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Abstract

A methodology to estimate a time-varying coefficient model through a
linear combination of radial kernel functions which are centered around all
the measuring times, or their quantiles is developed. The linear combination
is weighted by a bandwidth that may change or not among coefficients.
The proposed methodology is compared with the local polynomial kernel
methods by means of a simulation study. The proposed methodology shows
a better behavior in a high proportion of times in all cases, or at least it has
a similar behavior in relation with the estimation through local polynomial
kernel regression, that in a low rate of times has a better behavior in relation
with the average mean square error. In order to illustrate the methodology
the data set ACTG 315 related with an AIDS study is taken into account.
The dynamic relationship between the viral load and the CD4+ cell counts
is investigated.

Key words: Cross validation, Kernel function, Longitudinal data analysis,
Mixed model.

Resumen

Se propone una metodología para estimar los coeficientes de un modelo
de coeficientes dinámicos y aleatorios a través de una combinación lineal
de funciones radiales kernel centradas en los diferentes puntos de medición,
o en cuantiles de éstos, escalada por un ancho de banda que puede cam-
biar de coeficiente a coeficiente. En un estudio de simulación se compara
la metodología propuesta con la estimación mediante los métodos de poli-
nomios locales kernel, obteniéndose que la nueva metodología propuesta es la
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mejor opción en un alto porcentaje de veces para todos los escenarios simu-
lados, o por lo menos se desempeña similarmente a la estimación a través
de la regresión de polinomios locales kernel, que pocas veces se desempeña
mejor que la estimación mediante funciones radiales kernel, en relación al
error cuadrático medio promedio. Para ilustrar la estrategia de estimación
propuesta se considera el conjunto de datos ACTG 315 asociado con un es-
tudio del SIDA, en el que se modela dinámicamente la relación entre la carga
viral y el conteo de células CD4+.

Palabras clave: análisis de datos longitudinales, función kernel, modelo
mixto, validación cruzada.

1. Introduction

Longitudinal Data Analysis (LDA) takes place when a set of subjects are ob-
served repeatedly along time, measuring the response variable in accordance with
the covariates that may or may not be time-dependent. Given the characteris-
tics of this kind of data, an underlying property that must be thought fitting
a statistical model, is the correlation between repeated measures of the response
variable within each experimental unit, considering measures independent between
subjects. That is, measurements are correlated inside experimental units and inde-
pendent between subjects. This way, the main purpose is to identify and describe
the evolution of the response variable and to determine how it is affected by the
covariates. For instance, in clinic trials, it is of interest to evaluate the impact of
a dose or other related factors, over the progress of a disease along time.

Parametric techniques for LDA have been exhaustively studied in the literature
(Diggle, Liang & Zeger 1994, Davis 2000, Verbeke & Molenberghs 2005, Fitzmau-
rice, Davidian, Verbeke & Molenberghs 2009). While these tools are useful under
some reasonable restrictions, always arise doubts and questions about the adequacy
of the model assumptions and the potencial impact of model misspecifications on
the analysis (Hoover, Rice, Wu & Yang 1998). Non parametric techniques re-
cently introduced in LDA allow a functional dependence more flexible between
the response variable and the covariates.

Hart & Wehrly (1986), Altman (1990), Hart (1991) propose methods for choos-
ing smoothing parameter through cross-validation using kernel functions and con-
sidered kernel methods for estimating the expectation of the response variable
without covariates, while Rice & Silverman (1991) did it by using a class of smoo-
thing splines. Although the kernel and splines methods are successful in predicting
the mean curve of the response variable, they only consider the time effect and do
not take into account other important covariates (Hoover et al. 1998).

In order to quantify the influence of covariates, Zeger & Diggle (1994) studied
a semi-parametric model as follows:

yij = µ(tij) + xi(tij)
Tβ + eij

j = 1, . . . , ni, i = 1, . . . , n
(1)
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where n is the number of subjects, ni is the number of repeated measures associated
with the i-th experimental unit, tij , yij ≡ yi(tij),

xi(tij) = [xi0(tij), xi1(tij), . . . , xid(tij)]
T

and eij ≡ ei(tij) are respectively the measuring time, the response variable, the
covariate vector in Rd+1 and the error term, associated with the j-th measure of
the i-th subject. Moreover, µ(·) is an arbitrary smooth real function and β =
[β0, β1, . . . , βd]

T is a parameter vector in Rd+1. Working with longitudinal data, it
is usually assumed that repeated measures are independent between experimental
units and that ei(t) is a Gaussian Process (GP) with E[ei(t)] = 0, for each t ∈ Ti,
with covariance function γei(r, s), r, s ∈ Ti, and Ti = {tij : j = 1, . . . , ni}; this is
written as

ei = [ei1, . . . , eini
]T ∼ PG(0ni

,Γi)

where 0ni
is a column-vector with ni × 1 zeros and Γi = [γei(tik, til)]k,l=1,...,ni

.
Hoover et al. (1998) considered a generalization of the model (1) that allows

the parameters to vary over time. This extension is as follows:

yij = xi(tij)
Tβ(tij) + eij ,

j = 1, . . . , ni, i = 1, . . . , n
(2)

where
β(tij) = [β0(tij), β1(tij), . . . , βd(tij)]

T

is a vector of arbitrary real smooth functions. Components in vector β(t) are
called dynamic coefficients or dynamic parameters, and the statistical model (2)
is referred as Time-Varying Coefficient Model (TVCM). This kind of model has
been widely studied by Wu & Zhang (2006) who investigated various alternatives
for estimating the model coefficients. Sosa & Díaz (2010) proposed a methodol-
ogy to estimate true-varying coefficients models through generalized estimation
equations.

A Random Time-Varying Coefficient Model (RVCM) is an extension of a
TVCM, and it was firstly investigated by Guo (2002). As in a Linear Mixed
Effects Model (LMEM), this extension decomposes the term error ei(tij) of model
(2) into two parts: one of them that describes the characteristics of each subject
that differs of the mean population behavior, and other related with the pure
random error; that is, it is done by the decomposition

ei(tij) = zi(tij)
Tvi(tij) + εi(tij)

j = 1, . . . , ni, i = 1, . . . , n

where zi(tij)Tvi(tij) is the model component that describes the characteristics
related with each subject (random effects component), with

zi(tij) = [zi0(tij), zi1(tij), . . . , zid∗(tij)]
T

a covariate vector in Rd∗+1, with components that vary along time, associated
with the vector

vi(tij) = [vi0(tij), vi1(tij), . . . , vid∗(tij)]
T
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of random time-varying coefficients with size (d∗ + 1) × 1 and εij ≡ εi(tij) is the
random error term associated with the j-th measurement of the i-th experimental
unit. Thus, a RVCM is a model with the following form:

yij = xi(tij)
Tβ(tij) + zi(tij)

Tvi(tij) + εij

j = 1, . . . , ni, i = 1, . . . , n
(3)

where
vi(t) ∼ PG(0d∗+1,Γ)

and
εi(t) = [εi1, . . . , εini

]T ∼ PG(0ni
,Ri)

with Γ = [γ(tik, til)]k,l=1,...,d∗+1 and Ri = [γεi(tik, til)]k,l=1,...,ni . It is supposed
that the repeated measurements are independent between subjects, and vi(t) and
εi∗(t) are independent Gaussian processes.

This paper is structured as follows: In Section 2 and Section 3 the estimation
through local polynomial kernel techniques is presented and an estimation method-
ology by means of radial kernel functions is proposed, respectively. In Section 4
some techniques to choose the bandwidth associated with the estimation method-
ologies is studied. In section 5 it is shown a simulation study where the estimation
alternatives through the average mean square error are compared. In Section 6
the methodology is illustrated by analyzing the data set ACTG 315 (Liang, Wu
& Carroll 2003), where the relationship between viral load and CD4+ cell counts
is investigated dynamically in a AIDS clinical trial. Finally, results are discussed
in 7.

2. Estimation Through Local Polynomial Kernel
Regression

The basic idea behind the estimation through Local Polynomial Kernel (LPK)
regression is to approximate the dynamic coefficients by means of a Taylor expan-
sion. Thus, in a fix time point t0, it is supposed that the dynamic parameters
βr(t0), r = 0, 1, . . . , d, and vis(t0), s = 0, 1, . . . , d∗, have (p+1) continuous deriva-
tives for some non-negative integer p. Then, by means of an approximation in a
Taylor expansion of order p around t0, it follows that:

βr(tij) ≈ hTijαr, r = 0, 1, . . . , d (4)

and
vsi(tij) ≈ hTijbsi, s = 0, 1, . . . , d∗ (5)

for j = 1, . . . , ni, i = 1, . . . , n, where

hij = [1, tij − t0, (tij − t0)2, . . . , (tij − t0)p]T
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is the vector of (p + 1) × 1 components related with the polynomials in the ap-
proximation, αr = [αr0, αr1, . . . , αrp]

T and bsi = [bsi0, bsi1, . . . , bsip]
T , with

αrk =
β
(k)
r (t0)

k!
(6)

and

bsik =
v
(k)
si (t0)

k!
(7)

for k = 0, 1, . . . , p.
Let α = [αT0 ,α

T
1 , . . . ,α

T
d ]
T and bi = [bT0i, b

T
1i, . . . , b

T
d∗i]

T be the vectors associ-
ated with the approximation of the dynamic coefficients. Given that the repeated
measurements are independent between subjects and that vi(t) ∼ PG(0d∗+1,Γ),
it follows that the sequence of vectors b1, . . . , bn constitutes a random sample
from a population with a multivariate normal distribution with mean 0(d∗+1)(p+1)

and covariance matrix D ≡ D(t0) with size d∗(p + 1) × d∗(p + 1). Thus, in a
neighborhood of t0, model (3) can be approximately expressed as

yij ≈ xTijα+ zTijbi + εij

j = 1, . . . , ni, i = 1, . . . , n
(8)

where xij = xi(tij) ⊗ hij , zij = zi(tij) ⊗ hij , with bi ∼ N(0(d∗+1)(p+1),D) and
εi ∼ N(0ni

,Ri)

Thus, in a neighborhood of t0, model (8) is a standard LMEM where it is
required to estimate α and find the Best Linear Unbiased Predictor (BLUP) of
bi, with the purpose of finding the estimations of β(t) and vi(t). In order to
incorporate the information given in the neighborhood, as in Wu & Zhang (2006,
p. 297), it is constituted the following objective function:

(y −Xα− Zb)TK
1/2
h R−1K

1/2
h (y −Xα− Zb) + bT D̃−1b (9)

where

b = [bT1 , . . . , b
T
n ]
T

y = [yT1 , . . . ,y
T
n ]
T , yi = [yi1, . . . , yini ]

T

X = [XT
1 , . . . ,X

T
n ]
T , Xi = [xi1, . . . ,xini

]T

Z = diag[Z1, . . . ,Zn], Zi = [zi1, . . . ,zini
]T

D̃ = diag[D, . . . ,D], R = diag[R1, . . . ,Rn]

Kh = diag[K1h, . . . ,Knh], Kih = diag[Kh(ti1 − t0), . . . ,Kh(tini − t0)]

(10)

with Kh(·) = K(·/h)/h, K(·) a kernel function and h a bandwidth.
The estimators can be found fitting the model

ỹ = X̃α+ Z̃b+ ε

b ∼ N(0N , D̃), ε ∼ N(0N ,R)
(11)
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where ỹ = K
1/2
h y, X̃ = K

1/2
h X, Z̃ = K

1/2
h Z and N =

∑n
i=1 ni.

Therefore, given the variance components D̃ and R, the kernel function K(·)
and the bandwidth h, to minimize (9) in relation with α and b leads to

α̂ =
(
XTK

1/2
h V−1K

1/2
h X

)−1
XTK

1/2
h V−1K

1/2
h y (12)

b̂ = D̃ZTK
1/2
h V−1K

1/2
h (y −Xα̂) (13)

and
b̂i = DZiK

1/2
ih V−1i K

1/2
ih (yi −Xiα̂)

where
V = diag[V1, . . . ,Vn] = K

1/2
h ZD̃ZTK

1/2
h + R

with
Vi = K

1/2
ih ZiDZTi K

1/2
ih + Ri

3. Estimation through Radial Kernel Functions

The idea behind the estimation through Radial Kernel Functions (RKF) is to
approximate the dynamic coefficients by means of a linear combination of kernel
functions treated as radial basis functions. Thus, it is possible to express the
dynamic parameters by means of

β(t) = Ξ(t)Tα (14)

and
vi(t) = Θ(t)T bi, i = 1, . . . , n (15)

where α = [αT0 ,α
T
1 , . . . ,α

T
d ]
T , Ξ(t) = diag[Ξ0(t),Ξ1(t), . . . ,Ξd(t)],

αr = [αr1, . . . , αrM ]T Ξr(t) =

[
ξr

(
|t− t1|
h

)
, . . . , ξr

(
|t− tM |

h

)]T
for r = 0, 1, . . . , d, bi = [bT0i, b

T
1i, . . . , b

T
d∗i]

T , Θ(t) = diag[Θ0(t),Θ1(t), . . . ,Θd∗(t)]

bsi = [bsi1, . . . , bsiM ]T Θs(t) =

[
θs

(
|t− t1|
h

)
, . . . , θs

(
|t− tM |

h

)]T
for i = 1, . . . , n, s = 0, 1, . . . , d∗, with ξr : [0,∞) → R and θs : [0,∞) → R kernel
functions, t1, . . . , tM are all theM measurements time points that are different (or
quantils of these) and h is a bandwidth.

If ξr ≡ ξ for each r = 0, 1, . . . , d and θs ≡ θ for each s = 0, 1, . . . , d∗, then

β(t) = [Id+1 ⊗ ξ(t)]T α (16)

and
vi(t) = [Id∗+1 ⊗ θ(t)]T bi, i = 1, . . . , n (17)
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where Ik denote the identity matrix of k × k,

ξ(t) =

[
ξ

(
|t− t1|
h

)
, . . . , ξ

(
|t− tM |

h

)]T
(18)

and

θ(t) =

[
θ

(
|t− t1|
h

)
, . . . , θ

(
|t− tM |

h

)]T
(19)

As above, given that vi(t) ∼ PG(0d∗+1,Γ) and that the repeated measure-
ments are independent between subjects, it follows that the sequence of vectors
b1, . . . , bn constitutes a random sample from a population with a multivariate nor-
mal distribution with mean 0(d∗+1)(p+1) and covariance matrix D ≡ D(t) with size
d∗(p+ 1)× d∗(p+ 1). Due to (3) and (15), it follows that γ(s, t) = Θ(s)TDΘ(t),
so that an estimator of D leads directly to an estimator of Γ.

Thus, model (3) can be approximately expressed as

yij ≈ xTijα+ zTijbi + εij

j = 1, . . . , ni, i = 1, . . . , n
(20)

where xij = Ξ(tij)xi(tij) and zij = Θ(tij)zi(tij), with bi ∼ N(0(d∗+1)(p+1),D)
and εi ∼ N(0ni

,Ri).
If ξr ≡ ξ and θs ≡ θ then

xij = (Id+1 ⊗ ξ(tij))xi(tij)

and
zij = (Id∗+1 ⊗ θ(tij))zi(tij)

where ξ(t) and θ(t) are given in (18) and (19).
Given the vectors Ξr(t), r = 0, 1, . . . , d, and Θs(t), s = 0, 1, . . . , d∗, and the

bandwidth h, model (20) is a standard LMEM where it is required to estimate α
and find the BLUP of bi in order to calculate the estimations of β(t) and vi(t).

4. Bandwidth Selection

By estimating the dynamic components of model 3 through LPK or RKF, it
is mandatory to choose the bandwidth h carefully. In this section are presented
two selection criterions designed to choose smoothing parameters: Subject Cross-
Validation (SCV) and Point Cross-Validation (PCV).

4.1. Subject Cross-Validation

This criterion was proposed by Rice & Silverman (1991), and has been studied
by many authors, as Hoover et al. (1998) for instance. The idea behind this criteria
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is to choose the smoothing parameter vector that minimize the expression

SCV (h) =

n∑
i=1

ni∑
j=1

wi

[
yij − xi(tij)T β̂

(−i)
(tij)

]2
(21)

where yij and xi(tij) are defined as in model (3), β̂
(−i)

(t) denotes the estimation
of β(t) excluding the data related with the i-th subject, and wi for i = 1 . . . , n, is
a weight given by some of the following schemes:

Scheme 1 All weights are given by wi = 1/N , i = 1, . . . , n, where N =
∑n
i=1 ni.

Scheme 2 All weights are given by wi = 1/(nni), i = 1, . . . , n.

Scheme 1 uses the same weight for all experimental units and was proposed by
Hoover et al. (1998). Scheme 2 is considered by Huang, Wu & Zhou (2002) and
uses different weights for the subjects taken into account in the study. In Huang
et al. (2002) it is shown that scheme 1 could lead to inconsistent estimators of α.

4.2. Point Cross Validation

Let {tl : l = 1, . . . ,M} be the set formed by all the measuring times that are
different (or quantiles of these) in all the data set. For a given time point tl, let
{il∗ : l∗ = 1, . . . ,ml} be the set of all experimental units at time tl.

The idea behind this criteria is to choose the smoothing parameter vector that
minimize the expression

PCV (h) =

M∑
l=1

ml∑
l∗=1

wl

[
yil∗ (tl∗)− ŝ

(−l)
il∗

(tl)
]2

(22)

where yil∗ (tl∗) is the value of the response variable for subject il∗ at time tl∗ ,
wl = (Mml)

−1 is the weight associated with the l-th measuring time and ŝ(−l)il∗
(tl)

denotes the estimation of the response variable for experimental unit il∗ at time tl
when all the observations related with the response variable at time tl have been
excluded.

5. Simulation

This section presents a simulation study to evaluate the performance of the
estimation methods. The comparison is performed through the Average Mean
Square Error (AMSE) given by

AMSE(κ) =
1

n

n∑
i=1

1

ni

ni∑
j=1

[κ(tij)− κ̂(tij)]2 (23)

with κ(·) a function that corresponds to any dynamic coefficient of model (3).
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Simulation strategy is similar to that followed by Wu & Liang (2004). The
simulation model is structured as follows:

yi(t) = β0(t) + xi1(t) [β1(t) + v1i(t)] + εi(t), i = 1, . . . , n

xi1(t) = 1− exp [−0.5t− (i/n)]

β0(t) = 3 exp(t), β1(t) = 1 + cos(2πt) + sin(2πt)

v1i(t) = ai0 + ai1 cos(2πt) + ai2 sin(2πt)

ai = [ai0, ai1, ai2]
T ∼ N

(
[0, 0, 0]T , diag[σ2

0 , σ
2
1 , σ

2
2 ]
)

εi(t) ∼ N(0, σ2
εx

2
i1(t))

(24)

where β0(t), β1(t) and v1i(t), are the dynamic parameters of the model, xi(t) is
the covariate of the model associated with β1(t) and where v1i(t) and εi(t) are
random errors. This model corresponds to the RVCM given in (3) where

β(t) = [β0(t), β1(t)]
T , vi(t) = [v1i(t)], xi(t) = [xi0(t), xi1(t)]

T , zi(t) = [zi1(t)]

with xi0(t) ≡ 1 and zi1(t) ≡ xi1(t). Note that in the simulated model Ri is a
diagonal matrix and D is an unstructured covariance matrix. The observations
between subjects are simulated independent.

It is assumed that σ2
1 = σ2

2 = σ2
ε = σ2. Then, the correlation coefficient

between repeated measurements within each experimental unit is

ρ = Corr[yi(t), yi(s))] =
σ2
0 + σ2 cos[2π(t− s)]

σ2
0 + 2σ2

, for s 6= t

therefore
σ2
0 − σ2

σ2
0 + 2σ2

≤ ρy ≤
σ2
0 + σ2

σ2
0 + 2σ2

To simulate different intensities of correlation are considered three cases:

Case 1 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.01. This corresponds to
ρy ∈ ( 0 , 0.67 ).

Case 2 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.04. This corresponds to
ρy ∈ ( 0.50 , 0.83 ).

Case 3 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.09. This corresponds to
ρy ∈ ( 0.73 , 0.91 ).

Design times are simulated in accordance with the expression

tij = j/(m+ 1), i = 1, . . . , n, j = 1, . . . ,m

where m is a positive integer. To simulate unbalanced data sets, a main character-
istic of the structure of longitudinal data, in each subject are removed randomly
repeated measures with a rate rm = 30%. Thus, there is approximately m(1−rm)
repeated measurements per experimental unit and nm(1 − rm) measurements in
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Table 1: Scenarios for the simulation study.
Scenario n m σ2

0 Scenario n m σ2
0 Scenario n m σ2

0

1 5 5 0.01 10 10 5 0.01 19 20 5 0.01
2 5 5 0.04 11 10 5 0.04 20 20 5 0.04
3 5 5 0.09 12 10 5 0.09 21 20 5 0.09
4 5 10 0.01 13 10 10 0.01 22 20 10 0.01
5 5 10 0.04 14 10 10 0.04 23 20 10 0.04
6 5 10 0.09 15 10 10 0.09 24 20 10 0.09
7 5 15 0.01 16 10 15 0.01 25 20 15 0.01
8 5 15 0.04 17 10 15 0.04 26 20 15 0.04
9 5 15 0.09 18 10 15 0.09 27 20 15 0.09

total. Smoothing parameters are chosen by using PCV. Table 1 contains all the
scenarios considered in the simulation study.

Each scenario was repeated N = 500 times and each time was calculated
AMSE(β0) and AMSE(β1), in order to compare the relative performance of
the Local Polynomial Kernel Regression Estimation (LPKE) with Radial Kernel
Functions Estimation (RKFE). For these estimations the next indicators are define

AMSER(RKFE/LPKE) =
1

N

N∑
k=1

AMSEk(κ, LPKE)

AMSEk(κ,RKFE)
× 100% (25)

and

AMSERKF(RKFE/LPKE)

=

∑N
k=1 I{AMSEk(κ,LPKE)>AMSEk(κ,RKFE)}

N
× 100% (26)

where AMSEk(κ, LPKE) and AMSEk(κ,RKFE) denote the value of AMSE(κ)
obtained in the k-th simulation replicate, k = 1, . . . , N , by using the RKFE and
the LPKE respectively, and IA denotes the indicator function of set A. AMSER
represents the average relative efficiency associated with the N replications and
AMSERKF is the percentage of estimations obtained through RKF that are be-
tter than those obtained through LPK in relation to the AMSE in AMSE in the N
replications. If AMSER ≈ 100% and AMSERKF ≈ 50%, LPKE and the RKFE
perform similarly; if AMSER > 100% y AMSERKF > 50%, RKFE has better
performance than LPKE; and if AMSER < 100% and AMSERKF < 50%,
LPKE has better performance than RKFE.

Table 2 contains the results of the simulation. According to this table, the
choice rules of an alternative estimation by using indicators (25) and (26), and
Tables 3 and 4 which summarizes the results, it follows that at 48% of cases the
best estimation strategy is the RKFE; by approximation to the rules given, that is,
following the criteria AMSER0 ≈ 100% y AMSERKF0 ≈ 50%, it has that in the
35.2% of the situations the two strategies behave similarly; furthermore, just 9.3%
of cases the best strategy is LPKE and for 7.4% of the scenarios the criterion does
not decide (AMSER > 100% and AMSERKF < 50%, or, AMSER < 100%
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Table 2: Simulation results.
n = 5 n = 10 n = 20

m = 5 m = 10m = 15 m = 5 m = 10m = 15 m = 5 m = 10 m = 15

σ2
0 = 0.01

AMSER0 100.0% 100.2% 101.1% 100.9% 100.0% 100.0% 101.0% 102.0% 100.8%
AMSERKF0 49.9% 50.2% 50.8% 50.8% 49.2% 48.4% 50.9% 46.0% 62.0%
AMSER1 100.5% 102.4% 101.4% 100.0% 101.5% 100.9% 99.6% 100.1% 100.4%
AMSERKF1 45.8% 51.2% 50.8% 48.1% 51.0% 50.4% 43.8% 61.9% 56.4%

σ2
0 = 0.04

AMSER0 100.1% 100.0% 100.0% 100.1% 101.0% 100.0% 100.0% 102.1% 100.5%
AMSERKF0 50.7% 49.4% 45.8% 47.8% 45.9% 49.9% 49.0% 63.1% 51.8%
AMSER1 99.6% 102.2% 100.7% 100.0% 100.8% 100.5% 100.7% 101.3% 100.4%
AMSERKF1 42.0% 52.7 % 48.1% 46.9% 50.1% 54.9% 50.2% 49.9% 52.8%

σ2
0 = 0.09

AMSER0 100.9% 100.5% 100.1% 100.0% 100.0% 100.3% 100.0% 100.7% 99.9%
AMSERKF0 50.5% 50.4% 51.1% 47.7% 49.7 % 51.0% 47.7% 48.6% 46.8%
AMSER1 99.3% 101.8% 101.6% 100.5% 101.3% 100.9% 99.5 % 102.0% 100.2 %
AMSERKF1 44.5% 49.0% 49.3% 49.6% 43.6% 51.6% 46.7% 52.0% 51.4%

and AMSERKF > 50%). It is also noted that the strategy most appropriate
for estimating, considering β0(t) and β1(t) simultaneously, is type RKFE which
corresponds to n = 5, m = 10 and σ2

0 = 0.01, n = 5, m = 15 and σ2
0 = 0.01,

n = 10, m = 15 and σ2
0 = 0.09, n = 10, m = 15 and σ2

0 = 0.01, and n = 10,
m = 15 and σ2

0 = 0.04; there is no case where LPKE improved the outcomes
for both dynamic components simultaneously. Furthermore, there are a variety of
cases where the best strategy is RKFE for one of the dynamic parameters and for
the other two strategies perform similarly.

According to Table 3, it is concluded that while the value of σ2
0 decreases, and

at the same time the correlation between repeated measurements, the proportion
of times that the best strategy is RKFE increase. Moreover, in all degrees of cor-
relation, the proportion of times that performs better RKFE is superior compared
to the proportion for LPKE. In the same way, in all degrees of correlation, the
proportion of times where the two strategies perform similarly is higher than the
proportion where LPKE is the best option. Also, these relationships are main-
tained in each case for the dynamic intercept and the dynamic slope. Therefore,
with any degree correlation and any dynamic parameter, in 83.3% of cases, RKFE
performs better or similarly than LPKE. Thus, it is concluded that in such cir-
cumstances, to choose RKFE is the best alternative.

Table 3: Proportion of times that a strategy is better than another for σ2
0 and βr(t).

RKF Equal LPK No

σ2
0 = 0.01

β0(t) 9.3% 5.6% 0.0% 1.9%
β1(t) 11.1% 1.9% 1.9% 1.9%

Total 20.4% 7.4% 1.9% 3.7%

σ2
0 = 0.04

β0(t) 5.6% 9.3% 0.0% 1.9%
β1(t) 9.3% 5.6% 1.9% 0.0%

Total 14.8% 14.8% 1.9% 1.9%

σ2
0 = 0.09

β0(t) 7.4% 7.4% 1.9% 0.0%
β1(t) 5.6% 5.6% 3.7% 1.9%

Total 13.0% 13.0% 5.6% 1.9%
Total general 48.1% 35.2% 9.3% 7.4%
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Table 4: Proportion of times that a strategy is better than another for n and m.
RKF Equal LPK No

n = 5

m = 5 3.7% 1.9% 3.7% 1.9%
m = 10 7.4% 3.7% 0.0% 0.0%
m = 15 5.6% 5.6% 0.0% 0.0%

Total 16.7% 11.1% 3.7% 1.9%

n = 10

m = 5 1.9% 9.3% 0.0% 0.0%
m = 10 3.7% 3.7% 0.0% 3.7%
m = 15 7.4% 3.7% 0.0% 0.0%

Total 13.0% 16.7% 0.0% 3.7%

n = 20

m = 5 3.7% 3.7% 3.7% 0.0%
m = 10 5.6% 3.7% 0.0% 1.9%
m = 15 9.3% 0.0% 1.9% 0.0%

Total 18.5% 7.4% 5.6% 1.9%

Total 48.1% 35.2% 9.3% 7.4%

Furthermore, according to Table 4, for all sample sizes, when the number of
repeated measurements of each individual increases, the proportion of scenarios
where RKFE performs better RKFE increases as well. It must also be noted that
this proportion is similar for all sample sizes, and is always significantly higher
than the proportion where LPKE is the best option. Moreover, when n = 10
is notorious the proportion of times where the two strategies perform similarly.
Finally, it is observed the fact that the proportion of times where LPKE is better
is equal to 0.0% in most cases for any value of n y m. Thus, it is concluded that
the proposed methodology is the best option a high percentage of times in all
simulated scenarios, or at least performs similarly to the LPKE, which very rarely
performs better than the RKFE.

6. Application

The viral load (plasma VIH RNA copies/mL) and cell count CD4+ are cur-
rently key indicators to assess AIDS treatments in clinical research. Initially it
was considered the CD4+ cell count as a primary indicator of AIDS immunod-
eficiency, but it was newly found that viral load is more predictive for clinical
outcomes. However, recently some researchers have suggested that a combination
of these two indicators may be more appropriate to evaluate the treatment of HIV
and AIDS. Therefore it is pertinent to study the relationship between viral load
and CD4+ cell count during treatment (Liang et al. 2003).

Figure 2 presents some graphs of a linear regression of viral load (log(RNA))
against to CD4+ cell counts in some measuring times of a clinical study of AIDS
(ACTG 315). In this investigation, there are 46 infected patients with an antiviral
therapy consisting of ritonavir, 3TC and AZT. After starting treatment, viral load
and CD4+ cell count were observed simultaneously at days 0, 2, 7, 10, 14, 28, 56,
84, 168, and 336. The number of repeated measurements for individual varies from
4 to 10 and in total 361 observations were obtained.
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Figure 1: Scatter plot for CD4+ cell count and viral load.
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Figure 2: Graphs related with the linear regression of viral load (log10(RNA)) against
CD4+ cell count in some measuring times. The model adjusted in each
case has got the form log10(RNA) = β0 + β1(CD4/100) + e. The p-value
corresponding to H0 : β1 = 0 against H1 : β1 6= 0 is also presented in each
case.

In general, it appears that the virologic (measured by the viral load) and the
immune response (measured by the CD4+ cell count) of the patient are negatively
correlated, and that their relationship is approximately linear during antiviral
therapy. Figure 1 shows the scatter plots associated with CD4+ cell count and
viral load. The logarithm of viral load is used to stabilize the variance for the
estimation procedures of the model fitted in the following.
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Figure 2 shows that the slope of the linear regression of viral load versus CD4+
cell count changes over time because in a few days the slope is significantly different
from zero and in others not. This motivates the fitting of a model with dynamic
coefficients in order to describe and quantify the change in the relationship. How-
ever, because it may be of interest to investigate the relationship between viral
load and CD4+ cell count in a particular patient, the fitting of a RVCM is needed.

The ACTG 315 data set has been studied extensively by Liang et al. (2003),
who showed a strong inverse relationship between viral load and CD4+ cell count.
In this section, a RVCM is fitted to investigate the dynamic relationship between
viral load (in logarithmic scale) and CD4+ cell count, and also to describe this
relationship particularly in any patient.

The RVCM fitted is

yij = β0(tij) + β1i(tij)xi1(tij) + eij , j = 1, . . . , ni, i = 1, . . . , 46 (27)

where yij , xi1(tij), and eij are viral load (in logarithmic scale), the CD4+ cell
count and the error associated with the j-th measurement of the i-th patient,
respectively, β0(t) is the dynamic coefficient associated with the intercept and
β1i(t) is the dynamic and random coefficient associated with the CD4+ cell count.
This parameter is given by

β1i(t) = β1(t) + vi(t), i = 1, . . . , 46

with β1(t) the coefficient associated with the mean dynamic relationship between
viral load and cell count CD4+ and vi(t) the coefficient related to the character-
istics of the i-th patient that differ from the average behavior.

The dynamic components of the model are estimated through LPK and the
proposed methodology by using RKF. The kernel functions used in the estimation
are Gaussian, and for selecting the smoothing parameters (bandwidths) the PCV is
implemented which gives the bandwidths hRKF = 0.999 and hRKF = 0.401 using
RKF and LPK respectively (Figure 3). Furthermore, models (8) and (20) are fitted
by using function lme4 (Bates, Maechler & Bolker 2011) in R (R Development Core
Team 2008).

Figure 4 shows the residuals of the RVCM fitted. It is observed that in both
cases, the RVCM has a good fit to the data. The value of the residuals by using
both estimation methods are similar prior 150-th day. From that day the value of
the residuals is less by using LPK, suggesting that the relationship at the end of the
treatment by using LPK is more accurate; however, both techniques indicate the
same at the end of treatment as it is evidenced in Figure 5 where are illustrated the
graphs associated with the estimation of β0(t) and of β1(t) by using LPK and RKF,
respectively. In both cases, the graphics are very similar to those obtained by Liang
et al. (2003).The right chart shows that the dynamic relationship between viral
load and CD4+ cell count is approximately direct to day 50, point at which the
association is weak; from this day the relationship between the indicators is inverse
to the end of treatment. Moreover, between week 1 and 14, RKF estimate suggests
that the relationship is apparently stronger. Also, major differences between the
estimation methodologies from day 150 of treatment are noted, where the estimate
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Figure 3: Graphs related with PCV against the bandwidth.

through LPK suggests that the relationship changes and it is strengthened –in an
inverse way– to the end of treatment. Overall, the dynamic relationship between
viral load and CD4+ cell count decreases gradually until the seventh week of
the study where the relationship begins to strengthen gradually until the end of
treatment.

One advantage of fitting a RVCM is that it is possible to characterize the
performance of the dynamic relationship of interest for any particular subject.
Figure 6 shows the estimates of the deviations typical of the population vi(t)
for patients 1, 3 y 16 using RKF and LPK. Not only the magnitude but also the
direction of changes can be see among individuals. Due to the high variation within
each of the individuals, the estimation of the relationship between the indicators
for each patient is very important because it allows to customize the treatment
and care of each patient. Using LPK more variability between individuals in the
dynamic relationship of viral load and CD4+ cell count is perceived. It is observed
how the relationship may even be direct. While using RKF variability is lower and
the pattern is very similar to the average dynamic relationship.

Figure 4: Residuals of RVCM fitted by using RKF and LPK.
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Figure 5: Graphs associated with the estimation of β0(t) and β1(t) for the RVCM fitted
by using RKF and LPK.

Figure 6: Graphs associated with the estimation of vi(t) for the RVCM fitted by using
RKF and LPK for patients 1, 3 and 16.

7. Discussion and Conclusions

This paper proposes a methodology to estimate the coefficients of a random
time-varying coefficient model through radial kernel functions, where model coeffi-
cients are approximated by a linear combination of kernel functions which centered
around all the measuring points, or their quantiles, weighted by a bandwidth that
may change or not among coefficients (Hastie, Tibshirani & Friedman 1990).

By means of a simulation study the estimation method is compared by using a
local polynomial kernel regression with the use of radial kernel functions in relation
with the average mean square error, resulting that the proposed methodology is
the best one in a high percentage of times in all simulated scenarios, or at least
performs similarly to the LPKE, who rarely performs better than the RKFE, in
relation with the average mean square error.

Analyzing the ACTG 315 data set (Liang et al. 2003), it was found that the
relationship between viral load and CD4+ cell count is inverse. Furthermore, as a
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future alternative modeling, it can be thought a model in which the response vari-
able is bivariate, consisting of viral load and CD4+ cell count, and the predicted
correspond to some covariates related to the treatment of patients with AIDS.

Further studies may investigate the consistency and asymptotic properties of
the estimators proposed, the impact of the functional form of the dynamic coef-
ficients of the model and mechanisms for testing hypotheses related to both the
dynamic and random coefficients model.

[
Recibido: abril de 2010 — Aceptado: febrero de 2012
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