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Abstract

We discuss a situation in which, once a logit model is fitted to the data in
a contingency table, some factor levels are grouped. Generally, researchers
reapply a logit model on the pooled data, however, this approach leads to
the violation of the original distributional assumption, when the probabili-
ties of success of the random variables of aggregation differ. In this paper
we suggest an alternative procedure that operates under the unsaturated,
multifactorial, binomial, logit model. Based on asymptotic theory and tak-
ing advantage of the decrease in the variance when the correct distributional
assumption is made, the suggested procedure significantly improves the esti-
mates, reduces the standard error, produces lower residuals and is less likely
to reject the goodness of fit test on the model. We present the necessary
theory, the results of an extensive simulation designed for this purpose, and
the suggested procedure contrasted with the usual approach, through a com-
plete numerical example.

Key words: Contingency tables, Generalized linear model, Levels sets, Logit
model.

Resumen

Se discute la situación en la que, una vez ajustado un modelo logit a
los datos contenidos en una tabla de contingencia, se selecciona un factor
cualquiera de los participantes y se agregan algunos de sus niveles. General-
mente los investigadores proceden a postular nuevamente un modelo logit
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sobre los datos agrupados, sin embargo, este proceder conduce a la violación
del supuesto distribucional original, cuando las probabilidades de éxito de
las variables aleatorias de la agregación, son disímiles. En este trabajo se
sugiere un procedimiento alternativo que opera en el marco del modelo logit
binomial no saturado, multifactorial. Con base en la teoría asintótica y
aprovechando la disminución en la varianza cuando se postula el modelo dis-
tribucional correcto, el procedimiento sugerido mejora apreciablemente las
estimaciones, reduce el error estándar, produce valores residuales más cer-
canos al cero y menores probabilidades de rechazo en la prueba de bondad
del ajuste del modelo. Sustentan tales afirmaciones tanto los desarrollos
teóricos necesarios, como los resultados de una extensa simulación diseñada
al efecto. También se expone el procedimiento sugerido contrastado con el
habitual, mediante un ejemplo numérico completo.

Palabras clave: conjuntos de niveles, modelo lineal generalizado, modelo
logit, tablas de contingencia.

1. Introduction

Assume a Bernoulli phenomenon, that is, an experiment whose outcome regard-
ing an individual can only be a success or a failure (or equivalently, the presence
or absence of a feature, membership to a particular group or other similar forms).
Assume also that a researcher wants to test whether the outcome of the experiment
is determined by certain characteristics, measurable in each individual and possi-
bly the direction of the relationship if it exists. For this, the researcher collects
data from a previous study or by sampling, for example, and builds a contingency
table including the levels of the factors under study, the number of cases in which
tests the response of interest (success or failure) and total individuals examined,
for each combination of these levels.

A statistical model is related to a contingency table in order to capture the
essence of the phenomenon of study in a manageable way and to draw valid con-
clusions for the population regarding about the causal relationships between the
observed response and the measured characteristics.

Now, assuming that the responses are distributed as independent binomials,
a model that postulates a certain function of the probability of success of the re-
sponse and relates linearly with the measured characteristics in individuals looks
suitable for analysis. Thus, taking the probit model as a precursor, are the lo-
gistic regression for continuous variables and its counterpart, the logit model for
categorical explanatory variables or factors introduced by Joseph Berkson in 1944
(Hilbe 2009, p. 3).

In the case of a logit model, the link function considered is logit(p) = log( p
1−p

).

Applied to the probability of success p of a Bernoulli random variable, logit(p)
represents the logarithm of the possibility. This, in turn, is defined as the ratio
between the probability of success p and its complement, the probability of failure
1 − p.
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Moreover, suppose that the researcher, after fitting a logit model to the data,
decides to add some levels of one factor, and repeat the analysis, i.e., fit a new
logit model on a contingency table resulting from the aggregation.

It happens that in reiterating a logit model on a second contingency table,
with grouped levels of the factors, generally the original binomial assumption is
violated, with important implications on the estimated variances (Ponsot, Sinha
& Goitía 2009)1.

In seeking to address this problem and keep the situation under the general-
ized linear model frame (Nelder & Wedderburn 1972), this paper postulates the
problem of aggregation of factor levels in a broad context, i.e., in multifactorial
unsaturated logit model situation, and proposes and demonstrates some theorems
needed to suggest a procedure, alternative to the usual, that takes advantage of
the true variance of the random variables added. It is shown theoretically by
asymptotic means, and by simulation, that the suggested procedure is appropriate
and in many cases, better than the usual procedure.

This paper continues with the next section presenting a summary of the main
background of the work. The third section presents the problem and its solution,
including the theorems that support the suggested procedure and their proofs.
The fourth section illustrates the suggested procedure with a numerical example.
The fifth section summarizes the extensive simulation results comparing the two
procedures (normal and suggested). The sixth section is devoted to conclusions,
and the work ends with the acknowledgments, references and a brief appendix on
the design matrix for the saturated and unsaturated models.

2. Backgrounds

Ponsot et al. (2009) present the problem of aggregation levels of an explana-
tory factor in the saturated logit model. The authors study the affectation of the
binomial distributional assumption and show that, once factor levels are grouped,
which involves adding independent binomial random variables (RV’s), in the gen-
eral case where the probabilities of success are different, the random variable (RA)
resulting from the aggregation does not follow a binomial distribution. Proper dis-
tribution is as follows:

Let X1 and X2 be two independents RV’s such that X1 ∼ Bin(n1, p1) and
X2 ∼ Bin(n2, p2) with n1 ≤ n2. Then, the RV Z = X1 + X2 is distributed as
follows:

P[Z = k] =

(
p1

1 − p1

)k

(1 − p1)n1(1 − p2)n2S(k) (1)

1This is central in the doctoral thesis of first author (Ponsot 2011), one of whose results is
this paper.
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where

S(k) =





k∑

i=0

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = 0, . . . , n1

k∑

i=k−n1

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = n1 + 1, . . . , n2

n2∑

i=k−n1

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = n2 + 1, . . . , n1 + n2

The authors also prove that as the difference between the probabilities of suc-
cess of the RV’s involved in the aggregation increases, the correct variance of the
resulting RV [distributed as in (1)], becomes less than the variance calculated
assuming that the RV resulting is binomially distributed.

In general, let X1, X2, . . . , Xa be independents RV’s such that Xi ∼ Bin(ni, pi)
for i = 1, . . . , a. Let Xa−k+1, Xa−k+2, . . . , Xa, the k last RV’s being added
(1 < k < a) forming the RV Z = Xa−k+1 +Xa−k+2 +· · ·+Xa. Due to the indepen-
dence of the originals RV’s, V[Z] is the simple sum of V[Xi] for i = a− k + 1, . . . , a.
However, if Z is assumed (incorrectly) binomial, the variance (VBin) should be
calculated differently, making assumptions about the probability of success. By
studying the difference ∆V = VBin[Z] − V[Z], it follows that:

∆V =

a−1∑

i=a−k+1

a∑

j=i+1

ninj(pi − pj)2

a∑

i=a−k+1

ni

(2)

Clearly ∆V ≥ 0, then the correct variance is generally smaller than the bino-
mial (equal if and only if pi = pj , ∀i, j).

Based on these facts and using arguments of asymptotic nature, these authors
suggest an alternative procedure to the reiteration of the logit model fitting when
factor levels are added. This procedure improves the precision of the estimates,
using the true variance of the RV’s involved.

Now, as mentioned, the entire development applies in the univariate situation
and saturated model exclusively, leaving pending the study of unsaturated logit
model in the multifactorial situation. Such an extension is the aim in this work.

Besides, it must be mentioned that there are different courses of action than the
asymptotic approach to the problem. For example, we may include (1) as a factor
in the likelihood function; however, clearly an analytically intractable expression
is obtained, and therefore, very difficult to derivate.

Another possible course of action is to postulate the exact distribution for each
given data set, from the contingency table. This way to avoid the assumption of
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binomial populations, leading to the hypergeometric distribution and combinato-
rial analysis. This path has been explored successfully in the theory of generalized
linear model; however, it is not of very frequent application because it imposes
considerable computational challenges.

It should also be mentioned that the aggregation of factor levels and subsequent
repetition of a logit setting is of common practice among statisticians. Hosmer
& Lemeshow (2000, p. 136) suggested as a strategy to overcome the drawback of
responses with very low or no representation in the contingency table. Examples
abound in which the researcher adds factor levels, simply to reduce the complexity
of the analysis or because wish to concentrate posteriori on some levels and try the
other anonymously. An exercise that illustrates this approach can be seen in Hilbe
(2009, pp. 74 y 88). In his text the author develops models from the Canada’s
National Cardiovascular Registry, using a first opportunity to age with four levels
as an explanatory factor, and another time, this factor grouping up to only two
levels. Another example of the latter type is shown in Menard (2010). In his text
the author uses data from the National Center for Opinion Research (University of
Chicago, USA), taken from the General Social Survey. In some instances, operates
with three or even more levels for the factor “race” (Caucasian, African descent
and others), while in alternative examples, it does so with only two levels (not
Caucasian and other), grouping the original levels.

3. The Problem and Its Solution

Let T a contingency table for a binary response with s crossed factors A1, A2,
. . . , As, each with t1, t2, . . . , ts levels, respectively. Each combination of factor lev-
els has an observed response (yi1i2···is

) as the number of successes, all assumed in-
dependently binomially distributed with a total number of observations (ni1i2···is

),
ij = 1, . . . , tj and j = 1, . . . , s. On T , an unsaturated logit model is fitted with
the reference parameterization [see for example Rodríguez (2008, cap. 2, p. 29)
or SAS Institute Inc. (2004, p. 2297)], then let:

ηi1i2···is
= logit(pi1i2···is

) = xT
i1i2···is

β, ij = 1, . . . , tj ;

j = 1, . . . , s
(3)

be the univariate version of the logit model for crossed factors A1, . . . , As. To sim-
plify the treatment of the subscripts of the model, assume that each combination
of factors is reindexed orderly, making it correspond to a single value as:

1 ≡ (1, 1, . . . , 1), . . . , i ≡ (i1, i2, . . . , is), . . . , k ≡ (t1, t2, . . . , ts)

so as to produce k = t1 × · · · × ts sequenced indexes. In turn, the response is re-
indexed as y1, y2, . . . , yk and so the totals as n1, n2, . . . , nk. Then (3) is expressed
in the usual way as:

ηi = logit(pi) = xT
i β, i = 1, . . . , k (4)
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In (4) xT
i is the row vector corresponding to the combination of levels i1, i2, . . . ,

is of the design matrix Xk×m and βm×1 is the vector of parameters to be esti-
mated. Let η = [η1 · · · ηk]T be the vector that groups the logit elements, then
the multivariate version of the binomial logit model can be expressed as η = Xβ.

Suppose that after fitting the model to the data, we decide to group some levels
of a factor. In the multifactorial situation, the grouping of levels of a factor occurs
in several separate clusters, whose number is directly related to the number of
levels of other factors of the model. For example, let s = 3, A1, A2, A3 be crossed
ordered factors and t1 = t2 = t3 = 3 its levels. This factor structure contains the
tuples (1, 1, 1), (1, 1, 2), . . . , (3, 3, 3), resulting in 3 × 3 × 3 = 27 tuples.

Let examine the following situation for illustrative purposes: Levels 2 and 3 of
A3 are grouped. In this situation, the new number of levels of A3 is t∗3 = 2 and
factor structure is reduced to 3 × 3 × 2 = 18 tuples. For i = 1, 2, 3 and j = 1, 2, 3,
original tuples (i, j, 2) and (i, j, 3) collapse in the new tuples (i, j, 2∗) by adding the
corresponding values of the response variables yij2 +yij3 and the totals nij2 +nij3.
It is easy to notice that 9 aggregation sets are required, ck, k = 1, 2, . . . , 9, each one
with two elements or levels c1 = {(1, 1, 2), (1, 1, 3)}, . . . , c9 = {(3, 3, 2), (3, 3, 3)}.

If the proposed model is saturated (k = m), i.e. the number of available
observations equals the number of model parameters, the X matrix is a square, full
rank, and therefore invertible matrix. Moreover, when assuming an unsaturated
logit model, generally k > m, the design matrix X is no longer square and it has
no inverse.

It has been proved by McCullagh & Nelder (1989, p. 119) that

V [β̂] = (XTWX)−1

where W = diag[nipi(1−pi)]. These authors also discuss that the problems of over
or under dispersion, deserve detailed study and that they can be solved by simply
scaling V [β̂] by a constant, obtained from the deviance or Pearson’s statistics and
residual degrees of freedom ratio.

Thus, assuming no over or under dispersion (which simply involves the appro-
priate scaling of the estimated variance-covariance matrix), an immediate conse-
quence of the fact that X has no inverse is that, once parameters have been es-
timated by iterative reweighted least squares (Searle, Casella & McCulloch 2006,

p. 295), V [Xβ̂] = X(XTWX)−1XT , do not support further simplification.

Let be Σ = X(XTWX)−1XT , with elements [σij ], i, j = 1, . . . , k. In general,
though not necessarily, σij 6= 0. Then, due to the central limit theorem (Lehmann
1999, p. 73) and asymptotic properties of maximum likelihood estimators:

η̂ = Xβ̂ ∼ AN(Xβ;Σk×k) (5)

In (5), “AN” is the abbreviation for “Asymptotically Normal”, commonly used
in the statistical literature. Moreover, it is necessary the asymptotic distribution
of the p̂i. It is developed in the following theorem:
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Theorem 1. If η̂ = [logit(p̂1) logit(p̂2) · · · logit(p̂k)]T is distributed as in (5),
then p̂ = [p̂1 p̂2 · · · p̂k]T , such that:

p̂i =
ex

T
i β̂

1 + ex
T
i
β̂
, i = 1, . . . , k

is asymptotically distributed as multivariate normal with E[p̂i] = pi = ex
T

i
β/(1 +

ex
T

i
β) and variance covariance matrix Ψ = [ψij ] with elements ψij = σijpi(1 −

pi)pj(1 − pj), i, j = 1, . . . , k.

Proof . Let g−1

i for i = 1, . . . , k be real-valued functions defined as

g−1

i (η̂1, . . . , η̂i, . . . , η̂k) =
eη̂i

1 + eη̂i

then,

∂g−1

i

∂η̂j

=

{
0 , i 6= j

eη̂i/(1 + eη̂i )2 , i = j

ψij =

k∑

s=1

k∑

t=1

σst

∂g−1

i

∂η̂s

∂g−1
j

∂η̂t

∣∣∣∣∣
η̂=η

=

k∑

s=1

σsj

∂g−1

i

∂η̂s

∂g−1
j

∂η̂j

∣∣∣∣∣
η̂=η

= σij

∂g−1
i

∂η̂i

∂g−1

j

∂η̂j

∣∣∣∣∣
η̂=η

= σij

eηi

(1 + eηi )2

eηj

(1 + eηj )2

= σijpi(1 − pi)pj(1 − pj)

Thus, given the existence of the partial derivatives around η̂, multivariate ver-
sion of the delta method (Lehmann 1999, p. 315) ensures that p̂ = [p̂1 p̂2 · · · p̂k]T

is asymptotically normal with E[p̂i] = pi = ex
T

i
β/(1 + ex

T

i
β) and variance covari-

ance matrix Ψ = [ψij ] with ψij = [σijpi(1 − pi)pj(1 − pj)], i, j = 1, . . . , k.

Suppose then that the researcher wants to add r levels (1 < r < ti) of i-th
factor Ai and, therefore, a = t1 × · · · × ti−1 × ti+1 × · · · × ts sets are produced,
whose elements are each r of the indexes 1, . . . , k without repetition, affected by
the aggregation. Let the sets (called “aggregation sets”), be defined by:

cν = {ξi
1, ξ

i
2, . . . , ξ

i
r}, ξi

j ∈ {1, . . . , k}; j = 1, . . . , r;

i = 1, . . . , a; ν = min{ξi
1, ξ

i
2, . . . , ξ

i
r} for each i;

cν ∩ cν′ = φ, ∀ ν, ν′

for each of which, in turn is defined:

n∗
ν =

∑

cν

ni, p̂∗
ν =

∑
cν
nip̂i

n∗
ν

(6)
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Since p̂∗
ν is the weighted sum of asymptotically normal RV’s, p̂∗

ν is an asymp-
totically normal RV for all ν and covaries with the other probability estimators.
It is easy to verify that E[p̂∗

ν ] = p∗
ν = (

∑
cν
nipi)/n

∗
ν , however, the variance and

covariance associated with p̂∗
ν are more complex, as is proved in the following

theorem:

Theorem 2. Given p̂ = [p̂1 p̂2 · · · p̂k]T distributed as in Theorem 1, if p̂∗
ν =

(
∑

cν
nip̂i)/n

∗
ν with n∗

ν =
∑

cν
ni, then:

V[p̂∗
ν ] =

1

(n∗
ν)2




∑

cν

n2
iψii + 2

∑

i∈cν−max{cν }

∑

j∈cν>i

ninjψij





Cov[p̂∗
ν , p̂j] =

∑
i∈cν

niψij

n∗
ν

, for all j /∈

a⋃

i=1

ci

Cov[p̂∗
ν , p̂

∗
ν′ ] =

∑
i∈cν

∑
j∈cν′

ninjψij

n∗
νn

∗
ν′

for any two aggregation sets cν , cν′ .

Proof .

(p̂∗
ν)2 =

{∑
cν
nip̂i

n∗
ν

}2

=
1

(n∗
ν)2




∑

cν

n2
i p̂

2
i + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninj p̂ip̂j





(E[p̂∗
ν ])2 =

{∑
cν
niE[p̂i]

n∗
ν

}2

=
1

(n∗
ν)2




∑

cν

n2
i (E[p̂i])

2 + 2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninjE[p̂i]E[p̂j ]





E[(p̂∗
ν)2] =

1

(n∗
ν)2




∑

cν

n2
i E[p̂2

i ] + 2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninjE[p̂ip̂j]



 ⇒

V[p̂∗
ν ] = E[(p̂∗

ν)2] − (E[p̂∗
ν ])2

=
1

(n∗
ν)2

{
∑

cν

n2
i (E[p̂2

i ] − E[p̂i]
2)

+2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninj(E[p̂ip̂j ] − E[p̂i]E[p̂j ])




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=
1

(n∗
ν)2




∑

cν

n2
i V[p̂i] + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninjCov[p̂i, p̂j ]





=
1

(n∗
ν)2




∑

cν

n2
iψii + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninjψij





Furthermore, for j /∈ cν :

Cov[p̂∗
ν , p̂j ] = E[p̂∗

ν p̂j ] − E[p̂∗
ν ]E[p̂j ]

=

∑
cν
niE[p̂ip̂j ]

n∗
ν

−

∑
cν
niE[p̂i]E[p̂j ]

n∗
ν

=

∑
cν
niCov[p̂i, p̂j]

n∗
ν

=

∑
cν
niψij

n∗
ν

Finally:

p̂∗
ν p̂

∗
ν′ =

(∑
cν
nip̂i

n∗
ν

)(∑
cν′
nip̂i

n∗
ν′

)
=

1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninj p̂ip̂j



 ⇒

Cov[p̂∗
ν , p̂

∗
ν′ ] = E[p̂∗

ν p̂
∗
ν′ ] − E[p̂∗

ν ]E[p̂∗
ν′ ]

=
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjE[p̂ip̂j]





−
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjE[p̂i]E[p̂j ]





=
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjCov[p̂i, p̂j ]





∑
i∈cν

∑
j∈cν′

ninjψij

n∗
νn

∗
ν′

Note that the cardinality of the index range of the model (originally k) has
been reduced given the aggregation levels and is now k∗ = k − a(r − 1). Each
group of r originals RV’s, for each of the a different combinations of the levels
of the other factors (A1, . . . , Ai−1, Ai+1, . . . , Ak), gives way to a single random
variable constructed from the sum, renamed in its index at the lower value of
the aggregation set that corresponds. So, having both likelihood estimators not
affected by aggregation, as those who effectively are, we can settle the new vector:

p̂∗

k∗×1 ∼ AN(p∗

k∗×1;Ψ∗

k∗×k∗ ) (7)
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where:

p̂∗ =



p̂∗

1

...

p̂∗
k


 , p∗ =



p∗

1

...

p∗
k


 , Ψ∗ =




ψ∗
11 ψ∗

12 · · · ψ∗
1k

ψ∗
21 ψ∗

22 · · · ψ∗
2k

...
...

. . .
...

ψ∗
k1 ψ∗

k2 · · · ψ∗
kk




except that the range of the index 1, . . . , k in Ψ∗, although ordered, is not corre-
lated with N, that is, some of their values are no longer present.

Also, p̂∗
i ≡ p̂i, p

∗
i ≡ pi, ψ

∗
ij ≡ ψij for all i, j /∈ ∪cν and p̂∗

i , p∗
i , ψ∗

ij are as in the
definition and Theorem 2 for the remaining i, j.

Example 1. Let T be a contingency table with two factors A1 and A2, the first
with 2 levels (1, 2) and the second with three (1, 2, 3). Reindexing the original
subscripts properly, we have:

1 ≡ (1, 1); 2 ≡ (1, 2); 3 ≡ (1, 3); 4 ≡ (2, 1); 5 ≡ (2, 2); 6 ≡ (2, 3)

with the original logit model estimates p̂ = [p̂1 p̂2 p̂3 p̂4 p̂5 p̂6]T .

Now suppose we add levels 2 and 3 of factor A2. Aggregation sets that arise are
c2 = {2, 3} and c5 = {5, 6}, and the new model estimates p̂∗ = [p̂∗

1 p̂∗
2 p̂∗

4 p̂∗
5]T ,

where:

p̂∗
1 = p̂1

p̂∗
2 =

n2p̂2 + n3p̂3

(n2 + n3)

p̂∗
4 = p̂4

p̂∗
5 =

n5p̂5 + n6p̂6

(n5 + n6)

In addition, the variance covariance matrix of p̂ is

Ψ =




ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

ψ21 ψ22 ψ23 ψ24 ψ25 ψ26

ψ31 ψ32 ψ33 ψ34 ψ35 ψ36

ψ41 ψ42 ψ43 ψ44 ψ45 ψ46

ψ51 ψ52 ψ53 ψ54 ψ55 ψ56

ψ61 ψ62 ψ63 ψ64 ψ65 ψ66




while the variance covariance matrix of p̂∗ (symmetric) is

Ψ∗ =




ψ∗
11 ψ∗

12 ψ∗
14 ψ∗

15

ψ∗
21 ψ∗

22 ψ∗
24 ψ∗

25

ψ∗
41 ψ∗

42 ψ∗
44 ψ∗

45

ψ∗
51 ψ∗

52 ψ∗
54 ψ∗

55



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where, following the Theorem 2:

ψ∗
11 = ψ11

ψ∗
12 = (n2ψ12 + n3ψ13)/(n2 + n3)

ψ∗
14 = ψ14

ψ∗
15 = (n5ψ15 + n6ψ16)/(n5 + n6)

ψ∗
22 = (n2

2ψ22 + n2
3ψ33 + 2n2n3ψ23)/(n2 + n3)2

ψ∗
24 = (n2ψ24 + n3ψ34)/(n2 + n3)

ψ∗
25 = (n2n5ψ25 + n2n6ψ26 + n3n5ψ35 + n3n6ψ36)/[(n2 + n3)(n5 + n6)]

ψ∗
44 = ψ44

ψ∗
45 = (n5ψ45 + n6ψ46)/(n5 + n6)

ψ∗
55 = (n2

5ψ55 + n2
6ψ66 + 2n5n6ψ56)/(n5 + n6)2

Now, returning to the theoretical development, the following theorem shows
the required distribution of logit(p̂∗

i ), i = 1, . . . , k, prior to the estimation of the
parameters associated with the factors.

Theorem 3. If p̂∗ is distributed as in (7), then:

logit(p̂∗) =
[
logit(p̂∗

1) · · · logit(p̂∗
k)
]T

is asymptotically distributed multivariate normal with E[logit(p̂∗
i )] = logit(p∗

i ) and
variance covariance matrix Σ∗ = [σ∗

ij ] = [ψ∗
ij [p∗

i (1 − p∗
i )p∗

j (1 − p∗
j)]−1].

Proof . Lets gi(i = 1, . . . , k), real-valued functions defined as

gi(p̂
∗
1, . . . , p̂

∗
i , . . . , p̂

∗
k) = logit(p̂∗

i )

then,

∂gi

∂p̂∗
j

=

{
0 , i 6= j

[p̂∗
i (1 − p̂∗

i )]−1, i = j

and

σ∗
ij =

k∑

s=1

k∑

t=1

ψ∗
st

∂gi

∂p̂∗
s

∂gj

∂p̂∗
t

∣∣∣∣∣
p̂∗=p∗

= ψ∗
ij [p∗

i (1 − p∗
i )p∗

j (1 − p∗
j )]−1

And because in this case also there are the partial derivatives around p̂∗, using
again a multivariate version of the delta method, logit(p̂∗) is asymptotically dis-
tributed multivariate normal with E[logit(p̂∗

i )] = logit(p∗
i ) and variance covariance

matrix Σ∗ = [σ∗
ij ] = [ψ∗

ij [p∗
i (1 − p∗

i )p∗
j (1 − p∗

j)]−1].

Finally, the following theorem shows the distribution of the new parameters
β̂∗, from the new design matrix X∗. Its proof is omitted since it is easily obtained
by appealing to the results included in the Appendix.
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Theorem 4. Given the model

Y = logit(p̂∗) = X∗β∗ + ǫ, ǫ ∼ AN(0,Σ∗)

in which, Y = logit(p̂∗) is a column vector whose elements are logit(p̂∗
i ), i =

1, . . . , k and Σ∗ is the variance covariance matrix, both constant and known, cal-
culated according to the Theorem 3. Let X∗ be the new design matrix2, using
the reference parameterization, proposed after the process of aggregation of factor
levels, constrained to include the same factors that included the original design ma-
trix X. And let β∗ be the new vector of parameters to be estimated by maximum
likelihood (β̂∗). Then:

• β̂∗ = [(X∗)TX∗]−1(X∗)TY .

• V[β̂∗] = [(X∗)TX∗]−1(X∗)TΣ∗X∗[(X∗)TX∗]−1.

• β̂∗ is distributed asymptotically normal.

A modification in this asymptotical distribution has been induced for the orig-
inal and transformed RV’s, by applying aggregation some factor levels and some
required sets of aggregation (cν). Thus, the suggested procedure is as follows:

1. Fit a logit model by preserving the calculation of the vector of estimates of
pi and the variance covariance matrix Σ estimated for β̂.

2. Define the required aggregation sets, in order to calculate point estimates
for the p∗

ν as in the Theorem 2 and the variance covariance matrix Ψ∗ of p̂∗,
like in (7).

3. Compute logit(p̂∗
i ) for the resulting range of values i and its variance covari-

ance matrix Σ∗, following Theorem 3.

4. Build the new design matrix X∗

k∗×m∗ according to the new desired parame-
ters vector β∗

m∗×1.

5. In general, setting a generalized least squares regression (Christensen 2002,

pp. 33, 86) to estimate β̂∗

m∗×1 with a new model formulated as follows:

Y = logit(p̂∗) = X∗β∗ + ǫ, ǫ ∼ AN(0,Σ∗)

in which the matrix Σ∗ is the result of step 3. However, using the reference
parameterization, the computation of both, the vector of parameters to be
estimated and the variance covariance matrix, is greatly simplified by using
the Theorem 4.

Finally, it is clear that the deductions have been made for the aggregate of
r levels of a single factor. However, this approach does not diminish generality.
If the researcher wants to group two or more factors, we just weed to iteratively
apply the suggested procedure, one factor at a time. In other words, we simply
applies the suggested procedure, repeatedly.

2Note that X∗ has a smaller number of columns than X (hence β∗ has fewer elements β),
because it models a smaller number of junctions in the levels of the factors.
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4. Illustration of the Suggested Procedure

Table 1 presents a situation where the interest lies in studying the relationship
between a response variable Y and two explanatory factors A1 and A2 with 2 and
3 levels, respectively. The observed frequencies or number of successes for each
levels combination are shown in Table 1 above.

Table 1: Example Y (0, 1) vs. A1(1, 2), A2(1, 2, 3).
i A1 A2 No. of successes Total

1 1 1 53 133

2 1 2 11 133

3 1 3 127 133

4 2 1 165 533

5 2 2 41 533

6 2 3 476 533

Total 873 1998

In this particular case, the proposed logit model omits interactions between
the factors, and therefore is not saturated. Using the first level of each factor as a
reference, the equations are as follows:




logit(p1)

logit(p2)

logit(p3)

logit(p4)

logit(p5)

logit(p6)




=




1 0 0 0

1 0 1 0

1 0 0 1

1 1 0 0

1 1 1 0

1 1 0 1







β1

β2

β3

β4


 (8)

In (8), β1 represents the intercept effect, β2 represents the level 2 of A1 effect,
β3 represents the level 2 of A2 effect and β4 the level 3 of A2 effect. The levels 1
of A1 and 1 of A2 are not explicitly represented in the model (are the references
levels).

Preliminary tests and goodness of fit for this model are shown in Table 2.
The model fits the data appropriately, as it is deduced from the deviance and
Pearson’s statistics. Also, according to the Pearson’s statistic, the overdispersion
is negligible.

Table 3 contains the parameter estimates with their corresponding standard
tests for H0 : βi = 0, i = 1, 2, 3 and 95% confidence intervals (CI) for βi. The
predicted probabilities and their CI’s are also shown in Table 4.

Now suppose that we cluster levels 2 and 3 of the factor A2 in Table 1, pro-
ducing the Table 5 with aggregate data, and postulate the usual procedure: a new
logit model.
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Table 2: Original model. Preliminary tests and goodness of fit.
Test Value

Residual deviance: 2.5065

Residual degrees of freedom (DF): 2

Deviance χ2/DF: 0.2856

Deviance test: No reject

Pearson’s statistic: 2.3104

Pearson’s χ2/DF: 0.315

Pearson’s test: No reject

Deviance/DF: 1.2533

Pearson’s/DF: 1.1552

Table 3: Original model. β̂i and normal tests (H0 : βi = 0).
Estimation of βi 95% CI

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.39857 0.14688 −2.71369 0.00666 Reject −0.68644 −0.11070

2 −0.40725 0.15536 −2.62130 0.00876 Reject −0.71176 −0.10275

3 −1.75603 0.16676 −10.53046 0.00000 Reject −2.08286 −1.42919

4 2.99348 0.15665 19.10956 0.00000 Reject 2.68646 3.30051

SE: Standard Error. Ll: Lower limit. Ul: Upper limit.

Table 4: Original model. Predicted probabilities and 95% CI’s.
i p̂i Ll Ul i p̂i Ll Ul

1 0.4017 0.3325 0.4708 4 0.3088 0.2713 0.3463

2 0.1039 0.0702 0.1376 5 0.0716 0.0521 0.0912

3 0.9305 0.9068 0.9542 6 0.8991 0.8752 0.9231

Table 5: Example Y (0, 1) vs. A1(1, 2), A2(1, 2∗).
i A1 A2 No. of success (y) Total (t) y/t

1 1 1 53 133 0.3984

2 1 2∗ 138 266 0.5188

3 2 1 165 533 0.3096

4 2 2∗ 517 1066 0.4850

Total 873 1998

The new unsaturated model (ignoring interactions), using the reference param-
eterization (with level 1 of both factors by reference), unfolds as follows:




logit(p∗
1)

logit(p∗
2)

logit(p∗
3)

logit(p∗
4)


 =




1 0 0

1 0 1

1 1 0

1 1 1






β∗

1

β∗
2

β∗
3


 (9)

Now in (9), β∗
1 represents the intercept effect, β∗

2 level 2 of A1 effect and β∗
3

the level 2∗ of A2 effect. Some measures of goodness of fit for this model are
reproduced in Table 6.

The model fits the data with negligible overdispersion. Re-adjusting a logit
model over the resulting contingency table, the new estimates are shown in Table
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7. Without regard the parameters significance, the probabilities predicted by the
model are reproduced in Table 8.

Table 6: Usual procedure. Testing goodness of fit of the aggregate data model.
Test Value

Residual deviance: 1.0986

Residual degrees of freedom (DF): 1

Deviance χ2/DF: 0.2946

Deviance test: No reject

Pearson’s statistic: 1.1051

Pearson’s χ2/DF: 0.2932

Pearson’s test: No reject

Deviance/DF: 1.0986

Pearson’s/DF: 1.1051

Table 7: Usual procedure. β̂∗

i and normal tests (H0 : β∗

i = 0).
β∗

i
estimation 95% CI

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.5485 0.1220 −4.4965 0.0000 Reject −0.7876 −0.3094

2 −0.2162 0.1137 −1.9014 0.0573 No reject −0.4390 0.0067

3 0.6885 0.0992 6.9401 0.0000 Reject 0.4941 0.8830

Table 8: Usual procedure. Predicted probabilities and 95% CI without regard to model
parameters statistical significance.

i p̂∗

i
Ll Ul

1 0.3662 0.3107 0.4217

2 0.5349 0.4831 0.5868

3 0.3176 0.2811 0.3542

4 0.4810 0.4519 0.5100

The new parameter vector β∗ is estimated differently in both models (original
and aggregated data). With α = 0.05, Table 7 suggests the absence of sufficient
evidence to reject the null hypothesis about β∗

2 . This finding has important impli-
cations for the analysis: Since it is not possible to conclude that β∗

2 is significantly
different that 0, the predicted probabilities in Table 8, in strict statistical sense,
should not be considered valid. Statistical valid predictions are as follows:

p̂∗
1 =

eβ̂∗

1

1 + eβ̂∗

1

= 0.3662

p̂∗
2 =

eβ̂∗

1
+β̂∗

3

1 + eβ̂∗

1
+β̂∗

3

= 0.5349

p̂∗
3 =

eβ̂∗

1
+β̂∗

2

1 + eβ̂∗

1
+β̂∗

2

=
eβ̂∗

1
+0

1 + eβ̂∗

1
+0

= 0.3662 (10)
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p̂∗
4 =

eβ̂∗

1
+β̂∗

2
+β̂∗

3

1 + eβ̂∗

1
+β̂∗

2
+β̂∗

3

=
eβ̂∗

1
+0+β̂∗

3

1 + eβ̂∗

1
+0+β̂∗

3

= 0.5349 (11)

Finally, Table 9 contains the estimates and the 95% CIs for the logit model
postulated in (9), obtained by the procedure suggested in this paper. Note that
the point estimates of the standard procedure and the suggested procedure are
slightly but significantly different. Using the suggested procedure, the Pearson’s
goodness of fit of the model produces a χ2 of 0.0104 that leaves a probability of
0.9188 at right. Then, the model analyzed by the suggested procedure properly
fits the data; in fact it fits in a better way than with the usual procedure, which
produces a Pearson’s statistic 1.1051 that leaves a probability of 0.2932 at right
(see Table 6).

Table 9: Suggested procedure. β̂∗

i and normal tests (H0 : β∗

i = 0).
β∗

i
estimation 95% CIs

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.4685 0.1257 −3.7280 0.0002 Reject −0.7149 −0.2222

2 −0.2673 0.1019 −2.6236 0.0087 Reject −0.4670 −0.0676

3 0.6074 0.0931 6.5234 0.0000 Reject 0.4249 0.7899

Table 9 shows that the estimated standard errors for the parameters β∗
2 and

β∗
3 , using the suggested procedure are lower than those found by conventional

procedure (Table 7).

Table 10 presents the predicted probabilities, now fitting the data according to
the procedure suggested in this paper. Note that the predicted probabilities are
considerably closer to those expected for the new data set (see the column and y/t
in the Table 5), than those predicted with the usual procedure.

Table 10: Suggested procedure. Predicted probabilities and 95% CIs.
i p̂∗

i
Ll Ul

1 0.4017 0.3325 0.4708

2 0.5172 0.4927 0.5417

3 0.3088 0.2713 0.3463

4 0.4854 0.4696 0.5012

Also, note in Table 9 that the conclusion about the significance of β∗
2 is no

lunger the same. The standard procedure statistically valid estimates (10) and
(11) and look considerably different from using the suggested procedure. The
predictions on Table 10 are statistically valid, approaching in a better way than
would be expected from the available data.

Finally, Figure 1 presents the Pearson’s standardized residuals, calculated us-
ing both methods. Clearly, the estimates produced by the suggested procedure
are much closer to the expected value than those produced by the conventional
procedure.
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Index (i)

R
e
s
id

u
a
ls

1 2 3 4

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Usual

Suggested

Figure 1: Pearson’s standardized residuals calculated by both procedures.

5. Comparison of Alternative Procedures Through

Simulation

In a situation with a binary response Y and two explanatory factors A1, A2,
the first with 2 levels and the second with 3 leves, we propose a simulation in
order to study the effect of the aggregation of levels 2 and 3 for the factor A2,
using pseudo-random generation of a large number of contingency tables of the
type shown in Table 11.

Table 11: Original arrangement for simulation Y vs. A1(1, 2), A2(1, 2, 3).
i A1 A2 No. of successes (yi) Total (ni)

1 1 1 y1 n1

2 1 2 y2 n2

3 1 3 y3 n3

4 2 1 y4 n4

5 2 2 y5 n5

6 2 3 y6 n6

Total y· n·

An unsaturated logit model is fitted to of the generated tables signoring the
effect of interactions, using the first level of each factor as a reference, by




logit(p1)

logit(p2)

logit(p3)

logit(p4)

logit(p5)

logit(p6)




=




1 0 0 0

1 0 1 0

1 0 0 1

1 1 0 0

1 1 1 0

1 1 0 1







β1

β2

β3

β4


 (12)

In (12), pi represents the probability of success of the i-th combination of levels
of the two explanatory factors identified in Table 11 (i = 1, . . . , 6), while βj are
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the parameters to be fitted (j = 1, . . . , 4). Specifically, β1 represents the effect of
the intercept, β2 is the effect of level 2 of factor A1, β3 is the effect of level 2 of
the factor A2 and β4 is the effect of the level 3 of the factor A2.

The Table 12 is formed by grouping the last two levels of the second factor in
the Table 11.

Table 12: Aggregated data for simulation Y vs. A1(1, 2), A2(1, 2∗).
i A1 A2 No. of successes (yi) Total (ni)

1 1 1 y1 n1

2 1 2∗ y2 + y3 n2 + n3

3 2 1 y4 n4

4 2 2∗ y5 + y6 n5 + n6

Total y· n·

Following the usual procedure, we set a new unsaturated logit model for the
Table 12, than also ignores the effect of interactions and uses the first level of each
factor as a reference:




logit(p∗
1)

logit(p∗
2)

logit(p∗
3)

logit(p∗
4)


 =




1 0 0

1 0 1

1 1 0

1 1 1






β∗

1

β∗
2

β∗
3


 (13)

Now, in (13) p∗
i represents the probability of success of the i-th combination of

levels of the two explanatory factors identified in the Table 12 (i = 1, . . . , 4), with
β∗

1 representing the effect of the intercept, β∗
2 the effect of level 2 of the factor A1

and β∗
3 the effect of level 2∗ of the factor A2.

Lastly, following the suggested procedure, from the original model results (12)
we estimate the parameters of the new model with aggregate levels of the factor.
The comparison between the two procedures (usual and suggested) is then used
to analyze the resulting performance statistics in each case.

5.1. Design of the Experiment of Simulation

That total in the experiment set n· = 2000 is distributed in two randomized
numbers to each level of A1 and, within these, in three randomized numbers for
each level of A2. In this particular study, it is not of interest to compare the effect
of both procedures on the levels of factor A1, or on the first level of factor A2, p1

y p4. Then, independent pseudo-randomly uniform (0, 1) samples are generated.
Using the generated values of n1, n4 (selected randomly from n·) and p1 and p4,
the samples Y1 ∼ Bin(n1, p1) and Y4 ∼ Bin(n4, p4) are generated.

For the factor levels being compared in A2, the samples Y2 ∼ Bin(n2, p2),
Y3 ∼ Bin(n3, p3), Y5 ∼ Bin(n5, p5) and Y6 ∼ Bin(n6, p6), are generated nj

randomized as before and sequentially using combinations of ∆p = |p2 − p3| =
|p5 − p6| = 0.0, 0.2, 0.4, 0.6, 0.8. Such combinations are obtained by maintaining
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the values p2 = p5 = 0.1 as constant and varying by the values of p3 = p6 =
0.1, 0.3, 0.5, 0.7, 0.9.

For each combinations of ∆p to experiment several, contingency tables are pro-
duced, regrading to by the binomials generated, which are independent within each
table and between tables. We only incorporate samples that meet the following
conditions:

1. Lead to acceptance of the original logit model, as assessed by the Pearson’s
goodness of fit.

2. Lead to an original logit model the does not present important problems on
subdispertion. That is, that produces a statistical ratio of the Pearson’s and
residual degrees of freedom in the range (0.75; 1.25).

3. Lead to acceptance of the logit model with levels 2 and 3 of the factor added
A2, also following the Pearson’s test of goodness of fit.

4. Lead to a logit model with aggregate levels of the factor, which does not
have important problems of subdispertion. This in order to produce a sta-
tistical ratio of the Pearson’s and residual degrees of freedom in the range
(0.75; 1.25).

Finally, there are 10,000 valid samples, 2,000 for each combination of ∆p, and
significance level is set up with for testing α = 0.05. The performance measures
considere were:

a) Firstly, we examine descriptive statistics of the differences the Pearson’s χ2

goodness of fit test, obtained using standard procedures and suggested (in
that order).

b) We compare the absolute differences in point estimates of β∗
1 , β

∗
2 y β∗

3 , ob-
tained by the standard and suggested procedures, regardless to their statis-
tical significance.

c) Compare the differences in the lengths of the calculated CIs using the usual
and suggested procedure. It uses the average ratio between the lengths of
the first and the second (in that order). These ratios are calculated for the
CIs accompanying the parameter estimates β∗

1 , β
∗
2 and β∗

3 .

d) We study the absolute frequency of occurrence of the change in the conclusion
of the analysis of variance (acceptance to rejection, or vice versa) for testing
hypotheses about the parameters H0 : β∗

1 = 0, H0 : β∗
2 = 0 y H0 : β∗

3 = 0,
when they are contrasted by the usual way, and when they are contrasted
by the suggested procedure.

e) Finally, for each sample Pearson’s standardized residuals produced by both
methods were calculated. Also, analysis of each value of ∆p, we construct
boxplots their corresponding.
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5.2. Results of the Simulation Experiment

a) Firstly, Table 13 shows means and standard deviations (SD) of the simple
differences between the probabilities that leaves to the right Pearson’s χ2

test, in the examination of the goodness of fit of the model, obtained by the
usual and suggested procedure.

Table 13: Mean and standard deviations of the differences to the Pearson’s χ2 proba-
bilities (Usual - Suggested).

∆p Mean SE

0.0 −0.0002 0.0006

0.2 −0.0104 0.0214

0.4 −0.0219 0.0615

0.6 −0.0314 0.1148

0.8 −0.1173 0.1884

Since the average values in Table 13 are all negative, it is clear that the
suggested procedure fits the data consistently better than the usual, with
the increase in the differences ∆p.

As evidence of goodness of fit of the model, the Pearson’s statistic is partic-
ularly suitable in this case, since it is based on the accumulation of the stan-
dardized residuals. Although the variability is high, Table 13 that steadily
as there are greater differences between the probabilities of the variables
involved in the aggregation, the probability to the right of Pearson’s χ2

goodness of fit test increases in the suggested procedure compared with the
usual.

In practice this means that, on average, the estimated parameters using the
suggested procedure are closer to the expected for a given dataset in compar-
ison to the estimates produced by the usual procedure. It also means that
the model fitted using the suggested procedure is less likely to be rejected
than the other model.

b) Without considering the significance of the estimated parameters, the Table
14 contains the ranges obtained by both methods (standard and suggested)
for each estimate. It can be seen that these ranges are very similar in gen-
eral and, as should be verified, the same when ∆p = 0, and slightly more
dissimilar as ∆p increase.

Table 15 contains the averages and standard deviations of the absolute dif-
ferences between the parameters. As seen there, both the average and the
standard deviation of the differences between the parameters estimated by
the usual procedure (u) and suggested (s), |β∗

i (u) − β∗
i (s)|, i = 1, 2, 3 behave

similarly. This is, they grow as the probabilities of the variables involved in
the aggregation are more dissimilar.

Nevertheless, given the ranges shown in Table 14, these differences do not
seem important on average. The conclusion here is that both procedures
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(usual and suggested) essentially estimate the same values of model param-
eters, in most situations.

Table 14: Ranges of β̂∗

i according to the usual and suggested procedures.

β̂∗

1 β̂∗

2 β̂∗

3

Usual Suggested Usual Suggested Usual Suggested

∆p Min Max Min Max Min Max Min Max Min Max Min Max

0.0 -2.43 2.51 -2.43 2.51 -1.31 1.20 -1.31 1.20 -4.69 0.43 -4.69 0.43

0.2 -2.57 2.50 -2.58 2.50 -0.70 0.92 -0.71 0.92 -4.04 1.22 -4.04 1.22

0.4 -2.38 2.65 -2.38 2.65 -0.53 0.54 -0.54 0.55 -3.51 1.63 -3.50 1.63

0.6 -2.51 2.70 -2.51 2.69 -0.57 0.45 -0.66 0.50 -3.13 2.09 -3.13 2.09

0.8 -2.44 2.52 -2.47 2.59 -0.38 0.32 -0.50 0.39 -2.54 2.52 -2.54 2.45

Table 15: Average of absolute differences and deviations between the parameters esti-
mated by both methods.

|β̂∗

1 (u) − β̂∗

1 (s)| |β̂∗

2(u) − β̂∗

2 (s)| |β̂∗

3 (u) − β̂∗

3 (s)|

∆p Mean SD Mean SD Mean SD

0.0 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.002 0.002 0.001 0.001 0.002 0.003

0.4 0.004 0.005 0.004 0.004 0.006 0.007

0.6 0.008 0.010 0.009 0.008 0.011 0.013

0.8 0.012 0.018 0.014 0.014 0.016 0.022

c) Regarding to the lengths of the CIs for each estimator, Table 16 presents
the results of the average rates and standard deviations obtained. In general
terms, the CI length for the intercept effect shows no appreciable variations
in both procedures. However, for the other parameters, the higher ∆p is the
higher the average ratio of the CIs lengths estimated by both methods. Then,
it consistently appears that the confidence intervals related to the suggested
procedure are narrower and therefore preferable than those estimated by the
usual procedure.

Table 16: Averages of the ratio between the lengths of confidence intervals (LCI) ob-
tained by the usual method (u) and the suggested method (s).

β∗

1 : LCI(u)/LCI(s) β∗

2 : LCI(u)/LCI(s) β∗

3 : LCI(u)/LCI(s)

∆p Mean SD Mean SD Mean SD

0.0 1.00 0.00 1.00 0.00 1.00 0.00

0.2 1.00 0.00 1.01 0.00 1.01 0.00

0.4 1.01 0.01 1.03 0.01 1.03 0.01

0.6 1.01 0.02 1.06 0.01 1.05 0.02

0.8 1.00 0.04 1.09 0.03 1.06 0.05

Another aspect to note is that while in average terms the conclusion is clear,
the differences for the unsaturated case are not as significant as they were
in the saturated case developed by Ponsot et al. (2009). The introduction of
the covariance and the fact that it examines a larger number of factors have
somewhat dampened these differences.
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d) Table 17 shows the absolute frequencies of occurrence of the change in the
conclusions on the significance of model parameters (H0: β∗

i = 0 for i =
1, 2, 3), when they are examined with the usual procedure and when they
are examined with the suggested procedure.

β∗
1 changes occur in similar frequency and any direction. This indicates

that is not possible to suggest preferences between the two procedures for
intercept estimation. On the other hand, for the remaining two parame-
ters, the conclusion about the statistical significance of not rejecting the null
hypothesis and its rejection, greatly promotes the suggested procedure. Im-
provements in the results on β∗

2 are remarkable. There was no change from
rejection to acceptance of the null hypothesis, however, there were consider-
able changes to the contrary, i.e., acceptance to rejection of this hypothesis.
The suggested procedure allows us to reject the null hypothesis of model
parameters, in a higher proportion of cases, generally increasing with ∆p.

Table 17: Change of the conclusions for H0: β∗

i = 0 from the suggested procedure,
compared to usual.

Rejection Acceptance

∆p to acceptance without changes to rejection

For H0: β∗

1 = 0

0.0 0 2000 0

0.2 1 1998 1

0.4 1 1997 2

0.6 3 1989 8

0.8 9 1983 8

For H0: β∗

2 = 0

0.0 0 2000 0

0.2 0 1982 18

0.4 0 1946 54

0.6 0 1951 49

0.8 0 1901 99

For H0: β∗

3 = 0

0.0 0 2000 0

0.2 0 2000 0

0.4 1 1992 7

0.6 1 1990 9

0.8 2 1973 25

e) Finally, the Figures from 2 to 6 contain Pearson’s standardized residuals
boxplots, grouped according to the procedure that gave rise to (usual and
suggested), for each yi, i = 1, . . . , 4. Observe that for ∆p from 0.0 to 0.4,
boxplots not vary appreciably, indicating that the residuals produced by
both procedures are very similar. However, when ∆p is greater, although
the variability of residuals becomes less stable, their averages are closer to
0 in those settings using the suggested procedure. This confirms that in
trend terms, the suggested procedure produces better fits than the usual
procedure3.

3All programs, both for example, as for the simulation, were made with R statistical system
(R Development Core Team 2007).
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Figure 2: Pearson’s standardized residuals boxplots for∆p = 0.0.
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Figure 3: Pearson’s standardized residuals boxplots for ∆p = 0.2.
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Figure 4: Pearson’s standardized residuals boxplots for ∆p = 0.4.
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Figure 5: Pearson’s standardized residuals boxplots for ∆p = 0.6.
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Figure 6: Pearson’s standardized residuals boxplots for ∆p = 0.8.

6. Conclusions

This paper addresses and resolves a problem rarely studied, which arises from
the practical application of the binomial logit model. We discuss the situation in
which, once fitted a logit model to the data in a contingency table, a factor from
any of the participants is selected and some levels are added as a new level, to
reiterate a logit setting.

In general, there is a problem in the logit model fit with aggregate levels of the
factor, particularly when the probabilities of success of RV’s involved in aggrega-
tion are far from each other. Consequently, this paper suggests a procedure that
operates in a broader context, i.e., under the binomial unsaturated multifactorial
logit model, and with arguments of asymptotic nature, taking advantage of the
reduction in variance when postulates proper distributional model instead of the
binomial model, significantly improves the estimates, while lowering the standard
error.
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As the difference in the probabilities of success accentuates, it becomes better
supported by the suggested procedure, instead of the usual. The model fitted by
the suggested procedure, also produces closer to zero residuals and less chance of
rejection in the goodness of fit test.

In summary, it is proposed to the researcher logit model user, an alternative
procedure that can provide theoretical correctness, greater accuracy and less com-
putational effort in the state of aggregation levels of a factor, especially when they
involve sample proportions which are markedly dissimilar.
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Appendix. Study of the Design Matrix X for

Saturated and Unsaturated Models

Theorem 5. Using the reference parameterization, the design matrix of the saturated
logit model is invertible.

Proof . We prove the invertibility of the matrices of design, both in the univariate situ-
ation, as in the multifactorial situation, then:

1. Let the saturated univariate logit model design matrix be:

Xk×k =




1 1 0 · · · 0 0
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0




The calculation of the determinant of X by cofactors decomposition (Xij) is |X | =

(−1)k+1|I | = (−1)k+1 6= 0, pivoting the last row of the matrix, since the only one
nonzero element is xk1. Then, since |X | 6= 0, X−1 exists.

2. Suppose A1, A2, . . . , As factors, each one t1, t2, . . . , ts levels, respectively. Using
the reference parameterization, the followings are postulated:

a) 1 parameter for the effect of the intercept.

b) t1 −1 parameters for the main effects of A1 factor levels, except the reference;
t2 −1 parameters for the main effects of A2 factor levels, except the reference;
and so on until ts−1 parameters for the main effects of As factor levels, except
the reference; in total,

∑s

i=1
(ti − 1) parameters for the main effects.
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c) (t1 − 1)(t2 − 1) parameters for the double interaction effects between levels of
the factors A1 and A2; (t1 − 1)(t3 − 1) parameters for the double interaction
effects between levels of the factors A1 and A3; so on until (ts−1 − 1)(ts − 1)
parameters for the double interaction effects between levels of the factors

As−1 and As; in total
∑s−1

i=1

∑s

j=i+1
(ti − 1)(tj − 1).

d) (t1 − 1)(t2 − 1)(t3 − 1) parameters for the triple effects of interaction be-
tween levels of the factors A1, A2 and A3; (t1 − 1)(t2 − 1)(t4 − 1) parameters
for the triple effects of interaction between levels of the factors A1, A2 and
A4; so on until (ts−2 − 1)(ts−1 − 1)(ts − 1) parameters for the triple ef-
fects of interaction between levels of the factors As−2, As−1 and As; in total∑s−2

i=1

∑s−1

j=i+1

∑s

k=j+1
(ti − 1)(tj − 1)(tk − 1).

In general, for order a interactions (1 ≤ a ≤ s) the followings parameters are
postulated

s−a+1∑

i1=1

s−a+2∑

i2=i1+1

· · ·

s∑

ia=ia−1+1

a∏

j=1

(tij
− 1)

As the model is saturated, the k total number of postulated parameters equals the
number of observations in the contingency table (k = t1 × t2 × · · · × ts). Now,
including the interaction of order a (1 ≤ a ≤ s) in its i1, i2, . . . , ia levels, requires
a row of X like:

[
1 x1 · · · xs x12 · · · x(s−1)s · · · xi1i2···ia 0 · · · 0

]

where

xi =

{
1, i ∈ {i1, i2, . . . , ia}
0, otherwise

xij =

{
1, i y j ∈ {i1, i2, . . . , ia}
0, otherwise

and so on until xi1i2···ia = 1. In other words, the equation that introduces a new
parameter representing the interaction of any kind involves only the parameter
representing this interaction, and those representing the lower-order interactions
contained in it.

Appropriately arranging the rows of X thus constructed, it is easy to verify that
a triangular matrix is formed, whose diagonal consists of ones only. Then, using
Theorems 1.5.3 and 8.6.5 of Graybill (1969, pp. 8, 191), |X | ≡ ±1 6= 0, and
therefore X

−1 exist.

Corollary 1. With reference to parameterization, the design matrix X of the logit model
is such that there is (XT

X)−1.

Proof . Clearly in the saturated model situation, as there is X
−1, (XT )−1 exist and

then (XT
X)−1 also exist.

In the unsaturated model situation, the design matrix X is no longer square and
has no inverse. However, the unsaturated model starts from the saturate model ignoring
parameters in reverse order of the interactions (high order to low order) as desired by
the researcher, always following the construction rules described in item 2 of Theorem
5. Therefore, the construction of an unsaturated model is produced by simply removing
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columns in the design matrix of the corresponding saturated model. However, as the
columns of the saturated model design matrix are linearly independent, any subset of
the columns in it (in this case X) is also such that its columns are linearly independent,
whereby the unsaturated model matrix is columns full range and following the corollary
B.53 of Christensen (2002, p. 415), (XT

X)−1 exist.
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