
Revista Colombiana de Estadística
Junio 2014, volumen 37, no. 1, pp. 77 a 92

Three Similarity Measures between
One-Dimensional Data Sets

Tres medidas de similitud entre conjuntos de datos unidimensionales

Luis Gonzalez-Abril1,a, Jose M. Gavilan1,b,
Francisco Velasco Morente1,c

1Departamento de Economía Aplicada I, Facultad de Ciencias Económicas y
Empresariales, Universidad de Sevilla, Sevilla, Spain

Resumen
Based on an interval distance, three functions are given in order to quan-

tify similarities between one-dimensional data sets by using first-order statis-
tics. The Glass Identification Database is used to illustrate how to analyse
a data set prior to its classification and/or to exclude dimensions. Fur-
thermore, a non-parametric hypothesis test is designed to show how these
similarity measures, based on random samples from two populations, can be
used to decide whether these populations are identical. Two comparative
analyses are also carried out with a parametric test and a non-parametric
test. This new non-parametric test performs reasonably well in comparison
with classic tests.

Palabras clave: Data mining, Interval distance, Kernel methods, Non-
parametric tests.

Abstract
Basadas en una distancia intervalar, se dan tres funciones para cuantificar

similaridades entre conjuntos de datos unidimensionales mediante el uso de
estadísticos de primer orden. Se usa la base de datos Glass Identification
para ilustrar cómo esas medidas de similaridad se pueden usar para analizar
un conjunto de datos antes de su clasificación y/o para excluir dimensiones.
Además, se diseña un test de hipótesis no parámetrico para mostrar cómo
similaridad, basadas en muestras aleatorias de dos poblaciones, se pueden
usar para decidir si esas poblaciones son idénticas. También se realizan dos
análisis comparativos con un test paramétrico y un test no paramétrico. Este
nuevo test se comporta razonablemente bien en comparación con test clási-
cos.
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1. Introduction

Today, in many tasks in which data sets are analysed, researchers strive to
achieve some way of measuring the features of data sets, for instance, to distinguish
between informative and non-informative dimensions. A first step could be to
study whether several sets of data are similar. The similarity may be defined as a
measure of correspondence between the data sets under study. That is, a function
which, given two data sets X and Y , returns a real number that measures their
similarity.

In data mining, there exist several similarity measures between data sets: for
instance, in Parthasarathy & Ogihara (2000), a similarity is used which com-
pares the data sets in terms of how they are correlated with the attributes in a
database. A similar problem, studied in Burrell (2005), is the measurement of the
relative inequality of productivity between two data sets using the Gini coefficient
(González-Abril, Velasco, Gavilán & Sánchez-Reyes 2010). A similarity measure
based on mutual information (Bach & Jordan 2003) is used to determine the simi-
larity between images in Nielsen, Ghugre & Panigrahy (2004). Similarity between
molecules is used in Sheridan, Feuston, Maiorov & Kearsley (2004) to predict the
nearest molecule and/or the number of neighbours in the training set.

A common problem with the aforementioned similarity measures is that their
underlying assumptions are often not explicitly stated. This study aims to use
first-order statistics to explain the similarity between data sets. In this paper, the
similarity is established in the sense that one-dimensional data sets are similar
simply by comparing the statistics of the variables in each data set.

In statistics, other similarity measures between data sets are also available
(González, Velasco & Gasca 2005), for instance, those which are used in hypothesis
testing. In this way, a non-parametric hypothesis test based on the proposed
similarity is presented in this paper and a comparative analysis is carried out with
several well-known hypothesis tests.

The remainder of the paper is arranged as follows: In Section 2, we introduce
some notation and definitions. Sections 3 and 4 are devoted to give two similarity
measures between one-dimensional data sets. An example is presented in Section
5 to show their use. A non-parametric test is derived in Section 6 and experimen-
tal results are given to illustrate its behaviour and good features. Finally, some
conclusions are drawn and future research is proposed.

2. Concepts

Following Lin (1998), with the purpose of providing a formal definition of
the intuitive concept of similarity between two entities X and Y , the intuitions
about similarity must be clarified. Thus: i) The similarity is related to their
commonality in that the more commonality they share, the more similar they are;
ii) The similarity is related to the differences between them, in that the more
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differences they have, the less similar they are; and iii) The maximum similarity
is reached when X and Y are identical.

Let us denote a similarity measure between X and Y by K(X,Y ). Ideally this
function must satisfy the following properties:

1. Identity: K(X,Y ) at its maximum corresponds to the fact that the two
entities are identical in all respects;

2. Distinction: K(X,Y ) = 0 corresponds to the fact that the two entities are
distinct in all respects; and

3. Relative Ordinality: If K(X,Y ) > K(X,Z), then it should imply that X is
more similar to Y than it is to Z.

Hence, certain similarities are defined in this paper which are consistent with the
above intuitions and properties.

Let us consider four one-dimensional data sets, DS1, DS2, DS3 and DS4 (see
the Appendix), where the DS1 and DS2 data sets are taken from a N(1,1) distri-
bution, the DS3 data set from a N(0.5,1) distribution, and the DS4 data set from
a N(1.5, 1.25) distribution, where a N(µ, σ) distribution is a Normal distribution
with mean µ and standard deviation σ. In practice, comparison of these data sets
involves: a) plotting graphical summaries, such as histograms and boxplots, next
to each other; b) simply comparing the means and variances (see Figure 1); or
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Mean 0.989 1.046 0.427 1.632
Variance 1.221 1.152 0.569 1.956

Figure 1: Histograms, boxplots, means, and variances of the data sets of the Appendix.

c) calculating correlation coefficients (if items of data are appropriately paired).
These methods are straightforward to interpret and explain. Nevertheless, these
approaches contain a major drawback since the interpretation is subjective and
the similarities are not quantified.

Let us introduce the concept of interval distance. Given an open interval
(similarly for another kind of interval) of finite length, there are two main ways
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to represent that interval: using the extreme points as (a,b) (classic notation)
or as an open ball Br(c) (Borelian notation) where c = (a + b)/2 (centre) and
r = (b − a)/2 (radius). Using Borelian notation, the following distance between
intervals given in González, Velasco, Angulo, Ortega & Ruiz (2004) is considered:

Definition 1. Let I1 = (c1 − r1, c1 + r1) and I2 = (c2 − r2, c2 + r2) be two real
intervals. A distance between these intervals is defined as follows:

dW(I1, I2) =

√
(∆c , ∆r)W

(
∆c

∆r

)
(1)

where ∆c = c2 − c1, ∆r = r2 − r1, and W is a symmetrical and positive-defined
2× 2 matrix, called weight-matrix.

It is clear from matrix algebra that W can be written as1 W = PtP, where
P is a non-singular 2 × 2 matrix, and hence dW(I1, I2) = ‖P (∆c , ∆r)t‖, where
‖ · ‖ is the quadratic norm in R2, and therefore dW (·, ·) is an `2-distance. It
can be observed that, from the matrix W, the weight assigned to the position of
the intervals c, and to their size r, can be controlled. Furthermore, the distance
(1) provides more information on the intervals than does the Hausdorff distance
(González et al. 2004).

From the distance given in (1), three new similarity measures are defined in
this paper.

3. A First Similarity

Definition 2. Given a data set X = {x1, . . . , xn} and a parameter ` > 1, the
`-associated interval of X, denoted by I`X , is defined as follows:

I`X = (X − ` · SX , X + ` · SX)

where X and SX are the mean and the standard deviation of X, respectively.

It is worth noting that Chebyshev’s inequality states that there are at least a
(1 − 1/`2) proportion of observations xi in the interval I`X . Hence, the similarity
between two data sets X and Y can be quantified from the distance between the
intervals I`X and I`Y . However, it is possible that some instances z ∈ X ∪ Y exist
such that z /∈ I`X ∪ I`Y . Thus, a penalizing factor (the proportion of instances
within I`X and I`Y ) is taken into account in the following similarity measure.

Definition 3. Given two data sets X = {x1, . . . , xn}, Y = {y1, . . . , ym} and a
parameter ` > 1, a similarity measure between X and Y , denoted by K`

W(X,Y ),
is defined as follows:

K`
W(X,Y ) =

#((X ∪ Y ) ∩ (I`X ∩ I`Y ))

#(X ∪ Y )
· 1

1 + dW(I`X , I
`
Y )

(2)

where #A denotes the cardinality of set A.
1The notation “ut” denotes the transposed vector of u.
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The function defined, K`
W, is a similarity measure (Cristianini & Shawe-Taylor

2000) which has been proposed based on distance measurements in Lee, Kim &
Lee (1993) and Rada, Mili, Bicknell & Blettner (1989). Furthermore, for any `
and W, K`

W is a positive, symmetrical function since it is a radial basis function
(Skhölkopf & Smola 2002).

It can be proved from (1) that d2W(I`X , I
`
Y ) = w11(∆X)2 + 2`w12∆X∆S +

`2w22(∆S)2, where ∆X = X − Y , ∆S = SX − SY , and the weight-matrix is
W = {wij}2i,j=1 with wij = wji when i 6= j.

Thus, the K`
W similarity takes into account the following characteristics: i)

The position of the whole data set on the real line given by the mean; ii) The
spread of the data set around its mean given by the standard deviation multiplied
by a parameter ` > 1; iii) The weighted importance of the mean and the standard
deviation of each data set, given in the weight-matrix W; and iv) A factor which
quantifies, from the number of outlying values, the goodness of fit of the associated
intervals.

Example 1. For the data sets of the Appendix, ` = 2 and W = I =

(
1 0

0 1

)
,

the similarityK`=2
I is given in Table 4. It can be seen that the similarities obtained

are consistent with the distributions generating the data sets.
After having experimented with different choices of ` and W, it is observed

that the numerical results differ slightly but the conclusions on their similarities
remain the same. ‖

4. A Second Similarity

When the size of the data set is large, consideration of only the number of
outlying values and the mean and the standard deviation is grossly insufficient
to obtain meaningful results. Furthermore, it is clear that these features are not
likely to be very helpful outside a normal distribution family (the mean and vari-
ance are highly sensitive to heavy tails and outliers, and are unlikely to provide
good measures of location, scale or goodness-of-fit in their presence). Hence more
characteristics which summarize the information of each data set must be taken
into account.

In this framework, the percentiles of the data set are used. Let

QX = {p1X , · · · , pqX}

be a set of q percentiles of a data set X with piX ≤ p(i+1)X and q ≥ 2. Hence,
q−1 intervals, denoted by IiX , are considered as follows: IiX = (piX , p(i+1)X), for
i = 1, . . . , q − 1.

Example 2. Given the DS1 data set, an example of the QDS1
set is given by

QDS1 = {−0.8926, −0.0099, 0.7376, 1.6571, 3.5146}
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where these values are the percentiles 2.5, 25, 50, 75, and 97.5, respectively, and
q = 5.

Definition 4. Given a weight-matrix W and two sets of q percentiles, QX and
QY , of the data sets X and Y , respectively, a similarity between X and Y , denoted
by KQ

W(X,Y ), is defined as follows:

KQ
W(X,Y ) =

1

1 + 1
q−1

∑q−1
i=1 dW(IiX , IiY )

(3)

The KQ
W similarity has the following properties: i) This function is positive

and symmetrical; ii) If X = Y then KQ
W(X,Y ) = 1; iii) The similarity is low if

the percentiles are far from each other; and iv) It is a radial basis function.
In Table 1, several examples of dW(IiX , IiY ) can be seen whereby the symmet-

rical weight-matrix W = {wij}2i,j=1 is varied. In cases 1 and 2, W is a non-regular
matrix (det(W) = 0) and therefore this situation is inadequate. In case 3, W = I
is the identity matrix, and case 4 provides a straightforward weight-matrix which
presents the cross product between the percentiles.

Table 1: Distance between intervals for different weight-matrices W.
Case w11 w12 w22 d2W(IiX , IiY )

1 1 1 1 (p(i+1)X − p(i+1)Y )2

2 1 -1 1 (piX − piY )2

3 1 0 1 1
2
((p(i+1)X − p(i+1)Y )2 + (piX − piY )2)

4 3
4

0 1
4

1
4
((p(i+1)X − p(i+1)Y )2 + (piX − piY )2 + ..

...+ (p(i+1)X − p(i+1)Y )(piX − piY ))

On the other hand, there are many different ways to choose the QX set for a
fixed data set X; in this paper the discretization process2 based on equal-frequency
intervals (Chiu, Wong & Cheung 1991) is used. Furthermore, in order to obtain a
specific value of q, there are several selections based on experience such as Sturges’
formula, q1 = Int

[
3
2 + Log(n)

Log(2)

]
and q2 = Int[

√
n], where the operator Int[·] is the

integer part and n is the size of the data set. Henceforth, q ≡ q1 is considered
with n = max{#X,#Y } and the set of percentiles Q is obtained such that in each
interval Ii· there is the same quantity of items of data.

In the following section, an example is presented to show how these similarities
could be used.

5. The Glass Identification

The Glass Identification is obtained from the UC Irvine Machine Learning
Repository (Bache & Lichman 2013). This database is often used to study the

2A discretization process converts continuous attributes into discrete attributes by yielding
intervals in which the attribute value can reside instead of being represented as singleton values.
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performance between different classifiers. Its main properties are: 214 instances,
9 continuous attributes and 1 attribute with 6 classes (labels). The number of
instances in each class is 70, 76, 17, 13, 9 and 29, respectively.

Suppose that a preliminary analysis of this data set is desired before applying
a classifier. Firstly, KQ

W similarities between continuous attributes are given in
Table 2 for W = Id.

Table 2: KQ
W similarities between continuous attributes of the Glass data set.

Attr. 2 3 4 5 6 7 8 9
1 0.0777 0.3365 0.7733 0.0139 0.4778 0.1209 0.4000 0.4034
2 1 0.0862 0.0771 0.0166 0.0717 0.1780 0.0697 0.0697
3 1 0.3450 0.0141 0.2802 0.1424 0.2523 0.2528
4 1 0.0138 0.5008 0.1195 0.4182 0.4194
5 1 0.0136 0.0154 0.0136 0.0136
6 1 0.1068 0.6871 0.7089
7 1 0.1026 0.1026
8 1 0.9153

It is observed that attributes 1 and 4 are very similar to each other; and
attributes 6, 8 and 9 are also very similar, particularly attributes 8 and 9. Hence,
it may be a good idea to eliminate some attributes before the implementation of
the classifier, for instance attributes 4, 6 and 8.

Let us study the attributes to determine similarities between the same at-
tributes but with different labels. Hence, if the similarity obtained is low, then
the classification is straightforward.

The number of instances with label 1 is 70, and with label 2 this is 76, and
KQ

W similarities between the nine attributes are given in Table 3. It can be seen
that these values are very high, which indicates that the discrimination between
these two labels is not easy.

On the other hand, the number of instances with label 3 is 17, and with label
4 this is 13, and K`

W similarities between the nine attributes are given in Table 3
for ` = 2. Hence, attributes 3 and 7 are the best in order to separate labels 3 and
4. However the main problem with respect to labels 3 and 4 is that there are very
few instances.

Table 3: K`
W and KQ

W similarities between different labels of the Glass data set.
Labels Attr. 1 2 3 4 5 6 7 8 9
1 – 2 KQ

W 0.9984 0.8991 0.6175 0.8123 0.8710 0.9088 0.6290 1 0.9746
3 – 4 K`

W 0.8333 0.8844 0 0.7733 0.7488 0.7991 0.4898 0.8807 0.8986

The main conclusion in this brief preliminary analysis is that the classes of
the Glass Identification Database are difficult to separate based only on individual
features for the given instances. A good classifier is therefore necessary in order
to obtain acceptable accuracy for this classification problem.
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An experiment3 is carried out to show that the conclusions of this brief analysis
are correct. Thus, the algorithm considered is the standard 1-v-r SVM formulation
(Vapnik 1998), by following the recommendation given in Salazar, Vélez & Salazar
(2012), and its performance, (in the form of accuracy rate), has been evaluated

using the Gaussian kernel, k(x, y) = e−
‖x−y‖2

2σ2 where two hyperparameters must be
set: the regularization term C and the width of the kernel σ. This space is explored
on a two-dimensional grid with the following values: C = {20, 21, 22, 23, 24, 25} and
σ2 = {2−4, 2−3, 2−2, 2−1, 20, 21}. The criterion used to estimate the generalized
accuracy is a ten-fold cross-validation on the whole training data. This procedure is
repeated 10 times in order to ensure good statistical behaviour. The optimization
algorithm used is the exact quadratic program-solver provided by Matlab software.

The best cross-validation mean rate among the several pairs (C, σ2) is obtained
for C = 1 and σ2 = 1 with 70.95% accuracy rate when all attributes are used and,
when attributes 4, 6 and 8 are eliminated, then the best cross-validation mean rate
is obtained for C = 16 and σ2 = 1 with 68.38% accuracy rate. This experiment
indicates that the Glass Identification Database is difficult to separate and that
the elimination of attributes 4, 6 and 8 only slightly modifies the accuracy rates.

In the following section, a new hypothesis test is designed and is compared
with other similar hypothesis tests.

6. Hypothesis Testing

Definition 5. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two data sets.
Two further data sets Xc and Y c, called the quasi-typified data sets of X and Y ,
respectively, are defined as follows:

xci =
SY

S2
X

(
xi − Z

)
, yci =

SX

S2
Y

(
yi − Z

)
,

where Z = {x1, . . . , xn, y1, . . . ym}. This process is called quasi-typification.

It is straightforward to prove that Xc = mSY (X − Y )/(S2
X(n + m)), Y c =

nSX(Y − X)/(S2
Y (n + m)), SXc = SY /SX , and SY c = SX/SY . Therefore, if

X = Y and SX = SY , then Xc = Y c = 0 and SXc = SY c = 1.
From Definition 5, a third similarity measure between data sets is given as

follows:

Definition 6. Let X and Y be two data sets. A measure of similarity between
these sets is defined as: KCQ

W(X,Y ) = KQ
W(Xc, Y c) provided that Xc and Y c are

the quasi-typified data sets of X and Y , W is a weight-matrix, and the sets of q
percentiles are QX and QY of the data sets X and Y , respectively.

Example 3. KCQ
I similarities between the data sets DS1, DS2, DS3 and DS4

are given in Table 4. In Figure 2, each subplot depicts the boxplot of data DSi,
3Most results have been obtained following the experimental framework proposed by Hsu &

Lin (2002) and continued in Anguita, Ridella & Sterpi (2004).
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DSj , Ti and Tj where the Ti’s are the quasi-typified data sets of DSi and DSj for
i, j = 1, 2, 3, 4 and i 6= j.

Table 4: K`=2
Id , KQ

Id and KCQ
Id similarities between the data sets in the Appendix.

K`=2
Id DS2 DS3 DS4

DS1 0.928 0.880 0.862
DS2 —— 0.862 0.863
DS3 —— —— 0.781

KQ
Id DS2 DS3 DS4

DS1 0.728 0.646 0.557
DS2 —— 0.595 0.623
DS3 —— —— 0.441

KCQ
Id DS2 DS3 DS4

DS1 0.897 0.574 0.600
DS2 —— 0.495 0.592
DS3 —— —— 0.347
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Figure 2: Boxplots of each pair of data sets of the Appendix before (DSi data sets)
and after (Ti data sets) applying the quasi-typification.

It is worth noting that all three similarities verify that the similarity between
DS1 and DS2 is the highest and the similarity between DS3 and DS4 is the lowest
similarity. Thus, the similarities obtained are consistent with the distribution that
generates the data sets. ‖
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Several percentiles are obtained from KCQ
I similarities of a simulated distri-

bution between random samples of size 100 from two N(0, 1) distributions. The
results are shown in Table 5. It is important to point out that the thresholds
have been simulated 1, 000, 000 times and it is observed that the sensitivity of the
thresholds is very low (less than 10−5 units). Hence, it is now possible to use these

Table 5: Percentiles of the simulated distribution KCQ
I between two N(0, 1) distribu-

tions for n = 100.
α 0.001 0.01 0.025 0.05 0.10

P (100, α) 0.60110 0.65353 0.67917 0.70166 0.72802

percentiles to construct a hypothesis test.

Definition 7. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two random
samples from populations F and F ′. Let a hypothesis test be H0 : F ′ = F versus
H1 : F ′ 6= F . Let RC = {(X,Y ) : KC(X,Y ) < P (n∗, α)} be the critical region
of size α where P (n∗, α) is the percentile α of the simulated distribution KCQ

I

between two N(0, 1) distributions for n∗ = min(n,m). Henceforth, this test is
denoted as the GA-test.

Note 1. It is worth noting that this test is valid for normal or similar populations.
If another type of population is given, then the corresponding percentiles should
be calculated.

6.1. Comparison with a Parametric Test

Let the following test be: H0 : F ′ = F versus H1 : F ′ 6= F ,
where F = N(µ1, σ1), F ′ = N(µ2, σ2) and where µ1, µ2, σ1 and σ2 are un-
known parameters. In this case, the null hypothesis states that the two normal
populations have both identical means and variances.

Let X = {X1, . . . , X100} and Y = {Y1, . . . , Y100} be two random samples from
N(µ1, σ1) and N(µ2, σ2) distributions. A classic test (C-test) is considered, which
is a union of two tests. Firstly, a test is performed to determine whether two
samples from a normal distribution have the same mean when the variances are
unknown but assumed equal. The critical region of size 0.025 is

RC1 =

{
(X,Y ) :

∣∣X − Y ∣∣ > 2.2586
√

(S2
1 + S2

2)/99

}
where 2.258 is the percentile 0.9875 of Student’s t distribution with 198 degrees of
freedom. Another test is also performed to determine whether two samples from
a normal distribution have the same variance. The critical region of size 0.025 is

RC2 =
{

(X,Y ) : S2
1/S

2
2 < 0.6353, S2

1/S
2
2 > 1.5740

}
where 0.6353 and 1.5740 are the percentiles 0.0125 and 0.9875 of Snedecor’s F
distribution, both with 99 degrees of freedom.
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In this framework, a comparison is made between the classic test for Normal
populations whose critical region of size 0.0494 (= 1−0.9752) is RC = RC1∩RC2,
versus the GA-test whose critical region of size 0.05 is {(X,Y ) : KC(X,Y ) <
0.70166} (see Table 5). For this comparison, it is considered that one population
is N(20, 4) and the other population is N(µ, σ), and the hypothesis test is carried
out for 100,000 simulations for each value µ = 18, 19, 20, 21, 22 and σ = 3, 3.5, 4,
4.5, 5. The results of the experiment are given in Table 6, where the percentage
of acceptance of the null hypothesis is shown for the two tests. The best result for
each value of the parameters is printed in bold, that is, the minimum of the two
values except for the case σ = 4 and µ = 20 in which the null hypothesis is true
and then the maximum of the two values is printed in bold.

The first noteworthy conclusion is that there are no major differences between
the two methods and therefore the results of the GA-test are good. As expected,
the results are almost symmetrical for equidistant values from the true mean and
variance. When only one of the two parameters is the actual value, then the
classic test behaves better in general, possibly due to the fact that the classic test
is sequential and the other is simultaneous. However, when both parameters only
slightly differ from the actual values, then the GA-test performs better. The same
holds true for values of the mean that differ from the actual value and for great
differences in the variance.

Table 6: Acceptance percentage of the null hypothesis when comparing theN(20, 4) and
the N(µ, σ) distributions for different values of the mean and of the standard
deviation using the classic test (C) and the GA-test. The desired level of
significance is 5% and the best result in each case is printed in bold.

σ 3 3.5 4 4.5 5
µ GA C GA C GA C GA C GA C
18 00.88 01.03 06.56 05.47 13.55 09.72 14.44 12.26 08.94 09.56
19 14.06 16.06 51.94 52.58 70.32 66.97 61.56 61.77 35.94 38.17
20 27.79 26.92 79.85 79.93 94.97 94.84 83.77 83.24 51.02 49.18
21 13.73 15.71 52.33 52.86 70.67 67.32 61.35 61.53 35.99 38.16
22 00.89 01.06 06.58 05.43 13.95 10.11 14.42 12.34 08.80 09.53

6.2. Comparison with a Non-Parametric Test

In this section, the GA-test is used with non-normal distributions than remains
similar to a Normal distribution. At this point, the interest lies in testing H0 :
F ′ = F versus H1 : F ′ 6= F for a number of populations F and F ′. The GA-test
is compared against the Kolmogorov-Smirnov test. In both cases the desired level
of significance is 0.05, the hypothesis test is carried out for 10,000 simulations
where the populations are Bi(100, 0.2) (Binomial), Po(20) (Poisson) and N(20, 4)
(Normal). Figure 3 shows that these distributions are very similar and the size of
random samples is 100.

The results of the experiment are given in Table 7 in the form of percentage
of acceptance of the null hypothesis. Again, the best result in each case is printed
in bold, that is, the minimum of the two values when the null hypothesis is false
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(values outside the diagonal) and the maximum of the two values when the null
hypothesis is true (values in the diagonal). It can be seen that the GA-test can dif-
ferentiate between the Poisson distribution and the other two better than can the
Kolmogorov-Smirnov test. Nevertheless, the Kolmogorov-Smirnov test behaves
better than the GA-test in Binomial and Poisson populations under the null hy-
pothesis (the opposite is true for the normal distribution) and when distinguishing
between the normal and the binomial distributions.
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Figure 3: Graphical representation of the probability mass function of the Bi(100, 0.2)
distribution and the Po(20) distribution, and probability density function of
N(20, 4) distribution.

Table 7: Acceptance percentage of the null hypothesis in the comparison between the
Kolmogorov-Smirnov test and the GA-test for various populations. The de-
sired level of significance is 5% and the best result in each case is printed in
bold.

Bi(100,0.2) Po(20) N(20,4)
GA K-S GA K-S GA K-S

Bi(100,0.2) 94.36 97.56 83.46 96.75 94.94 86.44
Po(20) —— —— 94.76 97.59 84.40 84.95
N(20,4) —— —— —— —— 95.50 95.00

A final comparison is carried out with Student’s t distributions with several
degrees of freedom since these distributions are similar to a standard Normal
distribution. The desired level of significance is 0.05, the size of random samples
is 100 and the hypothesis test is carried out for 10,000 simulations. The results
of the experiment are given in Table 8. Again, the best result in each case is
printed in bold, that is, the minimum of the two values when the null hypothesis
is false (values outside the diagonal) and the maximum of the two values when
the null hypothesis is true (values in the diagonal). It is important to point that
the GA-test tends to provide smaller values and therefore tends to accept the null
hypothesis less frequently than does the classic test (the classic test therefore tends
to be more conservative). As a consequence, the GA-test has a better behaviour
when the null hypothesis is false (values outside the diagonal), by differentiating
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between Student’s t distributions with different degrees of freedom better than
does the Kolmogorov-Smirnov test, and a worse behaviour (but not much worse)
when the null hypothesis is true (values of the diagonal), that is, the Kolmogorov-
Smirnov test behaves slightly better under the null hypothesis.

Table 8: Acceptance percentage of the null hypothesis in the comparison between the
Kolmogorov-Smirnov test and the GA-test for Student’s t distributions. The
desired level of significance is 5% and the best result in each case is printed in
bold.

t(10) t(20) t(30) t(40) t(50)

GA K-S GA K-S GA K-S GA K-S GA K-S
t(10) 92.71 94.56 91.03 94.53 89.47 94.55 88.56 94.63 87.78 94.37
t(20) —– —– 94.22 94.53 94.13 94.85 93.59 94.60 93.97 94.89
t(30) —– —– —– —– 94.53 94.53 94.33 94.57 94.49 94.84
t(40) —– —– —– —– —– —– 94.66 94.77 94.47 94.57
t(50) —– —– —– —– —– —– 94.66 94.42

7. Conclusions and Future Work

Several similarity measures between one-dimensional data sets have been de-
veloped which can be employed to compare data sets, and a new hypothesis test
has been designed. Two comparisons of this test with other classic tests have been
made under the null hypothesis that two populations are identical. The main
conclusion is that the new test performs reasonably well in comparison with the
classic tests considered, and, in certain circumstances, performs even better than
said classic tests.

With the distance developed in this paper, various classifications of a data set
can be carried out, either by applying the neural network technique, SVM, or via
other procedures available.

Although there are other approaches to the choice of the set Q of the percentiles
for the KQ

W function from a data set X, such as for example the equal-width
interval (Chiu et al. 1991), k-mean clustering (Hartigan 1975), cumulative roots of
frequency (González & Gavilan 2001), Ameva (González-Abril, Cuberos, Velasco &
Ortega 2009), and the maximum entropy marginal approach (Wong & Chiu 1987),
these have not been considered in this paper and will be studied in future papers.

Only the one-dimensional setting is considered in this paper; the possible cor-
relations that can exist between features of multi-dimensional data sets lie outside
the scope of this paper and will constitute the focus of study in future work.

Another potential line of research involves the improvement of the design of
our hypothesis-testing procedures by using these similarity measures, and the exe-
cution of comparisons with other existing methods. For example, the chi-squared
test on quantiled bins, or the Wald-Wolfowitz runs test can be tested under the
null hypothesis that the two samples come from identical distributions.
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Appendix. Data sets of Section 2

The DS1 and DS2 data sets are taken from a N(1,1) distribution, the DS3

data set from a N(0.5,1) distribution, and the DS4 data set from a N(1.5, 1.25)
distribution.
DS1 = {1.47, 0.01, 1.29, −0.27, −0.23, 0.54, −0.20, 3.54, 0.59, −0.03, 2.41, −0.08,
1.48, 1.02, 0.71, 3.40, 0.67, 0.74, 1.64, 2.41, 1.67, 0.74, −0.10, 1.76, 1.82, −1.05,
0.54, 1.20}
DS2 = {−0.29, 0.02, 0.84, 1.66, 1.04, 0.69, 2.04, 1.21, 1.71, 1.75, 1.64, 1.10, −1.46,
1.25, −0.10, 1.74, 3.06, −0.53, 0.84, 1.09, 1.26, −0.39, 0.88, 2.15, 1.59, 0.56, 0.37,
3.57}
DS3 = {0.22, 0.87, −0.11, 0.29, −0.93, −0.25, 2.05, −0.53, −0.51, 0.80, 0.65, 0.99,
1.28, 0.85, 0.00, −0.28, 0.55, 0.27, −0.68, 1.08, 1.20, 0.44, 0.20, 0.66, 0.29, −0.46,
1.02, 1.99}
DS4 = {1.81, −0.41, 1.25, 3.12, 1.91, 1.99, 1.75, 0.93, −0.39, 3.68, −0.69, 1.57,
1.48, 3.59, 0.60, 2.84, 0.37, 1.26, 1.94, −0.19, 1.77, 3.20, 1.11, 4.24, 0.16, 4.48, 0.98,
1.34}
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