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Abstract

The aim of this work is to examine multinomial logistic models when
the response variable can assume three levels, generalizing a previous work
of logistic models with binary response variables. We also describe some
related models: The null, complete, and saturated models. For each model,
we present and prove some theorems concerning to the estimation of the
corresponding parameters with details that we could not find in the current
literature.
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Resumen

El objetivo de este trabajo es examinar los modelos de regresión logís-
tica multinomial cuando la variable de respuesta puede asumir tres niveles,
generalizando un trabajo anterior con variables respuesta binarias. Tam-
bién describimos algunos modelos relacionados: los modelos nulo, completo
y saturado. Para cada modelo, presentamos y demostramos teoremas rela-
cionados con la estimación de los parámetros correspondientes con detalles
que no fueron posibles encontrar en la literatura.
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1. Introduction

Llinás (2006) studied logistic models with a dichotomous response variable.
A theorem was proved on the existence and uniqueness of maximum likelihood
(ML) estimations for the logistic model and also about its calculations. Addition-
ally, based on asymptotic theory for these ML-estimations and the score vector,
approximations were found for different deviations −2 logL, where L is the likeli-
hood function. Based on these approximations, statistics were obtained for several
hypothesis tests, each with an asymptotic chi-squared distribution. The asymp-
totic theory was developed for the case of independent, non-identically distributed
variables; thus, modifications are required to apply this theory to the case of iden-
tically distributed variables. In this article, a distinction is always made between
grouped data and ungrouped data.

Applications of the multinomial logistic model in various fields of engineering
and health sciences have made this technique as a fundamental tool for data anal-
ysis and subsequent decision making. For this reason firstly, it is important to
clarify the theoretical foundations of these models so that they can be applied to
specific situations within the data analysis process, which requires more than the
use of a statistical program.

We will present to the reader the theoretical background of this model in an
effort to describe the continuity of its construction and the elements that are used
to perform different analyses with respect to hypothesis tests, relative risks, odds,
odds ratios, etc.

For this reason, and following the methodology proposed by Llinás (2006), this
article studies multinomial logistic models only for the case in which the variable
of interest can assume one of three levels. We describe related models, such as the
null, full, and saturated models. For each model, the estimation theorems for the
corresponding parameters are presented, providing details that are not found in
the current literature (e.g., Agresti 1990, Hosmer & Lemeshow 2000, Kleinbaum
& Klein 2002).

The article is organized into six sections. The first section consists of a intro-
duction motivating this reason. The second section explains the basic Bernoulli
model. The third section explains the full model. The fourth section explains the
null model. The fifth section studies the saturated model and the basic assump-
tions, and the sixth section develops the theory corresponding to the multinomial
logistic model.

2. The Bernoulli Model

Let us suppose that the variable of interest Y can assume one of three values or
levels: 0, 1 or 2. For each r = 0, 1, 2, we let pr := P (Y = r) denote the probability
that Y assumes the value r.

Revista Colombiana de Estadística 35 (2012) 131–138



The Multinomial Logistic Model 133

With n independent observations of Y , a sample Y = (Y1, . . . , Yn)
T is obtained

with data yi ∈ {0, 1, 2} for i = 1, . . . , n, in which yi is a possible value of Yi, which
are independent of one another.

In order to construct the likelihood function, we create three independent bi-
nary variables with values of 0 and 1 as follows:

Uri =

{
1, if Yi = r

0, otherwise

where r = 0, 1, 2 and i = 1, . . . , n. Observe that Uri ∼ B(1, pri), where
pri = P (Yi = r).

In terms of the Uri variables, the sample variables are Yi = (U0i, U1i, U2i), with

values of yi = (u0i, u1i, u2i), in which
2∑

r=0
uri = 1, for a fixed i. A statistical model

is obtained in which

P (Yi = yi) =

2∏
r=0

puri
ri , i = 1, . . . , n

Setting y = (y1, . . . , yn)
T , we obtain the logarithm of the likelihood function

for the 2n-dimensional parameter p = (p01, p11, . . . , p0n, p1n)
T :

L(p) =
n∑

i=1

[u0i ln p0i + u1i ln p1i + (1− u0i − u1i) ln(1− p0i − p1i)] (1)

3. The Complete Model

The complete model is characterized by the assumption that all pri (with
r = 0, 1, 2 and i = 1, . . . , n) are considered parameters.

Theorem 1. In the complete model, the ML-estimations of pri are P̂ri = Uri with
values p̂ri = uri for r = 0, 1, 2 and i = 1, . . . , n. Additionally, Lc := L(y) = 0.

Proof . Consider equation (1), in which

L(p) =
∑

i
u0i=1,u1i=0

ln p0i +
∑

i
u0i=0,u1i=1

ln p1i +
∑

i
u0i=0,u1i=0

ln(1− p0i − p1i).

Consider that L(p) !
= 0 if and only if p0i = u0i and p1i = u1i for each

i = 1, . . . , n. This condition proves the existence of the ML-estimations. If for
some i it is true that pri 6= uri, r = 0, 1, then L(p) < 0. This condition demon-
strates that the ML-estimations are unique because if p̃ is a vector that has at
least one pri component that is different from uri, then L(p) < Lc (given that
upon replacing pri = uri in L(p), Lc = 0).
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4. The Null Model

The null model is characterized by the assumption that for each r = 0, 1, 2, all
the pri values (i = 1, . . . , n) are considered equal; that is, there are two parameters,
p0 and p1. In this case, equation (1) becomes

L(p) = n[u0 ln p0 + u1 ln p1 + (1− u0 − u1) ln(1− p0 − p1)] (2)

in which ur =
n∑

i=1

uri

n .

Theorem 2. In the null model, the ML-estimation of pr is P̂r = Ur with value
p̂r = ur. Additionally, Lo := L(p̂) < 0 if and only if 0 < u0 + u1 < 1.

Proof . It is clear that from equation (2) that

• If u0 + u1 = 0, then u0 = u1 = 0. Therefore, L(p) = 0 if and only if
pr = 0 = ur.

• If u0 +u1 = 1, then u0 = 0 or u1 = 0. Therefore, for u0 = 0, L(p) = 0 if and
only if p1 = 1 = u1 and u1 = 1, L(p) = 0 if and only if p0 = 1 = u0.

• Now let us assume that 0 < u0 + u1 < 1. From equation (2) and for a given
r, it can be proven that

∂L(p)
∂pr

=
ur
pr
− 1− u0 − u1

1− p0 − p1
= 0

if and only if p̂r = ur. Given that

∂2L(p̂)
∂p2r

= −
[
ur
p̂2r
− 1− u0 − u1

(1− p̂0 − p̂1)2

]
< 0

this solution is unique. Additionally, lnur and ln(1 − u0 − u1) are both
negative. Therefore, Lo < 0.

5. The Saturated Model and Assumptions

The saturated model is characterized by the following assumptions:
Assumption 1. It is assumed that:

1. There are K explanatory variables X1, . . . , XK (some may be numerical and
other may be categorical) with values x1i, . . . , xKi for i = 1, . . . , n (which
are set or observed by the statistician depending on whether the variables
are deterministic or random);

2. Among the n individual vectors (x1i, . . . , xKi) of the values of the explana-
tory variables Xs, there are J different possible combinations, defining J
populations. Therefore, J ≤ n. J is often referred to as the number of
covariate patterns in the applied literature.
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Notation. The notation for each population j = 1, . . . , J is denoted as follows:

• The number of Yij observations (or of Urij observations in the r category)
in each jth population is nj , with n1 + · · ·+ nJ = n;

• For a fixed r = 0, 1, 2; the random variable corresponding to the sum of the

nj observations of Urij , given by Zrj :=
nj∑
i=1

Urij with value zrj =
nj∑
i=1

urij , in

which
J∑

j=1

zrj =
n∑

i=1

uri.

For simplicity, the jth population (x1j , . . . , xKj) will be abbreviated with the
symbol ?.

Assumption 2. For each fixed r = 0, 1, 2, each population j = 1, . . . , J and each
observation i = 1, . . . , n in population j, it is assumed that

• (Urij | ?) ∼ B(1, prj)

• The (Urij | ?) variables are independent of one another.

Below, the ? symbol will be omitted. Assumption 2 implies the following:

1. For each r = 0, 1, 2 and each fixed j = 1, . . . , J , all the prij , i = 1, . . . , n, in
each jth population are equal. In other words, the 2J-dimensional
p = (p01, p11, . . . , p0J , p1J)

T vector is the parameter.

2. For each r = 0, 1, 2 and each population j = 1, . . . , J :

• Zrj ∼ B(nj , prj)

• The Zrj variables are independent among populations.

In the saturated model, the logarithm of the maximum likelihood function will be

L(p) =
J∑

j=1

[z0j ln p0j + z1j ln p1j + (nj − z0j − z1j) ln(1− p0j − p1j)] (3)

Theorem 3. In the saturated model, the ML-estimations of prj are P̃rj =
Zrj

nj
,

with the values p̃rj =
zrj
nj

, j = 1, . . . , J . Furthermore,

L(p̃) =
J∑

j=1

nj [p̃0j ln p̃0j + p̃1j ln p̃1j + (1− p̃0j − p̃1j) ln(1− p̃0j − p̃1j)] (4)

It also holds that Ls := L(p̃) < 0 for 0 < p̃rj < 1.
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Proof . Let us hold r and j. If 0 < p̃rj < 1, then we have

∂L
∂prj

=
zrj
prj
− nj − z0j − z1j

1− p0j − p1j
= 0

if and only if p̃rj =
zrj
nj

. Therefore, if 0 < zrj < nj , for each r and j, then we have

∂2L
∂p2rj

∣∣∣∣∣
prj=p̃rj

= −

[
n2j
zrj

+
n2j

nj − z0j − z1j

]
< 0

Two extreme cases must be analyzed:

• If zrj = 0, then ∂L
∂prj

= − nj

1−p0j−p1j
decreases in pj . In this case, L decreases

in prj ; that is, L(p) is maximized for prj = 0.

• If zrj = nj , then, ∂L
∂pj

=
nj

pj
increases in prj . In this case, L increases in prj ;

that is, L(p) is maximized for prj = 1.

In the saturated model, the value of L can be obtained by replacing in equation
(3), each prj with p̃rj , j = 1, . . . , J . Thus, we obtain equation (4). Under the
condition that 0 < p̃rj < 1 it can be shown that ln p̃rj y ln(1 − p̃rj) are both
negative. Therefore, the sum of the right side of equation (4) is also negative.

6. The Multinomial Logistic Model

6.1. Assumptions

Assumptions 1 and 2 from section 5 are preserved, with the additional assump-
tion that a matrix

C =

 1 x11 · · · xK1

...
...

...
1 x1J · · · xKJ


has a complete range Rg(C) = 1 + K ≤ J . To obtain a logistic model, one of
the categories of the dependent variable Y , such as 0, is used as a reference. The
following additional assumption is also made:
Assumption 3.

g1(xj) = ln

(
p1j
p0j

)
= δ1 + β11xj1 + · · ·+ β1KxjK (5)

g2(xj) = ln

(
p2j
p0j

)
= δ2 + β21xj1 + · · ·+ β2KxjK (6)

in which xj := (1, xj1, . . . , xjK)T . Let

α = (δ1, β11, . . . , β1K , δ2, β21 . . . , β2K)T
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denote the vector of the 2(1+K) parameters in the model. Note that the assump-
tion that Rg(C) = 1 +K allows the α parameter to be identified.

For a given observation xj in population j and for the so-called risk is calculated
as follows:

prj =
exp{gr(xj)}
2∑

s=0
exp{gs(xj)}

(7)

for each r = 0, 1, 2 and with g0(xj) = 0. The logarithm of the likelihood function
can be written as a function of α, as follows:

L(α) =
J∑

j=1

[
z1g1(xj) + (nj − z0j − z1j)g2(xj)− nj ln

(
2∑

r=0

exp{gr(xj)}

)]
(8)

6.2. Relation between the Multinomial Logistic Model and
the Saturated Model

The equations of assumption 3 in Section 6.1 can be written in a vector form,
where gr = Cβr, r = 1, 2, in which gr is a J-dimensional vector with elements
g(xj), j = 1, 2, . . . , J .

Given the above, the following cases can be highlighted:

Case 1. J = 1 +K
In this case, C is an invertible matrix. Therefore,

βr = C−1gr, r = 1, 2

That is, there is a one-to-one relationship between the parameters of the
saturated model and those of the logistic model. In other words, the two
models express the same thing.
Particularly, the ML-estimations of the probabilities prj are equal in both
models: p̂rj = p̃rj for each j = 1, 2, . . . , 1 +K.

Case 2. J > 1 +K
In this case, α̂ must first be calculated, and based on these values, the prj
values can be calculated. In general, we observe that p̂rj 6= p̃rj .

7. Likelihood Equations

The likelihood equations are found by calculating the first derivatives of L(α)
with respect to each one of the 2(1 + K) unknown parameters, as follows. For
every k = 0, 1, . . . ,K, we have

∂L(α)
∂β1k

=

J∑
j=1

[
z1jxjk −

nj xjk e
g1(xj)

1 + eg1(xj) + eg2(xj)

]
=

J∑
j=1

xjk(z1j − njp1j)
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and

∂L(α)
∂β2k

=

J∑
j=1

[
(nj − z0j − nz1j)xjk −

nj xjk e
g2(xj)

1 + eg1(xj) + eg2(xj)

]

=

J∑
j=1

xjk[(nj − z0j − z1j)− njp2j ]

=

J∑
j=1

xjk(z2j − njp2j)

Therefore, for every k = 0, 1, . . . ,K and every r = 0, 1, 2, the likelihood equa-
tions are given by

∂L(α)
∂βrk

=

J∑
j=1

xjk(zrj − njprj)

The estimator of maximum likelihood is obtained by setting these equations
equal to zero and solving for the logistic parameters. The solution requires the
same type of iterations that were used to obtain the estimations in the binary case,
as demonstrated in Llinás (2006).

8. Conclusions

We have studied the multinomial logistic models when the response variable
can assume one of three values and also described some related models such as the
null, complete, and saturated models. We have presented and proved the theorems
1, 2 and 3, which give us the estimation of the corresponding parameters.[
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