidence interval for Φ(0). When
the degrees of departure from the EQS model in Tables 1a, 1b and 1c are compared
using the estimated measure Φ̂(0), (i) the value of Φ̂(0) is greater for Table 1a than
for Tables 1b and 1c, and (ii) the value of Φ̂(0) is greater for Table 1b than for
Table 1c. Namely, the degree of departure from the EQS model for Table 1a is
the largest, that for Table 1b is the second largest, and that for Table 1c is the
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smallest. Thus, the data in Table 1a rather than in Tables 1b and 1c are estimated
to be close to the maximum departure from the EQS model.

Table 2: Estimated measure Φ̂(0), estimated approximate standard error for Φ̂(0), and
approximate 95% confidence interval for Φ(0), applied to Tables 1a, 1b, and
1c.

Table Estimated measure Standard error Confidence interval
1a 0.076 0.039 (−0.001, 0.153)
1b 0.036 0.034 (−0.031, 0.102)
1c 0.011 0.018 (−0.024, 0.046)

5. Discussions and Conclusion

The measure Φ(λ) always ranges between 0 and 1 independently of the dimen-
sion R and sample size n. But the likelihood-ratio statistic for testing goodness-
of-fit of the EQS model depends on sample size n. For example, consider two
R × R contingency tables, say, A and B, where the observed frequency in each
cell for Table A has ten times that in the corresponding cell for table B. Then
the value of likelihood-ratio statistic for testing goodness-of-fit of the EQS model
for table A is ten times that for table B. However, when the ratios of odds-ratios,
θ̂(i<j;j<k)/θ̂(j<k;i<j), i < j < k, for table A is equal to that for table B, the value
of measure Φ̂(λ) for table A is equal to that for table B. Therefore, Φ̂(λ) would be
useful for comparing the degree of departure from EQS in several tables, even if
several tables have different sample sizes.

As described in Section 2, the proposed measure would be useful when we want
to see with single summary measure how degree the departure from EQS is to-
ward the maximum degree of departure from EQS. We have defined the maximum
degree of departure from EQS, namely, D(1)

ijk/D
(2)
ijk = ∞ for some i < j < k and

D
(1)
ijk/D

(2)
ijk = 0 for the other i < j < k. This seems natural as the definition of the

maximum departure from EQS that indicates D(1)
ijk/D

(2)
ijk = 1 for i < j < k.

Table 3: Values of power-divergence test statistic W (λ) (with 5 degrees of freedom),
applied to Tables 1a, 1b, and 1c.

λ For Table 1a For Table 1b For Table 1c
−0.4 13.70 4.63 1.62
0.0 13.59 4.66 1.60
0.6 13.48 4.73 1.56
1.0 13.43 4.79 1.55
1.4 13.40 4.86 1.53
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Table 4: Artificial data (n is sample size).
(a) n = 700

30 81 79 120
10 39 83 16
13 20 38 31
7 35 77 21

(b) n = 668

30 29 60 10
110 39 33 36
21 42 38 61
15 61 62 21

Table 5: Values of Φ̂(λ), the test statistic W (λ) and W (λ)/n applied to Tables 4a and
4b.

(a) Values of Φ̂(λ)

λ For Table 4a For Table 4b
−0.4 0.268 0.225
0.0 0.363 0.304
0.6 0.436 0.364
1.0 0.456 0.381
1.4 0.463 0.387

(b) Values of W (λ)

λ For Table 4a For Table 4b
−0.4 27.76 52.90
0.0 28.33 51.95
0.6 30.13 51.03
1.0 32.12 50.72
1.4 34.92 50.64

(c) Values of W (λ)/n

λ For Table 4a For Table 4b
−0.4 0.040 0.079
0.0 0.040 0.078
0.6 0.043 0.076
1.0 0.046 0.076
1.4 0.050 0.076

Consider the data in Table 1, again. Cressie & Read (1984) proposed the power-
divergence test statistic for testing goodness-of-fit of a model. Denote the power-
divergence statistic for testing goodness-of-fit of the EQS model with R(R− 3)/2
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degrees of freedom by W (λ). Table 3 gives the values of W (λ) applied to the data
in Tables 1a, 1b and 1c. The EQS model fits the data in Table 1a poorly; however,
fits the data in Tables 1b and 1c well. This is similar to the results described in
Section 4. Then, it may seem to many readers thatW (λ)/n (for a given λ) is also a
reasonable measure for representing the degree of departure from EQS. However,
we point out thatW (λ) can not measure the degree of departure from EQS toward
the maximum degree of departure from EQS that is defined in Section 2, although
W (λ) can test the goodness-of-fit of the EQS model. For example, consider the
artificial data in Tables 4a and 4b. From Table 5, the value of W (λ)/n (W (λ)) is
less for Table 4a than for Table 4b; however, the value of Φ̂(λ) is greater for Table
4a than for Table 4b. When we want to measure the degree of departure from
EQS toward the maximum departure from the uniformity of ratios of symmetric
odds-ratios (i.e., the maximum departure from EQS), the measure Φ(λ) rather
thanW (λ) may be appropriate. Also, W (λ) rather than Φ(λ) would be appropriate
to test the goodness-of-fit of the EQS model.

As described in Section 1, Lawal (2004), Tomizawa (1990) and Yamaguchi
(1990) considered the extension of EQS model. For testing goodness-of-fit of the
EQS model under the assumption that the extension of EQS model holds true,
the difference between the likelihood ratio statistic for the EQS and extension of
EQS models has an asymptotic chi-squared distribution with degrees of freedom
equal to the difference between degrees of freedom for two models. This statistic,
which is useful for comparing pairs of models, is well known. So, the readers may
consider that this statistic is also a reasonable measure for representing the degree
of departure from EQS. However, since this statistic can not measure the degree of
departure from EQS toward the maximum departure from EQS, Φ(λ) rather than
it would be preferable when we want to measure the degree of departure from EQS
toward the maximum degree of departure from EQS.

We observe that the EQS model and the measure Φ(λ) should be applied to
square tables with ordered categories because it is not invariant under the arbitrary
similar permutations of row and column categories.
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