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Abstract
Item Count Technique (ICT) serves the purpose of estimating the propor-

tion of the people with stigmatizing attributes using the indirect questioning
method. An improved ICT has been recently proposed in the literature (not
requiring two subsamples and hence free from finding optimum subsample
sizes unlike the usual ICT) in a classical framework that performs better
than the usual ICT and the Warner method of Randomized Response (RR)
technique. This study extends the scope of this recently proposed ICT in a
Bayesian framework using different priors in order to derive posterior distri-
butions, posterior means and posterior variances. The posterior means and
variances are compared in order to study which prior is more helpful in up-
dating the item count technique. Moreover, we have compared the Proposed
Bayesian estimation with Maximum Likelihood (ML) estimation. We have
observed that simple and elicited Beta priors are superior choices (in terms
of minimum variance), depending on the sample size, number of items and
the sum of responses. Also, the Bayesian estimation provides relatively more
precise estimators than the ML Estimation.
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Resumen

La técnica de conteo de ítems (ICT, por sus siglas en inglés) es útil para
estimar la proporción de personas que poseen atributos que pueden tener
algún grado de estigmatización mediante el uso de un método de preguntas
indirectas. Una ICT mejorada ha sido propuesta recientemente en la liter-
atura bajo la inferencia clásica (la cual no requiere dos submuestras y libre
de la necesidad de encontrartamaños de muestra óptimos para cada una de
ellas como sucede en la ICT usual). Esta ICT mejorada se desempeña mejor
que la ICT usual y que el método de Respuesta Aleatorizada (RR, por sus si-
glas en inglés) de Warner. Este artículo extiende su estudio bajo una visión
Bayesiana usando diferentes a priori con el fin de derivar distribuciones,
medias y varianzas a posteriori.Las medias y varianzas a posteriori son com-
paradas con el fin de estudiar cuál a priori es más útil en mejorar la técnica
de conteo de ítems. Se observa que a priori simples y Beta elicitadas son
las mejores escogencias (en términos dela varianza mínima) dependiendo del
tamaño de muestra, el número de ítems y la suma de la respuesta. También,
la estimación bayesiana proporciona estimadores relativamente más precisas
que la estimación ML.

Palabras clave: atributos sensitivos, estimación Bayesiana, información a
priori, preguntas indirectas, proporción poblacional, protección de la privaci-
dad, técnica de conteo de ítems, técnica de respuesta aleatorizada.

1. Introduction

Survey techniques are now being utilized in almost every branch of physical
and social sciences. These branches include medical, sociology, economics, agricul-
ture, information technology, business, marketing, quality inspection, psychology,
human behavior and many others. In surveys relating to these fields, especially,
sociology, psychology, economics, people do not report their true status when the
study question is sensitive in nature. Collection of trustworthy (truthful) data
mainly depends upon the sensitivity of the study question, survey method, pri-
vacy (confidentiality) and cooperation of the respondents. The cooperation from
the respondents will be low if the study question is sensitive and direct questioning
method is applied. Consequently, the inferences made through direct questioning
run the risk of response bias, non response (refusal) bias or both. An ingenious
method pioneered by Warner (1965) was suggested in anticipation of reducing
these biases and to provide more confidentiality to respondents.

The technique proposed by Warner (1965) is known as Randomized Response
Technique (RRT ). A comprehensive review of developments on Randomized Re-
sponse (RR) techniques is given by Tracy & Mangat (1996) and Chaudhri &
Mukerjee (1998). Some of the recent developments, among others, include Gupta,
Gupta & Singh (2002), Ryu, Kim, Heo & Park (2005-2006), Bar-Lev, Bobovitch &
Boukai (2004), Arnab & Dorffner (2006), Huang (2010), Hussain & Shabbir (2010),
Barabesi & Marcheselli (2010) and Chaudhuri (2011). A number of applications
of RRT can be found in the literature, for instance, Liu & chow. L. P. (1976),
Reinmuth & Guerts (1975), Guerts (1980), Larkins, Hume & Garcha (1997), etc.
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Although these studies were seen to be fruitful in the sense of estimation of the
parameters, there are some applied difficulties associated with RRT as reported
by Guerts (1980) and Larkins et al. (1997). Guerts (1980) found that RRT could
have some limitations such the requirement of increased sample sizes in order to
have confidence intervals as good as obtained through the direct questioning tech-
nique. More time is needed to administer and explain the procedure to the survey
respondents. He further argued that, compilation of the results in the form of
tables is somewhat protracted.

Larkins et al. (1997) were of the view that RRT was not suitable in the estima-
tion of population proportion of tax payers/non-payers. Dalton & Metzger (1992)
found that RRT might not be efficient in a mailed or telephonic survey. Similarly,
Hubbard, Casper & Lesser (1989) argued that the major problem for RRT is to
choose a randomization device to apply as a best one in specified circumstances
and the very decisive feature of an RRT is about the respondent’s acceptance of
the technique. More recently, Chaudhuri & Christofides (2007) criticized RRT ar-
guing that it is burdened with the respondent’s ability to understand and handling
of the device and also it asks respondents to report the information which may be
useless or tricky. An intelligent interviewee may fear that his/her response can be
traced back to his/her true status if he/she does not understand the mathematical
logic behind the randomization device. Owing to these difficulties and limitations
associated with RRTs, alternative techniques have been suggested. Some of these
include the Item Count Technique by Droitcour, Casper, Hubbard, Parsley, Viss-
cher & Ezzati (1991), the Three Card Method by Droitcour, Larson & Scheuren
(2001) and the Nominative Technique by Miller (1985). These alternatives were
suggested to avoid evasive answers on sensitive questions particularly concerning
private issues, communally unexpected behaviors or illegitimate acts. Chaudhuri
& Christofides (2007) also supplemented such an idea.

If some prior information is available about the mean of the study variable it
may be used together with sample information. One of the methods using the prior
knowledge is the Bayesian method of estimation where prior knowledge is used in
the form of prior distribution. It has been established through many studies that
when prior information is more informative the Bayesian estimation provides the
more precise estimators.

In this paper, we plan to do a a Bayesian analysis of a recent item count tech-
nique by Hussain, Shah & Shabbir (2012) and provide the Bayesian estimators
assuming that prior information is available through the past studies, past experi-
ence or simply through intelligent guess. Specifically, we will consider some prior
distributions and compare the Bayesian estimator in case of each prior distribu-
tion used in this study. These comparisons will be in anticipation of finding the
more suitable prior. The paper is organized as: Section 2 discusses the recent
technique by Hussain et al. (2012); Section 3 provides Bayesian estimation using
different priors; Section 4 presents a comparative analysis, concluding remarks are
furnished in Section 5.
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2. A Recent Item Count Technique

Hussain et al. (2012) proposed an improved item count technique based on sin-
gle sample of size n in a classical framework showing an improvement over the usual
ICT and the novel method of Randomized Response (RR) technique of Warner
(1965). The said technique does not require two subsamples and consequently
finding optimum subsample sizes is not needed. This study extends the scope of
their study in a Bayesian framework and investigates the choice of a suitable prior
to update the item count technique.

In the improved ICT of Hussain et al. (2012), each respondent is provided a
list of g items and asked to report the number of items applicable to him/her,
where each item is a combination of an unrelated item say Fj and a sensitive
characteristic say S. The ith respondent is asked to count 1, if he /she possess at
least one of the characteristics Fj and S, and count 0 otherwise and finally report
the total count. So, for a single respondent his/her response may be 0 to g. The
response 1 for a single question or item means the respondent belongs either to non
sensitive characteristic, sensitive characteristic or to both. Now the probability of
1 for jth item is given by:

P (1) = θj = θFj
+ π − πθFj

(1)

where θFj
denotes the proportion of jth innocuous characteristic andπ denotes pop-

ulation proportion of individuals possessing a sensitive characteristic. Let Yi be
the response of ith respondent, then it can be written as: Yi=

∑g
j=1 αj , where αj

is a Bernoulli random variable taking values 1 and 0 with probabilities θj and
(1− θj) respectively. The unbiased moment (and ML) estimator for proportion of
people bearing sensitive behavior is given as:

π̂M =

ȳ − g∑
j=1

θFj

g − g∑
j=1

θFj

−1

(2)

with variance given by:

V ar(π̂M ) =
π(1− π)

n
+

(1− π)

n(g −
∑g
j=1 θFj

)2
{
g∑
j=1

θFj (1−
g∑
j=1

θFj )+2

g∑
j<k

θFjθFk
} (3)

In order to have Yi as a binomial random variable we take θj = θ (or equivalently
θFj

= θF ) for all j = 1, 2, . . . , g such that θFj
= 1

g . In this case variance of ML
estimator turns out to be

V ar(π̂M ) =
π(1− π)

n
+

(1− π)

ng(g − 1)
(4)

Now we develop Bayesian estimation of population proportion through the
above mentioned item count technique of Hussain et al. (2012) by assuming that
θj = θ for all j = 1, 2, . . . , g. We use different prior distributions for deriving
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posterior distributions in order to find which posterior distribution gives high pos-
terior probability for higher estimates of π. Prior distributions used here are Beta
distribution with known hyper parameters, Non-informative Uniform distribution,
Non-informative Haldane distribution, Mixture of Beta distributions and a Beta
distribution with elicited hyperparameters. The posterior distribution using den-
sity kernel is defined as:

P (π|y) ∝ L(y, π)P (π) (5)

where L (y, π) is the likelihood function and P (π) is the prior distribution. Since
αj is the Bernoulli random variable with parameter θj = θ the response variable
Yi is a binomial random variable with parameter g and θ. Thus the likelihood
function becomes:

L (y, π) =

n∏
i=1

{(
g

yi

)
θyi (1− θ)g−yi

}
(6)

where θ = θF +π (1− θF ) Substituting θ = θF +π (1− θF ) in above equation and
taking d = θF

(1−θF ) , we get

L (y, π) = (1− θF )
ng

{
n∏
i=1

(
g

yi

)}
(d+ π)

nȳ

(1− π)
ng−nȳ (7)

3. Bayesian Estimation using Different Priors

In this section, we derive the Bayesian estimators of π assuming different prior
distributions mentioned above in Section 2.

3.1. Beta Prior

Suppose the prior distribution of πis given by:

P (π) =
1

B (a, b)
πa−1 (1− π)

b−1
, 0 < π < 1 (8)

where B (a, b) =
∫ 1

0
πa−1 (1− π)

b−1
dπ is a complete Beta function.

Thus, using (7) and (8) in (5) the posterior distribution of π is derived as:

P (π| y) ∝ (1− θF )
ng

{
n∏
i=1

(
g

yi

)}
(d+ π)

nȳ
(1− π)

ng−nȳ
{
πa−1 (1− π)

b−1
}

P (π| y) ∝ (1− θF )
ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−iπa+i−1 (1− π)

b+ng−nȳ−1
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Now we find the normalizing constant say k. As we know that for posterior distri-
bution we must have

k (1− θF )
ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−i

∫ 1

0

πa+i−1 (1− π)
b+ng−nȳ−1

dπ = 1

This gives

k =

[
(1− θF )

ng

{
n∏
i=1

(
g

yi

)} nȳ∑
i=0

(
nȳ

i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

]−1

Thus, the posterior distribution of πis given by:

P (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iπa+i−1 (1− π)

b+ng−nȳ−1

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

(9)

Now the Bayesian estimator (posterior mean) is given by:

E (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−i

∫ 1

0
πa+i+1−1 (1− π)

b+ng−nȳ−1
dπ

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 1, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

(10)

While, the posterior variance is given as:

V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 2, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i+ 1, b+ ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (a+ i, b+ ng − nȳ)


2

(11)

3.2. Non-informative Uniform Prior

The non-informative uniform prior distribution is given as:

P (π) ∝ 1. (12)
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Using (12) and (7) in (5), the posterior distribution is derived as:

P (π|y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iπi+1−1 (1− π)

ng−nȳ+1−1

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

. (13)

Under the non-informative prior, the posterior mean and variance are given by:

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 2, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

(14)

V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 3, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ + 1)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 2, ng − nȳ + 1)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i+ 1, ng − nȳ + 1)


2

(15)

3.3. Non-informative Haldane Prior

Another non-informative prior used here is the Haldane prior (Zellner 1996)
which has the probability distribution defines as:

P (π) ∝ 1

p (1− p)
(16)

It is also defined as B (0, 0). Thus the posterior distribution is give as:

P (π| y) =

nȳ∑
i=1

(
nȳ
i

)
dnȳ−iπi−1 (1− π)

ng−nȳ−1

nȳ∑
i=1

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)

(17)

Posterior mean and variance are, now, given as:

E (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)

(18)
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V ar (π| y) =

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i+ 2, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iBeta (i, ng − nȳ)

−


nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i+ 1, ng − nȳ)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (i, ng − nȳ)


2

(19)

3.4. Mixture of Beta Priors

We assume that prior information come as a mixture of different Beta distri-
butions. The mixture of Beta distributions with H components is given as:

P (π) =

H∑
h=1

Wh

B(ah,bh)
πah−1(1− π)bh−1 (20)

whereWh are the weights such that
H∑
h=1

Wh = 1, andah bh are the hyper-parameters

of hthcomponent Beta distribution.
The posterior distribution, now, is given by:

P (π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

πah+i−1 (1− π)
bh+ng−nȳ−1

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB(ah + i, bh + ng − nȳ)

(21)

Posterior mean and variance, under the assumption of a mixture of Beta distribu-
tions, are given as:

(π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 1, bh + ng − nȳ)

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)

(22)

V ar (π| y) =

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 2, bh + ng − nȳ)

H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)

−


H∑
h=1

Wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
d

nȳ−i

B (ah + i+ 1, bh + ng − nȳ)

H∑
h=1

wh

B(ah,bh)

nȳ∑
i=0

(
nȳ
i

)
dnȳ−iB (ah + i, bh + ng − nȳ)


2

(23)
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3.5. Beta Prior with Elicited Hyperparameters

There are many methods for eliciting parameters of prior distributions. The
method we have used for eliciting the hyperparameters is the method of prior
predictive distribution (Aslam 2003, cf.). We first derived the prior predictive
distribution and then by using “SAS” we elicited the hyperparameters. Then we
have derived Posterior mean and Posterior variance.
The prior predictive distribution is given as:

P (y) =

(
g
y

)
(1− θF )

g
y∑
i=0

(
y
i

)
B (a+ i, b+ g − y)

B (a, b)
(24)

We solved this equation further for different values of g and y and then by using
“SAS” we elicited the hyperparameters a and b. For every g we have different
values of a and b. Although according to our calculations, for different values
of g and y, we got same value for a, but b changed accordingly. The derived
expressions for posterior distribution, posterior mean, and posterior variance are
same as we have derived for posterior distribution using Beta prior with known
hyperparameters, but the numerical values obtained for hyperparameters are now
different.

4. Comparative Analysis

In this section, we provide a comparative analysis of posterior means and poste-
rior variances obtained through different prior distributions assumed in this study.
We should mention that under the squared error loss function posterior mean is
taken as Bayesian estimator while posterior variance is taken as the measure of
precision. Also, under Uniform and Haldane prior distributions, posterior distri-
butions are not defined for ng = nȳ. If ng < nȳ, posterior distributions under
all the priors considered here are not defined. That is why, some entries in the
Tables 3 and 4 are not given. For different values of sum of responses, nȳ, number
of items g and sample size n, we have computed posterior means and variances
under different prior distributions and results are displayed in Tables 1-12 given
below.

We compare ML estimator and proposed Bayesian estimators in terms of vari-
ablity. To compare proposed Bayesian estimators with ML estimator, we se-
lected g = 7 and θF = 1

g ' 0.143 and computed variance of ML estimator for
n = 20, 30, 40 and 50. The variances of ML estimator for the different values of π
are presented in Table 13.

From Tables 1-12 it is observed that when nȳ, n and g are small, posterior
means are larger under mixture and elicited Beta prior distributions compare to
posterior means under other prior distributions considered here. For a fixed g,
posterior distribution using elicited Beta prior produces larger means than the
others with the increase in nȳ. As n increases posterior means under all priors

Revista Colombiana de Estadística 36 (2013) 305–319



314 Zawar Hussain, Ejaz Ali Shah, Javid Shabbir & Muhammad Riaz

Table 1: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.2793 0.2666 0.2187 0.3083 0.2990
30 0.1403 0.0659 0.0391 0.1453 0.1023
40 0.0849 0.0264 0.0177 0.0818 0.0480
50 0.0588 0.0154 0.0114 0.0541 0.0293

Table 2: Posterior means for nȳ = 50, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.6188 0.7553 0.7484 0.6525 0.7608
30 0.3299 0.3439 0.3238 0.3546 0.3608
40 0.1865 0.1395 0.0970 0.1974 0.1683
50 0.1136 0.0507 0.0283 0.1140 0.0786

Table 3: Posterior means for nȳ = 60, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.8074 - - 0.8613 0.9987
30 0.4549 0.5079 0.4967 0.4800 0.5179
40 0.2687 0.2599 0.2383 0.2867 0.2771
50 0.1636 0.1144 0.0755 0.1705 0.1411

Table 4: Posterior means for nȳ = 90, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 - - - - -
30 0.8609 - - 0.9058 0.9991
40 0.5691 0.6300 0.6243 0.5880 0.6349
50 0.3864 0.4069 0.3978 0.4035 0.4152

Table 5: Posterior means for nȳ = 30, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.1288 0.0905 0.0657 0.1306 0.1079
30 0.0646 0.0250 0.0141 0.0612 0.0399
40 0.0387 0.0108 0.0069 0.0349 0.0198
50 0.0266 0.0064 0.0046 0.0232 0.0123

Table 6: Posterior means for nȳ = 50, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.2599 0.2551 0.2460 0.2701 0.2639
30 0.1381 0.1152 0.1026 0.1401 0.1254
40 0.0797 0.0108 0.0293 0.0778 0.0602
50 0.0495 0.0189 0.0101 0.0462 0.0301
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Table 7: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Hadlane Mixture Elicited Beta
20 0.5519 0.5862 0.5824 0.5637 0.5899
30 0.3319 0.3364 0.3316 0.3401 0.3411
40 0.2173 0.2110 0.2058 0.2219 0.2160
50 0.1478 0.1357 0.1298 0.1495 0.1411

Table 8: Posterior means for nȳ = 30, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0052 0.0086 0.0106 0.0057 0.0078
30 0.0023 0.0023 0.0014 0.0027 0.0028
40 0.0011 0.0005 0.0003 0.0012 0.0009
50 0.0006 0.0002 0.0001 0.0006 0.0004

Table 9: Posterior means for nȳ = 50, θF = 0.33 and g = 3.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0052 0.0052 0.0052 0.0050 0.0047
30 0.0043 0.0059 0.0065 0.0044 0.0056
40 0.0027 0.0039 0.0042 0.0030 0.0036
50 0.0015 0.0014 0.0008 0.0017 0.0016

Table 10: Posterior variances for nȳ = 30, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0013 0.0015 0.0017 0.0014 0.0015
30 0.0005 0.0004 0.0002 0.0005 0.0005
40 0.0002 0.00009 0.00005 0.0002 0.0001
50 0.0001 0.00004 0.00002 0.0001 0.00007

Table 11: Posterior variances for nȳ = 50, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0019 0.0021 0.0022 0.0020 0.0022
30 0.0010 0.0012 0.00129 0.0010 0.0011
40 0.0005 0.0006 0.0005 0.00057 0.0006
50 0.0003 0.0002 0.0001 0.0003 0.0003

Table 12: Posterior variances for nȳ = 90, θF = 0.143 and g = 7.
Prior distribution

n Beta Uniform Haldane Mixture Elicited Beta
20 0.0020 0.0022 0.0022 0.0020 0.0022
30 0.0014 0.0015 0.0016 0.0014 0.0015
40 0.0010 0.0010 0.0010 0.0010 0.0010
50 0.0006 0.0007 0.0007 0.0007 0.0007
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Table 13: Variances of ML estimator for different values of π, n, θF = 1
g
and g = 7.

π

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20 0.005 0.008 0.011 0.012 0.013 0.012 0.010 0.008 0.004
30 0.003 0.005 0.007 0.008 0.008 0.008 0.007 0.005 0.003
40 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.004 0.002
50 0.002 0.003 0.004 0.005 0.005 0.005 0.004 0.003 0.001

decrease rapidly and posterior means using mixture and simple Beta prior distri-
butions turn out to be larger for a relatively smaller nȳ. The reason being their
dependence upon the data and hyperparameters (see Tables 1-3 and 5-7). From
Tables 1-7, it is also observed that as nȳ increases, posterior means under all the
priors considered here become larger. The reason being they mainly depend on the
magnitude of nȳ. For a given g and larger n, if we observe the maximum nȳ, poste-
rior distribution using elicited Beta prior yields larger means than those provided
by the other prior. We also observed that as g increases, posterior means under
all prior distributions decrease. Comparatively, posterior mean using a mixture
of Beta priors and Beta distributions with assumed hyperparameters have larger
means than the others. However, posterior mean increases under Uniform, Hel-
dane and mixture priors, as nȳ increases. for larger n, they are still smaller than
posterior means using mixture and simple Beta priors. It is also observed that for
increased nȳ, posterior mean using elicited Beta prior is larger but for using large
value of n it is smaller than posterior mean using simple Beta and mixture priors
(see Tables 5-7).

Tables 8 and 9 show that for smaller nȳ and g posterior variances using Beta
prior with assumed hyperparameters and mixture prior are relatively smaller than
the posterior variances under other priors. For fixed values of nȳ and g, as n in-
creases the posterior variance with Haldane and Uniform priors remaining smaller
than that obtained under other priors.The posterior variance under Haldane and
Uniform priors depend only on the nȳ. As nȳ, increases for given n, posterior
variance under elicited Beta prior remains smaller than the posterior variance ob-
tained under other priors. As it is largely affected by nȳ, for larger n and for fixed
nȳ and g, posterior variance under mixture and simple Beta priors remains smaller
than the posterior variances obtained under other priors.

It is also observed that for larger g, posterior distributions using Beta prior
with assumed hyperparameters and mixture prior have the smaller variances as
compared to the others. But, again, for larger n, posterior distributions using
Haldane, Uniform and elicited Beta prior have smaller variances than other two.
But as nȳ is increased posterior distributions under elicited Beta, Uniform and
mixture prior have smaller variances than the other two (see Tables 10-12). From
expression (4), it is obvious that variance of ML estimator does not depend upon
nȳ. Thus comparison of ML estimator and proposed Bayesian estimators can be
made using Tables 10-13. From Tables 10-13, it is observed that when g = 0.7,
nȳ = 30, 60, 90 and θF = 0.143, posterior variances under each prior are smaller
than variance of ML estimator over the whole range of π. It shows a better
performance of the proposed Bayesian estimation.
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5. A Real Application of Proposed Methodology

A survey was designed to collect the data from the students at Quaid-i-Azam
University Islamabad. Visiting websites containing adult contents was taken as
the sensitive characteristic of interest. Finding unrelated characteristics with equal
known proportions among the students was observed to be difficult. Alterna-
tively, we took three boxes containing red and white cards with equal proportion
(θF = 0.33) of red cards in each box (that is, we took g = 3). A simple random
sample of 50 students was selected from the university. Each student was asked
to randomly draw a card form each box and count 1 if he/she have ever visited a
website containing adult material or if the card selected from the jth (j = 1, 2, 3)
box is a red card. Each respondent, then, was asked to report his/her total count
(which may be any value from 0− 3). The actual data (Yi, i = 1, 2, . . . , 50) gath-
ered from the sample students are given in table 13 below. Thus, we have nȳ = 90.
To obtain the Bayesian estimates of proportion of students who have ever visited a
website containing adult material we considered five different prior distributions:
(a) simple Beta prior with hyper-parameters a = 5, b = 10, (b) noninformative
uniform prior, (c) Haldane prior, (d) a mixture prior of 4 Beta distributions with
hyperparameters; (i) a = 1, b = 2, (ii) a = 2, b = 4, (iii) a = 3, b = 6, (iv)
a = 4, b = 8., (e) Beta prior with hyperparameters (a = 2, b = 0.0540) elicited
from the data. Findings of the survey are summarized in Table 14.

Table 14: Actual data obtained from 50 students using θF = 0.33 and g = 3
Student 1 2 3 4 5 6 7 8 9 10
Response 2 2 2 3 2 1 2 2 3 3
Student 11 12 13 14 15 16 17 18 19 20
Response 3 1 0 2 2 2 2 2 1 2
Student 21 22 23 24 25 26 27 28 29 30
Response 2 2 3 1 0 0 3 2 1 1
Student 31 32 33 34 35 36 37 38 39 40
Response 2 2 3 2 1 3 1 1 2 2
Student 41 42 43 44 45 46 47 48 49 50
Response 2 0 2 3 1 1 3 1 2 2

Table 15: Summary of the survey results
Estimates Simple Beta Uniform Haldane Mixture priors Beta prior
Proportion 0.386 0.406 0.397 0.4035 0.4152
Variance 0.0030 0.0035 0.0036 0.0030 0.0034
95% C.I 0.278-0.492 0.293-0.523 0.284-0.523 0.284-0.507 0.292-0.522

From table 15, it is observed that the simple Beta prior with assumed known
hyperparametrs and mixture prior of Beta distributions yielded relatively more
precise estimators with narrower 95% confidence intervals.
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6. Concluding Remarks

This study investigates a recent item count technique in a Bayesian framework
using different priors in order to study which prior is more helpful in updating the
item count technique. We have compared the posterior means and variances in or-
der to check which posterior performs better than other under different conditions.
In case of large values of g and n, in general, we have observed that if large sum of
responses, nȳ, are observed, posterior distribution with elicited Beta prior comes
up as the most suitable choice. However the sum of response, nȳ, is not large then
posterior distribution with simple beta prior a more suitable choice. Compared to
ML estimator, in terms of precision, the proposed Bayesian estimators under each
prior distribution (considered in this study) perform relatively better.[

Recibido: octubre de 2012 — Aceptado: agosto de 2013
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