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Università della Calabria, Italia

La Revista Colombiana de Estad́ıstica es una publicación semestral del Departamento de
Estad́ıstica de la Universidad Nacional de Colombia, sede Bogotá, orientada a difundir conoci-
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Revista Colombiana de Estad́ıstica Bogotá Vol. 37 No 1
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Editorial

Leonardo Trujilloa

Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

Welcome to the first issue of the 37th volume of Revista Colombiana de Estadis-
tica (Colombian Journal of Statistics). We are very proud to announce that the
Colombian Journal of Statistics have maintained its categorization as an A1 Jour-
nal by Publindex (Colciencias) which ranges the journals in the country, being
A1 the maximum category. Thanks to all the Editorial and Scientific Commit-
tees and Patricia Chávez, our assistant in the Journal, as this is a result of
the continuous help obtained from all of them. More information available at
http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do

In this issue, we are having the highest number of papers in the history of the
journal so far: fifteen (15) papers in total with the particularity of all being written
in English language. We think we can keep this minimum number of fifteen (15) for
posterior issues in order to make the journal more readable and useful for people
interested in Statistics.

The topics in this current issue range over diverse areas of statistics: four pa-
pers in Probability Distributions by Al-Zahrani and Sagor; Ameli, Jarrahiferiz and
Borzadaran; Gomez, Gomez and Bolfarine; and Jafari, Tahmasebi and Alizadeh;
three papers in Survey Sampling by Ashgar, Sanaullah and Hanif; Shabbir, Haq
and Gupta; and Yan and Xue; two papers in Multivariate Analysis by Abril, Gavi-
lan and Velasco-Morente; and Riaz, Munir and Ashgar; two papers in Regression
Analysis by Acosta, Cabrera, Vega and Cabrera; and Martinez and Barrera; one
paper in Biostatistics by Velez and Correa; one paper in Experimental Design
by Gaviria and Lopez-Rios; one paper in Nonparametric Statistics by Martinez-
Camblor, Carleos and Corral; and finally, one paper in Statistical Quality Control
by Guevara, Vargas and Linero.

A Special Issue in Current Topics in Statistical Graphics will be published
in December this year. This special issue has the purpose of bringing together
current advances and uses of well-known and novel graphical methods from diffe-
rent research areas so that the reader finds potential applications to his/her own
research field. Many thanks to our guest editor, Professor Fernando Marmole-
jo (fernando.marmolejoramos@adelaide.edu.au) for this hard task in order to
compile high level papers in Statistics and with potential applications in enginee-
ring, manufacturing, process/chemical industry, physical sciences, social sciences,
and agricultural industries.

aEditor in Chief
E-mail: ltrujilloo@unal.edu.co

http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do


The XIII CLAPEM (Latin American Congress of Probability and Mathema-
tical Statistics) keeps growing in the number of participant institutions and its
organization. This event will be held for the first time in Colombia at the city of
Cartagena with the help of the Latin American Chapter of the Bernoulli Society.
CLAPEM is the largest conference gathering scientists in the particular areas
of Probability and Mathematical Statistics in the region and takes place every
two/three years. It has already been organized in Argentina, Brazil, Chile, Cuba,
Mexico, Peru, Uruguay and Venezuela. The CLAPEM activities include lectures
held by invited researchers, satellite meetings, sessions of oral and poster contribu-
tions, short courses, and thematic sessions. The XIII CLAPEM is organized by the
Bernoulli Society, National University of Colombia, Universidad de los Andes, Uni-
versidad Central, Universidad Industrial de Santander, Universidad Antonio Nari-
ño, Universidad EAFIT, Universidad Sergio Arboleda, Universidad Pedagógica y
Tecnológica de Colombia and Universidad de Cartagena. The Scientific Commit-
tee is as follows: Alejandro Jara (Chile), Antonio Galves (Brazil), Graciela Boente
(Argentina), José Rafael Leon (Venezuela), Karine Bertin (Chile), Leonardo Tru-
jillo (Colombia), Pablo Ferrari (Argentina), Paola Belmolen (Uruguay), Ramón
Giraldo (Colombia), Serguei Popov (Brazil), Victor Perez Abreu (Mexico). We are
confident of the success of this event to be held from September 22nd to the 26th

this year. Three courses will take place in this event: Confidence Distribution (CD):
A New approach in Distributional Inference and its Applications by Professor Re-
gina Liu from Rutgers University, USA; Stochastic Models of Population Genetics
by Professor Alison Etheridge from Oxford University, UK; Topics in Quanti-
tative Risk Management by Professor Paul Embrechts from ETH Zurich, Swit-
zerland. If you are interested you can also get more details with Ricardo Fraiman
(president of the XIII CLAPEM, fraimanricardo@gmail.com), Leonardo Trujillo
(ltrujilloo@unal.edu.co) or in the official website www.clapem.unal.edu.co

Also in Colombia, as it has been tradition every year, the XXIV Colombian
Symposium in Statistics will be held from July 24th to the 26th in the AR Hotel in
Bogotá, Colombia. Five international speakers will be offering short courses and
conferences: Adriana Pérez from The University of Texas (USA) in Biostatistics,
Daniel Thorburn from Stockholm University (Sweden) in Official Statistics, Nikos
Tzavidis from the University of Southampton (UK) in Survey Sampling, Thibaut
Jombart from the Imperial College of London (UK) in Statistical Software and
Victor Guerrero from the ITAM (Mexico) in Time Series Analysis.

I would like to congratulate our colleagues in Russia who have established
the Russian Statistical Association on April this year. The aim is “to facilitate
the collaboration between the national statistical office, business and universities,
contribute to efficient government decisions based on transparency and reliable
scientific data, unite all people interested in promoting the role of statistics in
country development, and engage Russian statisticians in ISI activities”. We are
still awaiting for our Colombian Statistical Association to be reestablished after
these long years of inactivity. Clearly the experience of our Russian colleagues could
help us to take this path back soon in order to integrate DANE (the national
statistical office), interested particulars and the growing number of universities
with programs and researchers in Statistics around the country.

www.clapem.unal.edu.co


Editorial

Leonardo Trujilloa

Departamento de Estadística, Universidad Nacional de Colombia, Bogotá,
Colombia

Bienvenidos al primer número del volumen 37 de la Revista Colombiana de Esta-
dística (Colombian Journal of Statistics). Estamos muy gratos en anunciar que la
Revista Colombiana de Estadística ha mantenido su categoría A1 ante Publindex
(Colciencias) que categoriza las revistas a nivel nacional y siendo esta la máxi-
ma categoría de calidad para revistas nacionales. Gracias a todos los Comités
Científico y Editorial y a Patricia Chávez, la asistente de la Revista, pues este es
el resultado de la continua ayuda obtenida por parte de todos ellos. Mas infor-
mación disponible en la página web http://201.234.78.173:8084/publindex/
EnIbnPublindex/resultados.do

En este número, tendremos la cantidad más alta de artículos en la historia
de la revista: quince (15) artículos en total con la particularidad de estar todos
escritos en idioma inglés. Estamos seguros de poder mantener este número mínimo
de quince (15) artículos para posteriores ediciones con el fin de hacer la revista
más visible y útil para investigadores interesados en la estadística.

Los temas del presente número varían a través de diversas áreas de la esta-
dística: cuatro artículos en Distribuciones de Probabilidad de Al-Zahrani y Sagor;
Ameli, Jarrahiferiz y Borzadaran; Gómez, Gómez y Bolfarine; Jafari, Tahmasebi y
Alizadeh; tres artículos en Muestreo de Ashgar, Sanaullah y Hanif; Shabbir, Haq
y Gupta; Yan y Xue; dos artículos en Análisis Multivariado de Abril, Gavilán y
Velasco-Morente; Riaz, Munir y Ashgar; dos artículos en Análisis de Regresión de
Acosta, Cabrera, Vega y Cabrera; Martínez y Barrera; un artículo en Bioestadísti-
ca de Vélez y Correa; un artículo en Diseño Experimental de Gaviria y López-Ríos;
un artículo en Control de Calidad de Guevara, Vargas y Linero; y finalmente, un
artículo en Estadística no Paramétrica de Martínez-Camblor, Carleos y Corral.

Un número especial en “Current Topics in Statistical Graphics” será publica-
do en Diciembre de este año. Este número especial tiene el propósito de integrar
avances recientes y el uso de métodos gráficos bien conocidos en diferentes áreas de
investigación. Muchas gracias a nuestro editor invitado, profesor Fernando Mar-
molejo (fernando.marmolejoramos@adelaide.edu.au) por esta ardua labor de
compilar artículos de alto nivel en estadística con gran potencial de aplicación en
ingeniería, manufactura, ciencias físicas, ciencias sociales y agricultura, entre otros.

La XIII CLAPEM (Conferencia Latinoamericana de Probabilidad y Estadística
Matemática) continúa creciendo en términos de instituciones participantes y or-
ganización. Este evento será organizado por primera vez en Colombia en la ciudad

aEditor General
E-mail: ltrujilloo@unal.edu.co

http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do
http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do


de Cartagena de Indias con la ayuda del Capitulo Latinoamericano de la Socie-
dad Bernoulli. CLAPEM es la principal y mayor conferencia que reúne científicos
en las áreas de Probabilidad y Estadística Matemática en la región y toma lugar
cada dos o tres años. Se ha llevado a cabo anteriormente en Argentina, Brasil,
Chile, Cuba, México, Perú, Uruguay y Venezuela. Las actividades del CLAPEM
incluyen charlas a cargo de investigadores internacionales invitados, cursos cortos,
reuniones satélites, sesiones de contribuciones orales y posters y sesiones temáti-
cas. La XIII CLAPEM será organizada por la Sociedad Bernoulli, la Universidad
Nacional de Colombia, Universidad de los Andes, Universidad Central, Universi-
dad Industrial de Santander, Universidad Antonio Nariño, Universidad EAFIT,
Universidad Sergio Arboleda, Universidad Pedagógica y Tecnológica de Colombia
y Universidad de Cartagena. El Comité Científico esta conformado por: Alejandro
Jara (Chile), Antonio Galves (Brasil), Graciela Boente (Argentina), José Rafael
León (Venezuela), Karine Bertín (Chile), Leonardo Trujillo (Colombia), Pablo Fe-
rrari (Argentina), Paola Belmolen (Uruguay), Ramón Giraldo (Colombia), Serguei
Popov (Brasil), Víctor Pérez Abreu (México). Estamos seguros del éxito de este
evento a realizarse de Septiembre 22 al 26, 2014. Tres cursos tomarán lugar en
este evento: Confidence Distribution (CD): A New approach in Distributional In-
ference and its Applications por la Profesora Regina Liu de Rutgers University,
USA; Stochastic Models of Population Genetics por la Profesora Alison Etheridge
de la Universidad de Oxford, Inglaterra; Topics in Quantitative Risk Management
por el Profesor Paul Embrechts de ETH Zurich, Suiza. Si esta interesado puede
obtener mas detalles acerca del evento puede contactar a Ricardo Fraiman (pre-
sidente del XIII CLAPEM, fraimanricardo@gmail.com), con Leonardo Trujillo
(ltrujilloo@unal.edu.co) o en la página oficial www.clapem.unal.edu.co.

También en Colombia y como ha sido tradición anualmente, el XXIV Simposio
Internacional de Estadística tendrá lugar de Julio 24 al 26 en el Hotel AR en Bo-
gotá. Cinco conferencistas internacionales ofrecerán conferencias y cursos cortos:
Adriana Perez de University of Texas (USA) en Bioestadística, Daniel Thorburn
de Stockholm University (Suecia) en Estadísticas Oficiales, Nikos Tzavidis de la
Universidad de Southampton (Inglaterra) en Muestreo, Thibaut Jombart del Im-
perial College of London (UK) en Software Estadístico y Víctor Guerrero del ITAM
(México) en Análisis de Series Temporales.

Quisiera finalizar enviando una sentida felicitación a nuestros colegas en Ru-
sia quienes han establecido la Asociación Rusa de Estadística desde Abril de este
año. El objetivo como ellos mismos manifiestan es facilitar la colaboración entre
la oficina de estadísticas nacionales, diversas empresas y la academia, contribuir a
la toma de decisiones gubernamentales eficientes basadas en la transparencia y en
datos científicos confiables, congregar a todas las personas interesadas en promover
el uso de la estadística para el desarrollo del país, y promover a los estadísticos ru-
sos en las actividades del ISI. Aun continuamos a la espera de un restablecimiento
de nuestra Sociedad Colombiana de Estadística después de muchos años de inacti-
vidad. Claramente la experiencia de nuestros colegas rusos podrían ayudarnos en
regresar a este camino con el fin de integrar al DANE (oficina nacional de esta-
dística), particulares interesados y el reciente número en ascenso de universidades
con programas o investigadores en estadística alrededor del país.

www.clapem.unal.edu.co.
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On the Performance Evaluation of Different
Measures of Association

Evaluación de diferentes medidas de asociación

Muhammad Riaz1,a, Shahzad Munir2,b, Zahid Asghar2,c

1Department of Mathematics and Statistics, King Fahad University of Petroleum
and Minerals, Dhahran, Saudi Arabia

2Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

Abstract

In this article our objective is to evaluate the performance of different
measures of associations for hypothesis testing purposes. We have consid-
ered different measures of association (including some commonly used) in this
study, one of which is parametric and others are non-parametric including
three proposed modifications. Performance of these tests are compared un-
der different symmetric, skewed and contaminated probability distributions
that include Normal, Cauchy, Uniform, Laplace, Lognormal, Exponential,
Weibull, Gamma, t, Chi-square, Half Normal, Mixed Weibull and Mixed
Normal. Performances of these tests are measured in terms of power. We
have suggested appropriate tests which may perform better under different
situations based on their efficiency grading(s). It is expected that researchers
will find these results useful in decision making.

Key words: Measures of association, Non-Normality, Non-Parametric meth-
ods, Normality, Parametric methods, Power.

Resumen

En este articulo el objetivo es evaluar el desempeño de diferentes medi-
das de asociación para pruebas de hipótesis. Se consideran diferentes medi-
das, algunas paramétricas y otras no paramétricas, así como tres modifica-
ciones propuestas por los autores. El desempeño de estas pruebas se evalúa
considerando distribuciones simétricas, sesgadas y contaminadas incluyendo
la distribución normal, Cauchy, uniforme, Laplace, lognormal, exponencial,
Weibull, Gamma, t, Chi-cuadrado, medio normal, Weibull mezclada y nor-
mal mezclada. El desempeño se evalúa en términos de la potencia de los
tests. Se sugieren tests apropiados que tienen un mejor desempeño bajo

aProfessor. E-mail: riaz76qau@yahoo.com
bProfessor. E-mail: farhan.saif@qau.edu.pk
cProfessor. E-mail: g.zahid@gmail.com
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2 Muhammad Riaz, Shahzad Munir & Zahid Asghar

diferentes niveles de eficiencia. Se espera que los investigadores encuentren
estos resultados útiles en la toma de decisiones.

Palabras clave: medidas de asociación, no normalidad, métodos no paramétri-
cos, métodos paramétricos, potencia.

1. Introduction

It is indispensable to apply statistical tests in almost all the observational and
experimental studies in the fields of agriculture, business, biology, engineering etc.
These tests help the researchers to reach at the valid conclusions of their studies.
There are number of statistical testing methods in literature meant for different
objectives, for example some are designed for association dispersion, proportion
and location parameter(s). Each method has a specific objective with a particular
frame of application. When more than one method qualifies for a given situation,
then choosing the most suitable one is of great importance and needs extreme
caution. This mostly depends on the properties of the competing methods for
that particular situation. From a statistical viewpoint, power is considered as an
appropriate criterion of selecting the finest method out of many possible ones. In
this paper our concern is with the methods developed for measuring and testing the
association between the variables of interest defined on a some population(s). For
the sake of simplicity we restrict ourselves with the environment of two correlated
variables i.e. the case of bivariate population(s).

The general procedural framework can be laid down as follows: Let we have two
correlated random variables of interest X and Y defined on a bivariate population
with their association parameter denoted by ρ. To test the hypothesis H0 : ρ = 0
(i.e. no association) vs. H1 : ρ 6= 0, we have a number of statistical methods
available depending upon the assumption(s) regarding the parent distribution(s).
In parametric environment the usual Pearson correlation coefficient is the most
frequent choice (cf. Daniel 1990) while in non parametric environment we have
many options. To refer the most common of these: Spearman rank correlation
coefficient introduced by Spearman (1904); Kendall’s tau coefficient proposed by
Kendall (1938); a modified form of Spearman rank correlation coefficient which
is known as modified rank correlation coefficient proposed by Zimmerman (1994);
three Gini’s coefficients based measures of association given by Yitzhaki (2003)
(two of which are asymmetrical measures and one is symmetrical). We shall re-
fer all the aforementioned measures with the help of notations given in Table 1
throughout this chapter.

This study is planned to investigate the performance of different measures of
association under different distributional environments. The association measures
covered in the study include some existing and some proposed modifications and
performance is measured in terms of power under different probability models.
The organization of the rest of the article is as: Section 2 provides description
of different existing measures of association; Section 3 proposes some modified
measures of association; Section 4 deals with performance evaluations of these
measures; Section 5 offers a comparative analysis of these measures; Section 6

Revista Colombiana de Estadística 37 (2014) 1–24



On the Performance Evaluation of Different Measures of Association 3

includes an illustrative example; Section 7 provides summary and conclusions of
the study.

Table 1: Notations.
rP The usual Pearson Product Moment Correlation Coefficient (cf. Daniel 1990)

proposed by Karl Pearson
rS Spearman Rank Correlation Coefficient (cf. Spearman 1904)
rM Modified Rank Correlation Coefficient (cf. Zimmerman 1994)
rg1 Gini Correlation Coefficient between X and Y (asymmetric) (cf. Yitzhaki 2003)
rg2 Gini Correlation Coefficient between Y and X (asymmetric) (cf. Yitzhaki 2003)
rg3 Gini Correlation Coefficient between X and Y or between Y and X (symmetric)

(cf. Yitzhaki 2003)
τ Kendall’s Tau (cf. Kendall 1938)

2. Measures of Association

In order to define and describe the above mentioned measures, let we have
two dependent random samples in the form of pairs (x1, y1), (x2, y2), . . . , (xn, yn)
drawn from a bivariate population (with the association parameter ρ) under all the
assumptions needed for a valid application of all the association measures under
consideration. The description of the above mentioned measures along with their
main features and their respective test statistics are provided below:

Pearson Product Moment Correlation Coefficient (rP ): It is a measure
of the relative strength of the linear relationship between two numerical variables
of interest X and Y . The mathematical definition for this measure (denoted by
rP ) is given as:

rP =
cov(X,Y )

SD(X)SD(Y )
(1)

where cov(X,Y ) refers to the covariance between X and Y ; SD(X) and SD(Y )
are the standard deviations of X and Y respectively.

The value of rP ranges from −1 to +1 implying perfect negative and positive
correlation respectively. A value of zero for rP means that there is no linear
correlation between X and Y . It requires the data on at least interval scale of
measurement. It is a symmetric measure that is invariant of the changes in location
and scale. Geometrically it is defined as the cosine of the angle between the
two regression lines (Y on X and X on Y ). It is not robust to the presence of
outliers in the data. To test the statistical significance of rP we may use the
usual t-test (under normality) and even under non-normality t-test may be a safe
approximation.

Spearman Rank Correlation Coefficient (rS): It is defined as the Pearson
product moment correlation coefficient between the ranked information of X and
Y rather than their raw scores. The mathematical definition for this measure
(denoted by rS) is given as:

rS = 1−
6
∑n

i=1D
2
i

n(n2 − 1)
(2)
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where n is the sample size;
∑n

i=1D
2
i is the sum of the squares of the differences

between the ranks of two samples after ranking the samples individually. It is a
non-parametric measure that lies between −1 to +1 (both inclusive) referring to
perfect negative and positive correlations respectively. The sign of rS indicates
the direction of relationship between the actual variables of interest. A value of
zero for rS means that there is no interdependency between the original variables.
It requires the data on at least ordinal scale. Using normal approximation, the
statistical significance of rS may tested using the usual t-test. Modified Rank Cor-
relation Coefficient (rM ): It is a modified version of Spearman rank correlation
coefficient based on transformations of X and Y into standard scores and then us-
ing the concept of ranking.The mathematical definition for this measure (denoted
by rM ) is given as:

rM = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(3)

where d is the difference between the ranks assigned transforming the values of X
and Y separately into standard scores, assigning the ranks to standard scores col-
lectively and then make separate groups of the ranks according to their respective
random samples. Now defines the difference between the ranks and

∑n
i=1 d

2
i in (3)

is the sum of the squares of the differences between the ranks.
It is also a non-parametric measure that may take zero value for no corre-

lation, positive value and negative values for negative and positive correlations
respectively, as in the above case. A value of −1 refers to the perfect correlations
among the variables of interest.

Gini Correlation Coefficient (Asymmetric and Symmetric): These
correlation measures are based on the covariance measures between the original
variables X and Y and their cumulative distribution functions FX(X) and FY (Y ).
We consider here three measures of association based on Gini’s coefficients (two
of which are asymmetrical measures and one is symmetrical). These measures of
association, denoted by rg1, rg2 and rg3, are defined as:

rg1 =
cov(X,FY (Y ))

cov(X,FX(X))
(4)

rg2 =
cov(Y, FX(X))

cov(Y, FY (Y ))
(5)

rg3 =
GXrg1 +GY rg2

GX +GY
(6)

where cov(X,FY (Y )) is the covariance between X and cumulative distribution
function of Y ; cov(Y, FX(X)) is the covariance between X and its cumulative
distribution function; cov(Y, FX(X)) is the covariance between Y and cumulative
distribution function of X; cov(Y, FY (Y )) is the covariance between Y and its cu-
mulative distribution function; GX = 4cov(X,FX(X)) and GY = 4cov(Y, FY (Y )).

In the above mentioned measures given in (4)-(6), rg1 and rg2 are the asymmet-
ric Gini correlation coefficients while rg3 is the symmetric Gini correlation coeffi-
cient. Here are some properties of Gini correlation coefficients (cf. Yitzhaki 2003):
The Gini coefficient is bounded, such that +1 ≥ rgjs ≥ −1(j, s = X,Y ). If X
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and Y are independent then; rg1 = rg2 = 0; rg2 is not sensitive to a monotonic
transformation of Y . In general, rgjs need not be equal to rgsj and they may even
have different signs. If the random variables Zj and Zs are exchangeable up to a
linear transformation, then rgjs = rgsj .

Kendall’s Tau (τ): It is a measure of the association between two measured
variables of interests X and Y . It is defined as the rank correlation based on the
similarity orderings of the data with ranked setup. The mathematical definition
for this measure (denoted by τ) is given as:

τ =
S

n(n−1)
2

(7)

where n is the size of sample and S is defined as the difference between the number
of pairs in natural and reverse natural orders. We may define S more precisely as
arranging the observations (Xi, Yi) (where i = 1, 2, . . . , n) in a column according
to the magnitude of the X ′s, with the smallest X first, the second smallest second
and so on. Then we say that the X ′s are in natural order. Now in equation (7),
S is equal to P − Q, where P is the number of pairs in natural order and Q is
number of pairs in reverse order of random variable Y .

This measure is non-parametric being free from the parent distribution. It takes
values between +1 and −1 (both inclusive). A value equal to zero indicates no
correlation, +1 means perfect positive and −1 means perfect negative correlation.
It requires the data on at least ordinal scale. Under independence its mean is zero
and variance 2(2n+ 5)/9n(n− 1).

3. Proposed Modifications

Taking the motivations from the aforementioned measures as given in equation
(1)-(7) we suggest here three modified proposals to measure association. In order
to define rM in equation (3), Zimmerman (1994) used mean as an estimate of
the location parameter to convert the variables into standard scores. Mean as a
measure of location is able to produce reliable results when data is normal or at
least symmetrical because it is highly affected by the presence of outliers as well
as due to the departure from normality. It means that the sample mean is not a
robust estimator and hence cannot give trustworthy outcomes. To overcome this
problem, we may use median and trimmed mean as alternative measures. The
reason being that in case of non-normal distributions and/or when outliers are
present in the data median and trimmed mean exhibit robust behavior and hence
the results based on them are expected to become more reliable than mean.

Based on the above discussion we now suggest here three modifications/propo-
sals to measure the association. These three proposals are modified forms of
Spearman rank correlation coefficient, namely i) trimmed mean rank correlation
by using standard deviation about trimmed mean; ii) median rank correlation
by using standard deviation about median; iii) median rank correlation by using
mean deviation about median. These three proposals are based on Spearman
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rank correlation coefficient in which we shall transform the variables into standard
scores (like in Zimmerman (1994) using the measures given in (i)-(iii) above. We
shall refer the three proposed modifications with the help of notations given in
Table 2 throughout this chapter.

Table 2: Notations Table for the Proposed Modifications.
rT Trimmed Rank Correlation Coefficient
rMM Median Rank Correlation Coefficient by using Mean Deviation about Median
rMS Median Rank Correlation Coefficient by using Standard Deviation about Median

Keeping intact the descriptions of equation (1)-(7) we now provide the expla-
nation of the three proposed modified measures. Before that we defined here few
terms used in the definitions of rT , rMM and rMS . These terms include Stan-
dard Deviation by using Trimmed Mean (denoted by SD1(X) and SD1(Y ) for X
and Y respectively), Mean Deviation about Median (denoted by MDM(X) and
MDM(Y ) for X and Y respectively) and Standard Deviation by using Median
(denoted by SD2(X) and SD2(Y ) for X and Y respectively). These terms are
defined as under:

SD1(X) =

√∑n
i=1(Xi − X̄t)2

n− 1
and SD1(Y ) =

√∑n
i=1(Yi − Ȳt)2
n− 1

(8)

In equation (8), Xt and Y t are the trimmed means of X and Y respectively.

MDM(X) =

∑n
i=1 |Xi − X̃|

n
and MDM(Y ) =

∑n
i=1 |Yi − Ỹ |

n
(9)

In equation (9), X̃ and Ỹ are the medians of X and Y respectively.

SD2(X) =

√∑n
i=1(Xi − X̃t)2

n− 1
and SD2(Y ) =

√∑n
i=1(Yi − Ỹt)2
n− 1

(10)

In equation (10), all the terms are as defined earlier.
Based on the above definitions we are now able to define rT , rM and rMS as

under:

rT = 1−
6
∑n

i=1 d
2
i,T

n(n2 − 1)
(11)

For equation (11); first we separately transform the values of random variables X
and Y into standard scores by using their respective trimmed means and standard
deviation about trimmed means of their respective random sample from (X,Y ),
assign the ranks to standard scores collectively and then separate the ranks ac-
cording to their random samples. Now in equation (11),

∑n
i=1 d

2
i,T is the sum of

the squares of the differences between the ranks. It is to be mentioned that we
have trimmed 2 values from each sample, so the percentages of trimming in our
computations are 33%, 25%, 20%, 17%, 13%, 10% and 7% of samples 6, 8, 10, 12,
16, 20 and 30 respectively.

rM = 1−
6
∑n

i=1 d
2
i,MS

n(n2 − 1)
(12)
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For equation (12); first we separately transform the values of random variables
X and Y into standard scores by using their respective medians and standard
deviation about medians of their respective random variables fromX and Y , assign
the ranks to standard scores collectively and then separate the ranks according to
their random samples. Now in equation (12)

∑n
i=1 d

2
i,MS is the sum of the squares

of the differences between the ranks.

rMM = 1−
6
∑n

i=1 d
2
i,MM

n(n2 − 1)
(13)

For equation (13); first we separately transform the values of random variables X
and Y into standard scores by using their respective medians and mean deviation
about medians of the respective random sample from (X,Y ), assign the ranks
to standard scores collectively and then separate the ranks according to their
random samples. Now in equation (13),

∑n
i=1 d

2
i,MM is the sum of the squares of

the differences between the ranks.

All the existing measures given in equation (1)-(7) and the proposed mod-
ifications given in equation (11)-(13) are nonparametric except the one given in
equation (1). The existing measures as given equation (1)-(7) have many attractive
properties in their own independent capacities (e.g. see Spearman 1904, Kendall
1938, Zimmerman 1994, Gauthier 2001, Yitzhaki 2003, Mudelsee 2003, Walker
2003, Maturi & Elsayigh 2010). But it is hard to find articles in the existing lit-
erature which compare the performance of these measures simultaneously under
different distributional environments. The same is one of the motivations of this
study. Additionally we plan to investigate the performances (in terms of power) of
our proposed modifications under different probability models and also compare
them with the existing counter parts. Although there are some other tests avail-
able to serve the purpose but the reason to choose these ten out of many is their
novelty.

There are different ways to use the information (such as ratio, interval, ordinal
and count) and each test has its own strategy to exploit this information. The tests
considered here cover almost all of these common approaches. Although the results
for the usual ones may be readily available but their comparisons in a broader frame
will provide useful and interesting results. Actually the main objective of this study
is to investigate the performance of these different methods/measures and see
which of these have optimal efficiency under different distributional environments
of the parent populations following line of action of Munir, Asghar & Riaz (2011).

This investigation would help us to grade the performance of these different
methods for measuring and testing the association parameter under different par-
ent situations. Consequently practitioners may take benefit out of it by picking
up the most appropriate measure(s) to reach at the correct decision in a given
situation. Practitioners generally prefer statistical measure(s) or method(s) which
has higher power and they use it for their research proposals (cf. Mahoney &
Magel 1996), so the findings of this research would be of great value for them for
their future studies.
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4. Performance Evaluations

Power is an important measure for the performance of a testing procedure.
It is the probability of rejecting H0 when it is false and it is the probability
that a statistical measure(s)/procedure(s) will lead to a correct decision. In this
section we intend to evaluate the power of the ten association measures under
consideration in this study and find out which of them have relatively higher
power(s) than the others under different parent situations. To calculate the power
of different methods of measuring and testing the association under study we have
followed the following procedure for power evaluations.

Let X and Y be the two correlated random variables referring to the two inter
dependent characteristics of interest from where we have a random sample of n
pairs in the form of (x1, y1), (x2, y2),. . . ,(xn, yn) from a bivariate population. To
get the desire level of correlation between X and Y the steps are listed as:

• Let X and Y be independent random variables and Y be a transformed
random variable defined as: Y = a(X) + b(W );

• The correlation between X and Y is given as: rXY = a√
a2+b2

, where a and
b are unknown constants;

• The expression for a in the form of b and rXY may be written as a = b(rXY )√
1−r2XY

,

• If b=1 then we have: a = rXY√
1−r2XY

, and by putting the desire level of corre-

lation in this equation we get the value of a;

• For the above mentioned values of a and b we can now obtain the variables
X and Y having our desired correlation level.

Hypotheses and Testing Procedures: For our study purposes we state the
null and alternative hypotheses as: H0 : ρ = 0 versus H1 i.e. ρ > 0. This is a
one sided version of the hypothesis that may be easily defined for two sided case.
It is supposed that the samples are drawn under all the assumptions needed for a
valid application of all the methods related with the association measures of this
study. We compute the values of our test statistics for association measures by
using all the ten methods for different choices of ρ (on positive side only because of
right sided alternative hypothesis) and calculate their chances of rejecting H0 by
comparing them with their corresponding critical values. These probabilities under
H0 refer to the significance level while under H1 this will be power of the test. It
is to be mentioned that to test the aforementioned H0 vs. H1, we have converted
all the coefficients of association (except Kendall’s tau) into the following statistic:

ta =
ra
√
n− 2√

1− r2a
(14)

where in equation (14), ta is the statistic of student t-distribution with n − 2
degrees of freedom (i.e. tn−2); ra is the correlation coefficient calculated by any of
the association methods of this study.
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Distributional Models: In order to cover the commonly used practical mod-
els of parent distributions, we have considered (in bivariate setup) Normal, Uni-
form, Laplace, Lognormal, Exponential, Weibull, Gamma, Half Normal, Mixed
Weibull, and Mixed Normal distributions as some representative parent distribu-
tions for our study. We also include Gamma, Exponential and Weibull distribu-
tions with outliers (contamination) in our study. For the choices of the distribu-
tions of X and Y , we have the following particular parameter selections to create
bivariate environments: N(0, 1) for Normal; U(0, 1) for Uniform; L(0.5, 3) for
Laplace; LN(0, 1) for Lognormal; Exp(0.5) for Exponential; W (1, 2) for Weibull;
G(1, 2) for Gamma; HN(0, 1) for Half Normal;W (0.5, 3) with probability 0.95 and
W (1, 2) with probability 0.05 for Mixed Weibull; N(0, 1) with probability 0.95 and
N(0, 400) with probability 0.05 for Mixed Normal; G(0.5, 3) with 5% outliers from
G(4, 10) for contaminated Gamma; W (1, 2) with 5% outliers from W (50, 100) for
contaminated Wiebull; exp(0.5) with 5% outliers from exp(4) for contaminated
Exponential.

Computational Details of Experimentation: We have computed powers
of the ten methods of measuring and testing the association by fixing the sig-
nificance level at α using a simulation code developed in MINITAB. The critical
values at a given α are obtained from the table of tn−2 for all the measures given
in Equation ((1)-(7) and (11)-(13)) and their corresponding test statistics given
in Equation (14), except for Kendall’s coefficient given in Equation (7). For the
Kendall’s tau coefficient (τ) we have used the true critical values as given in Daniel
(1990). The reason being that for all other cases the approximation given in Equa-
tion (14) is able to work fairly good but for the Kendall’s tau coefficient it is not
the case (as we here observed in our computations). The change in shape of the
parent distribution demands an adjustment in the corresponding critical values.
This we have done by our simulation algorithm for these ten methods to achieve
the desired value of α. For different choices of ρ = 0, 0.25, 0.5 and 0.75 powers are
obtained with the help of our simulation code in MINITAB at α significance level.

We have considered thirteen representative bivariate environments mentioned
above for n = 6, 8, 10, 12, 16, 20, 30 at varying values of α. For these choices of n, α
we have run our MINITAB simulation code (developed for the ten methods under
investigation here) 10,000 times for power computations. The resulting power
values are given in the tables given in Appendix for all the thirteen probability
distributions and the ten methods under study for some selective choices from the
above mentioned values of n at α = 0.05. For the sake of brevity we omit the
results at other choices of α like 0.01 and 0.005.

5. Comparative Analysis

This section presents a comparative analysis of the existing and proposed as-
sociation measures. For ease in discussion and comparisons, the power values
mentioned above are also displayed graphically in the form of power curves for all
the aforementioned thirteen probability distributions by taking particular sample
sizes and ten methods of association for some selective cases. These graphs are
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shown in Figures 1-13 where different values of ρ = 0, 0.25, 0.5 and 0.75 are taken
on horizontal axis and the powers on vertical axis. Each figure is for a different
parent distribution with different sample sizes and contains the power curves of
all the ten methods. Labeling of the power curves in these figures is according to
the notations given in Tables 1 and 2.

It is advocated from the above power analysis (cf. Table A1-A13 and Figures
1-13) that:

• With an increase in the value of n and/or ρ, power efficiency of all the
association measures improves for all distributions.

• In general, Pearson correlation coefficient is superior to the Spearman rank
correlation, Kendall’s tau, modified rank correlation coefficient and proposed
methods in normal distribution. However in some cases of normal distribu-
tion Gini correlation coefficients work better than the Pearson correlation
coefficient.

• In non-normal distributions and in the case of outliers (contamination) the
Pearson correlation coefficient grant a smaller amount of power than Spear-
man rank correlation, modified rank correlation coefficient and proposed
methods except half normal, uniform, mixed normal and Laplace distribu-
tions. But Gini correlation coefficients rg1 and rg2 in general remain better
in terms of power than Pearson correlation coefficient.

• Among the three Gini correlation coefficients rg1 performs better than rg2
and rg3.

• The proposed three modifications grant improved power than the Spearman
correlation coefficient, in general, for all the distributional environments.
But in contaminated distributions the median rank correlation coefficient
by using mean deviation about median works better than modified rank
correlation coefficient for all sample sizes.

• Kendall’s tau has inferior power than that of the Spearman rank correlation
coefficient, modified rank correlation coefficient and the proposed methods.
In Weibull, Mixed Weibull and Lognormal distributions, Kendall’s tau has
superior amount of power than the Gini mean correlation coefficient rg2. But
for these three distributions, if the sample size is greater than ten Kendall’s
tau has superior power performance than the Pearson correlation coefficient
and Gini mean correlation coefficient rg3. In the outlier cases, if the sample
is moderate then Kendall’s tau is superior to Pearson correlation coefficient
and the two Gini mean correlation coefficients (rg2 and rg3) for moderate
sample sizes.

• From the analysis above, it is pertinent to note that the Gini mean correlation
coefficient rg1 is the best choice for measuring and testing the association
than Spearman rank correlation coefficient, Kendall’s tau, modified rank
correlation coefficient and the proposed methods in normal, non-normal and
contaminated distributions.
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• The powers of rMM , rMS , rT and rM slightly differ from each others in all
the distributional environments. It means that these are close competitors
to each other.

It is to be mentioned that other testing measures may also be evaluated on the
similar lines but we think that the options we have chosen cover the most practical
ones.
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Figure 1: Normal distribution (n = 20).
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Figure 2: Weibull distribution (n = 8).
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Figure 3: Mixed Weibull distribution (n = 8).
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Figure 4: Lognormal distribution (n = 8).
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Figure 5: Exponential distribution (n = 16).
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Figure 6: Gamma distribution (n = 16).

6. Numerical Illustration

Besides the evidence in terms of statistical efficiency it is very useful to test
a technique on some real data for their practical implications. For this purpose
we consider here a data set from Zimmerman (1994) on two variables of scores.
The data set is given in Table 3 which contains eight pair of scores as reported by
Zimmerman (1994).
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Table 3: Eight pairs of Scores.
Pair#

1 2 3 4 5 6 7 8
Scores X 3.02 15.7 9.88 20.53 17.1 18.15 17.52 1.7

Y 43.02 52.84 54.25 57.99 52.35 47.4 55.37 49.52

We state our null hypothesis as: There is no association between the two
variables (i.e. H0 : ρ = 0) versus the alternative hypothesis H1 : ρ > 0. By fixing
the level of significance at α = 0.05, we apply all the ten methods and see what
decisions they grant for the data set given in Table 3. The values of test statistic
and their corresponding decisions are given in Table 4. The critical value used are:
0.571 for Kendall’s tau and 1.94 for all the other tests.

Table 4: Values of the test statistics tjourn and their corresponding decisions.
tP tS tM tT tMS

1.96 1.41 1.95 1.95 1.45
(Reject H0) (Don’t reject H0) (Reject H0) (Reject H0) (Don’t reject H0)

tMM tg1 tg2 tg3 τ

1.4 1.91 1.52 1.74 0.36
(Don’t reject H0) (Don’t reject H0) (Don’t reject H0) (Don’t reject H0) (Don’t reject H0)

It is obvious from the analysis of Table 4 that tP , tM and tT reject H0 while
all others do not reject H0. This is, in general, in accordance in the findings of
Section 3. We may, therefore, sum up that this study will be of great use for the
practitioners and researchers who make use of these measures frequently in their
research projects.
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Figure 7: Exponential distribution with outliers (n = 30).

7. Summary and Conclusions

This study has evaluated the performance of different association measures
including some existing and few newly suggested modifications. One of these
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measures is parametric and the others non-parametric ones. Performance evalua-
tions (in terms of power) and comparisons are carried out under different symmet-
ric, skewed and contaminated probability distributions including Normal, Cauchy,
Uniform, Laplace, Lognormal, Exponential, Weibull, Gamma, t, Chi-square, Half
Normal, Mixed Weibull and Mixed Normal.

Power evaluations of this study revealed that in normal distribution the Pear-
son correlation coefficient is the best choice to measure association. Further we
have observed that the Pearson correlation coefficient and Gini’s correlation coef-
ficients (rg2 and rg3) have superior power performances than the Spearman rank
correlation, The modified rank correlation and the proposed correlation coefficients
for symmetrical and low peaked distributions. But in non-symmetrical and high
peaked distributions the Spearman rank correlation, modified rank correlation and
the proposed correlation coefficients worked with supreme power than the Pearson
correlation coefficient and the two Gini’s correlation coefficients (rg2 and rg3).

In contaminated distributions, rMM exhibited better performance than the
modified rank correlation coefficient. The Gini’s correlation coefficient (rg1) per-
formed better than the Spearman rank correlation, modified rank correlation,
Kendall’s tau and the proposed correlation coefficie nts in symmetrical, asym-
metrical, low peaked, highly peaked and contaminated distributions.
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Figure 8: Weibull distribution with outliers (n = 30).
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Figure 9: Gamma distribution with outliers (n = 30).
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Figure 10: Halfnormal distribution (n = 8).
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Figure 11: Uniform distribution (n = 8).
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Figure 12: Mixed Normal distribution (n = 8).

Acknowledgments

The authors are thankful to the anonymous reviewers for their valuable com-
ments on the previous version of the article. The author Muhammad Riaz is
indebted to King Fahd University of Petroleum and Minerals, Dhahran, Saudi
Arabia for providing excellent research facilities under project #IN111059.

Revista Colombiana de Estadística 37 (2014) 1–24



16 Muhammad Riaz, Shahzad Munir & Zahid Asghar

0.80

1.00 rP

rM

rS

rT

rMS

rMM

Laplace distribution (n=8)

0.00

0.20

0.40

0.60

0.00 0.25 0.50 0.75

P
ow

er

Population correlation

rMM

rg2

rg1

rg3

τ

Figure 13: Laplace distribution (n = 8).

[
Recibido: agosto de 2012 — Aceptado: noviembre de 2013

]

References

Daniel, W. W. (1990), Applied Nonparametric Statistics, Duxbury Classic Series,
New York.

Gauthier, T. D. (2001), ‘Detecting the trends using the Spearman’s rank correla-
tion coefficient’, Environmental Forensics 2, 359–362.

Kendall, M. G. (1938), ‘A new measure of rank correlation’, Biometrika 5, 81–93.

Mahoney, M. & Magel, R. (1996), ‘Estimation of the power of the Kruskal-Wallis
test’, Biometrical Journal 38, 613–630.

Maturi, T. A. & Elsayigh, A. (2010), ‘A comparison of correlation coefficients via
a three-step bootstrap approach’, Journal of Mathematics Research 2, 3–10.

Mudelsee, M. (2003), ‘Estimating Pearson’s correlation coefficient with bootstrap
confidence interval from serially dependent time series’, Mathematical Geology
35, 651–665.

Munir, S., Asghar, Z. & Riaz, M. (2011), ‘Performance evaluation of different
tests for location parameters’, Communications in Statistics-Simulation and
Computation 40(6), 839–853.

Spearman, C. (1904), ‘The proof and measurement of association between two
things’, American Journal of Psychology 15, 73–101.

Walker, D. A. (2003), ‘JMASM9: Converting Kendall’s tau for correlational
or meta-analytic analyses’, Journal of Modern Applied Statistical Methods
2, 525–530.

Yitzhaki, S. (2003), ‘Gini mean difference: A superior measure of variabil-
ity for non normal distribution’, Metron-International Journal of Statistics
LXI, 285–316.

Revista Colombiana de Estadística 37 (2014) 1–24



On the Performance Evaluation of Different Measures of Association 17

Zimmerman, D. W. (1994), ‘A note on modified rank correlation’, Journal of
Educational and Behavioral Statistics 19, 357–362.

Appendix

Table A1: Probability of rejecting the null hypothesis of independence for N(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0478 0.0476 0.0431 0.0461 0.0528 0.0525 0.059 0.0589 0.0526 0.054
0.25 0.1236 0.1131 0.104 0.1126 0.1206 0.1234 0.1366 0.1362 0.1264 0.0761
0.5 0.2772 0.2262 0.2211 0.2343 0.246 0.2511 0.2894 0.292 0.274 0.0755
0.75 0.6096 0.4606 0.4917 0.5049 0.5219 0.5264 0.5681 0.5653 0.5669 0.161

8 0 0.0457 0.046 0.0489 0.0498 0.0521 0.0511 0.0555 0.0597 0.0528 0.0603
0.25 0.1458 0.1315 0.1354 0.1409 0.1414 0.1402 0.1639 0.1667 0.1595 0.0974
0.5 0.3795 0.3067 0.3278 0.3328 0.3345 0.333 0.3866 0.3893 0.3813 0.2339
0.75 0.7702 0.6406 0.6723 0.6752 0.6745 0.6751 0.75 0.7429 0.7509 0.5562

10 0 0.0489 0.0524 0.0512 0.0503 0.0522 0.0523 0.0619 0.0631 0.0584 0.0496
0.25 0.1773 0.1711 0.1669 0.1693 0.1674 0.1669 0.1958 0.1946 0.188 0.0889
0.5 0.4613 0.4096 0.4115 0.412 0.4118 0.4109 0.4585 0.4607 0.4544 0.2577
0.75 0.8633 0.7992 0.7995 0.8014 0.8001 0.7991 0.8508 0.8508 0.8548 0.637

12 0 0.0503 0.0475 0.0485 0.0474 0.0476 0.0478 0.0565 0.0568 0.0519 0.0653
0.25 0.1909 0.1805 0.184 0.1826 0.1822 0.1826 0.2129 0.2148 0.2086 0.1274
0.5 0.5395 0.473 0.487 0.4876 0.4829 0.483 0.5405 0.5401 0.5393 0.3742
0.75 0.9262 0.8691 0.8795 0.8816 0.8794 0.8801 0.9121 0.9119 0.9139 0.8003

16 0 0.0493 0.0514 0.0507 0.0502 0.0511 0.0496 0.0585 0.0599 0.056 0.0536
0.25 0.2448 0.2208 0.2257 0.2235 0.2238 0.2247 0.2519 0.2495 0.2424 0.1333
0.5 0.6613 0.6 0.6129 0.6114 0.6081 0.607 0.654 0.6561 0.6551 0.4614
0.75 0.9753 0.9478 0.9528 0.9541 0.952 0.9508 0.9708 0.9715 0.9739 0.9039

20 0 0.0518 0.0532 0.0534 0.0526 0.0535 0.0532 0.0573 0.0561 0.0526 0.0553
0.25 0.2937 0.2635 0.268 0.2684 0.2686 0.2682 0.2964 0.2956 0.2923 0.1778
0.5 0.7562 0.6942 0.7088 0.709 0.7066 0.7061 0.7399 0.7384 0.7396 0.5822
0.75 0.994 0.9797 0.9839 0.9838 0.9832 0.9829 0.9889 0.9893 0.9886 0.965

30 0 0.0533 0.0517 0.0527 0.0528 0.0524 0.0514 0.056 0.0575 0.0549 0.0533
0.25 0.3839 0.3523 0.3583 0.3572 0.3564 0.3567 0.3938 0.3916 0.3935 0.251
0.5 0.8999 0.8576 0.861 0.8602 0.8598 0.8601 0.8875 0.885 0.8884 0.776
0.75 0.9998 0.9992 0.9992 0.999 0.999 0.9991 0.9988 1 1 0.9969
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Table A2: Probability of rejecting the null hypothesis of independence for W (0.5, 3).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0513 0.0477 0.043 0.0482 0.051 0.0531 0.0494 0.0531 0.0448 0.0538
0.25 0.16 0.1933 0.1878 0.1989 0.2049 0.2115 0.1997 0.14 0.16 0.1427
0.5 0.2837 0.2925 0.3121 0.3219 0.3288 0.335 0.3131 0.2249 0.2487 0.2388
0.75 0.4355 0.3752 0.4311 0.44 0.4507 0.4552 0.4286 0.3268 0.3453 0.3585

8 0 0.0509 0.0489 0.0522 0.0536 0.0519 0.0527 0.0565 0.0576 0.0538 0.0597
0.25 0.1791 0.2545 0.2605 0.2648 0.265 0.269 0.265 0.1812 0.2199 0.2032
0.5 0.3244 0.3951 0.411 0.4169 0.4143 0.4202 0.4513 0.3266 0.3798 0.3473
0.75 0.5048 0.5342 0.5671 0.5674 0.569 0.5745 0.6195 0.4865 0.5286 0.5164

10 0 0.0499 0.0492 0.0473 0.0483 0.0494 0.0507 0.0556 0.0547 0.0494 0.0508
0.25 0.2027 0.3144 0.3017 0.3032 0.3022 0.3058 0.3513 0.2109 0.2713 0.2189
0.5 0.3684 0.4996 0.4978 0.4953 0.494 0.4969 0.5685 0.3771 0.4472 0.3948
0.75 0.578 0.6709 0.6759 0.6731 0.6777 0.6819 0.7339 0.563 0.6126 0.5753

16 0 0.0521 0.052 0.0517 0.0521 0.0529 0.0527 0.0571 0.0513 0.0455 0.0536
0.25 0.2435 0.4444 0.4507 0.4471 0.4517 0.4545 0.5226 0.2223 0.3333 0.3853
0.5 0.4877 0.6849 0.7042 0.6982 0.6984 0.703 0.7755 0.4373 0.5523 0.6457
0.75 0.7283 0.8592 0.8723 0.8696 0.8738 0.877 0.9175 0.6653 0.7432 0.8446

Table A3: Probability of rejecting the null hypothesis of independence for mixed
Weibull distribution (i.e. W (0.5, 3) with probability 0.95 and W (1, 2) with
probability 0.05.

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0568 0.0499 0.0474 0.0506 0.052 0.0549 0.0502 0.0521 0.0451 0.0534
0.25 0.1611 0.1856 0.1833 0.193 0.1998 0.2051 0.202 0.1383 0.165 0.1368
0.5 0.2867 0.2952 0.3147 0.3227 0.3284 0.3348 0.315 0.2318 0.254 0.2413
0.75 0.4322 0.3732 0.4342 0.4438 0.4533 0.4578 0.4361 0.334 0.3576 0.3584

8 0 0.0471 0.0448 0.0497 0.05 0.05 0.0497 0.0553 0.0555 0.0533 0.0611
0.25 0.1673 0.2466 0.2534 0.2537 0.2548 0.2589 0.279 0.1857 0.2342 0.1969
0.5 0.3305 0.3914 0.4054 0.4104 0.4095 0.4144 0.4315 0.3224 0.3663 0.3437
0.75 0.5141 0.5437 0.5708 0.5739 0.5767 0.5808 0.6135 0.4904 0.5297 0.52

10 0 0.05 0.0526 0.0506 0.0528 0.0515 0.0541 0.0527 0.0543 0.0465 0.0483
0.25 0.1983 0.3191 0.3127 0.3103 0.3117 0.3176 0.3426 0.2051 0.2635 0.2139
0.5 0.3854 0.4847 0.4867 0.4837 0.4885 0.4932 0.5607 0.369 0.4396 0.396
0.75 0.5862 0.6624 0.6711 0.6672 0.6728 0.676 0.7339 0.5531 0.6077 0.5861

16 0 0.051 0.0457 0.0472 0.0466 0.0462 0.0456 0.0583 0.0547 0.046 0.0519
0.25 0.2387 0.4488 0.4536 0.4503 0.4486 0.4547 0.5263 0.2328 0.3441 0.3707
0.5 0.4906 0.6933 0.7076 0.7015 0.7045 0.7093 0.7749 0.428 0.5459 0.6325
0.75 0.7362 0.8507 0.8655 0.8603 0.8626 0.8643 0.9175 0.6653 0.7331 0.8411
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Table A4: Probability of rejecting the null hypothesis of independence for LG(5, 4).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0513 0.0521 0.0468 0.0539 0.0523 0.0555 0.0561 0.0531 0.0554 0.0555
0.25 0.1927 0.2067 0.2043 0.2131 0.2184 0.2252 0.2488 0.1686 0.2066 0.1519
0.5 0.3033 0.3 0.3196 0.3316 0.3356 0.436 0.3476 0.2504 0.2833 0.2481
0.75 0.4154 0.3758 0.4358 0.4405 0.4431 0.449 0.4375 0.336 0.358 0.3553

8 0 0.0515 0.0452 0.0473 0.0487 0.0485 0.0484 0.0537 0.0483 0.05 0.0597
0.25 0.2235 0.2651 0.2705 0.2753 0.2762 0.28 0.279 0.1882 0.2371 0.2179
0.5 0.3433 0.3946 0.4118 0.4135 0.4135 0.4171 0.4406 0.31 0.3635 0.3604
0.75 0.4882 0.5165 0.545 0.5473 0.5492 0.5551 0.5666 0.4393 0.4736 0.4992

10 0 0.0549 0.0514 0.0513 0.0523 0.0512 0.0514 0.0523 0.0503 0.0504 0.0457
0.25 0.2565 0.3379 0.3316 0.3321 0.3294 0.3338 0.3494 0.217 0.2853 0.2351
0.5 0.4089 0.5066 0.5015 0.4991 0.5056 0.5062 0.5136 0.3543 0.419 0.4072
0.75 0.5591 0.6546 0.6476 0.6455 0.6548 0.6576 0.665 0.496 0.5441 0.5821

16 0 0.0538 0.0495 0.0495 0.0501 0.0499 0.0487 0.0511 0.0526 0.0475 0.0478
0.25 0.2884 0.4856 0.4827 0.4785 0.4807 0.4872 0.544 0.2385 0.3549 0.4272
0.5 0.4801 0.696 0.6899 0.6898 0.6959 0.7022 0.7388 0.3854 0.4914 0.6813
0.75 0.6492 0.8412 0.8389 0.838 0.8424 0.8457 0.867 0.567 0.6269 0.844

Table A5: Probability of rejecting the null hypothesis of independence for Exp(0.5).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0502 0.0504 0.0464 0.0492 0.0539 0.0555 0.0573 0.057 0.0496 0.0572
0.25 0.1162 0.1328 0.1245 0.1327 0.1414 0.1458 0.1617 0.1477 0.1407 0.0869
0.5 0.2613 0.2611 0.262 0.2714 0.2849 0.2929 0.3047 0.2758 0.2761 0.1777
0.75 0.5209 0.4224 0.4594 0.4731 0.4895 0.493 0.5205 0.4753 0.486 0.361

8 0 0.0508 0.0493 0.0507 0.0516 0.0541 0.0549 0.0533 0.0563 0.0535 0.0614
0.25 0.1488 0.1613 0.1671 0.1702 0.1729 0.1725 0.1852 0.163 0.1664 0.1174
0.5 0.3574 0.3521 0.3675 0.3731 0.3737 0.3779 0.4103 0.3471 0.367 0.2724
0.75 0.6692 0.6099 0.6427 0.6435 0.6456 0.6465 0.6928 0.6325 0.6553 0.5422

10 0 0.0507 0.0564 0.0543 0.0544 0.0548 0.0552 0.0537 0.0571 0.0492 0.0472
0.25 0.1535 0.2072 0.2001 0.2003 0.1969 0.1996 0.2165 0.1814 0.1891 0.1163
0.5 0.3948 0.4487 0.4491 0.4479 0.4443 0.4472 0.5066 0.4201 0.4526 0.3124
0.75 0.6721 0.7347 0.7431 0.7436 0.7427 0.7447 0.8005 0.718 0.7495 0.6182

16 0 0.05 0.0523 0.0505 0.051 0.0527 0.0522 0.0566 0.0556 0.0478 0.0479
0.25 0.2296 0.294 0.2957 0.2947 0.2932 0.2942 0.3348 0.2438 0.2771 0.1943
0.5 0.5962 0.6413 0.6595 0.6576 0.6527 0.652 0.7324 0.5731 0.6404 0.535
0.75 0.9189 0.9106 0.9218 0.9212 0.9188 0.919 0.9565 0.8875 0.9179 0.877
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Table A6: Probability of rejecting the null hypothesis of independence for G(1, 2).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.049 0.0514 0.0461 0.0495 0.0545 0.0565 0.0563 0.0554 0.0484 0.0569
0.25 0.1209 0.131 0.1251 0.1327 0.1417 0.1455 0.1436 0.1318 0.1268 0.0912
0.5 0.2666 0.259 0.2619 0.2729 0.72874 0.295 0.298 0.2684 0.2701 0.187
0.75 0.5131 0.4271 0.4703 0.4823 0.4977 0.502 0.5074 0.4661 0.4753 0.3585

8 0 0.0513 0.0509 0.0547 0.0577 0.0574 0.0571 0.0585 0.0582 0.0543 0.0612
0.25 0.139 0.1581 0.1613 0.1659 0.1702 0.1708 0.195 0.1695 0.1703 0.1182
0.5 0.3385 0.3423 0.3597 0.3649 0.3647 0.3689 0.4033 0.3493 0.3651 0.2536
0.75 0.6598 0.6051 0.6343 0.6392 0.6444 0.6426 0.7066 0.6459 0.6688 0.5309

10 0 0.0508 0.055 0.0524 0.0528 0.0522 0.0527 0.0518 0.0538 0.0476 0.0468
0.25 0.1611 0.2048 0.2035 0.2033 0.2017 0.2032 0.2199 0.1862 0.1938 0.117
0.5 0.4018 0.4441 0.4442 0.4457 0.4464 0.4499 0.5049 0.4112 0.449 0.3078
0.75 0.7492 0.7305 0.742 0.7394 0.7406 0.7393 0.8061 0.7278 0.7601 0.6269

16 0 0.0516 0.0496 0.0477 0.0483 0.0484 0.0494 0.0553 0.0546 0.0486 0.0514
0.25 0.2193 0.2928 0.3009 0.2967 0.2894 0.2953 0.3199 0.2348 0.2646 0.1985
0.5 0.5849 0.6523 0.6738 0.6679 0.664 0.667 0.7193 0.5561 0.6167 0.5366
0.75 0.9017 0.9074 0.9162 0.9165 0.9153 0.9153 0.9505 0.8787 0.9076 0.8734

Table A7: Probability of rejecting the null hypothesis of independence for contaminated
Exponential (i.e. exp(0.5) with 5% outliers from exp(4)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0512 0.0536 0.0458 0.05 0.0545 0.0569 0.0517 0.0528 0.0476 0.0519
0.25 0.1461 0.1431 0.135 0.1392 0.1483 0.1546 0.1565 0.1315 0.1367 0.0996
0.5 0.2881 0.2621 0.2681 0.2754 0.2905 0.2962 0.3026 0.2638 0.2725 0.1905
0.75 0.5212 0.429 0.4658 0.4762 0.4919 0.4964 0.497 0.4505 0.4626 0.3647

8 0 0.0507 0.0497 0.0499 0.0498 0.053 0.0535 0.0507 0.052 0.0521 0.0607
0.25 0.1676 0.17 0.1767 0.182 0.1801 0.1804 0.1985 0.1638 0.1766 0.1253
0.5 0.3504 0.3496 0.3652 0.3704 0.3694 0.3722 0.4112 0.3493 0.3758 0.2796
0.75 0.6112 0.5953 0.6266 0.6275 0.6269 0.6277 0.6665 0.5978 0.6231 0.5418

10 0 0.0509 0.052 0.0496 0.0504 0.0502 0.0506 0.0533 0.0523 0.0478 0.0436
0.25 0.1998 0.2257 0.2239 0.2208 0.2189 0.2208 0.2563 0.1967 0.2222 0.1264
0.5 0.4251 0.4579 0.4588 0.4582 0.4541 0.4566 0.5209 0.4263 0.4615 0.3227
0.75 0.7097 0.7281 0.7339 0.7323 0.7322 0.7346 0.777 0.6866 0.7178 0.621

12 0 0.0526 0.0527 0.0521 0.0522 0.0535 0.0555 0.0545 0.0578 0.0521 0.0606
0.25 0.2149 0.242 0.2507 0.252 0.2477 0.2461 0.2975 0.2045 0.2445 0.1945
0.5 0.483 0.5151 0.5264 0.5275 0.5234 0.5285 0.5991 0.4666 0.5158 0.4561
0.75 0.7649 0.7929 0.8016 0.7998 0.7979 0.8005 0.8574 0.7445 0.7793 0.7668

16 0 0.0544 0.0484 0.0509 0.0512 0.0497 0.049 0.0547 0.0567 0.0506 0.053
0.25 0.258 0.3191 0.321 0.3197 0.3157 0.3191 0.3685 0.2446 0.2998 0.215
0.5 0.5678 0.6474 0.6584 0.6582 0.6532 0.6545 0.7273 0.5415 0.611 0.556
0.75 0.8368 0.903 0.9067 0.9052 0.9066 0.91 0.941 0.8103 0.849 0.8692

20 0 0.0562 0.0523 0.051 0.0514 0.0514 0.0518 0.0583 0.0587 0.0518 0.0571
0.25 0.3111 0.373 0.3759 0.3729 0.3728 0.3772 0.4473 0.2821 0.3508 0.2895
0.5 0.6519 0.7378 0.7458 0.7445 0.7415 0.7459 0.8176 0.5943 0.677 0.6702
0.75 0.8862 0.9577 0.958 0.959 0.9574 0.9593 0.9776 0.8673 0.905 0.903

30 0 0.0523 0.0494 0.0488 0.0504 0.048 0.0493 0.0579 0.0561 0.0483 0.0512
0.25 0.3965 0.5011 0.508 0.5059 0.4997 0.5081 0.5882 0.314 0.4378 0.4151
0.5 0.7544 0.8872 0.8899 0.8895 0.8835 0.8889 0.935 0.6925 0.7935 0.8559
0.75 0.9281 0.993 0.9931 0.9931 0.9926 0.9936 0.9976 0.9129 0.9506 0.9927
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Table A8: Probability of rejecting the null hypothesis of independence for contaminated
Weibull (i.e. W (0.5, 3) with 5% outliers from W (50, 100)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0563 0.0495 0.046 0.0507 0.05 0.054 0.0546 0.0595 0.0515 0.0536
0.25 0.1961 0.2037 0.2032 0.2134 0.216 0.224 0.2388 0.155 0.1866 0.1477
0.5 0.3217 0.2982 0.3185 0.3313 0.334 0.3422 0.3358 0.2338 0.265 0.246
0.75 0.4379 0.377 0.4256 0.4351 0.4491 0.4536 0.4303 0.3343 0.3538 0.3604

8 0 0.053 0.0472 0.0537 0.0558 0.055 0.0559 0.052 0.0513 0.051 0.0621
0.25 0.2091 0.2595 0.2674 0.2699 0.2681 0.2715 0.2878 0.1903 0.2486 0.2158
0.5 0.3449 0.3958 0.4105 0.412 0.4158 0.4193 0.4391 0.3224 0.3734 0.3559
0.75 0.4918 0.5282 0.5584 0.5593 0.562 0.5642 0.5971 0.4593 0.5004 0.5103

10 0 0.056 0.0529 0.0543 0.0545 0.0536 0.0542 0.0546 0.05 0.0468 0.0439
0.25 0.2245 0.3157 0.3159 0.3144 0.3178 0.3194 0.348 0.2076 0.278 0.2278
0.5 0.3897 0.4948 0.4944 0.4923 0.4935 0.499 0.5287 0.3585 0.4245 0.4066
0.75 0.5662 0.6507 0.6523 0.649 0.6548 0.6575 0.6933 0.52 0.5715 0.5827

12 0 0.0543 0.047 0.0494 0.0486 0.0485 0.0487 0.0541 0.0526 0.0499 0.0616
0.25 0.2444 0.3695 0.3706 0.3651 0.3703 0.3758 0.4141 0.2037 0.291 0.3282
0.5 0.4294 0.5665 0.5735 0.5709 0.5747 0.5803 0.6293 0.3733 0.458 0.5457
0.75 0.632 0.7293 0.7405 0.7376 0.7445 0.7495 0.7476 0.542 0.573 0.7277

16 0 0.0551 0.0473 0.0486 0.048 0.046 0.0465 0.0583 0.0556 0.0466 0.051
0.25 0.2573 0.474 0.4759 0.4675 0.4748 0.4796 0.5768 0.2373 0.3601 0.403
0.5 0.4808 0.6826 0.6908 0.6864 0.6938 0.6978 0.7853 0.427 0.5396 0.6537
0.75 0.6946 0.8457 0.8518 0.8478 0.8587 0.8609 0.909 0.617 0.595 0.8397

20 0 0.0564 0.0494 0.0478 0.0467 0.0483 0.0478 0.0561 0.0553 0.0421 0.0524
0.25 0.2922 0.5503 0.5525 0.5436 0.5526 0.5592 0.6545 0.2324 0.3813 0.5066
0.5 0.5422 0.7837 0.7879 0.783 0.7933 0.7966 0.855 0.4396 0.5745 0.7711
0.75 0.7668 0.9111 0.9201 0.914 0.921 0.9232 0.9549 0.6459 0.7369 0.9212

30 0 0.0536 0.0489 0.0514 0.0507 0.0506 0.0508 0.0587 0.0591 0.0471 0.0526
0.25 0.3259 0.7257 0.7253 0.7191 0.7315 0.7364 0.8438 0.2616 0.4875 0.6984
0.5 0.6594 0.9165 0.919 0.9132 0.9253 0.9272 0.9643 0.5166 0.7088 0.925
0.75 0.8675 0.9824 0.9837 0.9825 0.9862 0.9868 0.9944 0.751 0.8554 0.9874
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Table A9: Probability of rejecting the null hypothesis of independence for contaminated
Gamma (i.e. G(0.5, 3) with 5% outliers from G(4, 10)).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0558 0.0511 0.0441 0.0488 0.0517 0.0532 0.058 0.0566 0.0505 0.059
0.25 0.19 0.1675 0.1591 0.1692 0.1753 0.1797 0.1523 0.1316 0.129 0.125
0.5 0.3134 0.273 0.282 0.2907 0.2992 0.3073 0.2931 0.2613 0.2716 0.2153
0.75 0.4823 0.3927 0.444 0.4511 0.459 0.4694 0.5315 0.5214 0.522 0.3621

8 0 0.0529 0.0468 0.0469 0.0508 0.0511 0.0513 0.052 0.0484 0.049 0.0568
0.25 0.2071 0.2201 0.2256 0.2268 0.2282 0.2306 0.2465 0.181 0.2228 0.1691
0.5 0.3542 0.3778 0.3964 0.4007 0.3973 0.3997 0.4075 0.3271 0.361 0.3331
0.75 0.5516 0.5551 0.5834 0.5872 0.5885 0.5828 0.604 0.5069 0.5346 0.5147

10 0 0.05 0.0516 0.0511 0.0506 0.0505 0.0506 0.0542 0.0567 0.055 0.0451
0.25 0.2311 0.2757 0.2692 0.2698 0.2682 0.2727 0.3208 0.2124 0.2766 0.1862
0.5 0.4032 0.4814 0.4774 0.4768 0.4736 0.4796 0.5083 0.3796 0.4294 0.3687
0.75 0.6091 0.6786 0.683 0.6836 0.6855 0.6884 0.7269 0.5859 0.6264 0.5994

12 0 0.0537 0.0492 0.0497 0.0523 0.0488 0.0495 0.0567 0.0563 0.056 0.0608
0.25 0.2629 0.3188 0.3159 0.3134 0.312 0.3142 0.3794 0.2291 0.3031 0.2638
0.5 0.4416 0.534 0.5377 0.533 0.5336 0.5404 0.6092 0.4245 0.4915 0.5029
0.75 0.6671 0.7588 0.7627 0.7605 0.7649 0.7715 0.8115 0.63 0.6743 0.7449

16 0 0.0512 0.048 0.0465 0.0475 0.0473 0.047 0.0583 0.0577 0.0549 0.0557
0.25 0.3053 0.4014 0.3947 0.391 0.3895 0.3965 0.4578 0.2491 0.3418 0.3181
0.5 0.5198 0.6707 0.6731 0.6677 0.6677 0.6781 0.7086 0.4612 0.5372 0.613
0.75 0.7337 0.8729 0.8735 0.8728 0.8705 0.878 0.909 0.686 0.7425 0.8595

20 0 0.0543 0.0529 0.0525 0.054 0.053 0.052 0.0552 0.058 0.05 0.0533
0.25 0.3422 0.4829 0.472 0.4699 0.4691 0.4771 0.517 0.2521 0.3698 0.4049
0.5 0.5784 0.7569 0.7588 0.7547 0.752 0.7604 0.7905 0.4822 0.578 0.7328
0.75 0.7558 0.9349 0.9339 0.9332 0.932 0.9371 0.9521 0.7193 0.7757 0.9307

30 0 0.0537 0.0476 0.0516 0.0505 0.0522 0.0513 0.0578 0.0599 0.0436 0.0503
0.25 0.4102 0.6268 0.6133 0.6109 0.6127 0.6239 0.6714 0.2853 0.4545 0.581
0.5 0.6641 0.9085 0.9049 0.9024 0.9024 0.9096 0.9171 0.5486 0.6815 0.9059
0.75 0.8317 0.9894 0.9891 0.9887 0.9886 0.9909 0.992 0.769 0.8385 0.9898
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Table A10: Probability of rejecting the null hypothesis of independence for HN(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0527 0.055 0.0474 0.05 0.0572 0.0569 0.0547 0.0587 0.0502 0.0489
0.25 0.1081 0.1107 0.1053 0.1129 0.1219 0.1241 0.1279 0.1255 0.1125 0.0719
0.5 0.2726 0.2383 0.2354 0.245 0.2601 0.2619 0.2794 0.2628 0.2608 0.1603
0.75 0.5664 0.4319 0.4686 0.4788 0.4972 0.5033 0.5393 0.5163 0.518 0.3526

8 0 0.0501 0.0476 0.0477 0.0488 0.0507 0.0502 0.0523 0.0556 0.049 0.062
0.25 0.1431 0.1374 0.1417 0.1429 0.1478 0.1473 0.1498 0.1439 0.14 0.1034
0.5 0.3078 0.3244 0.3394 0.3422 0.35 0.3526 0.3495 0.3381 0.332 0.2437
0.75 0.7315 0.6296 0.6601 0.6632 0.6649 0.6655 0.7133 0.6879 0.7012 0.5427

10 0 0.0513 0.0565 0.0545 0.0541 0.056 0.0549 0.0538 0.0501 0.0481 0.0498
0.25 0.16 0.1748 0.1704 0.1715 0.1682 0.1666 0.1784 0.1693 0.1661 0.0946
0.5 0.4419 0.4141 0.4185 0.4176 0.4165 0.4168 0.455 0.4234 0.4336 0.2748
0.75 0.8075 0.7678 0.7817 0.7811 0.781 0.7791 0.8225 0.7998 0.8116 0.6435

16 0 0.0553 0.0483 0.0463 0.0465 0.0467 0.0475 0.0585 0.057 0.0535 0.0491
0.25 0.2478 0.2443 0.2473 0.2468 0.2452 0.2443 0.2796 0.2526 0.2591 0.1532
0.5 0.6544 0.6136 0.633 0.6339 0.624 0.6253 0.695 0.6351 0.6625 0.4969
0.75 0.9678 0.9398 0.9496 0.9486 0.9462 0.9465 0.9681 0.952 0.9603 0.896

Table A11: Probability of rejecting the null hypothesis of independence for U(0, 1).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0504 0.0472 0.0433 0.0452 0.0513 0.0503 0.0657 0.0623 0.0572 0.0607
0.25 0.1215 0.1108 0.1071 0.1127 0.1216 0.1228 0.1418 0.1389 0.1287 0.0726
0.5 0.2433 0.2029 0.2059 0.2118 0.2259 0.2276 0.2719 0.258 0.2523 0.1367
0.75 0.602 0.4506 0.4673 0.4821 0.5034 0.5062 0.5819 0.569 0.5703 0.3385

8 0 0.0472 0.0455 0.0458 0.0472 0.049 0.0492 0.058 0.0591 0.0577 0.0602
0.25 0.1422 0.127 0.1331 0.1344 0.1376 0.1375 0.1646 0.1541 0.1524 0.1009
0.5 0.3514 0.2906 0.3082 0.3103 0.3123 0.3136 0.3572 0.3501 0.3472 0.2165
0.75 0.7977 0.6619 0.6967 0.7004 0.7025 0.6989 0.766 0.7746 0.7777 0.5501

10 0 0.048 0.0502 0.0491 0.0506 0.0493 0.0481 0.0532 0.0546 0.0502 0.0464
0.25 0.1683 0.1614 0.1581 0.1577 0.1561 0.1564 0.1838 0.1834 0.1773 0.0844
0.5 0.4359 0.389 0.3944 0.3956 0.3928 0.3905 0.4428 0.4507 0.4433 0.244
0.75 0.9033 0.8261 0.8388 0.8403 0.8367 0.836 0.8745 0.8883 0.8876 0.6622

16 0 0.0494 0.0501 0.0469 0.0485 0.0492 0.0479 0.0542 0.0544 0.0529 0.0522
0.25 0.2319 0.2183 0.2167 0.2163 0.2135 0.2129 0.2358 0.2358 0.2308 0.1308
0.5 0.6541 0.585 0.605 0.604 0.5972 0.5959 0.6205 0.6535 0.6394 0.4423
0.75 0.9904 0.9732 0.9779 0.978 0.9759 0.9761 0.9818 0.9874 0.9871 0.9407
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Table A12: Probability of rejecting the null hypothesis of independence for Mixed Nor-
mal (i.e. N(0, 1) with probability 0.95 and N(0, 400 with probability 0.05).

n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0522 0.0512 0.0471 0.0499 0.0537 0.0543 0.0662 0.0675 0.0628 0.0575
0.25 0.1265 0.1104 0.1037 0.1106 0.121 0.1222 0.1382 0.1362 0.1287 0.0784
0.5 0.2723 0.2205 0.2197 0.2307 0.2459 0.2487 0.2811 0.2837 0.2702 0.1593
0.75 0.611 0.4506 0.471 0.4927 0.5139 0.5145 0.5607 0.5623 0.5584 0.3533

8 0 0.0463 0.0468 0.0476 0.0493 0.0499 0.0499 0.0591 0.0607 0.0539 0.0586
0.25 0.142 0.1262 0.1309 0.135 0.1365 0.1361 0.168 0.1717 0.1606 0.0984
0.5 0.3834 0.3081 0.3226 0.3296 0.3326 0.3328 0.3867 0.3871 0.3852 0.2378
0.75 0.7721 0.6394 0.6697 0.6769 0.6762 0.6756 0.7445 0.7452 0.7473 0.558

10 0 0.0472 0.0517 0.0491 0.0485 0.0484 0.049 0.0587 0.0615 0.0564 0.0484
0.25 0.1734 0.1606 0.1589 0.1594 0.1623 0.1609 0.1949 0.1946 0.1868 0.0929
0.5 0.4634 0.4077 0.4045 0.408 0.4086 0.4062 0.4658 0.4627 0.4564 0.2627
0.75 0.8661 0.7901 0.7991 0.8016 0.7986 0.7944 0.8536 0.8557 0.8569 0.6404

16 0 0.05 0.0528 0.053 0.0533 0.0538 0.0544 0.0582 0.0595 0.0561 0.0502
0.25 0.238 0.2148 0.2168 0.2158 0.216 0.2146 0.2521 0.2513 0.247 0.1399
0.5 0.6723 0.6033 0.6161 0.6174 0.6122 0.6135 0.6501 0.6524 0.6528 0.4655
0.75 0.9775 0.951 0.9569 0.9568 0.9552 0.9549 0.9709 0.971 0.9731 0.9109

Table A13: Probability of rejecting the null hypothesis of independence for L(0.5, 3).
n ρ rP rS rM rT rMS rMM rR1 rR2 rR3 τ

6 0 0.0503 0.0515 0.0435 0.0503 0.0536 0.0548 0.0628 0.065 0.0575 0.0588
0.25 0.1396 0.1259 0.1141 0.1252 0.1335 0.1362 0.1661 0.1534 0.1452 0.0853
0.5 0.3145 0.2439 0.2422 0.2604 0.2753 0.2768 0.3361 0.3201 0.317 0.1764
0.75 0.6045 0.4345 0.4734 0.4919 0.5058 0.5058 0.5602 0.5498 0.5543 0.3735

8 0 0.0528 0.0481 0.0465 0.0497 0.0506 0.0514 0.0652 0.0646 0.0559 0.0602
0.25 0.1712 0.152 0.1567 0.165 0.1668 0.1681 0.209 0.1898 0.1914 0.1151
0.5 0.4058 0.3317 0.3469 0.3542 0.3566 0.3558 0.4487 0.4065 0.4192 0.2589
0.75 0.7375 0.6085 0.641 0.6483 0.6479 0.6473 0.7465 0.7065 0.723 0.5538

10 0 0.0495 0.0487 0.0447 0.047 0.0468 0.0462 0.0666 0.0682 0.0585 0.0467
0.25 0.1904 0.1895 0.1845 0.1904 0.1899 0.1892 0.2397 0.2089 0.21 0.1074
0.5 0.4806 0.4303 0.4328 0.4359 0.4363 0.4359 0.5409 0.4761 0.5031 0.2983
0.75 0.8313 0.7533 0.7566 0.7561 0.7583 0.7573 0.8397 0.8053 0.8213 0.6283

16 0 0.0491 0.0458 0.0438 0.0445 0.0455 0.046 0.0667 0.0661 0.059 0.0515
0.25 0.2535 0.2572 0.2585 0.2588 0.259 0.263 0.3378 0.2773 0.2969 0.174
0.5 0.656 0.6127 0.6236 0.6223 0.625 0.6227 0.7213 0.6377 0.7661 0.5104
0.75 0.9504 0.9197 0.9225 0.9234 0.9235 0.9234 0.9602 0.9386 0.9495 0.8766
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Abstract

The present paper considers an extension of the exponential distribution
based on mixtures of positive distributions. We study the main properties
of this new distribution, with special emphasis on its moments, moment
generator function and some characteristics related to reliability studies. We
also discuss parameter estimation considering the maximum likelihood and
moments approach. An application reveals that the model proposed can be
very useful in fitting real data. A final discussion concludes the paper.
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Resumen

En el presente paper se considera una extensión de la distribución ex-
ponencial basada en mezclas de distribuciones positivas. Estudiamos las
principales propiedades de esta nueva distribución, con especial énfasis en
sus momentos, función generadora de momentos, y algunas características
relacionadas a estudios de confiabilidad. También se analiza la estimación
de parámetros a través de los métodos de momentos y de máxima verosimi-
litud. Una aplicación muestra que el modelo propuesto puede ser muy útil
para ajustar datos reales. Una discusión final concluye el artículo.
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1. Introduction

In lifetime data analysis it is usually the case that models with monotone
risk functions are preferred as is the case of the gamma distribution. For some
models there are no closed form risk functions (such as the Gamma model) and
numerical integration might be required for its computation. In recent statistical
literature modified extensions of the exponential distributions have been proposed
to contour such difficulties. For example, Gupta & Kundu (1999) and Gupta &
Kundu (2001) introduced an extension of the exponential distribution typically
called the generalized exponential (GE) distribution. Therefore, it is said that the
random variable X follows the GE distribution if its density function is given by

g1(x;α, β) = αβe−αx(1− e−αx)β−1

where x > 0, α > 0 and β > 0. We use the notation X ∼ GE(α, β) for a random
variable with such distribution.

More recently, Nadarajah & Haghighi (2011) introduced another extension of
the exponential model, so that a random variable X follows the Nadarajah and
Haghighi’s exponential distribution (NHE) if its density function is given by

g2(x;α, β) = αβ(1 + αx)β−1e{1−(1+αx)
β}

where x > 0, α > 0 and β > 0. We use the notation X ∼ NHE(α, β).

Both distributions have the exponential distribution (E) with scale parameter
α, as a special case when β = 1, that is,

g1(x;α, β = 1) = g2(x;α, β = 1) = αe−αx

where x > 0, α > 0 with the notation X ∼ E(α). Other extensions of the
exponential model in the survival analysis context are considered in the Marshall
& Olkin’s (2007) book.

The main object of this paper is to present yet another extension for the expo-
nential distribution that can be used as an alternative to the ones mentioned above.
We discuss some properties for this new distribution like its moments and moment
generating function which can be used for parameter estimation as starting values
for computing maximum likelihood estimators.

The paper is organized as follows. Section 2 delivers the density and distri-
bution functions, moments, moment generating function, asymmetry and kurtosis
coefficients and hazard function. Section 3 is devoted to parameter estimation
based on maximum likelihood and moments approach. It is recommended that
the moment estimators are used to initialize the maximum likelihood approach.
In Section 4 an application to a real data set is presented and comparisons be-
tween the proposed model and other extensions of the exponential distribution are
reported. The main conclusion is that the new model can perform well in applied
situations.
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2. Density and Properties

A random variable X is distributed according to the extended exponential
distribution (EE) with parameters α and β if its density function is given by

f(x;α, β) =
α2(1 + βx)e−αx

α+ β
(1)

where x > 0, α > 0 and β ≥ 0. We use the notation X ∼ EE(α, β).

Figures 1 and 2 depict the behavior of the distribution for some parameter
values.
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Figure 1: Plots of the EE(1, 0.8) (solid line), EE(1, 0.5) (dashed line), EE(1, 0.1) (dot-
ted line).
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Figure 2: Plots of the EE(0.5, 3) (solid line), EE(1, 7) (dashed line), EE(1.5, 10) (dot-
ted line).
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2.1. Properties

Let X ∼ EE(α, β), Y ∼ E(α) and Z ∼ Gamma(2, α). Then, the distribution
function for the random variable X is given by

FX(x) =
α+ β − (β + α+ αβx)e−αx

α+ β
(2)

The expectation and variance are given by

E(X) =
α+ 2β

α(α+ β)

V ar(X) =
α3 + 5α2β + 6αβ2 + 2β3

α5 + 3α4β + 3α3β2 + α2β3

The moment generation function can also be obtained in closed form and is
given by

MX(t) =
α2(α+ β − t)

(α+ β)(t− α)2
(3)

It also follows that its density can be obtained as a mixture of two positive
ones, namely,

fX(x;α, β) =
α

α+ β
fY (x;α) +

β

α+ β
fZ(x;α) (4)

Using the representation as a mixture of two positive densities, we can provide
a general representation for the distribution moments, namely,

E(Xr) =
α

α+ β
E(Y r) +

β

α+ β
E(Zr) =

rΓ(r)

αr(1 + β)
[α+ (1 + r)β] , r = 1, 2, ..., (5)

where Γ(·) is the usual gamma function.
Using the moments above for the EE model, we can compute asymmetry (

√
β1)

and kurtosis (β2) coefficients, which are given by

√
β1 =

2(α+ 2β)3 − 12β2(α+ β)

(α2 + 4αβ + 2β2)3/2
(6)

β2 =
3(α+ 2β)2(3α2 + 12αβ + 8β2)− 72β2(α+ β)2

(α2 + 4αβ + 2β2)2
(7)

Lemma 1. Note that as β → 0, then
√
β1 → 2 and β2 → 9 which correspond

to the asymmetry and kurtosis respectively for the exponential model. General
coefficients of asymmetry and kurtosis are such that

√
2 <
√
β1 ≤ 2 and 6 < β2 ≤

9, respectively, as shown in Figures 3 and 4.
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Figure 3: Graphs for asymmetry coefficient for the EE model.
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Figure 4: Graphs for the kurtosis coefficient for the EE model.

The hazard function for the random variable X ∼ EE(α, β) is given by

h(x) =
f(x;α, β)

1− FX(x)
=

α2(1 + βx)

β + α(1 + βx)

i) If β = 0, then h(x) = α, is the hazard function for the exponential model
∀x ∈ R.

ii) ∀β, h(x) is monotonically increasing with h(0) = α2

α+β .

iii) ∀β, h(x)→ α, as x→∞.

iv) h(x) is bounded, that is, α2

α+β < h(x) < α.
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Figure 5: Plots for the hazard function for α = 1 and β = 0.5 (solid line), β = 1
(dashed line), β = 2 (dotted line).

The Figure 5 illustrates the behavior of the hazard function for some parameter
values.

3. Inferential Considerations

In this section, we consider inference for the EE using moments and the max-
imum likelihood approach.

3.1. Method of Moments

The moment estimators for the parameters α and β are obtained by solving

α+ 2β

α(α+ β)
= x (8)

2α+ 6β

α2(α+ β)
= x2

From the first equation we obtain the moment estimators for β(β̃) as a function
of the moment estimator for α(α̃).

β̃ =
α̃(1− α̃x)

α̃x− 2
, α̃ ∈

(
1

x
,

2

x

)
(9)

using (9) and the second equation for the system given in (8) we obtain the moment
estimator for α.

α̃ =
2x±

√
4x2 − 2x2

x2
(10)

Therefore, α̃ from (10) replacing α in (9) we obtain β̃. These estimators will be
used as initial parts to get the maximum likelihood estimation in the next section.
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3.2. Maximum Likelihood

Let x1, x2, . . . , xn a random sample from X ∼ EE(α, β), so that we obtain the
log-likelihood function

l(α, β) = 2n log(α)− n log(α+ β)− α
n∑
i=1

xi +

n∑
i=1

log(1 + βxi) (11)

Differentiating the log-likelihood function with respect to α and β, the following
equations follow:

∂l

∂α
=

2n

α
− n

α+ β
−

n∑
i=1

xi = 0 (12)

∂l

∂β
= − n

α+ β
+

n∑
i=1

xi
1 + βxi

= 0 (13)

From (12) we obtain

β̂ =
α̂(1− α̂x)

α̂x− 2
, α̂ ∈

(
1

x
,

2

x

)
(14)

and the maximum likelihood estimator for α is obtained by resolving numerically
the following equation

n∑
i=1

xi
1− (1− xα̂)(α̂xi − 1)

=
n

α̂
(15)

The estimator α̂ is the solution to the equation (15), and replacing it in (14)

we obtain β̂. This algorithm leads to the maximum likelihood estimators for α
and β.

4. Real Data Illustration

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that
are subject to constant pressure at the 90% stress level until all had failed, so we
have complete data with the exact times of failure. For previous studies with the
data sets see Andrews & Herzberg (1985) and Barlow, Toland & Freeman (1984).
These data are:
0.0251,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.6751,
0.6753,0.7696,0.8375,0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.0596,
1.0773,1.1733,1.2570,1.2766,1.2985,1.3211,1.3503,1.3551,1.4595,1.4880,1.5728,1.5733,
1.7083,1.7263,1.7460,1.7630,1.7746,1.8275,1.8375,1.8503,1.8808,1.8878,1.8881,1.9316,
1.9558,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.2460,2.2878,2.3203,2.3470,2.3513,
2.4951,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.9143,4.8073,5.4005,
5.4435,5.5295,6.5541,9.0960.
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Using results from Section 3.1, moment estimators were computed leading to
the following values: α̃ = 0.889 and β̃ = 2.563, which were used as initial estimates
for the maximum likelihood approach.

Table 1 presents basic descriptive statistics for data set. We use the notation√
b1 and b2 to represent sample asymmetry and kurtosis coefficients.

Table 1: Descriptive statistics for rupture time.
Data set n X S

√
b1 b2

Kevlar 76 1.959 1.574 2.019 8.600

Table 2: Parameter estimates for GE, NHE and EE models for the stress-rupture life
data set.

Parameter estimates GE NHE EE
α 0.703 0.195 0.954

β 1.709 2.007 6.366

AIC 248.488 253.476 247.3

For comparing model fitting, Akaike (1974), namely

AIC = −2 ∗ ˆ̀(·) + 2 ∗ k

where k is the number of parameters in the model under consideration. The AIC
specifies that the model that best fits the data is the one with the smallest AIC
value.

Table 2 shows parameter estimators for distributions GE, NHE and EE using
maximum likelihood (MLE) approach and the corresponding Akaike information
criterion (AIC). For these data, AIC shows a better fit for the EE model. Figure 6
reveals model fitting for the three models, and Figure 7 compares the distribution
functions for the three models with the empirical distribution function.

Kevlar

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 6: Models fitted by the maximum likelihood approach for the stress-rupture data
set: EE(α̂, β̂) (solid line), NHE(α̂, β̂) (dashed line) and GE(α̂, β̂) (dotted
line)
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Figure 7: Empirical c.d.f. with estimated EE c.d.f. (solid line), estimated NHE c.d.f.
(dashed line) and estimated GE c.d.f. (dotted line).

5. Concluding Remarks

This paper introduces a new model positive data. It is shown that the model
can be represented as the mixture of two distributions. The scale-exponential
distribution can be seen as a particular case of the new model. It is shown that
the distribution function, hazard function and moment generating function can be
obtained in closed form. Moment estimators are derived and maximum likelihood
estimators can be computed using Newton-Raphson type algorithms. The moment
estimators can be used as starting values for the maximum likelihood estimators.
Asymmetry and kurtosis coefficients are derived and their ranges are plotted. It
is illustrated the fact that the model proposed has more flexibility in terms of
coefficients of asymmetry and kurtosis. A real data application has demonstrated
that the model studied is quite useful for dealing with real data and behaves better
in terms of fitting than other models proposed in the literature such as the GE
and NHE models.
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Abstract

It is well-known that some discrete distributions belong to the power
series distribution (PSD) family, so it seems useful to study conditions to
establish the discrete likelihood ratio order for this family. In this paper,
conditions to some cases of PSD family under which the discrete likelihood
ratio order we have looked at the holds. Also, we study the discrete version
of the proportional likelihood ratio as an extension of the likelihood ratio
order. Then we compare some members of the PSD family by discrete pro-
portional likelihood ratio order.

Key words: Binomial distribution, Geometric distribution, Logarithmic se-
ries distribution, Negative binomial distribution, Poisson distribution, Pro-
portional likelihood ratio order.

Resumen

Es bien conocido en la literatura que algunas distribuciones discretas
pertenecen a la familia de distribuciones de series de potencias (PSD, power
series distributions por sus siglas en inglés). Por lo tanto, es útil estudiar
algunas condiciones para establecer el orden de la razón de verosimilitud
para esta familia. En este artículo, se estudian las condiciones para algunos
casos de la familia PSD bajo las cuales se mantiene el orden de la razón
de verosimilitud. Otros autores han introducido y estudiado el orden de la
razón de verosimilitud proporcional como una extensión del orden de razón
de verosimilitud para variables aleatorias continuas. Aquí, se presenta el
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orden de razón de verosimilitud proporcional para variables aleatorias dis-
cretas y se estudian para la familia PSD.

Palabras clave: distribución binomial, distribución binomial negativa, dis-
tribución de series logarítmicas, distribución geométrica, distribución
Poisson, orden de la razón de verosimilitud proporcional.

1. Introduction

Recently, many papers have been devoted to compare random variables ac-
cording to stochastic orderings in particular likelihood ratio order. Most of the
contributions are for the continuous random variables. We refer to Shanthiku-
mar & Yao (1986), Lillo, Nanda & Shaked (2001), Hu, Nanda, Xie & Zhu (2003),
Shaked & Shanthikumar (2007), Misra, Gupta & Dhariyal (2008), Blazej (2008),
Navarro (2008) and Bartoszewicz (2009) for more details.

Ramos-Romero & Sordo-Diaz (2001) introduced a new stochastic order between
two continuous and non-negative random variables and called it proportional like-
lihood ratio (PLR) order, which is closely related to the usual likelihood ratio
order. Belzunce, Ruiz & Ruiz (2002), extended hazard rate and reversed hazard
rate orders to proportional state in the same manner and called them proportional
(reversed) hazard rate orders. So, they studied their properties, preservations and
relations with other orders. In general, the proportional versions are stronger or-
derings and easy to verify in many situations, so they are helpful to check what
components are more reliable, and consequently systems formed from them.

In the next section, we recall the discrete likelihood ratio order and then com-
pare some members of PSD family. Then we present discrete proportional likeli-
hood ratio order and study it for PSD family at the last section of this paper.

2. Discrete Likelihood Ratio Order for Power Series
Distribution Family

We obtain the conditions under which the discrete likelihood ratio order is
established for some cases of the power series distribution family.

Definition 1. Let X and Y be discrete non-negative random variables with prob-
ability functions PX(x) and PY (x) respectively. X is said to be smaller than Y in
the discrete likelihood ratio order (denoted by X ≤lr Y ), if

PY (x)

PX(x)
is increasing in x ∈ N. (1)

Noack (1950) defined a random variable X taking non-negative integer values
with probabilities

P (X = x) =
axθ

x

b(θ)
, ax ≥ 0, x = 0, 1, 2, . . . (2)
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He called the discrete probability distribution given by (2) a power series distribu-
tion and derived some of its properties relating its moments, cumulants, etc. Patil
(1961, 1962) studied the generalized power series distribution (GPSD) family with
probability function like (2), whose support is any non-empty and enumerable set
of non-negative integers.

Note that the Poisson, negative binomial and geometric distributions belong to
PSD family and binomial and logarithmic distributions are in the GPSD family.

Suppose that X and Y have probability functions P (X = x) =
αxθ

x
1

b(θ1)
and

P (Y = x) =
βxθ

x
2

b(θ2)
respectively. So, using Definition 1, X ≤lr Y if PY (x)

PX(x) ≤
PY (x+1)
PX(x+1)

for all x, or equivalently

(
αx+1

αx
)(

βx
βx+1

) ≤ θ2
θ1
. (3)

Now, we check equation (3) for some members of the PSD family:
Poisson Distribution: In equation (2), ax = 1

x! and b(λ) = eλ, leads to the
Poisson distribution with parameter λ. Also, we get

PX(x+ 1)

PX(x)
=

λ

1 + x
.

Now, if X and Y possess Poisson distribution with parameters λ1 and λ2 respec-
tively, then, using (3), X ≤lr Y if and only if λ1 ≤ λ2.

Binomial Distribution: Suppose that X has binomial distribution with pa-
rameters n1 and p1 and Y has binomial distribution with parameters n2 and p2,
for all n1 < n2. Using (3) and after simplification,(

n1 − x
n2 − x

)(
p1

1− p1

)(
1− p2
p2

)
≤ 1, x = 0, 1, . . . , n1 − 1

the left side of the above inequality gets its maximum at x = 0, so, if n1 < n2 and
n1p1
1−p1 ≤

n2p2
1−p2 then X ≤lr Y .

Negative Binomial Distribution: Suppose that X has negative binomial
distribution with parameters r1 and p1 and Y has negative binomial distribution
with parameters r2 and p2. Using (3)(

r1 + x

r2 + x

)(
1− p1
1− p2

)
≤ 1, x = 0, 1, . . .

if r2 ≤ r1 then, r1+x
r2+x

≤ 1 is decreasing in x ∈ N , so gets maximum at x = 0.
Therefore, r2 ≤ r1 and r1(1− p1) ≤ r2(1− p2) imply that X ≤lr Y .

Geometric Distribution: If X and Y are random variables of geometric
distribution with parameters p1 and p2 respectively, then p2 ≤ p1 implies that
X ≤lr Y (it is evident that the geometric distribution is obtained from the negative
binomial distribution where r = 1).

Logarithmic Series Distribution: For random variables X and Y with
logarithmic series distribution with parameters θ1 and θ2 respectively, if θ1 ≤ θ2
then X ≤lr Y .
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Binomial Distribution versus Poisson Distribution: If X is binomial
distribution with parameters n and p and Y is Poisson distribution with parameter
λ, then X ≤lr Y if

(
p

1− p

)(
n− x
λ

)
≤ 1, x = 0, 1, 2, . . . , n

Also, maximum of the left side expression of the above inequality are given at
x = 0, so, if np ≤ λ(1− p) then X ≤lr Y .

Poisson Distribution versus Negative Binomial distribution: Consider
random variable X having Poisson distribution with parameter λ and Y having
negative binomial distribution with parameters r and p. Since 1

r+x is decreasing
in x, then λ ≤ r(1− p) leads to X ≤lr Y .

Poisson Distribution versus Geometric distribution: If X is Poisson
distribution with parameter λ and Y is geometric distribution with parameter p,
then, X ≤lr Y ⇐⇒ λ ≤ 1− p.

Poisson Distribution versus Logarithmic Series Distribution: Let X
and Y be random variables of Poisson and logarithmic series distributions with
parameters θ1 and θ2 respectively. So, X ≤lr Y ⇐⇒ θ1 ≤ θ2.

Negative Binomial versus Logarithmic Series Distribution: The ran-
dom variable X of negative binomial with parameters r and p is smaller in sense
of likelihood ratio order than Y of logarithmic series distribution with parameter
θ in the likelihood ratio order if θ ≥ (1− p)(r + 1).

Table 1: Necessary conditions for establishment discrete likelihood ratio order.
X ≤lr Y Conditions
X ∼ Poi(λ1) and Y ∼ Poi(λ2) λ1 ≤ λ2

X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2) n1 ≤ n2 and n1p1
1−p1

≤ n2p2
1−p2

X ∼ Nb(r1, p1) and Y ∼ Nb(r2, p2) r2 ≤ r1 and r2(1− p2) ≥ r1(1− p1)

X ∼ Ge(p1) and Y ∼ Ge(p2) p1 ≥ p2

X ∼ Ls(θ1) and Y ∼ Ls(θ2) θ1 ≤ θ2

X ∼ Bin(n, p) and Y ∼ Poi(λ) np ≤ λ(1− p)

X ∼ Poi(λ) and Y ∼ Nb(r, p) λ ≤ r(1− p)

X ∼ Poi(λ) and Y ∼ Ge(p) λ ≤ (1− p)

X ∼ Poi(λ) and Y ∼ Ls(θ) λ ≤ θ

X ∼ Nb(r, p) and Y ∼ Ls(θ) θ ≥ (r + 1)(1− p)
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Figure 1: The Dot-Dot line shows the Binomial distribution with parameters n1 = 10
and p1 = 0.3 and the stretch shows the Binomial distribution with parameters
n2 = 15 and p2 = 0.6.
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Figure 2: The Dot-Dot line shows the Poisson distribution with parameter λ = 5 and
the stretch shows the Binomial distribution with parameters n = 10 and
p = 0.3.

3. Discrete Proportional Likelihood Ratio Order for
Power Series Distribution Family

Ramos-Romero & Sordo-Diaz (2001) studied proportional likelihood ratio or-
der as extension of the likelihood ratio order for non-negative absolutely continuous
random variables. They obtained various properties and applications of the pro-
portional likelihood ratio order. In this section, discrete proportional likelihood
ratio order is studied. Also, we looked the conditions under which this ordering is
hold for PSD.

Definition 2. For two discrete non-negative random variables X and Y with
probability functions PX(x) and PY (x) respectively, if

PY ([λx])

PX(x)
is increasing in x ∈ N (4)
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where λ ≤ 1 is any positive constant and [·] denote the integer part function. Then,
we say that X is smaller than Y in the discrete proportional likelihood ratio order
(denoted by X ≤plr Y ).

Definition 3. We say that the discrete non-negative random variables X has
increasing likelihood ratio order (denoted by X ∈ IPLR) if pX([λx])

pX(x) for 0 ≤ λ ≤ 1
in increasing.

Theorem 1. Let X and Y be two discrete non-negative random variables with
probability functions PX(x) and PY (x) respectively. If X ≤lr Y and Y ∈ IPLR,
then X ≤plr Y .

Proof . Since
pY ([λx])

pX(x)
=
pY (x)

pX(x)

pY ([λx])

pY (x)

the proof is clear.

Let X and Y be discrete non-negative random variables with probability func-
tions P (X = x) =

αxθ
x
1

b(θ1)
and P (Y = x) =

βxθ
x
2

b(θ2)
respectively. So, using Definition

2, X ≤plr Y if and only if(
α[λx+λ]

α[λx]

)(
βx
βx+1

)
≥ θ2

θ1
[λx+λ]−[λx]

. (5)

Geometric Distribution: Let X and Y having geometric distribution with
parameters p1 and p2 respectively, using (5), we have X ≤plr Y if

PY ([λx])

PX(x)
=
q
[λx]−1
2 p2

qx−1
1 p1

is increasing in x. That is

q
[λx]−1
2 p2

qx−1
1 p1

≤ q
[λx+λ]−1
2 p2
qx1p1

that is equivalent to q1 ≤ q
[λx+λ]−[λx]
2 . If [λx + λ] = [λx], then q1 ≤ 1. If

[λx+ λ] = [λx] + 1, then q1 ≤ q2. So, X ≤plr Y if and only if p1 ≥ p2.
Poisson Distribution: Let X having Poisson distribution with parameter θ.

If
x!

[λx]!
θ[λx]−x ≤ (x+ 1)!

[λx+ λ]!
θ[λx+λ]−x−1

then,
PX([λx])

PX(x)
=

x!

[λx]!
θ[λx]−x

is increasing. If [λx+ λ] = [λx], then x!θ[λx]−x ≤ (x+ 1)!θ[λx]−x−1, so, θ ≤ x+ 1,
that by increasing h(x) = x+ 1, it implies that θ ≤ 1. But if [λx+ λ] = [λx] + 1,
then

x!

[λx]!
θ[λx]−x ≤ (x+ 1)!

([λx] + 1)!
θ([λx]+1)−x−1
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that is [λx + 1] ≤ x + 1, which always is true. Therefore, if X and Y having
Poisson distribution with parameters θ1 and θ2 respectively and θ1 ≤ θ2 ≤ 1, then
X ≤plr Y .
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Figure 3: The Dot-Dot line shows the Geometric distribution with parameter p = 0.5
and the stretch shows the Poisson distribution with parameter λ = 0.4.
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Figure 4: The Dot-Dot line shows the Poisson distribution with parameter λ1 = 0.2
and the stretch shows the Poisson distribution with parameter λ2 = 0.5.

Binomial Distribution: Consider X having binomial distribution with pa-
rameters n and p, then,

PX([λx])

PX(x)
=

x!

[λx]!

(n− x)!
(n− [λx])!

(
p

q

)[λx]−x

is increasing in x if

x!

[λx]!

(n− x)!
(n− [λx])!

(
p

q

)[λx]−x

≤ (x+ 1)!

[λx+ λ]!

(n− x− 1)!

(n− [λx+ λ])!

(
p

q

)[λx+λ]−x−1

If [λx+ λ] = [λx], we have

x!

(x+ 1)!

(n− x)!
(n− x− 1)!

≤ q

p
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that means n−x
x+1 ≤

q
p . The function h(x) = n−x

x+1 is decreasing in x. So, q ≥ np.
If [λx+ λ] = [λx] + 1, then,

n− x
n− [λx]

≤ x+ 1

[λx] + 1

that is n[λx]−x ≤ nx− [λx] which always is true. Therefore, if X having binomial
distribution with parameters n1 and p1 and Y having binomial distribution with
parameters n2 and p2, which n1 < n2 respectively. If n1p1

1−p1 ≤
n2p2
1−p2 ≤ 1, then,

X ≤plr Y .

Table 2: Necessary conditions for establishment discrete proportional likelihood ratio
order.

X ≤plr Y Conditions
X ∼ Poi(λ1) and Y ∼ Poi(λ2) λ1 ≤ λ2 ≤ 1

X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2) n1 < n2 and n1p1
1−p1

≤ n2p2
1−p2

≤ 1

X ∼ Ge(p1) and Y ∼ Ge(p2) p1 ≥ p2
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Figure 5: The Dot-Dot line shows the Binomial distribution with parameters n1 = 8
and p1 = 0.1 and the stretch shows the Binomial distribution with parameters
n2 = 10 and p2 = 0.09.

At the end of paper and in order to better understand, some distributions of
the PSD family are simulated satisfying in the above conditions.

4. Conclusions

In this paper, we compare some members of the PSD family due to discrete
likelihood ratio order. Then we presented the discrete version of proportional
likelihood ratio order as an extension of the discrete likelihood ratio order and
studied it for the PSD family.
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Abstract

The Cramér-von Mises criterion is employed to compare whether the
marginal distribution functions of a k-dimensional random variable are equal
or not. The well-known Donsker invariance principle and the Karhunen-
Loéve expansion is used in order to derive its asymptotic distribution. Two
different resampling plans (one based on permutations and the other one
based on the general bootstrap algorithm, gBA) are also considered to ap-
proximate its distribution. The practical behaviour of the proposed test
is studied from a Monte Carlo simulation study. The statistical power of
the test based on the Cramér-von Mises criterion is competitive when the
underlying distributions are different in location and is clearly better than
the Friedman one when the sole difference among the involved distributions
is the spread or the shape. Both resampling plans lead to similar results
although the gBA avoids the usual required interchangeability assumption.
Finally, the method is applied on the study of the evolution inequality in-
comes distribution between some European countries along the years 2000
and 2011.

Key words: Asymptotic Distribution, Bootstrap, Cramér-von Mises statis-
tic, Hypothesis testing, Permutation test, Repeated Measures.

Resumen

El criterio de Cramér-von Mises es empleado para comparar la igualdad
entre las distribuciones marginales de una variable aleatoria k-dimensional.
El conocido principio de invaranza de Donsker y la expansión de Karhunen-
Loéve se usan para derivar su distribución asintótica. Dos planes de re-
muestreo diferentes (uno basado en permutaciones y el otro basado en el al-
goritmo bootstrap general, gBA) son usados para aproximar su distribución.
El comportamiento práctico del test propuesto es estudiado mediante simula-
ciones de Monte Carlo. La potencia estadística del test basado en el criterio
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de Cramér-von Mises es competitiva cuando la distribuciones subyacentes
difieren en el parámetro de localización. Este test es claramente superior al
de Friedman cuando las únicas diferencias son en la dispersión o la forma.
Ambos planes de remuestreo obtienen resultados similares aunque el gBA
evita la hipótesis de intercambiabilidad. Finalmente, el método propuesto
es aplicado al estudio de la evolución de las desigualdades en los ingresos
entre algunos países Europeos entre los años 2000 y 2011.

Palabras clave: Bootstrap, distribución asintótica, estadístico de Cramér-
von Mises, medidas repetidas, test de hipótesis, test de permutaciones.

1. Introduction

The comparison of the equality among the marginal distribution functions of
a k-dimensional random variable is a common problem in statistical inference (for
example, in biomedicine, in problems of comparing diagnostic procedures or bioe-
quivalence (Freitag, Czado & Munk 2007). In practice, most frequent cases are
the study of one feature measured on the same subjects at different time moments
(analysis of repeated measures) and matched studies. Despite of, there exists a
number of methods of comparing the equality among k-distributions from inde-
pendent samples, the k-sample problem for dependent data has not been as widely
studied and, the traditional parametric (ANOVA) and nonparametric (Friedman
test) repeated measures procedures are the usual used techniques to solve these
problems.

In this context, several rank tests have been proposed. In a non exhaustive
revision: Ciba-Geigy & Olsson (1982) developed a specific one for comparing dis-
persion in paired samples design; Lam & Longnecker (1983) introduced modifi-
cations which improve the power of the classical Wilcoxon rank sum test for this
topic; Munzel (1999a) used the normalized version of distribution functions to de-
rive an asymptotic theory for rank statistics including ties and considered a mixed
model which permits almost arbitrary dependences; Munzel (1999b) studied dif-
ferent nonparametric permutation methods for repeated measures problems in a
two sample framework; most recently, Freitag et al. (2007) proposed a test based
on the Mallows distance with this goal. Other authors as Govindarajulu (1995)
Govindarajulu (1997) or Podgor & Gastwirth (1996) also dealt with this topic
from different approaches.

Although the use of bootstrap on multivariate problems is straightforward in
order to build confidence intervals and related estimates, the way to resampling
under the null (in particular, the way to involve this assumption on the resampling)
for preserving the original data structure is not direct and the use of bootstrap on
hypothesis testing (which involve paired design) is not so clear. It is not trivial
how to involve the (null) hypothesis of equality of the k marginal distributions of a
multivariate random variable. The most common procedure, the permutation test
(see, for example, Good 2000, Munzel 1999b), implies that the different components
of the k-dimensional random vector must be interchangeable (see Venkatraman &
Begg 1996 or, most recently, Nelsen 2007). Under the null, this is not a very strong
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assumption to compare two samples (most of the previous cited works engage, ex-
clusively, on this particular case) but, for three or more samples it means that the
relationship between each pair must be the same (it is also known as sphericity
hypothesis) and, in spite of for most of the usual statistics, in practice, the permu-
tation test has demonstrated its robustness with respect to this assumption, it is
usually violated.

In this paper, the authors deal with the problem of comparing the equality
among the k marginal distribution functions from a typical multivariate problem.
With this goal, the traditional Cramér-von Mises criterion is considered. The
Donsker invariance principle and the classical Gaussian processes theory, in par-
ticular, the Karhunen-Loève expansion, are used in order to obtain (a not explicit
version of) the asymptotic distribution for the Cramér-von Mises statistic when
the samples are from the same subjects. The properties of this statistic allow
to develop a resampling procedure which does not need the (usual) interchange-
ability (or sphericity) assumption. This method is described and its consistency
is proved. We think it is worth mentioning that, the considered procedures (the
asymptotic, permutation and the bootstrap ones), are simple, useful and easily to
implement. A simulation study is carried out (Section 3); its results suggest that
the Cramér-von Mises criterion obtains good results in all considered situations
and it is clearly better than the Friedman test when distributions differ mainly
in their spread or shape. These results are the usual ones when the Cramér-von
Mises criterion is used in other context (see, for example, Martínez-Camblor &
Uña-Álvarez (2009) or Martínez-Camblor (2011)). Finally, the proposed method
is applied on the study of the inequality incomes between thirty European coun-
tries during the years 2000 and 2011 (Section 4).

During the revision process of this paper, it has been published the work of
Quessy & Éthier (2012) (QE) which, from a slight different approach, deals with
the same problem. The main results of the present manuscript had been devel-
oped around 2008-2009 and, of course, independently of the previously cited work.
In order to keep this independence and, in spite of several reported results are
overlapping with the obtained by QE, we have maintained them in the appendix.

2. Cramér-von Mises Statistic for Repeated
Measures

The well-known Cramér-von Mises criterion introduced, separately by Harald
Crámer and Richard Edler von Mises (Cramér 1928, Von Mises 1991), was origi-
nally to compare the goodness of fit of a probability distribution F ∗ and a fixed
distribution function F0 and is given by

W 2 =

∫
(F ∗(t)− F0(t))2dF0(t)

In the immediately one-sample applications, F0 is the theoretical cumulative dis-
tribution function (CDF) and F ∗ is the empirical cumulative distribution func-
tion (ECDF), F̂n. Csörgo & Faraway (1996) derived the exact distribution for
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this statistic and proposed a correction for its asymptotic distribution. Anderson
(1962) derived the asymptotic distribution for the two-sample case. A standard
k-dimensional generalization was proposed by Kiefer (1959) which considered the
expression

W 2
k =

k∑
i=1

ni

∫
(F̂ni

(Xi, t)− F̂N (X, t))2dF̂N (X, t)

where N =
∑k

i=1 ni and F̂ni
(Xi, t) and F̂n(X, t) are the ECDF referred to the

ith sample (1 ≤ i ≤ k) and to the pooled sample, respectively. Brown (1982)
also dealt with the k-sample problem, he studied the asymptotic distribution and
introduced a permutation test based on the same criterion. In Martínez-Camblor
& Uña-Álvarez (2009), the statistical power of this statistic was considered in a
simulation study (joint with other six statistics based on the ECDF and four more
based on the kernel density estimator). The W 2

k test obtained very competitive
results in the eight considered models (four symmetrical and four asymmetrical).

In this section we study the different approximations for the distribution ofW 2
k

when data are from a multivariate variable i.e., in our case, we have a k-dimensional
random sample X = (X1, . . . , Xk) with Xi = (xi1, . . . , xin) (n subjects have been
collected) for i ∈ 1, . . . , k, from a k-dimensional random variable ξ = (ξ1, . . . , ξk).
For each u = (u1, . . . , uk) with u1, . . . , uk ∈ R the k dimensional functions

F̂n(X,u) =(F̂n,1(X1, u1), . . . , F̂n,k(Xk, uk))

F (u) =(F1(u1), . . . , Fk(uk))

denote the vectors with the ECDFs and the theoretical cumulative distribution
functions (CDFs), respectively. In Theorem 1, it is proved (we must remark; a
non explicit version of) the asymptotic distribution for the statistic

W 2
k (n) =

k∑
i=1

n

∫
(F̂n,i(Xi, t)− F̂n,•(X, t))2dF̂n,•(X, t)

where F̂n,i(Xi, t) (1 ≤ i ≤ k) is the ECDF referred to the ith sample and
F̂n,•(X, t) = k−1

∑k
i=1 F̂n,i(Xi, t), when the (null) hypothesis

H0 : F1 = · · · = Fk (= F ) (1)

is true.

Theorem 1. Let ξ be a k-dimensional random vector and let X be a random
sample from ξ (with size n), by using the above notation, if F1 = · · · = Fk (= F )
(null hypothesis), it is hold the (weak) convergence

W 2
k (n)

L−→n

k∑
i=1

∑
l∈N

λi,lM
2
i,l

where {M l = (M1,l, . . . ,Mk,l)}l∈N is a sequence of k-dimensional, normal dis-
tributed random variables whose marginals follow a N(0, 1) distribution and
{{λi,l}ki=1}l∈N are non negative constants satisfying

∑
l∈N λ

2
i,l <∞ for 1 ≤ i ≤ k.
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The above Theorem guarantees the consistency and gives the convergence rate
for the studied statistic. However, strictly speaking, this result does not provide
its distribution in full. In order to build asymptotic critical regions, the explicit
values for the {{λi,l}ki=1}l∈N coefficients must been known (eigenvalues and eigen-
functions must be computed). However, we want to note that this is a non-trivial
problem which involves complex (and sometimes, for some readers, cumbersome
analysis see, for example, Deheuvels 2005). In addition, these eigenvalues depend
on the covariance data structure and they should be computed particularly for each
problem. The following remark is devoted to point out some comments about the
eigenvalues calculation in the two-sample case.

Note 1. In the two sample-case, the asymptotic distribution of W 2
k (n) under the

null is equivalent to the distribution of W 2 =
∫

(W1{t}−W2{t})2dt, where Wi{t}
(i ∈ 1, 2) is a standard Brownian bridge. Eigenvalues and eigenfunctions are the
non zero solutions to the Fredholm type integral equation

λjej(u) =

∫
C(u, v)e(v)dv

with the above restrictions on the eigenfunctions, ej (i.e. orthonormality). In this
particular setting,

C(u, v) =E[(W1{u} −W2{u})(W1{v} −W2{v})]
=2 (u ∧ v − uv)− (f(u, v) + f(v, u))

where f(s, t) = E[W1{s}W2{t}] (note that f(s, t) = 0 for independent samples).
Obviously, the particular solutions depend on the function f . For instance, as-
suming f(u, v) + f(v, u) = u ∧ v − uv, functions sin(jπu) and cos(jπu) (j ∈ N)
are possible solutions which lead to eigenvalues in the form λj = (jπ)−2 (see, for
instance, Van der Vaart 1998). �

Usually, in order to approximate the asymptotic distribution, the largest eigen-
value is taken and the other ones are ignored i.e., by using the coefficients proper-
ties (see the Theorem 1 proof in the Appendix, in particular, equation (8)), it is
obtained the approximation

k∑
i=1

∑
l∈N

λi,lM
2
i,l =

k∑
i=1

(∑
l∈N

λi,l
(
M2

i,l − 1
)

+ Ci

)
∼

k∑
i=1

(
λi,1

(
M2

i,1 − 1
)

+ Ci

)
Unfortunately, the first eigenvalue is also unknown. However, for each i ∈ 1, . . . , k,
we can approximate the first (and, therefore, the biggest) eigenvalue by

λ2i,1 ∼ λ̃2i,1 =

∫∫
Ci,i(s, t)

2dF (s)dF (t)

Note that it is known that λ̃i,1 ≥ λi,1 (i ∈ 1, . . . , k) and the equality is true
only when λi,l = 0 ∀l > 1. Finally, in order to save the relationship among
the different involved samples, we build M1 = (M1,1, . . . ,Mk,1) such that, for
1 ≤ i, j ≤ k

CiCjE
[
M2

i,1M
2
j,1

]
= E

[∫
{Y i

Fi
(t)− ȲF,•(t)}2dF (t)

∫
{Y j

Fj
(t)− ȲF,•(t)}2dF (t)

]
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We can work, without loss of generality, with E [M1,1M2,1]. It is easy to check that
2E[M1,1M2,1]2 = E[M2

1,1M
2
2,1]− 1 and

E
[
M2

1,1M
2
2,1

]
=

1

C1C2
E
[∫
{Y 1

F1
(t)− ȲF,•(t)}2dF (t)

∫
{Y 2

F2
(t)− Y 2

F,•(t)}2dF (t)

]
=

1

C1C2
E
[∫∫

{Y 1
F1

(t)− ȲF,•(t)}2{Y 2
F2

(s)− ȲF,•(s)}2dF (t)dF (s)

]
=

1

C1C2

∫∫
E
[
(Y F (t)at

1)2(Y F (s)at
2)2
]
dF (t)dF (s)

With some additional computes and taking into account that, for 1 ≤ i, j ≤ k,
Fi,j(u, v) = Fj,i(v, u), it is obtained

C1,2(s, t) =E
[
(Y F (s)at

1)(Y F (t)at
2)
]

=F1,2(s, t)− F̄1,·(s, t)− F̄2,·(t, s) + F̄·,·(s, t) (2)

then,

E
[
M2

1,1M
2
2,1

]
=

1

C1C2

∫∫ (
2C2

1,2(s, t) + C1(s)C2(t)
)
dF (s)dF (t) (3)

and the asymptotic distribution can be approximated by

CA =

k∑
i=1

(
λ̃i,1

(
M2

i,1 − 1
)

+ Ci

)
(4)

We compute λ̃i,1 (1 ≤ i ≤ k) by using the estimation of some parameters of
the statistic and, unfortunately, from this method we cannot estimate any other
eigenvalue. In the independent case, the quality of this approximation has been
checked via simulations (see, for instance, Martínez-Camblor, Carelos & Corral
(2012), and references therein).

Note that both the expected value and the variance of CA are equal to the
W 2

k (n) ones. The (theoretical) unknown parameters which are involved in the
equation (4) can be estimated by putting the respective ECDFs instead of the the-
oretical ones (typical plug-in method) in their explicit expressions (equations (2)
and (3)). At this point, it is worth to remember that, under the null hypothesis,
all the marginal functions are equal. Once these values are computed, the asymp-
totic distribution under the null might be approximated by using some bound for
the quadratic forms (see, for example, Alkarni & Siddiqui 2001) or by using the
Monte Carlo method: Generating T independent samples (with the original sam-
ple size) from the k-dimensional normal distribution (previously we must compute
its correlation matrix by using the corresponding equations) and computing the
respective T asymptotic values of the statistic by using (4). In Section 3, the latter
possibility is employed in the simulation study.

On the other hand, the Cramér-von Mises statistic properties allow to pro-
pose an useful resampling plan in order to approximate its distribution for paired
samples in small size problems. The following subsection is devoted to develop a
bootstrap approximation in the current context.
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2.1. Bootstrap Approximation

The bootstrap, introduced and explored in detail by Bradley Efron (Efron 1979,
Efron 1982), is an (not only but mainly nonparametric) intensive computer-based
method of statistical inference which is often used in order to solve many real ques-
tions without the need of knowing the underlying mathematical formulas. Besides,
under regularity conditions, the distribution bootstrap estimation is asymptoti-
cally minimax among all possible estimates (Beran 1982).

Despite of the bootstrap method has received a great deal of attention and
popularity, its use on statistical hypothesis testing has received considerable, al-
though minor attention (Martin 2007). Following Hall & Wilson (1991), many
authors such as Westfall & Young (1993) have promoted null resampling as crit-
ical to the proper construction of bootstrap tests. However, in related sample
distribution comparison, it is not straightforward how to resample under the null
and the permutation tests (Good 2000) are the usual ones employed with this
goal. In order to guarantee the consistency of the last method, exchangeability
among the different components must be assumed (Venkatraman & Begg 1996)
and, although for most of the statistics, in practice, this technique has proved its
robustness with respect to this assumption, in k-dimensional problems (k > 2) it
is usually violated. Recently, Martínez-Camblor et al. (2012) proposed a general
resampling plan which focus its use on hypothesis testing without the need of as-
suming additional conditions. In particular, for the present problem, under the
null, it is easy to prove that:

Theorem 2. Under the Theorem 1 assumptions and by using the same nota-
tion. Let X∗ = (X∗1 , . . . , X

∗
k) be an independent random sample generated from

F̂n(X, ·) (multivariate ECDF referred to the random sample X). If

W 2,∗
k (n) =

k∑
i=1

n

∫
{F̂ ∗n,i(X∗i , t)− F̂n,i(Xi, t)}2dF̂ ∗n,•(X

∗, t)

− nk
∫
{F̂ ∗n,•(X

∗, t)− F̂n,•(X, t)}2dF̂ ∗n,•(X
∗, t)

where for each i ∈ 1, . . . , k, F̂ ∗n,i(X∗i , t) is the ECDF referred to X∗i and F̂ ∗n,•(X
∗, t)

= k−1
∑k

i=1 F̂
∗
n,i(X

∗
i , t). Under the null, it is held,{

PX

(
W∈,∗‖ (\) ≤ u

)
− P

(
W∈‖ (\) ≤ u

)}
−→n 0 a.s.

where PX denotes probability conditionally on sample X.

The above result proves the punctual convergence (for each, fixed, u ∈ R) of
the bootstrap method. Uniform convergence can also be derived (under mild and
usual conditions) from general theory of U and V statistics (see, for example,
Arcones & Gine 1992). Theorem 2 guarantees that the distribution of W 2

k (n)

can be approximated by the W 2,∗
k (n) one and, as usual, this distribution can be

approximated by using the Monte Carlo method following the algorithm:
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B1. From the original sample, X, compute W 2
k (n).

B2. From the multivariate cumulative empirical distribution function, F̂n(X, t),
draw B independent k-dimensional random samples with size n,

X∗,b = (X∗1 , . . . , X
∗
k), 1 ≤ b ≤ B

B3. For b ∈ 1, . . . , B compute W 2,∗,b
k (n), from X∗,b.

B4. The distribution of W 2
k (n) is approximated by {W 2,∗,1

k (n), . . . ,W 2,∗,B
k (n)}

i.e., the final P -value is given by

P =
1

B

B∑
b=1

I{W 2,∗,b
k (n) > W 2

k (n)}

The main difference between this algorithm and the classical bootstrap is that,
in the proposed method, the null hypothesis (and only the null hyporthesis) is
used in order to compute the statistic (bootstrap) values instead of to be used to
draw the bootstrap samples. We do not resampling from the null and this fact,
allows to preserve the original data structure.

Permutation method is based on the idea that within the same subject, each
value can be located in any position. For this claim, not only the null must be
true but the interchangeability it also must be hold. Although, in practice, the
permutation method has proved its robustness for a wide variety of statistics, let
us to go to an extreme. We consider a three-sample problem (sample size n) where
the first and second variables are the same and the third one is independent from
the other two. In this setting it is derived the equality

W 2
k (n) =n

∫ [
1

9
{F̂n,1(X1, t)− F̂n,3(X3, t)}2

]
dF̂n,•(X, t)

+ n

∫ [
1

9
{F̂n,1(X1, t)− F̂n,3(X3, t)}2

]
dF̂n,•(X, t)

+ n

∫ [
4

9
{F̂n,3(X3, t)− F̂n,1(X1, t)}2

]
dF̂n,•(X, t) = Sn,1 + Sn,2 + Sn,3.

It is obvious that the value of the difference between the F̂n,1 and F̂n,3 has
not the same weigth in the three summands. However the permutation algorithm
assumes that the summands have the same distribution, in particular the same
expected value. Table 1 depicts the means of Sn,i (labelled as S̄n,i) for i ∈ 1, 2, 3 in
2,000 Monte Carlo (MC) simulations and when the permutation (P) and the pro-
posed bootstrap (B) are used. The observed rejection proportion (α = 0.05) and
the value of W 2

k (n) are also included. The underlying distributions are uniforms
on [0, 1] and n = 50.

Although the W 2
k (n) is, in general, well estimated by the permutation method

(the mean is similar to the expected one), the total value is evenly distributed
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Table 1: Means for the three summands and for W 2
k (n) in the problem above described

for the Monte Carlo approximation (MC) (2,000 iterations) and for the Boot-
strap and Permutation methods. Observed rejection percentages (α = 0.05)
are also included.

S̄n,1 S̄n,2 S̄n,3 W 2
k (n) % Rejection

MC 0.0378 0.0378 0.1456 0.2213 5.0%
P 0.0753 0.0744 0.0749 0.2247 8.8%
B 0.0368 0.0368 0.1473 0.2210 5.4%

among the three summands. In spite of for the W 2
k (n) the results are, in gen-

eral, good (the observed rejection proportion is too big, but this is an extreme
and bit realistic problem), permutation method does not reflect the data structure
and this fact can drive to mistake when different weighting are considered for the
involved summands or, for instance, in presence of different missing data frame-
works. In summary, the correct performance of the permutation method can not
be guaranteed in absence of the exchangeability hyptothesis.

3. Simulation Study

In order to investigate the practical behaviour of the proposed methodology,
a Monte Carlo simulation study has been carried out. We estimate the statistical
power (α = 0.05) from 2,000 Monte Carlo replications for different problems. For
the Cramér-von Mises test, asymptotic approximation, CA (the P -value is ap-
proximated from 499 Monte Carlo replications following the approximation given
in (4)), bootstrap approximation, CB (B = 499 in algorithm B1-B4) and the
permutation method, CP (the P -value is also approximated from T = 499 repli-
cations) are considered. Although the number of random combinations is small
to obtain a good estimation for a particular P -value, it is enough to obtain a
good estimation for the statistical power. Note that, here, we are not interested
in the result for each particular problem but in the final rejection proportion. The
classical non-parametric Friedman (FR) test is also included as the reference one.
Let be Z = (Z1, Z2, Z3) a three dimensional random vector from a N3(0,Σ) dis-
tribution where 0 = (0, 0, 0) and the components of the covariance matrix are
σi,j = 1 if i = j and σ1,2 = σ1,3 = 1/4 and σ2,3 = b (cases b = 1/4 and b = 3/4
are considered) and let be Ni, 1 ≤ i ≤ 4, independent random variables with
standard normal distribution. A three dimensional random sample with size n,
X = (X1, X2, X3), is drawn from the following symmetrical models (MD):
0-I. X1 ≡ Z1, X2 ≡ Z2, X3 ≡ Z3 (Null hypothesis).
1-I. X1 ≡ Z1, X2 ≡ Z2, X3 ≡ (1− a) ∗ Z3 + a ∗ 3Z3.
2-I. X1 ≡ Z1, X2 ≡ Z2, X3 ≡ (1− a) ∗ Z3 + a ∗ (Z3 + 1).
3-I. X1 ≡ Z1, X2 ≡ Z2, X3 ≡ (1− a) ∗ Z3 + a ∗ (

√
3Z3 + 1).

The following asymmetrical models are also considered:
0-II. X1 ≡ Z2

1 +N2
1 +N2

2 , X2 ≡ Z2
2 +N2

1 +N2
3 , X3 ≡ Z2

3 +N2
2 +N2

3 (Null hypothesis).
1-II. X1 ≡ Z2

1+N
2
1 +N

2
2 , X2 ≡ Z2

2+N
2
1 +N

2
3 , X3 ≡ (1−a)∗(Z2

3+N
2
2 +N

2
3 )+a∗(Z3+3).

2-II. X1 ≡ Z2
1 +N2

1 +N2
2 , X2 ≡ Z2

2 +N2
1 +N2

3 , X3 ≡ (1− a) ∗ (Z2
3 +N2

2 +N2
3 )+ a ∗Z2

3 .
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3-II. X1 ≡ Z2
1 +N2

1 +N2
2 , X2 ≡ Z2

2 +N2
1 +N2

3 , X3 ≡ (1 − a) ∗ (Z2
3 +N2

2 +N2
3 ) + a ∗

(Z2
3 +

∑4
i=1N

2
i ).

Where a = 3/4 and M = (1− b) ∗X + b ∗Y denotes a mixture which takes values
on X with probability (1 − b) and on Y otherwise. A graphical representation
for the respective density functions is shown in Figure 1.
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Figure 1: Density functions for the different considered models.

Table 2 shows the observed rejection proportions for type I (symmetrical)
model for two different sample sizes (n = 25, 50). Figure 2 depicts the ob-
served statistical power for the type I models against sample size (sample sizes
of 10, 25, 40, 50, 65 and 75 were considered). Despite of the rejected observed
percentages are bit larger than the expected ones (in special for the CP approxi-
mation for b = 3/4) the nominal level is, in general, well respected. On the other
hand, the Cramér-von Mises test obtains better results than the Friedman one
even when the difference among the distributions is only in the position parameter
while the variance-covariance structure is the same. Approximations by permuta-
tion and bootstrap obtain quite similar results, although the permutation one is a
bit better for σ2,3 = 3/4. The asymptotic approximation obtains worst results for
small sample sizes but quite similar than the other ones for middle sample sizes
(n > 40).

Table 3 and Figure 3 are analogous to Table 2 and Figure 2, respectively, for
type II (asymmetrical) models. The nominal level is well respected in all considered
cases. For type II models (Figure 3) the Cramér-von Mises criterion is still the
best when the main difference is not the location parameter (model 1-II). When
the location parameter is the main difference among the curves, the Friedman
test is the best one in model 3-II and the Cramér-von Mises test is the best for
model 2-II, although both tests obtain quite similar results. In this scheme the
approximation to the asymptotic distribution for the Cramér-von Mises test is
slow and, in general, its results are not competitive for n ≤ 50.
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Table 2: Observed rejection probabilities for type I (symmetrical ones) models. The
nominal level is α = 0.05.

b = 1/4 b = 3/4

n CB CP CA FR CB CP CA FR

0-I 25 0.059 0.060 0.037 0.051 0.065 0.074 0.042 0.068
50 0.051 0.052 0.051 0.048 0.048 0.057 0.045 0.039

1-I 25 0.319 0.335 0.219 0.059 0.365 0.435 0.255 0.058
50 0.713 0.733 0.699 0.050 0.804 0.856 0.778 0.049

2-I 25 0.793 0.780 0.772 0.711 0.875 0.889 0.815 0.913
50 0.980 0.980 0.980 0.938 1.000 1.000 1.000 1.000

3-I 25 0.576 0.578 0.500 0.410 0.645 0.682 0.528 0.585
50 0.874 0.873 0.874 0.688 0.985 0.990 0.980 0.877
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Figure 2: Observed rejection probabilities (α = 0.05) for the three different consid-
ered approximations of the Crámer-von Mises statistic distribution and the
Friedman test against sample size for the symmetrical (type I) models.
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Table 3: Observed rejection probabilities for type II (asymmetrical ones) models. The
nominal level α = 0.05.

b = 1/4 b = 3/4

n CB CP CA FR CB CP CA FR

0-II 25 0.052 0.058 0.030 0.058 0.056 0.062 0.032 0.054
50 0.061 0.063 0.057 0.058 0.054 0.060 0.051 0.054

1-II 25 0.293 0.295 0.197 0.106 0.312 0.304 0.207 0.108
50 0.632 0.628 0.603 0.163 0.619 0.625 0.592 0.159

2-II 25 0.902 0.904 0.872 0.772 1.000 1.000 1.000 0.999
50 0.932 0.931 0.906 0.845 1.000 1.000 1.000 1.000

3-II 25 0.726 0.738 0.624 0.847 0.737 0.752 0.632 0.875
50 0.985 0.985 0.979 1.000 1.000 1.000 0.995 1.000
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Figure 3: Observed rejection probabilities (α = 0.05) for the three different consid-
ered approximations of the Crámer-von Mises statistic distribution and the
Friedman test against sample size for the asymmetrical (type II) models.
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4. Inequality Incomes Analysis

In order to illustrate the practical performance of the proposed method we
considered the study of the inequality incomes between thirty European countries.
The inequality measure is a complex problem which has been addressed from dif-
ferent approaches (see Cowel (2009) and references therein). Although the Gini
index is, probably, the most popular measure of inequality, other approaches have
also been considered (see, for instance, Martínez-Camblor 2007). Our objective
is to study the (possible) changes in the income distribution inequalities in Eu-
rope. With this goal the GDP per capita in PPS (quote from the site http://epp.
eurostat.ec.europa.eu/tgm/table.do?tab=table&plugin=1&language=
en&pcode=tec00114: Gross Domestic Product (GDP) is a measure for the eco-
nomic activity. It is defined as the value of all goods and services produced less
the value of any goods or services used in their creation. The volume index of
GDP per capita in Purchasing Power Standards (PPS) is expressed in relation to
the European Union (EU-27) average set to equal 100. If the index of a coun-
try is higher than 100, this country’s level of GDP per head is higher than the
EU average and vice versa. Basic figures are expressed in PPS, i.e. a common
currency that eliminates the differences in price levels between countries allowing
meaningful volume comparisons of GDP between countries. Please note that the
index, calculated from PPS figures and expressed with respect to EU27 = 100, is
intended for cross-country comparisons rather than for temporal comparisons.) in
thirty European countries in the years 2000 and 2011 have been collected (down-
loaded from the above website). Due to our objective is not to study the incomes
distribution but the inequalities of these incomes, we have considered the relative
GDP per capita in PPS distribution i.e., the considered variable are 100 times
the original values divided by the European Union one (considering the currently
twenty-seven countries members) and the particular mean has been sustracted.
Figure 4 depicts the empirical cummulative distribution function (ECDF) and the
density estimation function for the considered GDP transformations.

The value of the Cramér-von Mises statistics between these two distributions
was 0.171. The approximate P-values were 0.012, 0.005 and 0.001 from the asymp-
totic, bootstrap and permutation algorithms (based on 10,000 replications), re-
spectively. All of them reject the null and it can be concluded the inequality of
the incomes does not be equal in 2000 and 2011. The Gini indices were 0.251 and
0.220, respectively.

5. Main Conclusions

The Cramér-von Mises criterion is widely used in order to compare cumula-
tive distribution functions. Despite of different situations have been considered,
independent k-sample comparison is the most studied problem. We propose the
use of this criterion in a typical k-related sample design. By using the Donsker
invariance principle and the Karhunen-Loève decomposition for stochastic Gaus-
sian processes its asymptotic distribution is developed. Although its explicit
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Figure 4: Upper, distribution (left) and density (right) estimation functions for the
relative GDP per capita in PPS in thirty European countries in the years
2000 (black) and 2011 (gray). Lower, bivariate density estimation for the
GDP per capita in PPS in years 2000 and 2011.

asymptotic distribution is still unknown, the obtained results allow to develop
an useful approximation. As usual, we also explore two different resampling ap-
proximations: the classical and well-known permutation test and the most recent
general bootstrap algorithm (gBA).

For independent samples, the Cramér-von Mises statistic is underlying distribu-
tion-free, its distribution does not depend on the distribution function where the
samples were drawn, and it can be tabulated in order to obtain the P-value for a
particular problem. In a paired sample design, the statistic distribution depends
on the relationships among the involved variables; this relationship always must
be estimated from the sample (therefore, universal eigenvalues do not exist for this
topic), increasing the necessary time to compute the given asymptotic approxima-
tion. This is the main handicap for using the asymptotic approximation which, in
general, obtains good results for moderate sample sizes.

A general bootstrap algorithm (gBA) and the usual permutation method are
also studied. The considered bootstrap procedure exploits a particular pivotal
function and introduce the null hypothesis at the moment of computing the value
of the (bootstrap) statistic instead of in the random bootstrap samples genera-
tion process. The main advantage is that the data structure is preserved and
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no additional assumptions (only the null) are required. Some details of its con-
sistency are also reported, however reader is referred to Martínez-Camblor et al.
(2012) for more details. This technique has already been used with success in
a paired sample extension of the AC-statistic (Martínez-Camblor 2010) and in
inference on a particular ecological diversity index (Martínez-Camblor, Corral &
Vicente 2011). In an extreme example is showed how the permutation method
can lead to mistakes when the interchangeability assumption is violated, which is
the usual situation when k > 2. However, the observed statistical power in our
simulation study is similar for the three different considered methods. We must
remark that the asymptotic and the bootstrap method avoid the exchangeability
assumption (Von Mises 1991, Nelsen 2007) and do not increase the methodology
complexity.

As in the independent case (see, for example Martínez-Camblor & Uña-Álvarez
2009), the simulation study results suggest that the Cramér-von Mises criterion is
clearly better than the (classical) Friedman test when the main difference among
the curves is not the location parameter and it obtains very good results otherwise.
On the other hand, the proposed asymptotic approximation obtains similar statis-
tical power than the ones based on resampling for moderate sample sizes. Relevant
differences between two considered variance-covariance matrix structures (b = 1/4
and b = 3/4) have not been observed.

We think that the considered practical case is specially good in order to illus-
trate the use of the proposed methodology. When the focus is not the location
parameter but the shape, which is the case of the inequality, the Cramér-von Mises
statistics conventionally obtains good powers in order to check the equality of the
involved distribution functions. In this context, traditional text like Friedman or
the Student T-test do not work but the Cramér-von Mises criterion has proved
that is a poweful test and a valuable tool for this kind of goals.

Part of the results provided in this manuscript are overlapped with the ones
obtained in Quessy & Éthier (2012). However, the present work has been developed
independent and previously to the publication of the Quessy and Éthier one. The
main differences between the works are:

(a) Our approach is more practical and, from our point of view more easy to
understand for non probabilistic readers.

(b) The permutation method is considered and discussed. A pathological case
where this method fails has been provided.

(c) A practical use of the gBA and a simulation study where the quality of the
provided approximations can be checked.

(d) The considered practical problem illustrates a situation where the equality
among the location parameters is not the hypothesis to be tested.
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Appendix

In this appendix we provide proofs for the two previously enunciated theorems.
In particular, Theorem 1 is based on the well-known Donsker invariance principle
and on classical Gaussian processes theory. In particular, we used the Karhunen-
Loéve decomposition in order to guarantee the existence of the necessary variables
and coefficients. These coefficients values (eigenvalues) are not explicitly com-
puted (the respective eigenfunctions are neither computed). These calculus are,
in general, cumbersome and complex depending, in the present case, on the data
covariance structure (therefore, they are different for each particular problem, uni-
versal coefficients do not exist). The following auxiliar result is, directly, derived
from the Donsker invariance principle:
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Lemma 1. Let ξ be a k-dimensional random vector and let X be a random sample
from ξ (with size n), by using the above notation, it is had the following weak
convergence √

n{F̂n(X,u)− F (u)} L−→n Y F (u)

where Y F (u) = (Y 1
F1

(u1), . . . , Y k
Fk

(uk)) is a k-dimensional Gaussian process which
follows a distribution Nk(0,Σ(u)) where

Σ(u) =

σ1,1(u1, u1) σ1,2(u1, u2) . . . σ1,k(u1, uk)

. . . . . . . . . . . . . . . . . . .

σk,1(uk, u1) σk,2(uk, u2) . . . σk,k(uk, uk)

 (5)

and σi,j(ui, uj) = Fi,j(ui, uj)− Fi(ui)Fj(uj) and Fi,j(ui, uj) = P{ξ〉 ≤ u〉 ∩ ξ| ≤
u|} for 1 ≤ i, j ≤ k.

Furthermore, for u, v ∈ R and 1 ≤ i, j ≤ k, E[Y i
Fi

(u)Y j
Fj

(v)] = σi,j(u, v) =

Fi,j(u, v)− Fi(u)Fj(v) where if (u ∧ v) = min{u, v},

Fi,j(u, v) =

{
P{ξ〉 ≤ u ∩ ξ| ≤ v} if i 6= j

P{ξ〉 ≤ (u ∧ v)} if i = j

Under the null given in (1) and if for each 1 ≤ i, j ≤ k and for u, v ∈ R we
define the functions: F̄·,i(u) = k−1

∑k
j=1 Fj,i(u, u), F̄·,·(v) = k−1

∑k
i=1 F·,i(v, v),

F̄·,i(u, v) = k−1
∑k

j=1 Fj,i(u, v), F̄·,·(u, v) = k−1
∑k

i=1 F·,i(u, v), Ci(u) = F (u) −
2F̄·,i(u) + F̄·,·(u) and Ci,j(u, v) = Fi,j(u, v) − F̄·,i(v, u) − F̄·,j(u, v) + F̄·,·(u, v) we
can obtain the following result,

Theorem 3. By using the Lemma 1 notation, if F1 = · · · = Fk (= F ) (null
hypothesis), it is held the (weak) convergence

W 2
k (n)

L−→n

k∑
i=1

∑
l∈N

λi,lM
2
i,l,

where {M l = (M1,l, . . . ,Mk,l)}l∈N is a sequence of k-dimensional, normal dis-
tributed random variables whose marginals follow a N(0, 1) distribution and
{{λi,l}ki=1}l∈N are non negative constants satisfying

∑
l∈N λ

2
i,l <∞ for 1 ≤ i ≤ k.

Proof . Keeping the Lemma 1 notation, if ȲF,•(t) = k−1
∑k

i=1 Y
i
Fi

(t) and taking
into account the well-known convergence supt∈R{F̂n(X, t) − F (t)} −→n 0 (a.s.).
It is easy to see that

W 2
k (n) =

k∑
i=1

n

∫
{F̂n,i(Xi, t) (6)

− F̂n,•(X, t)}2dF̂n,•(X, t)
L−→n

k∑
i=1

∫
{Y i

Fi
(t)− ȲF,•(t)}2dF (t)
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or equivalently, ∀u ∈ R,

P (W∈‖ (\) ≤ u
)
− P

 ‖∑
〉=∞

∫
{Y〉F〉

(t)− ȲF,•(t)}∈dF(t) ≤ u

 −→N 0 a.s.

On the other hand, if X(〉)(t) = {Y〉F〉
(t)− ȲF,•(t)} (1 ≤ i ≤ k) then, under the

null,
X (t) = (X(∞)(t), . . . ,X(‖)(t))

is a centred k-dimensional Gaussian process. Moreover, if for t ∈ R, t = (t, . . . , t)
and Σ(t) stands for the matrix defined in (2), for symmetry and under the null,
for i ∈ 1, . . . , k it is obtained,

E[X(〉)(t)∈] =aiΣ(t)at
i

=σi,i(t, t)− σ̄·,i(t)− σ̄i,·(t) + σ̄·,·(t) = F (t)− 2F̄·,i(t) + F̄·,·(t) = Ci(t)

where for 1 ≤ i ≤ k, ai = (−1/k, . . . ,
(i)

(k − 1)/k, . . . ,−1/k), σ̄·,i(t) = k−1
∑k

j=1

σj,i(t, t), σ̄i,·(t) = k−1
∑k

j=1 σi,j(t, t) and σ̄·,·(t) = k−1
∑k

i=1 σ̄i,·(t, t). In addition,
it is had the covariance

Ci,j(s, t) =E[X(〉)(∫)X(|)(t)]

=Fi,j(s, t)− F̄·,i(s, t)− F̄·,j(s, t) + F̄·,·(s, t) = Ci,j(s, t) (1 ≤ i, j ≤ k)

and it is easy to check that, for i ∈ 1, . . . , k,∫∫
Ci,i(s, t)

2dF (s)dF (t) <∞

This property allows to apply the Karhunen-Loève decomposition (see, for exam-
ple, Adler 1990) in order to obtain the representation

X(〉)(t) =
∑
l∈N

√
λ〉,l e〉,l(t)M〉,l (for each i ∈ 1, . . . , k) (7)

where (for each i ∈ 1, . . . , k) {ei,l(t)}l∈N is a convergent orthonormal sequence
(also known as eigenfunctions) i.e.,∫

ei,p(t)ei,q(t)dF (t) =

{
0 if p 6= q

1 if p = q

{M l = (M1,l, . . . ,Mk,l)}l∈N are k-dimensional random vectors which marginal
distributions follow a N(0, 1) and, for 1 ≤ i ≤ k {{λi,j}ki=1}j∈N, are non negative
constants (also known as eigenvalues) satisfying

λi,1 ≥ · · · ≥ λi,l ≥ · · · ≥ 0 ∀i ∈ 1, . . . , k.
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From (7), it is straightforward that, for i ∈ 1, . . . , k,∫
X(〉)(t)∈dF(t) =

∫ (∑
l∈N

√
λi,l ei,l(t)Mi,l

)2

dF (t)

=

∫ ∑
l∈N

∑
j∈N

√
λi,l
√
λi,j ei,l(t)ei,j(t)Mi,lMi,jdF (t)

=
∑
l∈N

∑
j∈N

√
λi,l
√
λi,jMi,lMi,j

∫
ei,l(t)ei,j(t)dF (t) (8)

=
∑
l∈N

λi,lM
2
i,l (9)

Therefore, from the Fubini Theorem, for i ∈ 1, . . . , k,∑
l∈N

λi,l = E
(∫
X(〉)(t)∈dF(t)

)
=

∫
E
(
X(〉)(t)∈

)
dF (t)

=

∫
Ci(t)dF (t) = Ci

(10)

and ∑
l∈N

λ2i,l =

∫∫
Ci,i(s, t)

2dF (s)dF (t) <∞ (11)

Now, we are interested in studying the joint distribution of M l (for each fixed
l ∈ N). We will prove that

∑k
i=1 aiMi,l follows a normal distribution for each

a1, . . . , ak ∈ R and for l ∈ N. Note that, for each (fixed) l ∈ N, we have that

X ∗(t) = (a1X(∞)(t) e∞,l(t), · · · ,a‖X(‖)(t) e‖,l(t))

is a k-dimensional centred Gaussian process. From (7), for each i ∈ 1, . . . , k

ai ei,l(t)
∑
j∈N

√
λi,l ei,j(t)Mi,j = aiX(〉)(t) e〉,l(t)

hence,

ai
∑
j∈N

√
λi,jMi,j

∫
ei,l(t) ei,j(t)dF (t) = ai

∫
X(〉)(t) e〉,l(t)dF(t)

We can assume that λi,l 6= 0 for 1 ≤ i ≤ k (if some λi,l = 0 (1 ≤ i ≤ k),
Mi,l does not interfere in any definition and we would have freedom to select it
independently with the other ones) hence, from the eigenfunctions properties

k∑
i=1

aiMi,l =

k∑
i=1

ai√
λi,l

∫
X(〉)(t) e〉,l(t)dF(t)

=

∫ k∑
i=1

ai√
λi,l
X(〉)(t) e〉,l(t)dF(t)

follows a normal distribution.
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From (6), (7) and (8) we know that there exists a sequence of k-dimensional
normal distributed random variables, {M j}j∈N whose marginals follow a N(0, 1)
distribution and non negative constants {{λi,j}ki=1}j∈N satisfying (9) and (10),
such that

W 2
k (n)

L−→n

k∑
i=1

∑
j∈N

λi,jM
2
i,j

and the proof is concluded.

Theorem 4. Under the Lemma 1 assumptions and by using the same nota-
tion. Let X∗ = (X∗1 , . . . , X

∗
k) be an independent random sample generated from

F̂n(X, ·) (multivariate ECDF referred to the random sample X). If

W 2,∗
k (n) =

k∑
i=1

n

∫
{F̂ ∗n,i(X∗i , t)− F̂n,i(Xi, t)}2dF̂ ∗n,•(X

∗, t)

− nk
∫
{F̂ ∗n,•(X

∗, t)− F̂n,•(X, t)}2dF̂ ∗n,•(X
∗, t)

where for each i ∈ 1, . . . , k, F̂ ∗n,i(X
∗
i , t) is the ECDF referred to X∗i and

F̂ ∗n,•(X
∗, t) = k−1

∑k
i=1 F̂

∗
n,i(X

∗
i , t). Under the null, it is derived,{

PX

(
W∈,∗‖ (\) ≤ u

)
− P

(
W∈‖ (\) ≤ u

)}
−→n 0 a.s.

where PX denotes probability conditionally on sample X.

Proof . It is easy to check that,

W 2
k (n) =

k∑
i=1

n

∫
{F̂n,i(Xi, t)− F̂n,•(X, t)}2dF̂n,•(X, t)

=

k∑
i=1

n

∫
{F̂n,i(Xi, t)− Fi(t)}2dF̂n,•(X, t)

−nk
∫
{F̂n,•(X, t)− F (t)}2dF̂n,•(X, t).

And, directly from the Lemma 1,

W 2
k (n)

L−→n

k∑
i=1

∫
Y i
Fi

(t)2dF (t)− k
∫
ȲF,•(t)

2dF (t)

Of course, the above equation is equivalent to the one in (6). Also from the Lemma
1 and classical theory of stochastic processes (in particular, Horváth & Steinebach
(1999) proved that the expressions supt∈R|F̂n(X, t)−F (t)| and supt∈R|F̂ ∗n(X∗, t)−
F̂n(X, t)| where X∗ is an independent random sample with size n generated from
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F̂n(X, ·) (ECDF referred to the random sample X which sample size is n) have
the same asymptotic distribution), for each u ∈ R, it is had the convergence,PX

(
W∈,∗‖ (\) ≤ u

)
− P

 ‖∑
〉=∞

I\
(
Y〉
F̂\,〉

,YF̂\,•(t)
)
≤ u

 −→n 0 a.s.

where YF̂n,i
(1 ≤ i ≤ k) and ȲF̂n,• are the processes which appear in the Lemma

2.1 and, for i ∈ 1, . . . , k,

In

(
Y i
F̂n,i

, YF̂n,•(t)
)

=

∫
Y i
F̂n,i

(t)2dF̂n,•(X, t)− k
∫
ȲF̂n,•(t)

2dF̂n,•(X, t)

Due, under the null hypothesis, ∀t ∈ R, it is had the convergence F̂n(X, t) −→n

F (t) (a.s.), for each u ∈ R, it is directly derived that{
PX

(
W∈,∗‖ (\) ≤ u

)
− P

(
W∈‖ (\) ≤ u

)}
−→n 0 a.s.
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Abstract

A new method for detecting significant p-values is described in this pa-
per. This method, based on the distribution of the m-th order statistic of a
U(0, 1) distribution, is shown to be suitable in applications where m → ∞
independent hypothesis are tested and it is of interest for a fixed type I error
probability to determine those being significant while controlling the false
positives. Equivalencies and comparisons between our method and others
methods based-on p-values are also established, and a graphical representa-
tion of the distribution of the test statistic is depicted for different values of
m. Finally, our proposal is illustrated with two microarray data sets.

Key words: Extreme values theory, p-value, Type I error probability, Mul-
tiple testing, Genetic data.

Resumen

Se describe una nuevo método para la detección de valores p significativos.
Este método, basado en el m-ésimo estadístico de orden de la distribución
U(0, 1), es adecuado en casos en los que se realizan m → ∞ pruebas de
hipótesis independientes y es de interés determinar aquellas que son signi-
ficativas, controlando los falsos positivos, para una probabilidad de error tipo
I predeterminada. Adicionalmente, se realiza una comparación con algunas
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pruebas clásicas y se grafica la distribución del estadístico de prueba para
diferentes valores de m. Finalmente se ilustra el uso de la metodología con
dos conjuntos de datos provenientes de estudios con microarreglos.

Palabras clave: teoría de valores extremos, valor-p, probabilidad de error
tipo I, comparaciones múltiples, datos genéticos.

1. Introduction

Genome-wide association studies (GWAS) are aimed at identifying genetics
variants associated with a trait (Manolio 2010). For this, hundred of thousands
participants with and without a particular disease (or trait) are required, and
hundred of thousand of genetic variants, i.e., single nucleotide polymorphisms
(SNPs), are read using SNPs arrays. Associated variants are further determined
after performing (not necessarily) independent statistical tests comparing either
the allele frequency or the distribution of the genotypes of these SNPs between
cases and controls. Further, the correspondent p-value for each SNP is used to
determine whether it is associated with the disease.

As a total of m→∞ independent SNPs are being tested in a typical GWAS,
the problem of determining which variants are associated with the specific trait
can be reduced to a multiple testing problem (for a review see Shaffer 1995) and
so the family-wise error rate (FWER), i.e., the probability that one or more of the
significance tests results in a type I error, must be controlled at level α. For such
purpose, several methods can be applied (Bonferroni 1935, Shaffer 1995, Benjamini
& Hochberg 1995, Nyholt 2004, Liu et al. 2010). In general terms, these methods
use the p-values for each SNP and compare with a (adaptative) threshold, such
that the SNPs associated with the trait are those for which the p-value is grater
(or lower) than that threshold.

Here we describe a new method to detect p-values while controlling the FWER
at level α. This method is heavily based on extreme values theory and considers
the distribution of m-th order statistic of a U(0, 1). We derive the test statistic,
show its equivalency with Bonferroni’s method, and provide asymptotic results for
its limiting distribution. In addition, we report preliminary results of a simulation
study in which, under the null hypothesis, i.e., p ∼ U(0, 1), the limiting distri-
bution and the simulated values are depicted for different values of m. Finally,
we apply our method to two well-known microarray data sets (Golub et al. 1999,
Mootha et al. 2003).

2. Describing the Method

2.1. Background

Suppose that m→∞ independent hypotheses of the form

H0,i : θi ∈ Θ vs. H1,i : θi /∈ Θ i = 1, 2, . . . ,m (1)
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are tested, with θi some parameter of interest and Θ the parameter space. Let
α ∈ (0, 1) be the type I error probability at which the ith hypothesis is tested and

Pi = 1−G(Ti) i = 1, 2, . . . ,m (2)

be its P -value. In (2), Ti is the test statistic for the ith hypothesis and G its
cumulative distribution function (cdf ). Under H0, P1, P2, . . . , Pm is a random
sample from a U(0, 1) (Sackrowitz & Samuel-Cahn 1999, Murdoch, Tsai & Adcock
2008).

Let V be a random variable with cdf F , and let V(m) = max{V1, V2, . . . , Vm}
be its maximum in a random sample of size m. The exact distribution of V(m) is
given by Casella & Berger (2001):

P (V(m) ≤ t) = {F (t)}m (3)

Note that if F is not known, (3) cannot be calculated. However, Serfling (1980,
pp. 89) presents an alternative using extreme values theory and asymptotic results.
As in a GWAS m→∞ independent hypothesis are being tested, to build up our
methodology on such results seems intuitive.

2.2. The Test

Consider the random variable

Dm = (V(m) − am)/bm (4)

with V(m) as previously defined. For some choices of constants {am} and {bm}, the
limiting distribution of Dm is known (Serfling 1980, pp. 89). It follows from the
U(0, 1) null distribution of the p-values that − log(p) has a standard exponential
distribution with parameter λ = 1 , and choosing am = log(m) and bn = 1 yields
(Serfling 1980, pp. 90)

FDm
(t) = P (Dm ≤ t)

= P (V(m) − log(m) ≤ t) (5)

→ e−e
−t

, m→∞

making possible the calculation of (3). It is straightforward to show that the
limiting density function of Dm is given by

fDm
(t) =

d

dt
FDm

→ exp {−(t+ exp(−t))} , m→∞ (6)
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Figure 1: Simulation-based distribution of t∗ for different values ofm when the p-values
come from a U(0, 1) and α = 0.05. Here, the black line corresponds to fDm(t)
in (6).

We shall say that the ith p-value is significant at level α if

t∗i > tc i = 1, 2, . . . ,m (7)

where
t∗i = − log(− log(1− Pi)) (8)

is the test statistic and tc the critical value of the test at level α, e.g., tc is such
that

P (V(m) − log(m) ≥ tc) = α (9)

Combining (5) and (9), and solving for t leads to

tc = − log(− log(1− α)) (10)
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In Figure 1 we depict the simulation-based distribution of t∗ when P1, P2, . . . ,

Pm
iid∼ U(0, 1) for different values of m.
It is also possible to establish some equivalencies between our proposed method

and others. For instance, if the Bonferroni (1935) method is to be applied to control
by multiple testing (Shaffer 1995), the critical value

t∗c = tc + log(m) (11)

should be used instead of (10). This result is particularly useful in situations where
a stringent control of the FWER (and hence the false positives) is required.

2.3. Using the Test

The following steps are suggested for detecting those p-values being statistically
significant:

1. For each p-value, calculate t∗i as in (8) and denote them as t∗1, t∗2, . . . , t∗m.
Here, higher values of t∗ indicate strong evidence against H0 in (1).

2. Determine which t∗i ′s are greater than tc (or t∗c).

3. Define the p-values from step 2 as potential candidates.

In order to facilitate the use of our proposal, an implementation of the afore-
mentioned steps in R (R Core Team 2013) is provided in 4. This function takes a
vector of p-values as the main argument, calculates the test statistic and the crit-
ical value, and prints the number of rejected p-values as well as the rejection rate.
Furthermore, an invisible object (a list) with three components is returned; this
list contains the actual p-value, the test statistic and the correspondent decision
(significant: TRUE; not significant: FALSE). If necessary, such an object can be used
for further analyses.

3. Examples

In this section, we consider two gene expression data sets to illustrate the
usefulness of our proposed method for the identification of significant p-values.

3.1. Tumor Data

Golub et al. (1999) present a generic approach to cancer classification based
on gene expression monitoring by DNA microarrays. As a test case, the authors
use gene expression data from 3,051 genes in 38 tumor mRNA samples from pa-
tients with leukemia; 27 samples come from patients with lymphoblastic leukemia
(ALL)(cases) and 11 from patients with acute myeloid leukemia (AML)(controls).
For analysis, the processed data was obtained from the multtest package (Pollard,
Gilbert, Ge, Taylor & Dudoit 2011).
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Figure 2: Distribution of t∗ for the microarray data in Golub et al (1999). The vertical
dotted line represents the critical value of the test for α = 0.05 when no
correction for multiple testing is applied.

We tested whether the ith gene (i = 1, 2, . . . ,m = 3, 051) was differentially
expressed (DE), i.e., if there was any statistical difference between the expression
levels in cases and controls. This is equivalent to test

H0,i : µALL,i = µAML,i vs. H1,i : µALL,i 6= µAML,i (12)

As implemented in the genefilter package (Gentleman, Carey, Huber &
Hahne 2011), we used a two-sample t-test for testing (12) and calculated the
p-value for each gene. Further, these p-values were used to calculate (10) and (11).

In Figure 2 we present the distribution of t∗ using equation (8) for the m genes.
When no correction for multiple testing is applied on the p-values, a total of 1,045
(34.3%, tc = 2.97) genes were found to be DE, which were reduced to 98 (3.2%,
t∗c = 10.99) when a Bonferroni correction was applied. On the other hand, when
the p-values were FDR-corrected before applying our methodology, 681 (22.3%,
tc = −5.05) were found to be DE. Equivalent results were obtained using built-in
R function p.adjust().

3.2. Type 2 Diabetes Data

Mootha et al. (2003) presented an analytical strategy for detecting modest
but coordinate changes in gene expression using DNA microarray data. This data
consists of 22,283 gene expression levels measured in 43 age-matched males skeletal
muscle biopsy samples, 17 with normal glucose tolerance (NGT), 8 with impaired
glucose tolerance (IGT) and 18 with type 2 diabetes (T2D).

After randomly selecting 1,000 gene expression levels for T2D samples from
the original data, the linear correlation coefficient ρ for each pair of genes was

Revista Colombiana de Estadística 37 (2014) 69–78



A new method for detecting significant p-values 75

calculated. ρ might be seen as a «proxy» of the potential interacting effects be-
tween pair of genes.

Table 1: Significant correlation coefficients for pairs of genes in 1,000 randomly selected
gene expression levels (Mootha et al. 2003) when only T2D samples are in-
cluded. Bonferroni correction was applied. CI: Confidence Interval.
Genes ρ̂ 95%CI t-statistic t∗c Raw P -value

G12-G720 0.939 (0.840, 0.977) 10.899 18.621 8.16× 10−9

G291-G350 0.938 (0.837, 0.977) 10.777 16.643 9.60× 10−9

G490-G698 0.927 (0.812, 0.973) 9.903 17.274 3.14× 10−8

G108-G434 -0.921 (-0.971, -0.797) -9.459 16.642 5.91× 10−8

G210-G720 0.920 (0.795, 0.970) 9.409 16.570 6.36× 10−8

G293-G308 0.917 (0.787, 0.969) 9.196 16.257 8.69× 10−8

A total of m = 499, 500 hypothesis of the form

H0,i : ρi = 0 vs. H1,i : ρi 6= 0 i = 1, 2, . . . ,m (13)

were tested. For α = 0.05, 52,576 (10.53%, tc = 2.97) correlation coefficients were
significant when no correction for multiple testing was applied, which reduced to
319 (0.06%, tc = 2.97) and 6 (∼0%, t∗c = 16.09), respectively, when the FDR and
Bonferroni corrections were used. Results for the latter are presented in Table 1.

4. Discussion

In this paper, we propose a new method to determine whether a p-value is
significant under a multiple testing setting while controlling (or not) the FWER.
Our proposal, based on the m-th order statistic of a U(0, 1) distribution, has
been shown to give equivalent results to Bonferroni’s method while controlling
the FWER, and to classical methods while not. Furthermore, under the null
hypothesis, the proportion of true null hypothesis being rejected is close to the
nominal level α. Observe that, by no means, we are stating that our method is
improving any of the other alternatives available in the literature to correct by
multiple testing, and which have extensively been applied in the genetics field.

The contribution of this paper can be seen under two perspectives. First, it
offers a graphical alternative to represent p-values and the cutoff value beyond
which, in the genetic context, we consider that a SNP (or gene in a microarray)
is statistically significant. Second, the use of asymptotic statistics and extreme
values theory in genetics. In a review of the literature previous to the writing of
this paper, we found no mention or application of these two important concepts in
genetics. The main advantages of this new approach are the direct calculation of
the cutoff value labelling a p-value as significant, the simplicity of its calculations,
and how easy it is to graphically represent the results. Computationally, our
approach is better than the FDR (Benjamini & Hochberg 1995) as it does not
require to store all the p-values.

Although in our applications section we showed how to use our approach to
determine significant p-values with GWAS and microarray data, it is not limited,

Revista Colombiana de Estadística 37 (2014) 69–78



76 Jorge Iván Vélez, Juan Carlos Correa & Mauricio Arcos-Burgos

under any circumstance, to these type of data. The main reason for this is that
our approach uses the p-values of the hypotheses tested regardless of the type(s)
of data on which they have been tested. Future extensions of this methodology
include considering correlated tests as those proposed by Benjamini & Yekutieli
(2001).
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Appendix. Detect significant p-values in R using the
proposed method

#-----------------------------------------------------------------------------
# ARGUMENTS
# p vector of p-values
# plot histogram of transformed p-values? (default: TRUE)
# corrected correction by multiple testing? (default: TRUE)
# line add vertical line indicating critical value? (default: TRUE)
# alpha type I error probability (default: 0.05)
# ... additional arguments passed to hist()
#-----------------------------------------------------------------------------
pvaltest <- function(p, plot = TRUE, corrected = TRUE,

line = TRUE, alpha = 0.05, ...){
m <- length(p)
ti <- -log(-log(1 - p))
tc <- -log(-log(1 - alpha))
tcstar <- tc + 1 * corrected * log(m)
total <- sum(ti > tcstar)

if(plot){
hist(ti, breaks = 50, prob = TRUE, las = 1,

xlab = expression(italic(t*"*")), ylab = "Density", ...)
abline(v = 1* line * tcstar, col = 1, lty = 2)

}
cat("Number of tests = ", m, "\n")
cat("Critical value = ", round(tcstar, 2), "\n")
cat("Total rejected = ", total, "(", round(100*total/m, 2), "%)", "\n")
invisible(list(p.value = p, statistic = ti, reject = ti > tcstar))
}

## Example
set.seed(123)
p <- c(runif(100, 0, 1e-4), runif(5000))
res <- pvaltest(p, main = "")
# Number of tests = 5000
# Critical value = 11.49
# Total rejected = 7 ( 0.14 %)

str(res)
# List of 3
# $ p.value : num [1:5100] 2.88e-05 7.88e-05 4.09e-05 8.83e-05 9.40e-05 ...
# $ statistic: num [1:5100] 10.46 9.45 10.1 9.33 9.27 ...
# $ reject : logi [1:5100] FALSE FALSE FALSE FALSE FALSE TRUE ...
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Abstract
Based on an interval distance, three functions are given in order to quan-

tify similarities between one-dimensional data sets by using first-order statis-
tics. The Glass Identification Database is used to illustrate how to analyse
a data set prior to its classification and/or to exclude dimensions. Fur-
thermore, a non-parametric hypothesis test is designed to show how these
similarity measures, based on random samples from two populations, can be
used to decide whether these populations are identical. Two comparative
analyses are also carried out with a parametric test and a non-parametric
test. This new non-parametric test performs reasonably well in comparison
with classic tests.

Key words: Data mining, Interval distance, Kernel methods, Non-parametric
tests.

Resumen
Basadas en una distancia intervalar, se dan tres funciones para cuantificar

similaridades entre conjuntos de datos unidimensionales mediante el uso de
estadísticos de primer orden. Se usa la base de datos Glass Identification
para ilustrar cómo esas medidas de similaridad se pueden usar para analizar
un conjunto de datos antes de su clasificación y/o para excluir dimensiones.
Además, se diseña un test de hipótesis no parámetrico para mostrar cómo
similaridad, basadas en muestras aleatorias de dos poblaciones, se pueden
usar para decidir si esas poblaciones son idénticas. También se realizan dos
análisis comparativos con un test paramétrico y un test no paramétrico.
Este nuevo test se comporta razonablemente bien en comparación con test
clásicos.
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datos, tests no paramétricos.
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1. Introduction

Today, in many tasks in which data sets are analysed, researchers strive to
achieve some way of measuring the features of data sets, for instance, to distinguish
between informative and non-informative dimensions. A first step could be to
study whether several sets of data are similar. The similarity may be defined as a
measure of correspondence between the data sets under study. That is, a function
which, given two data sets X and Y , returns a real number that measures their
similarity.

In data mining, there exist several similarity measures between data sets: for
instance, in Parthasarathy & Ogihara (2000), a similarity is used which com-
pares the data sets in terms of how they are correlated with the attributes in a
database. A similar problem, studied in Burrell (2005), is the measurement of the
relative inequality of productivity between two data sets using the Gini coefficient
(González-Abril, Velasco, Gavilán & Sánchez-Reyes 2010). A similarity measure
based on mutual information (Bach & Jordan 2003) is used to determine the simi-
larity between images in Nielsen, Ghugre & Panigrahy (2004). Similarity between
molecules is used in Sheridan, Feuston, Maiorov & Kearsley (2004) to predict the
nearest molecule and/or the number of neighbours in the training set.

A common problem with the aforementioned similarity measures is that their
underlying assumptions are often not explicitly stated. This study aims to use
first-order statistics to explain the similarity between data sets. In this paper, the
similarity is established in the sense that one-dimensional data sets are similar
simply by comparing the statistics of the variables in each data set.

In statistics, other similarity measures between data sets are also available
(González, Velasco & Gasca 2005), for instance, those which are used in hypothesis
testing. In this way, a non-parametric hypothesis test based on the proposed
similarity is presented in this paper and a comparative analysis is carried out with
several well-known hypothesis tests.

The remainder of the paper is arranged as follows: In Section 2, we introduce
some notation and definitions. Sections 3 and 4 are devoted to give two similarity
measures between one-dimensional data sets. An example is presented in Section
5 to show their use. A non-parametric test is derived in Section 6 and experimen-
tal results are given to illustrate its behaviour and good features. Finally, some
conclusions are drawn and future research is proposed.

2. Concepts

Following Lin (1998), with the purpose of providing a formal definition of
the intuitive concept of similarity between two entities X and Y , the intuitions
about similarity must be clarified. Thus: i) The similarity is related to their
commonality in that the more commonality they share, the more similar they are;
ii) The similarity is related to the differences between them, in that the more
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differences they have, the less similar they are; and iii) The maximum similarity
is reached when X and Y are identical.

Let us denote a similarity measure between X and Y by K(X,Y ). Ideally this
function must satisfy the following properties:

1. Identity: K(X,Y ) at its maximum corresponds to the fact that the two
entities are identical in all respects;

2. Distinction: K(X,Y ) = 0 corresponds to the fact that the two entities are
distinct in all respects; and

3. Relative Ordinality: If K(X,Y ) > K(X,Z), then it should imply that X is
more similar to Y than it is to Z.

Hence, certain similarities are defined in this paper which are consistent with the
above intuitions and properties.

Let us consider four one-dimensional data sets, DS1, DS2, DS3 and DS4 (see
the Appendix), where the DS1 and DS2 data sets are taken from a N(1,1) distri-
bution, the DS3 data set from a N(0.5,1) distribution, and the DS4 data set from
a N(1.5, 1.25) distribution, where a N(µ, σ) distribution is a Normal distribution
with mean µ and standard deviation σ. In practice, comparison of these data sets
involves: a) plotting graphical summaries, such as histograms and boxplots, next
to each other; b) simply comparing the means and variances (see Figure 1); or
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Figure 1: Histograms, boxplots, means, and variances of the data sets of the Appendix.

c) calculating correlation coefficients (if items of data are appropriately paired).
These methods are straightforward to interpret and explain. Nevertheless, these
approaches contain a major drawback since the interpretation is subjective and
the similarities are not quantified.

Let us introduce the concept of interval distance. Given an open interval
(similarly for another kind of interval) of finite length, there are two main ways
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to represent that interval: using the extreme points as (a,b) (classic notation)
or as an open ball Br(c) (Borelian notation) where c = (a + b)/2 (centre) and
r = (b − a)/2 (radius). Using Borelian notation, the following distance between
intervals given in González, Velasco, Angulo, Ortega & Ruiz (2004) is considered:

Definition 1. Let I1 = (c1 − r1, c1 + r1) and I2 = (c2 − r2, c2 + r2) be two real
intervals. A distance between these intervals is defined as follows:

dW(I1, I2) =

√
(∆c , ∆r)W

(
∆c

∆r

)
(1)

where ∆c = c2 − c1, ∆r = r2 − r1, and W is a symmetrical and positive-defined
2× 2 matrix, called weight-matrix.

It is clear from matrix algebra that W can be written as1 W = PtP, where
P is a non-singular 2 × 2 matrix, and hence dW(I1, I2) = ‖P (∆c , ∆r)t‖, where
‖ · ‖ is the quadratic norm in R2, and therefore dW (·, ·) is an `2-distance. It
can be observed that, from the matrix W, the weight assigned to the position of
the intervals c, and to their size r, can be controlled. Furthermore, the distance
(1) provides more information on the intervals than does the Hausdorff distance
(González et al. 2004).

From the distance given in (1), three new similarity measures are defined in
this paper.

3. A First Similarity

Definition 2. Given a data set X = {x1, . . . , xn} and a parameter ` > 1, the
`-associated interval of X, denoted by I`X , is defined as follows:

I`X = (X − ` · SX , X + ` · SX)

where X and SX are the mean and the standard deviation of X, respectively.

It is worth noting that Chebyshev’s inequality states that there are at least a
(1 − 1/`2) proportion of observations xi in the interval I`X . Hence, the similarity
between two data sets X and Y can be quantified from the distance between the
intervals I`X and I`Y . However, it is possible that some instances z ∈ X ∪ Y exist
such that z /∈ I`X ∪ I`Y . Thus, a penalizing factor (the proportion of instances
within I`X and I`Y ) is taken into account in the following similarity measure.

Definition 3. Given two data sets X = {x1, . . . , xn}, Y = {y1, . . . , ym} and a
parameter ` > 1, a similarity measure between X and Y , denoted by K`

W(X,Y ),
is defined as follows:

K`
W(X,Y ) =

#((X ∪ Y ) ∩ (I`X ∩ I`Y ))

#(X ∪ Y )
· 1

1 + dW(I`X , I
`
Y )

(2)

where #A denotes the cardinality of set A.
1The notation “ut” denotes the transposed vector of u.
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The function defined, K`
W, is a similarity measure (Cristianini & Shawe-Taylor

2000) which has been proposed based on distance measurements in Lee, Kim &
Lee (1993) and Rada, Mili, Bicknell & Blettner (1989). Furthermore, for any `
and W, K`

W is a positive, symmetrical function since it is a radial basis function
(Skhölkopf & Smola 2002).

It can be proved from (1) that d2W(I`X , I
`
Y ) = w11(∆X)2 + 2`w12∆X∆S +

`2w22(∆S)2, where ∆X = X − Y , ∆S = SX − SY , and the weight-matrix is
W = {wij}2i,j=1 with wij = wji when i 6= j.

Thus, the K`
W similarity takes into account the following characteristics: i)

The position of the whole data set on the real line given by the mean; ii) The
spread of the data set around its mean given by the standard deviation multiplied
by a parameter ` > 1; iii) The weighted importance of the mean and the standard
deviation of each data set, given in the weight-matrix W; and iv) A factor which
quantifies, from the number of outlying values, the goodness of fit of the associated
intervals.

Example 1. For the data sets of the Appendix, ` = 2 and W = I =

(
1 0

0 1

)
,

the similarityK`=2
I is given in Table 4. It can be seen that the similarities obtained

are consistent with the distributions generating the data sets.
After having experimented with different choices of ` and W, it is observed

that the numerical results differ slightly but the conclusions on their similarities
remain the same. ‖

4. A Second Similarity

When the size of the data set is large, consideration of only the number of
outlying values and the mean and the standard deviation is grossly insufficient
to obtain meaningful results. Furthermore, it is clear that these features are not
likely to be very helpful outside a normal distribution family (the mean and vari-
ance are highly sensitive to heavy tails and outliers, and are unlikely to provide
good measures of location, scale or goodness-of-fit in their presence). Hence more
characteristics which summarize the information of each data set must be taken
into account.

In this framework, the percentiles of the data set are used. Let

QX = {p1X , · · · , pqX}

be a set of q percentiles of a data set X with piX ≤ p(i+1)X and q ≥ 2. Hence,
q−1 intervals, denoted by IiX , are considered as follows: IiX = (piX , p(i+1)X), for
i = 1, . . . , q − 1.

Example 2. Given the DS1 data set, an example of the QDS1
set is given by

QDS1 = {−0.8926, −0.0099, 0.7376, 1.6571, 3.5146}
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where these values are the percentiles 2.5, 25, 50, 75, and 97.5, respectively, and
q = 5.

Definition 4. Given a weight-matrix W and two sets of q percentiles, QX and
QY , of the data sets X and Y , respectively, a similarity between X and Y , denoted
by KQ

W(X,Y ), is defined as follows:

KQ
W(X,Y ) =

1

1 + 1
q−1

∑q−1
i=1 dW(IiX , IiY )

(3)

The KQ
W similarity has the following properties: i) This function is positive

and symmetrical; ii) If X = Y then KQ
W(X,Y ) = 1; iii) The similarity is low if

the percentiles are far from each other; and iv) It is a radial basis function.
In Table 1, several examples of dW(IiX , IiY ) can be seen whereby the symmet-

rical weight-matrix W = {wij}2i,j=1 is varied. In cases 1 and 2, W is a non-regular
matrix (det(W) = 0) and therefore this situation is inadequate. In case 3, W = I
is the identity matrix, and case 4 provides a straightforward weight-matrix which
presents the cross product between the percentiles.

Table 1: Distance between intervals for different weight-matrices W.
Case w11 w12 w22 d2W(IiX , IiY )

1 1 1 1 (p(i+1)X − p(i+1)Y )2

2 1 -1 1 (piX − piY )2

3 1 0 1 1
2
((p(i+1)X − p(i+1)Y )2 + (piX − piY )2)

4 3
4

0 1
4

1
4
((p(i+1)X − p(i+1)Y )2 + (piX − piY )2 + ..

...+ (p(i+1)X − p(i+1)Y )(piX − piY ))

On the other hand, there are many different ways to choose the QX set for a
fixed data set X; in this paper the discretization process2 based on equal-frequency
intervals (Chiu, Wong & Cheung 1991) is used. Furthermore, in order to obtain a
specific value of q, there are several selections based on experience such as Sturges’
formula, q1 = Int

[
3
2 + Log(n)

Log(2)

]
and q2 = Int[

√
n], where the operator Int[·] is the

integer part and n is the size of the data set. Henceforth, q ≡ q1 is considered
with n = max{#X,#Y } and the set of percentiles Q is obtained such that in each
interval Ii· there is the same quantity of items of data.

In the following section, an example is presented to show how these similarities
could be used.

5. The Glass Identification

The Glass Identification is obtained from the UC Irvine Machine Learning
Repository (Bache & Lichman 2013). This database is often used to study the

2A discretization process converts continuous attributes into discrete attributes by yielding
intervals in which the attribute value can reside instead of being represented as singleton values.
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performance between different classifiers. Its main properties are: 214 instances,
9 continuous attributes and 1 attribute with 6 classes (labels). The number of
instances in each class is 70, 76, 17, 13, 9 and 29, respectively.

Suppose that a preliminary analysis of this data set is desired before applying
a classifier. Firstly, KQ

W similarities between continuous attributes are given in
Table 2 for W = Id.

Table 2: KQ
W similarities between continuous attributes of the Glass data set.

Attr. 2 3 4 5 6 7 8 9
1 0.0777 0.3365 0.7733 0.0139 0.4778 0.1209 0.4000 0.4034
2 1 0.0862 0.0771 0.0166 0.0717 0.1780 0.0697 0.0697
3 1 0.3450 0.0141 0.2802 0.1424 0.2523 0.2528
4 1 0.0138 0.5008 0.1195 0.4182 0.4194
5 1 0.0136 0.0154 0.0136 0.0136
6 1 0.1068 0.6871 0.7089
7 1 0.1026 0.1026
8 1 0.9153

It is observed that attributes 1 and 4 are very similar to each other; and
attributes 6, 8 and 9 are also very similar, particularly attributes 8 and 9. Hence,
it may be a good idea to eliminate some attributes before the implementation of
the classifier, for instance attributes 4, 6 and 8.

Let us study the attributes to determine similarities between the same at-
tributes but with different labels. Hence, if the similarity obtained is low, then
the classification is straightforward.

The number of instances with label 1 is 70, and with label 2 this is 76, and
KQ

W similarities between the nine attributes are given in Table 3. It can be seen
that these values are very high, which indicates that the discrimination between
these two labels is not easy.

On the other hand, the number of instances with label 3 is 17, and with label
4 this is 13, and K`

W similarities between the nine attributes are given in Table 3
for ` = 2. Hence, attributes 3 and 7 are the best in order to separate labels 3 and
4. However the main problem with respect to labels 3 and 4 is that there are very
few instances.

Table 3: K`
W and KQ

W similarities between different labels of the Glass data set.
Labels Attr. 1 2 3 4 5 6 7 8 9
1 – 2 KQ

W 0.9984 0.8991 0.6175 0.8123 0.8710 0.9088 0.6290 1 0.9746
3 – 4 K`

W 0.8333 0.8844 0 0.7733 0.7488 0.7991 0.4898 0.8807 0.8986

The main conclusion in this brief preliminary analysis is that the classes of
the Glass Identification Database are difficult to separate based only on individual
features for the given instances. A good classifier is therefore necessary in order
to obtain acceptable accuracy for this classification problem.
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An experiment3 is carried out to show that the conclusions of this brief analysis
are correct. Thus, the algorithm considered is the standard 1-v-r SVM formulation
(Vapnik 1998), by following the recommendation given in Salazar, Vélez & Salazar
(2012), and its performance, (in the form of accuracy rate), has been evaluated

using the Gaussian kernel, k(x, y) = e−
‖x−y‖2

2σ2 where two hyperparameters must be
set: the regularization term C and the width of the kernel σ. This space is explored
on a two-dimensional grid with the following values: C = {20, 21, 22, 23, 24, 25} and
σ2 = {2−4, 2−3, 2−2, 2−1, 20, 21}. The criterion used to estimate the generalized
accuracy is a ten-fold cross-validation on the whole training data. This procedure is
repeated 10 times in order to ensure good statistical behaviour. The optimization
algorithm used is the exact quadratic program-solver provided by Matlab software.

The best cross-validation mean rate among the several pairs (C, σ2) is obtained
for C = 1 and σ2 = 1 with 70.95% accuracy rate when all attributes are used and,
when attributes 4, 6 and 8 are eliminated, then the best cross-validation mean rate
is obtained for C = 16 and σ2 = 1 with 68.38% accuracy rate. This experiment
indicates that the Glass Identification Database is difficult to separate and that
the elimination of attributes 4, 6 and 8 only slightly modifies the accuracy rates.

In the following section, a new hypothesis test is designed and is compared
with other similar hypothesis tests.

6. Hypothesis Testing

Definition 5. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two data sets.
Two further data sets Xc and Y c, called the quasi-typified data sets of X and Y ,
respectively, are defined as follows:

xci =
SY

S2
X

(
xi − Z

)
, yci =

SX

S2
Y

(
yi − Z

)
,

where Z = {x1, . . . , xn, y1, . . . ym}. This process is called quasi-typification.

It is straightforward to prove that Xc = mSY (X − Y )/(S2
X(n + m)), Y c =

nSX(Y − X)/(S2
Y (n + m)), SXc = SY /SX , and SY c = SX/SY . Therefore, if

X = Y and SX = SY , then Xc = Y c = 0 and SXc = SY c = 1.
From Definition 5, a third similarity measure between data sets is given as

follows:

Definition 6. Let X and Y be two data sets. A measure of similarity between
these sets is defined as: KCQ

W(X,Y ) = KQ
W(Xc, Y c) provided that Xc and Y c are

the quasi-typified data sets of X and Y , W is a weight-matrix, and the sets of q
percentiles are QX and QY of the data sets X and Y , respectively.

Example 3. KCQ
I similarities between the data sets DS1, DS2, DS3 and DS4

are given in Table 4. In Figure 2, each subplot depicts the boxplot of data DSi,
3Most results have been obtained following the experimental framework proposed by Hsu &

Lin (2002) and continued in Anguita, Ridella & Sterpi (2004).
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DSj , Ti and Tj where the Ti’s are the quasi-typified data sets of DSi and DSj for
i, j = 1, 2, 3, 4 and i 6= j.

Table 4: K`=2
Id , KQ

Id and KCQ
Id similarities between the data sets in the Appendix.

K`=2
Id DS2 DS3 DS4

DS1 0.928 0.880 0.862
DS2 —— 0.862 0.863
DS3 —— —— 0.781

KQ
Id DS2 DS3 DS4

DS1 0.728 0.646 0.557
DS2 —— 0.595 0.623
DS3 —— —— 0.441

KCQ
Id DS2 DS3 DS4

DS1 0.897 0.574 0.600
DS2 —— 0.495 0.592
DS3 —— —— 0.347
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Figure 2: Boxplots of each pair of data sets of the Appendix before (DSi data sets)
and after (Ti data sets) applying the quasi-typification.

It is worth noting that all three similarities verify that the similarity between
DS1 and DS2 is the highest and the similarity between DS3 and DS4 is the lowest
similarity. Thus, the similarities obtained are consistent with the distribution that
generates the data sets. ‖
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Several percentiles are obtained from KCQ
I similarities of a simulated distri-

bution between random samples of size 100 from two N(0, 1) distributions. The
results are shown in Table 5. It is important to point out that the thresholds
have been simulated 1, 000, 000 times and it is observed that the sensitivity of the
thresholds is very low (less than 10−5 units). Hence, it is now possible to use these

Table 5: Percentiles of the simulated distribution KCQ
I between two N(0, 1) distribu-

tions for n = 100.
α 0.001 0.01 0.025 0.05 0.10

P (100, α) 0.60110 0.65353 0.67917 0.70166 0.72802

percentiles to construct a hypothesis test.

Definition 7. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two random
samples from populations F and F ′. Let a hypothesis test be H0 : F ′ = F versus
H1 : F ′ 6= F . Let RC = {(X,Y ) : KC(X,Y ) < P (n∗, α)} be the critical region
of size α where P (n∗, α) is the percentile α of the simulated distribution KCQ

I

between two N(0, 1) distributions for n∗ = min(n,m). Henceforth, this test is
denoted as the GA-test.

Note 1. It is worth noting that this test is valid for normal or similar populations.
If another type of population is given, then the corresponding percentiles should
be calculated.

6.1. Comparison with a Parametric Test

Let the following test be: H0 : F ′ = F versus H1 : F ′ 6= F , where
F = N(µ1, σ1), F ′ = N(µ2, σ2) and where µ1, µ2, σ1 and σ2 are unknown pa-
rameters. In this case, the null hypothesis states that the two normal populations
have both identical means and variances.

Let X = {X1, . . . , X100} and Y = {Y1, . . . , Y100} be two random samples from
N(µ1, σ1) and N(µ2, σ2) distributions. A classic test (C-test) is considered, which
is a union of two tests. Firstly, a test is performed to determine whether two
samples from a normal distribution have the same mean when the variances are
unknown but assumed equal. The critical region of size 0.025 is

RC1 =

{
(X,Y ) :

∣∣X − Y ∣∣ > 2.2586
√

(S2
1 + S2

2)/99

}
where 2.258 is the percentile 0.9875 of Student’s t distribution with 198 degrees of
freedom. Another test is also performed to determine whether two samples from
a normal distribution have the same variance. The critical region of size 0.025 is

RC2 =
{

(X,Y ) : S2
1/S

2
2 < 0.6353, S2

1/S
2
2 > 1.5740

}
where 0.6353 and 1.5740 are the percentiles 0.0125 and 0.9875 of Snedecor’s F
distribution, both with 99 degrees of freedom.
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In this framework, a comparison is made between the classic test for Normal
populations whose critical region of size 0.0494 (= 1−0.9752) is RC = RC1∩RC2,
versus the GA-test whose critical region of size 0.05 is {(X,Y ) : KC(X,Y ) <
0.70166} (see Table 5). For this comparison, it is considered that one population
is N(20, 4) and the other population is N(µ, σ), and the hypothesis test is carried
out for 100,000 simulations for each value µ = 18, 19, 20, 21, 22 and σ = 3, 3.5, 4,
4.5, 5. The results of the experiment are given in Table 6, where the percentage
of acceptance of the null hypothesis is shown for the two tests. The best result for
each value of the parameters is printed in bold, that is, the minimum of the two
values except for the case σ = 4 and µ = 20 in which the null hypothesis is true
and then the maximum of the two values is printed in bold.

The first noteworthy conclusion is that there are no major differences between
the two methods and therefore the results of the GA-test are good. As expected,
the results are almost symmetrical for equidistant values from the true mean and
variance. When only one of the two parameters is the actual value, then the
classic test behaves better in general, possibly due to the fact that the classic test
is sequential and the other is simultaneous. However, when both parameters only
slightly differ from the actual values, then the GA-test performs better. The same
holds true for values of the mean that differ from the actual value and for great
differences in the variance.

Table 6: Acceptance percentage of the null hypothesis when comparing theN(20, 4) and
the N(µ, σ) distributions for different values of the mean and of the standard
deviation using the classic test (C) and the GA-test. The desired level of
significance is 5% and the best result in each case is printed in bold.

σ 3 3.5 4 4.5 5
µ GA C GA C GA C GA C GA C
18 00.88 01.03 06.56 05.47 13.55 09.72 14.44 12.26 08.94 09.56
19 14.06 16.06 51.94 52.58 70.32 66.97 61.56 61.77 35.94 38.17
20 27.79 26.92 79.85 79.93 94.97 94.84 83.77 83.24 51.02 49.18
21 13.73 15.71 52.33 52.86 70.67 67.32 61.35 61.53 35.99 38.16
22 00.89 01.06 06.58 05.43 13.95 10.11 14.42 12.34 08.80 09.53

6.2. Comparison with a Non-Parametric Test

In this section, the GA-test is used with non-normal distributions than remains
similar to a Normal distribution. At this point, the interest lies in testing H0 :
F ′ = F versus H1 : F ′ 6= F for a number of populations F and F ′. The GA-test
is compared against the Kolmogorov-Smirnov test. In both cases the desired level
of significance is 0.05, the hypothesis test is carried out for 10,000 simulations
where the populations are Bi(100, 0.2) (Binomial), Po(20) (Poisson) and N(20, 4)
(Normal). Figure 3 shows that these distributions are very similar and the size of
random samples is 100.

The results of the experiment are given in Table 7 in the form of percentage
of acceptance of the null hypothesis. Again, the best result in each case is printed
in bold, that is, the minimum of the two values when the null hypothesis is false
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(values outside the diagonal) and the maximum of the two values when the null
hypothesis is true (values in the diagonal). It can be seen that the GA-test can dif-
ferentiate between the Poisson distribution and the other two better than can the
Kolmogorov-Smirnov test. Nevertheless, the Kolmogorov-Smirnov test behaves
better than the GA-test in Binomial and Poisson populations under the null hy-
pothesis (the opposite is true for the normal distribution) and when distinguishing
between the normal and the binomial distributions.
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Figure 3: Graphical representation of the probability mass function of the Bi(100, 0.2)
distribution and the Po(20) distribution, and probability density function of
N(20, 4) distribution.

Table 7: Acceptance percentage of the null hypothesis in the comparison between the
Kolmogorov-Smirnov test and the GA-test for various populations. The de-
sired level of significance is 5% and the best result in each case is printed in
bold.

Bi(100,0.2) Po(20) N(20,4)
GA K-S GA K-S GA K-S

Bi(100,0.2) 94.36 97.56 83.46 96.75 94.94 86.44
Po(20) —— —— 94.76 97.59 84.40 84.95
N(20,4) —— —— —— —— 95.50 95.00

A final comparison is carried out with Student’s t distributions with several
degrees of freedom since these distributions are similar to a standard Normal
distribution. The desired level of significance is 0.05, the size of random samples
is 100 and the hypothesis test is carried out for 10,000 simulations. The results
of the experiment are given in Table 8. Again, the best result in each case is
printed in bold, that is, the minimum of the two values when the null hypothesis
is false (values outside the diagonal) and the maximum of the two values when
the null hypothesis is true (values in the diagonal). It is important to point that
the GA-test tends to provide smaller values and therefore tends to accept the null
hypothesis less frequently than does the classic test (the classic test therefore tends
to be more conservative). As a consequence, the GA-test has a better behaviour
when the null hypothesis is false (values outside the diagonal), by differentiating
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between Student’s t distributions with different degrees of freedom better than
does the Kolmogorov-Smirnov test, and a worse behaviour (but not much worse)
when the null hypothesis is true (values of the diagonal), that is, the Kolmogorov-
Smirnov test behaves slightly better under the null hypothesis.

Table 8: Acceptance percentage of the null hypothesis in the comparison between the
Kolmogorov-Smirnov test and the GA-test for Student’s t distributions. The
desired level of significance is 5% and the best result in each case is printed in
bold.

t(10) t(20) t(30) t(40) t(50)

GA K-S GA K-S GA K-S GA K-S GA K-S
t(10) 92.71 94.56 91.03 94.53 89.47 94.55 88.56 94.63 87.78 94.37
t(20) —– —– 94.22 94.53 94.13 94.85 93.59 94.60 93.97 94.89
t(30) —– —– —– —– 94.53 94.53 94.33 94.57 94.49 94.84
t(40) —– —– —– —– —– —– 94.66 94.77 94.47 94.57
t(50) —– —– —– —– —– —– 94.66 94.42

7. Conclusions and Future Work

Several similarity measures between one-dimensional data sets have been de-
veloped which can be employed to compare data sets, and a new hypothesis test
has been designed. Two comparisons of this test with other classic tests have been
made under the null hypothesis that two populations are identical. The main
conclusion is that the new test performs reasonably well in comparison with the
classic tests considered, and, in certain circumstances, performs even better than
said classic tests.

With the distance developed in this paper, various classifications of a data set
can be carried out, either by applying the neural network technique, SVM, or via
other procedures available.

Although there are other approaches to the choice of the set Q of the percentiles
for the KQ

W function from a data set X, such as for example the equal-width
interval (Chiu et al. 1991), k-mean clustering (Hartigan 1975), cumulative roots of
frequency (González & Gavilan 2001), Ameva (González-Abril, Cuberos, Velasco &
Ortega 2009), and the maximum entropy marginal approach (Wong & Chiu 1987),
these have not been considered in this paper and will be studied in future papers.

Only the one-dimensional setting is considered in this paper; the possible cor-
relations that can exist between features of multi-dimensional data sets lie outside
the scope of this paper and will constitute the focus of study in future work.

Another potential line of research involves the improvement of the design of
our hypothesis-testing procedures by using these similarity measures, and the exe-
cution of comparisons with other existing methods. For example, the chi-squared
test on quantiled bins, or the Wald-Wolfowitz runs test can be tested under the
null hypothesis that the two samples come from identical distributions.
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Appendix. Data Sets of Section 2

The DS1 and DS2 data sets are taken from a N(1,1) distribution, the DS3

data set from a N(0.5,1) distribution, and the DS4 data set from a N(1.5, 1.25)
distribution.
DS1 = {1.47, 0.01, 1.29, −0.27, −0.23, 0.54, −0.20, 3.54, 0.59, −0.03, 2.41, −0.08,
1.48, 1.02, 0.71, 3.40, 0.67, 0.74, 1.64, 2.41, 1.67, 0.74, −0.10, 1.76, 1.82, −1.05,
0.54, 1.20}
DS2 = {−0.29, 0.02, 0.84, 1.66, 1.04, 0.69, 2.04, 1.21, 1.71, 1.75, 1.64, 1.10, −1.46,
1.25, −0.10, 1.74, 3.06, −0.53, 0.84, 1.09, 1.26, −0.39, 0.88, 2.15, 1.59, 0.56, 0.37,
3.57}
DS3 = {0.22, 0.87, −0.11, 0.29, −0.93, −0.25, 2.05, −0.53, −0.51, 0.80, 0.65, 0.99,
1.28, 0.85, 0.00, −0.28, 0.55, 0.27, −0.68, 1.08, 1.20, 0.44, 0.20, 0.66, 0.29, −0.46,
1.02, 1.99}
DS4 = {1.81, −0.41, 1.25, 3.12, 1.91, 1.99, 1.75, 0.93, −0.39, 3.68, −0.69, 1.57,
1.48, 3.59, 0.60, 2.84, 0.37, 1.26, 1.94, −0.19, 1.77, 3.20, 1.11, 4.24, 0.16, 4.48, 0.98,
1.34}
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Abstract

The classic theory of optimal experimental designs assumes that the e-
rrors of the model are independent and have a normal distribution with cons-
tant variance. However, the assumption of homogeneity of variance is not
always satisfied. For example when the variability of the response is a func-
tion of the mean, it is probably that a heterogeneity model be more adequate
than a homogeneous one. To solve this problem there are two methods: The
first one consists of incorporating a function which models the error variance
in the model, the second one is to apply some of the Box-Cox transformations
to both sides on the nonlinear regression model to achieve a homoscedastic
model (Carroll & Ruppert 1988, Chapter 4). In both cases it is possible to
find the optimal design but the problem becomes more complex because it
is necessary to find an expression for the Fisher information matrix of the
model. In this paper we present the two mentioned methodologies for the
D-optimality criteria and we show a result which is useful to find D-optimal
designs for heteroscedastic models when the variance of the response is a
function of the mean. Then we apply both methods with an example, where
the model is nonlinear and the variance is not constant. Finally we find
the D-optimal designs with each methodology, calculate the efficiencies and
evaluate the goodness of fit of the obtained designs via simulations.

Key words: D-efficiency, D-optimal design, Box-Cox transformations,
Heteroscedasticity.
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Resumen

La teoría clásica de los diseños experimentales óptimos supone que los
errores del modelo son independientes y tienen una distribución normal con
varianza constante. Sin embargo, el supuesto de homogeneidad de varianza
no siempre se satisface. Por ejemplo, cuando la variabilidad de la respuesta
es una función de la media, es probable que un modelo heterocedástico sea
más adecuado que uno homogéneo. Para solucionar este problema hay dos
métodos: el primero consiste en incorporar una función que modele la va-
rianza del error en el modelo; el segundo consiste en aplicar alguna de las
transformaciones de Box-Cox en el modelo de regresión no lineal (Carroll
& Ruppert 1988, Capítulo 4). En ambos casos es posible hallar el diseño
óptimo, pero el problema se vuelve más complejo porque es necesario encon-
trar una expresión de la matriz de información de Fisher del modelo. En
este artículo se presentan las dos metodologías mencionadas para el criterio
D-optimalidad y se muestra un resultado que es útil para encontrar diseños
D-óptimos para modelos heterocedásticos cuando la varianza de la respuesta
es una función de la media. Luego, se aplican ambos métodos en un ejemplo
donde el modelo es no lineal y la varianza no constante. Finalmente se en-
cuentra el diseño D-óptimo con cada metodología, se calculan las eficiencias
y se evalúa la bondad del ajuste de los diseños obtenidos a través de simu-
laciones.

Palabras clave: D-eficiencia, DiseñosD-óptimos, heterocedasticidad, trans-
formación de Box-Cox.

1. Introduction

The optimal experimental designs are a tool that allows the researcher to know
which factor levels should be experimented in order to obtain a best estimate of the
parameters of the model with certain statistical criterion. One of the most popular
criteria is the D-optimality which involves finding the design that minimizes the
generalized variance of the parameter vector. The design depends on a regression
model (1) that relates the response variable Y with the independent variable x

Y = η(x,β) + ε (1)

with η(x,β) a linear or nonlinear function of the parameter vector β and x.
Besides, if the researcher has the possibility to run N observations of the model

(1), then there are the following assumptions:

1. the error components εi, for i = 1, 2, . . . , N , are independent and

2. have a normal distribution with constant variance σ2.

For more information about the classic theory of optimal designs see Kiefer
(1959), O’Brien & Funk (2003), Atkinson, Donev & Tobias (2007, Chapter 9),
López & Ramos (2007). However, in practice there are cases where the homogene-
ity assumption is not satisfied. For example when the variance of the response
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is a function of the mean, it can increase or decrease depending of the structure
of the variance. The issue of heteroscedasticity in nonlinear regression models is
discussed in detail in Seber & Wild (1989, pp. 68-72). Basically there are two
methodologies to handle this problem. The first one is to apply some of the Box-
Cox transformations to the model (1) with an appropriate λ1 that stabilizes the
variance of the errors. We identify the transformed model like model A:

Y λ1
i = η(xi,β)λ1 + ε∗i (2)

where is assumed that the new errors ε∗i have a normal distribution with constant
variance.

The second model, which we identify as model B, consists of incorporating the
variance structure of the errors in the model as follows:

Yi = η(xi,β) + εi (3)

where the errors εi are independent N(0, σ2(η(xi,β))λ2), with λ2 an adequate
power parameter that models the variance of the errors.

As Seber & Wild (1989) emphasize, the difference between models A and B is
“that model A transforms so that y(λ1) has a different distribution from y as well
as having a homogeneous variance structure, while model B models the variance
heterogeneity but leaves the distribution of y unchanged”. Also, the authors affirm
that model B has often been preferred to model A when the deterministic function
is linear, whereas models like A have been preferred in nonlinear models.

Now, in the context of optimal designs when the model has heteroscedasticity,
the problem to find D-optimal designs is more complicated than in the homoge-
neous case, because the D-optimality criterion maximizes the determinant of the
Fisher information matrix of the model and the expression of this matrix changes
when the variance is not constant. Because the information matrix depends of the
model used, the two methodologies mentioned before for handling of heteroscedas-
ticity are traditionally applied in separate ways. For example, Atkinson & Cook
(1997) apply some of the Box-Cox transformations that makes the transformed
model be linear with a constant variance and then they find local and Bayesian
D-optimal designs to several models. On the other hand, in the case of linear
models, Atkinson & Cook (1995) find local D-optimal designs for heteroscedastic
linear models for various structures of variance, one of them is when the logarithm
of variance is a linear function of the independent variable. Other authors have
worked with nonlinear models, see for example Dette & Wong (1999).

In this paper we compare the methodologies mentioned above, analyze the
structure of the information matrix and we find the D-optimal design for a specific
model. Finally we compare the designs obtained through the D- efficiency. This
paper is divided in four sections. In section 2 we present a brief summary of both
methodologies for the D-optimality criterion and show a result which is useful
to find D-optimal designs for heteroscedastic models when the variance of the
response is a function of the mean (we omit the proof due to length constraints).
In section 3 we illustrate both methods with an example and we compare results
using the D-efficiency of each design. Then, we simulate observations of the model
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for each design and we calculate the relative error and mean square error. Finally,
in section 4 we present some conclusions, discussions and suggestions.

2. Methodologies

Starting with a regression model of the form (1) with the usual assumptions,
the problem of optimal designs consists to find the levels of the x factor where
the researcher should experiment to obtain a best estimate of the parameters
of the model under certain statistical criterion. In this paper we focus on the D-
optimality criterion, which finds the design that minimizes the generalized variance
of the parameter vector (Atkinson et al. 2007, pp. 135). More precisely, a design
ξ is defined as a measure of probability with finite support denoted by:

ξ =

[
x1 x2 · · · xn
w1 w2 · · · wn

]
(4)

where n is the number of support points, x1, x2, . . . , xn are the support points of
the design with associated weights wi ≥ 0 and such that

∑n
i=1 wi = 1 (O’Brien

& Funk 2003). If the weight wi is any number between 0 and 1, the design ξ is
known as a continuous design. However in practice all designs are exact. This
means that the weights wi are associated with the frequency of the support points
(Atkinson et al. 2007, pp. 120).

Now, the main problem of optimal designs is to find a design ξ over a compact
region χ, that maximizes a functional of the information matrix M(ξ). This ma-
trix plays an important role in the theory of optimal experimental designs. The
structure of this matrix depends on the linear nature of the model and on the
assumptions about the errors. When the variance of the errors is constant, this
matrix has a known expression, see for example López & Ramos (2007). However,
in the case of heteroscedastic models this expression is more complex and depends
of the methodology applied. So, in the next two sections we analyze the structure
of the Fisher information matrix with each of the two methodologies mentioned
before.

2.1. Variance Modelling

When the variance of the error is not constant, one way to solve this problem
is to find an adequate function which models the error variance and incorporate
it in the regression model. There are many ways to do this, see for example Huet,
Bouvier, Poursat & Jolivet (2004, pp. 65) and Seber & Wild (1989, pp. 68-72).
One form is when the variance of the response is a power function of the mean:

Yi = η(xi,β) + εi, with var(εi) = σ2(η(xi,β))2τ (5)

where σ2 is the constant variance, τ is an unknown parameter and it should be
estimated. The model (5) with variance structure is known as the power of the
mean variance model (Ritz & Streibig 2008, pp. 74).
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Now, some authors have worked the problem to find D-optimal designs mo-
deling the variance. For example Dette & Wong (1999) find D-optimal designs
for the Michaelis-Menten model when the variance is a function of the mean and
Atkinson & Cook (1995) find D-optimal designs for heteroscedastic linear models.
The following result is taken from Downing, Fedorov & Leonov (2001); they show
the expression of the information matrix for a more general model than the power
of the mean variance model (5):

Y = η(x,θ) + ε, with var(ε) = S(x,θ) (6)

where θ is the parameter vector and it can include the parameters of the deter-
ministic function η and those of the function S(x,θ) as a positive function used
to model the variance of the error. Observe that the power of the mean variance
model (5) is a nested model of the more general model (6). In this case the pa-
rameter vector θ includes all the possible parameters of the model: β, τ and σ2.
So, results about the general model (for instance the next theorem)can be applied
in particular for the power of the mean variance model.

Theorem 1. Information Matrix.
Let Y with normal distribution, with expected mean E[Y |x] = η(x,θ) and vari-

ance V ar[Y |x] = S(x,θ), where S(x,θ) > 0 is a positive function, θq×q is the
parameter vector and χ a compact set. If the N observations {yi, xi}Ni=1 are in-
dependent, then the Fisher information matrix for the approximate design ξ over
the regression design χ is

M(ξ,θ)q×q =

∫
χ

I(x,θ)dξ(x) (7)

where

I(x,θ)q×q =
1

S(x,θ)

∂η(x,θ)

∂θ

∂η(x,θ)

∂θT
+

1

2

1

S(x,θ)2
∂S(x,θ)

∂θ

∂S(x,θ)

∂θT
(8)

This theorem is the main tool of this methodology, because it allows the re-
searcher many ways of modelling the variance and incorporate it in the model.

Corollary 1. For the power of the mean variance model given in (1), where the
errors are independent and have normal distribution with mean zero and variance
var(εi) = σ2(η(xi,β))2τ with β, τ and σ2 parameters, the information matrix is
given by

M(ξ,θ) = UWUT + VWV T (9)

where
U (p+2)×n = (u1,u2, . . . ,un) V (p+2)×n = (v1,v2, . . . ,vn) (10)

W =


w1 0 · · · 0

0 w2

...
. . .

0 wr

 (11)
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and for i = 1, 2, . . . , n:

ui =

(
1

ση(xi,β)τ
∂η(xi,β)

∂βT
, 0.0

)T
(p+2)×1

(12)

vi =

( √
2τ

η(xi,β)

∂η(xi,β)

∂βT
,
√

2 log η(xi, β),
1√
2σ2

)T
(p+2)×1

(13)

This result is the key at the construction of D-optimal designs and can be
implemented computationally to obtain the designs. We will illustrate the use of
this corollary with an application in the next section. But before we need the
following important result which is one of the equivalence theorems. This theorem
allows to verify if the obtained design is in fact the optimal design (Kiefer &
Wolfowitz 1960)

Theorem 2. D-optimality equivalence theorem.
Let M(ξ,θ)q×q the information matrix of the design ξ positive, Ψ(ξ,θ) =

log |M(ξ,θ)| the D-optimality criterion and χ a compact set. Then the design ξ∗

is D-optimal if the directional derivative of φ in ξ∗ on the direction of ξx holds

φ(M(ξ∗,θ),M(ξx,θ)) ≤ 0 ∀x ∈ χ (14)

where φ(M(ξ∗,θ),M(ξx,θ)) = Tr(M(ξx)M−1(ξ∗))− q and ξx is the design that
puts all probability in x. Also, φ(M(ξ∗),M(ξx)) = 0 at the support points of
design ξ∗.

This result is useful to verify the D-optimality of a design ξ∗, because one can
plot the directional derivative φ(M(ξ∗, θ),M(ξx, θ)) over x ∈ χ and to check that
this function at most zero over all experimental region (χ) and also that in the
support points of the design, the equality holds.

2.2. Transformation of the Model

The second methodology consists of applying an adequate transformation on
the model to obtain constant variance. We focus on the Box-Cox transformations,
which are given by Box & Cox (1964).

y(λ) =

{
yλ−1
λ for λ 6= 0

log y for λ = 0
(15)

The value of the parameter λ usually is unknown, but in some cases it can be
assessed depending on the response. For instance, if the response is a volume, the
appropriate transformation can be the cube root (λ = 1/3) and the square root if
the response corresponds to count data (Atkinson & Cook 1997).

Now, Atkinson & Cook (1997) find D-optimal designs when a Box-Cox trans-
formation is applied, the resulting model is linear

Y (λ) = fT (x)β + ε∗ (16)
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and the errors have normal distribution with constant variance ε∗ ∼ N(0, σ2).
However, as illustrated in the example and since the original model is nonlinear,

we must find some appropriate λ such that when we apply the transformation to
both sides of the model, the transformed model is linear in the parameters. It is
important to observe that in our case, the parameter λ will be known, which is an
advantage, because we do not need to estimate this parameter. However, when the
parameter λ is unknown, it is possible to find the design, see for example Atkinson
(2003) for more details.

Then, the authors show that the information matrix over the design region for
the transformed model is (see the details in Atkinson & Cook 1997)

M(ξ, θ) =

∫
χ

I(θ)ξ(dx) (17)

where the symmetric matrix I(θ) is given by

I(θ) = −E
[
∂2 log f(Y i|xi,θ)

∂θ2

]

=

 ffT 0 − fE(Ẏ (λ))
σ2

0 1
2σ4 −E(ε∗Ẏ (λ))

σ4

− fE(Ẏ (λ))
σ2 −E(ε∗Ẏ (λ))

σ4

E(Ẏ (λ))2+E(ε∗Ÿ (λ))
σ2

 (18)

with ε∗ = Y (λ) − fT (x)β, f = f(x) and Ẏ (λ), Ÿ (λ) denote the first and second
derivative respect to λ and are given by:

Ẏ (λ) =
Y λ log Y λ − Y λ + 1

λ2
and (19)

Ÿ (λ) =
Y λ(log Y λ − 1)2 + Y λ − 2

λ3
(20)

However, these expressions have to be approximated using first-order Taylor ap-
proximations, since the expected values can not be calculated exactly. Finally,
once the design is found using the above expressions, is necessary verify the D-
optimality of the design using a similar result of the equivalence theorem 2.

3. Example

In Section 2 we described the two methodologies commonly used to handle the
heteroscedasticity of a model. Now we illustrate these methods with one example.

3.1. PCB Model

The example consists of a study realized in 1972 in Lake Cayuga, New York,
where the concentrations of Polychlorinated biphenyls (PCB) were made in a group
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of 28 trout at several ages in years. “The ages of the fish were accurately known
because the fish are annually stocked as yearlings and distinctly marked as to year
class” (Bates & Watts 1988, pp. 267–268). The data taken from Bates & Watts
(1988), are shown in the table 1 and the scatter plot is shown in figure 1.

Table 1: Lake Cayuga data.
Age 1.00 1.00 1.00 1.00 2.00 2.00 2.00

Concentration 0.60 1.60 0.50 1.20 2.00 1.30 2.50
Age 3.00 3.00 3.00 4.00 4.00 4.00 5.00

Concentration 2.20 2.40 1.20 3.50 4.10 5.10 5.70
Age 6.00 6.00 6.00 7.00 7.00 7.00 8.00

Concentration 3.40 9.70 8.60 4.00 5.50 10.50 17.50
Age 8.00 8.00 9.00 11.00 12.00 12.00 12.00

Concentration 13.40 4.50 30.40 12.40 13.40 26.20 7.40
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Figure 1: Scatter plot of Lake Cayuga data.

The plot of the data shows that the concentration of Polychlorinated biphenyls
(PCB) increases when the age of the trout does. Also, the relationship between
the variables clearly is not linear, so we propose to fit the nonlinear model:

Y = β1e
β2x + ε (21)

with β1, β2 are unknown parameters to be estimated.
Now, we are going to find the D optimal design for this model with the two

methodologies described above. Because our designs are local, we use the data
only with the purpose to have a good local value of the parameter vector.

3.1.1. Variance Modelling

First, we apply the methodology consisting on modelling the variance of the
errors with an appropriate function. In figure 1, we see that the variability of the
concentration increases as a power function of the mean, so we propose to fit the
model (21) with variance structure (5)

Y = β1e
β2x + ε, where ε ∼ N(0, σ2(β1e

β2x)2τ ) (22)
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with τ an unknown parameter to be estimated.
Now, we fit the model (22) in R Development Core Team (2013) and we used

the gnls function for the generalized nonlinear least squares method. The results
of the estimation are showed in table 2.

Table 2: Generalized nonlinear least squares estimation.
Parameter Estimation

β1 0.91
β2 0.31
τ 1.19
σ 0.34

Next, we perform the likelihood ratio test to determine if the model with
variance structure (22) is better than the model with constant variance (21). The
results of the test are showed in table 3 (the model 1 corresponds to the model
with variance structure (22) and the model 2 to the model with constant variance
(21) ).

Table 3: ANOVA for the likelihood ratio test.
Model df AIC BIC logLik Test L.Ratio p-value

(22) 1 4 134.5534 139.8822 -63.27671
(21) 2 3 178.8002 182.7968 -86.40008 1 vs 2 46.24674 <.0001

The conclusion from this test that is the parameter τ 6= 0, e.g. the model with
variance structure (22) is better than the model with constant variance (21) with
a signification level of 1%.

3.1.2. D-Optimal Design

Now, we find the D-optimal design for the model with variance structure (22).
Because we work with local designs, we use the estimation of the parameters
obtained previously like the local value for θ; that is, we use the local value
θ0 = (β1, β2, τ, σ) = (0.91, 0.31, 1.19, 0.34). Then we implement the corollary 1
through an algorithm in R Development Core Team (2013) and minimize
− log(|M(ξ,θ)|). In this optimization problem we use the function nlminb over
the experimental region (χ). The local D-optimal design obtained is shown in
table 4 and is denoted by ξD. The xi are the support points of the design and
the wi the weights. As we can see, even though the model with variance structure
(22) has four parameters to be estimated, the design consists only of two points,
which are the extreme points of the regression range χ = [1, 12]. In this sense, if we
could repeat the experiment and our objective are to estimate the parameters with
minimum variance, then we measure the Polychlorinated biphenyls concentration
in trout with ages of one and twelve and with equal number of replicates.

Then we check that the obtained design ξD is D-optimal. With this in mind,
by the D-optimality equivalence in theorem 2, we must verify that the directional
derivative of Ψ at ξD in the direction of the design that puts all mass at x, ξx,
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Table 4: Local D-optimal design ξD to the model (22).
xi 1.00 12.00
wi 0.50 0.50

satisfies
φ(M(ξD,θ),M(ξx,θ)) = Tr(M(ξx)M−1(ξD))− 4 ≤ 0 (23)

∀x ∈ χ = [1, 12]. As we can see in figure 2, this condition holds and the derivative
equals zero at the support points, so the design ξD is indeed D-optimal.
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Figure 2: Plot of the directional derivative.

3.1.3. Simulations

We simulate 1,000 times 28 observations of the model with variance structure

Yi = β1e
β2xi + εi, εi ∼ N(0, σ2(β1e

β2xi)2τ ), for i = 1, 2, . . . , 28 (24)

taking the values of xi like the support points of the design ξD. Then we sim-
ulate the errors εi ∼ N(0, σ2(β1e

β2)2τ ) for i = 1, 2, . . . , 28; use the estimations
obtained in table 2 like the values of the parameters and with the model (24),
we calculate the response y′is. Then, with these simulated data, we obtain the
estimated parameter θ̂ and calculate the relative and mean square error (RE and
MSE respectively). We repeat this process 1,000 times and summarize it in table
5, showing the descriptive measures for both errors. This table shows the mean,
median, range and standard deviation for the MSE of each parameter of the model
(24) and the relative error in percentage RE(θ)×100%. For the parameter vector θ
we propose an overall discrepancy measure, ODM, defined as ODM(θ̂) = ||θ− θ̂||2.
From this table, we see that the central tendency measures for the MSE are small
as the variability between the simulations. Also, the mean and median for the
RE are very close to 10%. In general, all these measures indicate that the local
design ξD provides good parameter estimates, even though the design only has
two experimental points and the model four parameters.
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Table 5: Simulations with variance modelling (Std denotes the Standard deviation).
MSE(β1) MSE(β2) MSE(τ) MSE(σ) ODM(θ) RE(θ)%

Mean 9.08e-03 3.13e-04 1.08e-02 5.97e-03 2.61e-02 9.31
Median 4.28e-03 1.50e-04 5.40e-03 2.68e-03 1.86e-02 8.71
Range 9.60e-02 5.78e-03 1.15e-01 1.09e-01 2.01e-01 27.60

Std 1.28e-02 4.61e-04 1.45e-02 8.84e-03 2.56e-02 4.45

3.1.4. Efficiencies

Finally, we show the robustness of the design ξD with respect to the choice of
the local value θ0, through the D-efficiency of any design ξ:

Deff =

(
|M(ξ)|
|M(ξD)|

)1/p

(25)

where p is the number of parameters of the model andM(ξ) denotes the informa-
tion matrix of the design, where ξ is another design obtained with another local
values of parameter vector. With this in mind, we perturb each one of the four
parameters of the model (22) in a percentage ∆:

θi ±∆× θi (26)

Since the model has four parameters and each one can be perturbed at left,
at right or not be perturbed; it is clear that the total number of perturbations
is 34 = 81. Then each one of these perturbations will give us a design ξ and
with (25) we calculate how far we are of the local D-optimal design. Then for
a fixed ∆ = 0.6 (we could used another), we obtain 81 designs and for each one
we calculate the respective D-efficiency. However, because most of these designs
were equal to the two point design ξD, we only show in table 9 (see the appendix)
the support points, the weights and the D-efficiency of the 36 designs that were
different to the optimal. Figure 3 summarizes the results of the efficiencies and
shows that the design ξD is robust respect the choice of the local value θ0, because
the D-efficiencies are high (at least 0.80).

3.2. Transformation of the Model

Previously we apply the first methodology of variance modelling and find the
local D-optimal design. Now we use the second methodology, that consists on
applying an adequate transformation on the model. As we described in section
2.2, this transformation should be such that the transformed model is linear and
homoscedastic. In this case as the model (1) is exponential, the appropriate Box-
Cox transformation consists on applying logarithm to both sides:

log Y = log β1 + β2x+ ε∗ (27)

or equivalently in the form:

Y ∗ = β∗1 + β2x+ ε∗ (28)
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Figure 3: D-efficiencies perturbing θ in 60%.

where Y ∗ = log Y , β∗1 = log β1 and the new errors ε∗ are normal with constant
variance. Then we fitted the linear model (28) and we obtained the estimations
β̂∗ = (0.03, 0.26)T , σ̂ = 0.57, and then β̂ = (e0.03, 0.26)T = (1.03, 0.26)T . Finally,
we implemented an algorithm in R Development Core Team (2013) to find the in-
formation matrix with λ = 0 and to obtain the design that minimizes− logM(ξ,θ)
over χ = [1, 12]. The resulting design in table 6, shows that in this case the de-
sign is the same obtained with first methodology. However, we have to point out
that despite that the resulting design is the same with both methodologies, it is
attributed to the fact that with each method we used the best local value for the
parameter θ and as we saw when we calculate the D-efficiencies, the design can
have three support points depending on the local value used.

Table 6: D-optimal design to the model (27).
i 1 2

xi 1.00 12.00
wi 0.50 0.50

3.2.1. Simulations

Analogously to the first methodology, we simulated 28 observations of the
model (28). The results of the 1, 000 simulations are summarized in table 7. This
is similar to the table 5 and shows the mean, median, range and standard deviation
for the MSE of each parameter of the model (27) and relative error in percentage
RE(θ) × 100%. For the parameter vector θ we propose a measure defined as
ODM(θ̂) = ||θ − θ̂||2, which is a kind of square distance between the estimated
parameter and the original. The conclusions from these results are similar as the
obtained with the first methodology, although when we compare the measures for
the relative error (RE), is noteworthy that all the descriptive measures are almost
three times the correspondent to the first methodology. But in general, all these
measures indicate that the local design ξD fits well the model.
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Table 7: Simulations for the logarithmic transformation model (Std denotes the Stan-
dard deviation).

MSE(β1) MSE(β2) MSE(σ) ODM(θ) RE(θ)%

Mean 1.80e-01 9.57e-04 1.27e-02 1.93e-01 34.0
Median 1.39e-01 6.48e-04 8.43e-03 1.53e-01 32.4
Range 1.18e+00 8.65e-03 9.34e-02 1.18e+00 84.0

Std 1.55e-01 1.00e-03 1.36e-02 1.53e-01 13.1

3.2.2. Efficiencies

Finally, we obtain the D-efficiencies following the same procedure described in
section 3.1.4. In this case because we perturb three parameters: β1, β2 and σ,
we only have 33 = 27 combinations (the parameter λ = 0). But again most of
all these designs were equal to the D-optimal design, so we only show in table 8
the six designs that correspond to a perturbation ∆ = 60% and were different to
the optimal. In this table we use the symbols −, + or 0 to indicate the specific
combinations of the parameters.

For instance, the first design is obtained when we disturb 60% to the left (−)
the parameters β1 and σ and we do not perturb (0) the parameter β2. Then the
support points for this design are 1, 6.5 and 12 and the D-efficiency of the design is
0.93. It indicates that if we use this design instead of the unperturbed D-optimal
design, we would need around 7% more observations to obtain the same efficiency
that the D-optimal. Even more, it is remarkable that all six designs have exactly
3 support points: The extremes of the interval [1, 12] and the middle point 6.5.
The only difference between these designs is the weight (in parentheses with two
decimal places) and the D-efficiency, that can be 0.89 or 0.93, but in both cases
it is high, so we can conclude that the D-optimal design is robust respect to the
choice of the local value θ0.

Table 8: Support points, weights and D-efficiencies perturbing 60% to left (−), right
(+) or not (0).

Design β1 β2 σ x1 x2 x3 Deff

1 − 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
2 0 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
3 + 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
4 − + − 1(0.36) 6.5(0.28) 12(0.36) 0.89
5 0 + − 1(0.36) 6.5(0.28) 12(0.36) 0.89
6 + + − 1(0.36) 6.5(0.28) 12(0.36) 0.89

4. Conclusions

We have presented a brief summary of two methodologies that can be im-
plemented to find D-optimal designs when the model under study presents hete-
roscedasticity. In both cases the main problem is to find an expression for the
Fisher information matrix of the model. We have illustrated both methods with
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Lake Cayuga data from which clearly do not have constant variance. However,
there is an important difference between the methods that applied: The variance
modelling methodology has the assumption that the errors of the original model
has a normal distribution. However, the second methodology only requires a nor-
mal distribution for the transformed model, not the original. This can be an
advantage of this methodology compared with variance modelling.

Under both methods, we find the same D-optimal design with two support
points and with equal weights. But this fact is attributed only to the local values
used in an independent way, that in this case were the estimations of the param-
eter vector using the data. Because the optimal design is local, we determine the
robustness of this design with each methodology by disturbing the parameters of
the corresponding model and calculating the D-efficiency of the obtained designs.
In both cases, the efficiencies were high indicating that the D-optimal design is a
robust design respect the choice of the local value θ0. Also, with each methodol-
ogy we simulate 1, 000 observations of the model and calculate some descriptive
measures for the relative and mean square errors. The results were similar. The
only important difference is that measures for the relative errors of the second
methodology were almost three times the correspondent to the first methodology.
We cannot conclude which methodology is better because each one has its pros
and shortcoming, with the example we obtained similar results.

Finally, we want to point out that we have not study two potential problems:
First, the problem of heteroscedasticity for G optimality criterion and second, the
problem of nonnormality (for D-optimality or not). Respect to the former, further
work includes finding optimal designs for heteroscedastic models with another
optimality criteria different to D-optimality. For instance, Wong & Cook (1993)
have worked with G-optimal designs with linear models when the variance of the
errors is incorporated in the model. With non normality, we did not find too many
published papers, so this can be an interesting problem to work. Finally we have
found local designs, but other option is to use the Bayesian approach.
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Table 9: D-efficiencies, support points and weights with a 60% of perturbation of the
parameter vector: disturb to left (−), to right (+) or do not (0).

ξi β1 β2 τ σ x1 x2 x3 w1 w2 w3 Deff

1 − 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
2 0 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
3 + 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
4 − + − − 1 8.26 12 0.27 0.28 0.45 0.8337
5 0 + − − 1 8.26 12 0.27 0.28 0.45 0.8337
6 + + − − 1 8.26 12 0.27 0.28 0.45 0.8337
7 − 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194
8 0 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194
9 + 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194

10 − + + − 1 3.12 12 0.42 0.34 0.24 0.7987
11 0 + + − 1 3.12 12 0.42 0.34 0.24 0.7987
12 + + + − 1 3.12 12 0.42 0.34 0.24 0.7987
13 − 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
14 0 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
15 + 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
16 − + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
17 0 + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
18 + + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
19 − 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
20 0 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
21 + 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
22 − + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
23 0 + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
24 + + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
25 − 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
26 0 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
27 + 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
28 − + − + 1 8.26 12 0.27 0.28 0.45 0.8337
29 0 + − + 1 8.26 12 0.27 0.28 0.45 0.8337
30 + + − + 1 8.26 12 0.27 0.28 0.45 0.8337
31 − 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
32 0 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
33 + 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
34 − + + + 1 3.12 12 0.42 0.34 0.24 0.7987
35 0 + + + 1 3.12 12 0.42 0.34 0.24 0.7987
36 + + + + 1 3.12 12 0.42 0.34 0.24 0.7987

[
Recibido: mayo de 2013 — Aceptado: enero de 2014

]
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Abstract

An iterative method for the adjustment of curves is obtained by applying
the least squares method reiteratively in functional subclasses, each defined
by one parameter, after assigning values to the rest of the parameters which
determine a previously determined general functional class. To find the min-
imum of the sum of the squared deviations, in each subclass, only techniques
of optimization are used for real functions of a real variable.The value of the
parameter which gives the best approximation in an iteration is substituted
in the general functional class, to retake the variable character of the follo-
wing parameter and repeat the process, getting a succession of functions.
In the case of simple linear regression, the convergence of that succession to
the least squares line is demonstrated, because the values of the parameters
that define each approximation coincide with the values of the parameters
obtained when applying the method of Gauss - Seidel to the normal sys-
tem of equations. This approach contributes to the teaching objective of
improving the treatment of the essential ideas of curve adjustment, which is
a very important topic in applications, what gives major importance to the
optimization of variable functions.
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Resumen

Se obtiene un método iterativo para el ajuste de curvas al aplicar rei-
teradamente el método de los mínimos cuadrados en subclases funcionales,
cada una definida por un parámetro, luego de asignar valores a los restantes
parámetros que determinan una clase funcional general, seleccionada previa-
mente. Para hallar el mínimo de la suma de las desviaciones cuadráticas,
en cada subclase, solo se utilizan técnicas de optimización para funciones
reales de una variable real. El valor del parámetro, que proporciona la mejor
aproximación en una iteración, se sustituye en la clase funcional general,
para retomar el carácter variable del siguiente parámetro y repetir el pro-
ceso, obteniéndose una sucesión de funciones. En el caso de la regresión
lineal simple se demuestra la convergencia de esa sucesión a la recta mínimo
cuadrática, pues coinciden los valores de los parámetros que definen cada
aproximación con los que se obtienen al aplicar el método de Gauss - Seidel
al sistema normal de ecuaciones. Este enfoque contribuye al objetivo do-
cente de adelantar el tratamiento de las ideas esenciales del ajuste de curvas,
temática muy importante en las aplicaciones, lo que le confiere mayor sig-
nificación a la optimización de funciones de una variable.

Palabras clave: estimación de curvas, materiales de enseñanza, método de
mínimos cuadrados, método iterativo, regresión lineal.

1. Introduction

The method of regression is one of the most important statistical methods for
higher education graduates. Its comprehension facilitates obtaining and correctly
interpreting the results of different types of models to be applied in their profes-
sional careers. Bibliographic research in the scientific literature shows the wide
interest and use of regression methods. From such bibliographic analysis, three
approaches can be differentiated: The largest one, related to the application of
regression methods to different fields and topics of science; see Braga, Silveira,
Rodríguez, Henrique de Cerqueira, Aparecido & Barros (2009), Guzmán, Boli-
var, Alepuz, González & Martin (2011), Ibarra & Arana (2011) and Santos da
Silva, Estraviz, Caixeta & Carolina (2006) a second approach related to the the-
oretical aspects of the topic; see Núñez, Steyerberg & Núñez (2011), Vega-Vilca
& Guzmán (2011), Donal (2001), Ranganatham (2004), Kelley (1999), Schmidt
(2005). Lastly, a third group related to the teaching of the method, i.e., how to
help students, and professionals in general, in correctly applying regression and
interpreting its results see Batanero, Burrill & Reading (2011), Gutiérrez de Ravé,
Jiménez-Hornero & Giráldez (2011) and Wei, De Quan & Jian (2001).

Applications of regression methods are found in scientific papers related to
agriculture, medicine, environment, economics, sociology and different engineering
areas. Using a random sample of one hundred papers published during 2012 and
obtained by the authors from the Web of Knowledge, in 32% of them there was a
direct application of these methods and in almost half of them (46%) there was a
reference to regression.
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Such significant use of regression supports its inclusion in the largest part of
university curricula. It is generally included in the statistics subject.

In terms of teaching, curve adjustment is generally explained once the methods
of optimization of real functions of several real variables are known, along with the
solution of linear equation systems. This makes possible the support of procedures
that permit to determine the values of the parameters characterizing the functional
class of the best adjustment curve sought. Usually, in practice, computer packages
are used to determine these parameters.

Taking into consideration the importance of curve adjustment for applications,
it is advisable to teach the students these ideas much more before it is usually done
in university curricula. How can this purpose be achieved if curve adjustment is
preceded by mathematical requirements which seem not to be possible to sever?
This paper presents an approach that permits to teach in advance the consideration
of these basic ideas of regression in at least one semester, what is justified assuming
the following hypotheses:

-The methods of optimization for the real functions of many variables are ne-
glected, what has the immediate implication of not requiring the partial derivation.

-A system of linear equations is not stated, so the corresponding theory is not
necessary.

-The reiterative application of the least squares method in functional classes
determined by only one parameter, so that in each of them, the corresponding
sum of the squared deviations is function of a unique variable. Consequently,
optimization techniques for real functions of a real variable are only required.

Though sufficient and varied bibliography about the least squares method is
available, it was considered necessary to make explicit some of its basic aspects
initially, such as the expression that takes the sum of the squared deviations, as
well as the normal system of equations that is formed at stating the necessary
conditions for extremes, both in the case of the simple linear regression.

Curve adjustment is, possibly, the most frequently used mathematical resource
for solving one of the fundamental problems related to numerous scientific areas:
“reconstructing” a function starting from experimental data. Essentially, for the
case of one variable functions, this problem may be formulated through the follo-
wing statement:

“Given the set of n points {(x1, y1); (x2, y2); . . . (xn, yn)}, where n is a natural
number and every two xk abscissas are different, the goal is determining the y =
f(x) function which, within a given prefixed class of functions, best adjusts them”.

2. Materials and Methods

2.1. Curve Adjustment and the Least Squares Method

Generally, the prefixed functional class depends on various parameters, and
the purpose of the method used for their estimation is to satisfy some criterion of
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optimization, which is characteristic of the method; particularly, the objective of
the least squares method is to minimize the sum of the squared deviations. Two
other alternatives, which are also frequently used are the Maximum Likelihood
Method; see Yoshimori & Lahiri (2014), Seo & Lindsay (2013) and Han & Phillips
(2013) and for the Bayesian regression method; see Zhao, Valle, Popescu, Zhang
& Mallick (2013), Mudgal, Hallmark, Carriquiry & Gkritza (2014) and Choi &
Hobert (2013).

In the probably most renowned and significant case of finding the best-adjusting
function within the class of linear functions of one independent variable f(x) =
a1x+ a2 this problem is solved through the least squares method by determining
the values of the a1 and a2 parameters (the slope and the intercept with the y-
axis, respectively), which provide the minimum value to the sum of the S(a1, a2)
squared deviations:

S(a1, a2) =

n∑
k=1

(f(xk)− yk)2 =

n∑
k=1

(a1xk + a2 − yk)2.

Determining the minimum of S(a1, a2) requires applying optimization techniques
for real functions of two real variables, which initially require the use of the nec-
essary condition on extreme points:

∂S

∂a1
= 2

n∑
k=1

xk(a1xk + a2 − yk) = 0;
∂S

∂a2
= 2

n∑
k=1

(a1xk + a2 − yk) = 0 (1)

Afterwards, it requires the resolution of the system of two linear equations resulting
from it with a1 and a2 as unknowns. This system is called the normal equation
system, which is expressed as follows:

a1

n∑
k=1

x2k + a2

n∑
k=1

xk =

n∑
k=1

xkyk; a1

n∑
k=1

xk + na2 =

n∑
k=1

yk (2)

When applying any of the existing techniques for the resolution of system (2), the
result is a single solution a1 = a

(0)
1 , a2 = a

(0)
2 , given by the expressions:

a
(0)
1 =

n

n∑
k=1

xkyk −
n∑

k=1

xk

n∑
k=1

yk

n

n∑
k=1

x2k −
( n∑

k=1

xk

)2 ; a
(0)
2 =

1

n

( n∑
k=1

yk − a
n∑

k=1

xk

)
(3)

The procedure herein presented is equivalent to applying the Gauss - Seidel Method
(McCracken & Dorn 1974) to the normal system of equation (2). This is an iter-
ative method for the resolution of linear equation systems, as it happens with the
system in equation (2), or the one resulting from applying the necessary condition
in equation (1) to the sum of the squared deviations, when the adjustment takes
place in a functional class that is linear with respect to the parameters defining it.
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In terms of teaching organization, this approach provides more significance to
the optimization methods of real functions of one real variable. At the same time,
it permits the introduction of an important application such as curve adjustment,
advancing one semester, at least.

2.2. An Iterative Method for the Process of Curve
Adjustment

Solving the normal equation system of equation (2) is not possible until a
method that permits optimizing a derivable function of two real variables is avail-
able. Therefore, a sequence, that only requires applying different variable opti-
mization techniques, one at a time, may be followed. Such method results from
realizing the following steps:

1. Prefix the functional class in which the adjustment process will be carried
out.
As it is known, the functional class is characterized by a functional expression
involving the independent variable and the p parameters that define it, being
p a positive integer. This class of functions is denoted by:

y = f(x, a1, a2, . . . ap), (4)

where x is the independent variable, and the parameters have been denoted
by a1, a2, . . . , ap, for which it is necessary to previously establish an order
among them.

2. Keep the variable character of a1 and assign values to the rest of the para-
meters.
The values assigned to the parameters are denoted by a

(0)
2 , a

(0)
3 , . . . , a

(0)
p ,

where the sub-index of each identifies the parameter, and the supra - index 0
indicates that it is the initial assignment. These values may be arbitrary or
follow a certain criterion, but this is irrelevant to the method being described.
Thus, the set of functions is defined as:

y1 = f1(x, a1, a
(0)
2 , . . . , a(0)p ) (5)

which is formed by functions of the independent variable x depending on the
parameter a1 that obviously constitutes a subclass of the pre-fixed functional
class.

3. Form the sum of the quadratic differences in y1 = f1(x, a1, a
(0)
2 , . . . , a

(0)
p ).

Given the set {(x1, y1); (x2, y2); . . . ; (xn, yn)}, of n points, the corresponding
sum of the quadratic differences to be minimized is formed, which is a func-
tion of the a1 parameter, and is defined by the expression:

S(a1) =

n∑
k=1

(
f1(xk)− yk

)2
=

n∑
k=1

(
f1(xk, a1, a

(0)
2 , . . . , a(0)p )− yk

)2
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4. Apply the necessary extreme condition to S(a1).

As S(a1) is a one variable function, it is enough to state S′(a1) = 0 to thus
determine the solution of this equation. This gives the value of parameter a1,
denoted by a(1)1 so that S(a(1)1 ) is the lowest value of S(a1). It is important to
note that the supra-index 1 in a(1)1 means that this is the first value calculated
for a1.

3. Results and Discussion

The implementation of the previous process guarantees obtaining the func-
tion of better adjustment within the y1 = f1(x, a1, a

(0)
2 , . . . , a

(0)
p ) subclass, in the

initially pre-fixed functional class y = f(x, a1, a2, . . . , ap).

In general, it is not expected that the y(1)1 = f1(x, a
(1)
1 , a

(0)
2 , a

(0)
3 , . . . , a

(0)
p ) func-

tion obtained from y1 = f1(x, a1, a
(0)
2 , . . . , a

(0)
p ) by substituting a(1)1 by a1, to be

a good approximation to the better adjustment within the general prefixed class
y = f(x, a1, a2, . . . , ap).

The described process is repeated, leaving the next parameter as arbitrary (in
this case a2) and taking for a1 the calculated value a(1)1 , and for the rest of the
parameters the initially assumed values a(0)3 , . . . , a

(0)
p .

As a result, the value of parameter a2, denoted by a(1)2 , will be obtained, offering
the best adjustment function within the subclass:

y2 = f2(x, a
(1)
1 , a2, a

(0)
3 , . . . , a(0)p )

Once the whole set of parameters has been recovered, by proceeding similarly, the
following p functions would be obtained:

y
(1)
1 = f1(x, a

(1)
1 , a

(0)
2 , a

(0)
3 , . . . , a

(0)
p )

y
(1)
2 = f2(x, a

(1)
1 , a

(1)
2 , a

(0)
3 , . . . , a

(0)
p )

.............................................

y
(1)
p = fp(x, a

(1)
1 , a

(1)
2 , a

(1)
3 , . . . , a

(1)
p )

where each of them is the best adjustment function within the corresponding
functional class.

It can be verified that each of these functions is not a worse, but a better
approximation than the previous one. Indeed, y(1)2 is reduced to y(1)1 taking a(1)2 =

a
(0)
2 for it. So with this value for that parameter, function y

(1)
2 provides a value

for the sum of squared differences that is similar to the one given by y(1)1 . This
proves that y(1)2 is an approximation not worse than y(1)1 . This also holds for the
rest of the functions and this step completes the first iteration.

As the values of parameters a(1)2 , a
(1)
3 , . . . , a

(1)
p have a similar purpose to the

one followed with numbers a(0)2 , a
(0)
3 , . . . , a

(0)
p , the above process may be repeated
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to find the second iteration, which will be completed once the following new p
functions have been determined:

y
(2)
1 = f1(x, a

(2)
1 , a

(1)
2 , a

(1)
3 , . . . , a

(1)
p )

y
(2)
2 = f2(x, a

(2)
1 , a

(2)
2 , a

(1)
3 , . . . , a

(1)
p )

.............................................

y
(2)
p = fp(x, a

(2)
1 , a

(2)
2 , a

(2)
3 , . . . , a

(2)
p )

For a third iteration, the calculated values a(2)2 , a
(2)
3 , . . . , a

(2)
p will be used, and

the process would be the same successively. A possible stop criterion for the
iterative process would be that each of the values determined for the parameters in
a given iteration were sufficiently close to the corresponding value in the preceding
iteration1.

Sufficiently close means here, as is common in mathematics, that a certain
pre-fixed degree ε > 0 of accuracy is fulfilled for all j index (j = 1, 2, . . . , p), and
inequality |a(m)

j −a(m−1)j | < ε, where m is a natural number indicating the number
of order of the iteration.

The objective is proving that this process converges with the function of best
adjustment within the pre-fixed functional class y = f(x, a1, a2, . . . , ap), which
is the initial step in the iterative method. For the case of pre-fixing the linear
functions, the method may be proven to converge.

3.1. Geometrical Interpretation of the Case of Linear
Adjustment

If in the initial step of the process the linear function class is pre-fixed in an
independent variable f(x) = ax+b, where a and b are real numbers, an interesting
geometrical interpretation may be given from the described iterative method.

By keeping the notation used in the description of the iterative method, the
slope is denoted by a1 and the intercept with the y axis by a2, so that this general
functional class is then expressed as:

y = a1x+ a2

Prefixing the value of parameter a2 equal to a
(0)
2 implies taking the point of coordi-

nates (0, a(0)2 ) of the y - axis in the system of Cartesian coordinates, and considering
the family of all straight lines that pass through such point, except the very axis
of the ordinates (y - axis).

This family is formed by the graphics of the y1 = a1x+a
(0)
2 subclass functions,

for all the possible values of the a1 slope.

Once the best adjustment function y
(1)
1 = a

(1)
1 x + a

(0)
2 in y1 = a1x + a

(0)
2 is

determined, we come back to the arbitrary character of the intercept with the y
1This is one of the stop - criteria used in some numeric methods, such as Gauss - Seidel, for

the resolution of a linear system.
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- axis, taking the new subclass within the y = f(x) = a1x + a2 class, defined by
y2 = a

(1)
1 x+ a2 to carry out the new adjustment process. As a result, the value of

parameter a2 will be determined as a(1)2 , which determines the y(1)2 = a
(1)
1 x+ a

(1)
2

equation, which is a straight line parallel to the one initially determined, y(1)1 =

a
(1)
1 x+ a

(0)
2 .

Therefore, the first iteration concludes, when the following functions are ready:

y
(1)
1 = a

(1)
1 x+ a

(0)
2 , y

(1)
2 = a

(1)
1 x+ a

(1)
2

Initially, with y
(1)
1 = a

(1)
1 x + a

(0)
2 , we determine the angle of inclination of the

straight line that passes through the point of coordinates (0, a(0)2 ) with the positive
direction of the axis of abscissas. This is subsequently transferred parallel to itself
until it occupies the graphic position corresponding to y(1)2 = a

(1)
1 x + a

(1)
2 that

passes through the point of coordinates (0, a(1)2 ). In turn, this is used to implement
the second iteration: the new slope a(2)1 and the new intercept a(2)2 , and so on.

3.2. One Example of the Application of the Iterative Method

A table with arbitrary or hypothetical data, which determine five points of
integer coordinates: A(1, 1), B(2, 3), C(3, 3), D(4, 5) y E(5, 5), is taken.

A

B
C

D
E

1

2

3

4

5

1 2 3 4 5

Y

X

Figure 1: Regression line.

In Figure 1, a regression line y = x + 0.4 is represented. It was obtained by
the the least squares method, in the general functional class y = a1x+ a2, where
the parameters are the slope a1 and the intercept a2. The sum of the squared
deviations is function of these two parameters, so to obtain y = x+0.4 (it means,
a1 = 1 and a2 = 0.4) techniques of optimization for the functions of some variables
were required and the exact resolution of the normal system of equations.

In Figure 2, a segment of the first approximation is represented. It is the line
that by the origin (of slope 61/55) better adjusts to the five points. It is optimized
in the functional class y = a1x, where the parameter is the a1 slope, what follows
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Figure 2: Segment of the first approximation.

from assigning, in y = a1x + a2, the zero value to a2 parameter. Geometrically,
it means that it optimizes in the functional class of all no vertical lines that pass
through the origin. The sum of the squared deviations is only function of a1, so that
this optimum (minimum) is determined by techniques of optimization of functions
of one variable (it not even requires the ordinary derivative, observing that the sum
of the squared deviations is a quadratic function in a1 variable, whose graphic is
a parabola that opens upwards, so that the optimum (minimum) is reached in the
abscissa of the vertex (value 61/55). It is maintained with purposes of comparison,
the segment of the regression line.
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Figure 3: Segment of the second approximation.

In Figure 3 a segment of the second approximation, which best adjusts to the
five points among all the lines with slope 61/55, is represented. It is optimized in
the functional class y = (61/55)x+a2, which is obtained from the functional class
y = a1x+a2 replacing a1 = 61/55 and retaking the variable character of a2 (notice
that for a2 the value 0 was initially assumed). Geometrically it means that the line
of equation y = (61/55)x is paralleled displaced itself up to a position that betters
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the adjustment (provides the minimal for the sum of the squared deviations which
now depends on a2). The resulting value for the parameter is a2 = 4/55.
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5

1 2 3 4 5
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Figure 4: Segment of the third approximation.

For a new approximation a2 = 4/55 in the general class y = a1x+a2 is replaced
to optimize in the subclass y = a1x+4/55, in which the slope a1 is variable again,
so that what is looked for is the line that better adjusts to the data (in the sense of
minimizing the corresponding sum of squared deviations) among all those that pass
through the axis point (0, 4/55). The result is the new slope value a1 = 659/605,
what permits the line with best equation adjustment y = (659/605)x + 4/55, a
segment of which is represented in Figure 4 together with the one of the least
regression line.

The process continues similarly, so that the new adjustment would take place
in the functional subclass y = (659/605)x+a2, where the variable character of the
second of the parameters is retaken.

3.3. The Gauss - Seidel Method and Convergence in the Case
of Linear Adjustment

The issue related to the convergence of the described iterative method has an
affirmative answer in the case of linear adjustment, if the set of points fulfills the
initially described characteristics; i.e., if within the full set, every pair of points
has different abscissas.

As the best adjusting straight line, with the equation y = a
(0)
1 x + a

(0)
2 , does

exist, and the parameters are analytically determined as the only solution by (3)
in the standard equation system, an iterative method convergent to the solution
of such system would obviously provide, after an adequate number of iterations,
an α ≈ a

(0)
1 , β ≈ a

(0)
2 approximation. This offers the possibility of defining a

y = αx+ β approximation for the best adjustment equation y = a
(0)
1 x+ a

(0)
2 .

One of the simplest iterative methods for the resolution of a linear equation
system, easily programmed for its computerized application, is the Gauss - Seidel
Method.
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For the case of a two - equation system with two unknowns:

b11a1 + b12a2 = c1
b21a1 + b22a2 = c2

The method is described as follows:
Supposing that in the coefficients matrix, those of the main diagonal are not

null, it is possible to find the unknowns a1 and a2:

a1 =
1

b11
(c1 − b12a2); a2 =

1

b22
(c2 − b21a1) (6)

An arbitrary approximation is now defined for the a1 = a
(0)
1 , a2 = a

(0)
2 solution,

and it is used to find a new approximation for the a1 unknown value stemming
from the first of the expressions in (6):

a
(1)
1 =

1

b11
(c1 − b12a(0)2 )

The a(1)1 calculated value is substituted in the second of the expressions (6) to
determine an approximation to the a2 unknown value:

a
(1)
2 =

1

b22
(c2 − b21a(1)1 )

At this point the first iteration is fulfilled.
The second iteration is implemented by taking the calculated approximation

a
(1)
1 , a(1)2 with the same role played by a1 = a

(0)
1 , a2 = a

(0)
2 in the first iteration.

In this way it is possible to reach the order m iteration defined by the expre-
ssions:

a
(m)
1 =

1

b11
(c1 − b12a(m−1)2 ), a

(m)
2 =

1

b22
(c2 − b21a(m−1)1 ) (7)

A sufficient condition for convergence to the solution of the iterations produced
through the Gauss - Seidel Method lies in the matrix of the coefficients being dia-
gonally dominant, which means in this case that the |b11b22| > |b21b12| inequality
has to be fulfilled (McCracken & Dorn 1974).

If we now define b11 =

n∑
k=1

x2k; b12 = b21 =

n∑
k=1

xk; a = a1, and b = a2 then the

standard equation system (2) can be expressed as:

b11a1 + b12a2 = c1
b21a1 + b22a2 = c2

where c1 =

n∑
k=1

xkyk, c2 =

n∑
k=1

yk so that the expressions in (7) allow determining

an approximation to its solution.
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It is not difficult to verify that the values given by the expressions (7) for
the unique solution of the standard system (2) match in each m iteration, those
provided for the a1 slope and the a2 intercept by each iteration of the iterative
adjustment process here described. Neither is it difficult to prove that the system
matrix (2) is diagonally dominant if in the {(x1, y1); (x2, y2); . . . ; (xn, yn)} set of
points, where n is a natural number, every two of the xk abscissas are different,

which means that the n
n∑

k=1

x2k >
( n∑

k=1

xk

)2
inequality is fulfilled.

Indeed, according to Bronshtein & Semendiaev (1971), in the inequality (which
is strict if there are at least two different xk values):

|x1 + x2 + . . . xn|
n

≤
√
x21 + x22 + . . .+ x2n

n

it would suffice to square both sides to obtain, first:

(x1 + x2 + . . .+ xn)
2

n2
≤ x21 + x22 + . . .+ x2n

n

Then, multiplying the two sides by n2 and expressing the sums in a compact form,
it results:

n

n∑
k=1

x2k ≥
( n∑

k=1

xk

)2
As every two of the xk numbers are supposed to be different, the fulfillment of

the n
n∑

k=1

x2k >
( n∑

k=1

xk

)2
inequality is finally guaranteed. This proves that the

matrix of the standard equation system (2) is diagonally dominant, and in turn
implies that the expressions (7), obtained by applying the Gauss - Seidel Method,
converge to the unique solution of such system.

At the same time, each iteration of the method was observed to coincide with
the parameter values that result, in each step, from the function of better adjust-
ment within the corresponding subclass. Therefore, a conclusion can be advanced
so that these functions converge to the least squares straight line of equation
y = a

(0)
1 x+ a

(0)
2 .

4. Conclusions

An iterative method has been proposed to obtain an approximation of the best
adjustment function to a given set of points, consisting of determining the best
adjustment function within a certain subclass of the pre-fixed functional class each
time. Each subclass is dependent on a single parameter.

As optimization is used only on one variable, it is not required to explicitly
write the standard equation system.

For the case of linear adjustment with one independent variable, the iterative
method is revealed to be equivalent to the application of the standard equation
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system of the Gauss - Seidel Method, which permits to show its convergence to
the lowest quadratic straight line of the y = a

(0)
1 x+ a

(0)
2 equation.

Everything suggests that for other linear functional classes, with respect to the
parameters that define them, similar results should be obtained, in the sense of
the equivalence between the iterative method and the Gauss - Seidel one. Also,
in this way, it may be possible to show that the iterative method is convergent to
the best adjustment function obtained when applying the least squares m-ethod.

The proposed approach offers the possibility of focusing the least squares
method along with that of curve adjustment, as an application of optimization
techniques of the real functions of one real variable, developed during the first
semester of higher education diplomas. This would permit speeding the approach
of the significant topic of curve adjustment.
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Abstract

AP-design, an efficient non-rejective implementation of the πps sampling
design, was proposed in the literature as an alternative Poisson sampling
scheme. In this paper, we have updated inclusion probabilities formulas in
the AP sampling design. The formulas of these inclusion probabilities have
been greatly simplified. The proposed results show that the AP design and
the algorithms to calculate inclusion probabilities are simple and effective,
and the design is possible to be used in practice. Three real examples have
also been included to illustrate the performance of these designs.

Key words: AP sampling design, Inclusion probabilities, Poisson sampling.

Resumen

Una implementación del diseño de muestreo πpt, que no es de rechazo,
ha sido recientemente propuesta como alternativa al esquema de Poisson. En
este trabajo, hemos adaptado las formulas de probabilidades de inclusión en
el diseño de muestreo Poisson alternativo (AP por sus siglas en inglés). Estas
fórmulas han sido significativamente simplificadas. Los resultados propuestos
muestran que el diseño AP y los algoritmos para calcular las probabilidades
de inclusión son simples y efectivos, y que el diseño se puede usar en la
práctica. Se incluyen tres ejemplos reales para ilustrar el desempeño de la
propuesta.

Palabras clave: AP diseño de muestra, probabilidades de inclusión, es-
quema de Poisson.
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1. Introduction

Unequal probability sampling is frequently used in surveys in order to increase
the efficiency in the estimation of the population characteristics. A sampling
design without replacement and with unequal inclusion probabilities which are
proportional to a size variable, that is known for all units in the population is
usually called a πps sampling design. The πps sampling usually produces more
efficient estimates than sampling with equal probabilities. Suppose that the finite
population U consists of N units labelled 1, . . . , N . An auxiliary variable with
value Xi for the unit i is known for all i = 1, . . . , N . Assume that Xi > 0, for all i
and strict inequality for at least one i. It is required to estimate the total Y =

∑
i Yi

where the sum is over 1, . . . , N , given a sample of size n. Let pi = nXi/X, i =

1, . . . , N be the prescribed inclusion probability parameters with
∑N
i=1 pi = n

with X its corresponding population total. The problem is how to select a sample
with fixed size n, so that the probability of each unit i to be included in the
sample equals just pi. Many papers have proposed sampling schemes in which the
inclusion probability of unit i is πi. Some important reference are followings: Sen
(1953), Durbin (1967), Brewer (1963), Sampford (1967), Hájek (1964, 1981), Rosén
(1997a), Aires (1999), Bondesson & Thorburn (2008), Bondesson & Grafström
(2011), Grafströ (2009), Laitila & Olofsson (2011), Olofsson (2011). Most of the
schemes with predetermined inclusion probabilities are either difficult to execute
or calculate πij , the second order inclusion probability units i and j, if n is more
than 2. Recently, Zaizai, Miaomiao & Yalu (2013) presented a new approximative
πps design for fixed sample size n as follows:

1. Draw an initial sample s0, using Poisson sampling design with probabilities{
pi
}N
1
. The size of the initial sample s0 is a random variable denoted by ns0 .

2. If ns0 = n, then the sampling is finished and the sample s = s0. If ns0 < n,
then replenish the rest units denoted by s1, its size n − ns0 , by simple random
sampling without replacement (SRSWOR) design from U−s0, the final sample s =
s0 ∪ s1. If ns0 > n, then remove ns0 −n units denoted by s2, using the SRSWOR-
design, from s0, the final sample s = s0 − s2. The AP design becomes a non-
rejective sampling design. Algorithms for calculating exact first- and second-order
inclusion probabilities of the corresponding design are too complex and involve a
Jacobi over-relaxation iterative method.

Note 1. We assume that the population is such that pi = nXi/X < 1, for all i.
You need to remove the cases where pi is larger than 1 and then iterative removing
further units if necessary

The purpose of this paper is to simplify calculation of the first-order and second-
order inclusion probabilities of the AP design. The analytical expressions of inclu-
sion probabilities for the AP design presented in Section 2 are simpler to operate
than the original one.
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2. Inclusion Probabilities of AP Design

Now we discuss inclusion probabilities of the AP sampling design. For conve-
nience, we denote the random variable

∑
k∈U,k 6=i Ik as n−is0 , the random variable∑

k∈U,k 6=i,k 6=j Ik as n−ijs0 , where Ik =

{
1 if k ∈ s0
0 otherwise

for all k ∈ U are indica-

tors for the Poisson sampling. In order to calculate the first and second-order
inclusion probabilities of the AP design, we firstly derive the following Proposi-
tion and Lemmas. For convenience, the subset {1, 2, · · · , i} of U is abbreviated
as Ui and Pr(

∑i
α=1 Iα = j) as P ij where j = 0, 1, . . . , i; i = 1, 2, . . . , N . Then

Pr(ns0 = ν) = PNν , ν = 0, 1, . . . , N .

Proposition 1. Keep the same assumptions as above and qi = 1 − pi. Then
P i0 =

∏i
α=1 qα; P

i
k = piP

i−1
k−1 + qiP

i−1
k ,1 ≤ k ≤ i− 1 and P ii =

∏i
α=1 pα.

A proof of proposition 1 can be found in Tillé (2006) and Olofsson (2011).
Note 2. Proposition 1 shows that we can calculate P i0, P

i
1, . . . , P

i
i by using

P i−10 , P i−11 , . . . , P i−1i−1 with initial values P 1
0 = q1 and P 1

1 = p1. By recursive
calculation with respect to i, we can finally obtain PNν , ν = 0, 1, . . . , N .

Lemma 1. Let µk = 1
1−pk , then

Pr(n−ks0 = ν) = µk

ν∑
j=0

(−1)ν−j
( pk
1− pk

)ν−j
PNj (1)

Lemma 2. Given the assumptions as in Lemma 1, then

Pr(n−kls0 = ν) = µkµl

ν∑
j=0

(−1)ν−j
( pl
1− pl

)ν−j j∑
t=0

(−1)j−t
( pk
1− pk

)j−t
PNt (2)

Lemma 1 and Lemma 2 are proved in the appendix. Now we present theorems
1 and 2 which the core results of this paper.

Theorem 1. Under the AP-design, the algorithms for calculating the first-order
inclusion probabilities can be written as

πk =

N−1∑
ν=0

Ck(ν)µk

ν∑
j=0

(−1)ν−j( pk
1− pk

)ν−j · PNj (3)

where Ck(ν) =
{ (N−n)pk+(n−ν)

N−ν ν = 0, . . . , n− 1,
npk
ν+1 ν = n, . . . , N − 1

and PNj = Pr(ns0 = j).

Theorem 2. Under the AP-design, the analytical formula of the second-order
inclusion probabilities is as follows

πkl =

N−2∑
ν=0

Ckl(ν)µkµl

ν∑
j=0

(−1)ν−j
( pl
1− pl

)ν−j j∑
t=0

(−1)j−t
( pk
1− pk

)j−t
PNt (4)
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where

Ckl(ν)=

{
qkql

(n−ν)(n−ν−1)
(N−ν)(N−ν−1) + (pkql + plqk)

n−ν−1
N−ν−1 + pkpl, ν = 0, 1, . . . , n− 2,

pkpl
n(n−1)

(ν+2)(ν+1) , ν = n−1, . . . , N−2.

From Theorem 1 and Theorem 2, we can find that the problem to solve πk and
πkl may be switched into solving a series of Pr(ns0 = ν) = PNν , ν = 0, 1, . . . , N .
We can recursively calculate PNν by using Proposition 1. Proofs of Theorems 1
and 2 can be found in the appendix.

3. Numerical Examples

The statistical literature contains several proposals for methods generating
fixed-size without-replacement πps sampling designs. In practice, πps designs
with sample size n = 2 are widely used and fully studied. Due to the difficulties
in the implementation and the complexity in computing of inclusion probabilities,
application of πps designs with sample size n > 2 is relatively less. Instead, ap-
proximate πps designs such as the Conditional Poisson design (CP), two-phase πps
sampling design (2Pπps), Rosén (1997)’s Pareto design and Zaizai et al. (2013)’s
design (AP) have been used. However, there are fast and fairly simple implemen-
tations of strict πps designs such as systematic πps sampling. Unfortunately, its
variance estimation is cumbersome.

3.1. A Review of some Sampling Designs

Poisson sampling is a method to generate a sample s, which has a random
size, from a finite population U consisting of N individuals. Each individual i in
the population has a predetermined probability pi and is included in the sample
s. A Poisson sample may be obtained by using N independent Bernoulli trials
to determine whether the individual under consideration is to be included in the
sample s or not. The first-order inclusion probabilities of the individuals are equal
to the target inclusion probabilities under the Poisson sampling design. A major
drawback with the Poisson design is the randomness of the sample size which has
urged statisticians to develop sampling schemes providing fixed size πps designs.

Conditional Poisson sampling (CP), also called rejective sampling or maximum
entropy sampling, was first introduced by Hájek (1964). It is a fixed size sampling
design, without replacement, on a finite population, with unequal inclusion proba-
bilities among the units of the population. It was called rejective sampling because
Hájek’s implementation amounts to drawing samples with the Poisson sampling
design which has a random size until the desired size is chosen. In fact, one can
also obtain the conditional Poisson design by drawing samples, with replacement,
using a multinomial sampling design and rejecting the samples which hold some
units of the population more than one.

Laitila & Olofsson (2011) proposed a new method to generate a sample with
fixed size and inclusion probabilities proportional to size, viz. the 2Pπps design
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based on a two-phase approach. Consider a population U of N units. For sample
generation, let n be the predetermined sample size and assume target inclusion
probabilities, pk, to be proportional to a size variable, xk, known for all k ∈ U .
The 2Pπps sampling scheme is as follows:

1. Draw a sample, s0, using a Poisson design with pak ∝ xk as inclusion
probabilities, with expected sample size E(ns0) =

∑
U pak ≥ n.

2. If the size of s0 is greater than or equal to n, then proceed to step 3 and let
sa = s0. If not, repeat step 1.

3. From the sampled set, sa, draw a sample s of size n using an SRSWOR
design.

It was shown that the first-order inclusion probabilities of the 2Pπps design are
asymptotically equal to the target inclusion probabilities. But the 2Pπps design
is still a rejective sampling design.

Pareto sampling was introduced by Rosén (1997a, 1997b). It is a simple method
to get a fixed size πps sample though with inclusion probabilities only approxi-
mately as desired, which can be described as follows: firstly independent random
numbers(U1, . . . , UN ) from U(0, 1) are generated, one value for each population
unit (i = 1, . . . , N). Then Pareto distributed ranking variables Qi = Ui(1−Ui)

pi(1−pi) ,
where pi is the targeted inclusion probability for unit i and

∑
pi = n, are cal-

culated. Those n units with the smallest Q-values are selected as a πps sample
with fixed size n. Bondesson, Traat & Lundqvist (2006) obtained the formulas of
first-order and second-order inclusion probabilities for the Pareto design. The true
inclusion probabilities only agree with the target inclusion probabilities approxi-
mately.

Zaizai et al. (2013) presented an alternative πps design (AP) as Section 1. The
AP design is a non-rejective sampling design.

3.2. Examples

Since the Horvitz-Thompson estimators under the AP design, CP design and
(2Pπps) design are unbiased, their precision is measured by the variance. However,
the ratio estimators mentioned by Kadilar & Cingi (2004) and the traditional ratio
estimator are biased, so their precision is measured by mean square error (MSE).
In the following section, the estimators and their variances(or MSEs) under the
AP design, CP design, 2Pπps design and SRSWOR are studied using three data
sets earlier used in the literature. In this paper the AP design and other designs
are applied to three populations in which y-values are known, so these variances or
MSEs can be calculated exactly. This is only to show the performance of various
designs. In practice the y-values in an interested population will be unknown, the
variance or MSE of an estimator cannot be obtained, but can be estimated from a
sample. Then, the precision is measured by estimation of variance or MSE. As far
as the Horvitz-Thompson estimators under the AP design, CP design and (2Pπps)
design, the Yates-Grundy variance estimators can be used as the precision. It is
unbiased estimator for the true variance.
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Example 1. We have used the data of Kadilar & Cingi (2004) in this section.
However, we have considered the data of only Aegean Region of Turkey, as we are
interested in unequal probabilities sampling with fixed sample size here. We have
applied our proposed method and other unequal probabilities sampling methods,
such as the 2Pπps sampling design and the CP sampling design on the data of
apple production amount (as interest of variate y) and number of apple trees (as
auxiliary variate x) in 105 villages of Aegean Region in 1999 (Source: Institute of
Statistics, Republic of Turkey).

For a large size population, we may divide the population into three strata
according to size of Xi, and the AP-design can be used to get a sample of fixed
size within each stratum independently. Let the population be stratified into 3
strata, where sample sizes and population sizes are (N1, n1) = (41, 8),(N2, n2) =
(41, 8) and (N3, n3) = (23, 4) respectively. Finally we use stratification sampling
technique to build estimation. The relative differences of the inclusion probabilities
for the AP-design ,2Pπps-design and CP-design with respect to target inclusion
probabilities can be calculated in each stratum respectively. Then, we can build

estimators Ŷ
AP

HT , Ŷ
2Pπps

HT and Ŷ
CP

HT of population mean Y from Table 1, and

the variance of Ŷ
AP

HT , Ŷ
2Pπps

HT and Ŷ
CP

HT are easily computed, respectively. As
mentioned previously, it is of interest to compare the efficiency of using alternative
sampling schemes, for example, the 2Pπps design, AP design, CP design and
SRSWOR design. We conclude that the proposed method is more efficient than
the 2Pπps design and SRSWOR design. The empirical comparisons included in
Table 1 are of interest. It is noticed that the efficiency of the AP design is almost
identical to the 2Pπps design, but it is significantly higher than ratio estimators
of the SRSWOR design mentioned by Kadilar & Cingi (2004) (Note: The MSEs
here are different from the original literature, because the original literature has
106 datum, one of which is a invalid data and is removed, this article has 105
datum). Although the CP design is more efficient than the AP design, the CP
design is not easy to implement. The some important advantages of the proposed
sampling design are not only its implementation as non-rejective, but also its
inclusion probabilities that can be calculated recursively.

Table 1: The variances of the AP design, 2Pπps design, CP design with n = 20, and
MSE of SRSWOR ratio estimators in example 1. Aegean Region data.
Sampling scheme Method of estimation Variance (or MSE)

The AP design Ŷ
AP

HT = 1
N

∑
i∈s yi/π

AP
i 349150

The 2Pπps design Ŷ
2Pπps

HT = 1
N

∑
i∈s yi/π

2Pπps
i 375615

The CP design Ŷ
CP

HT = 1
N

∑
i∈s yi/π

CP
i 188396

SRSWOR Upadhyaya-Singh 1 2331432
SRSWOR Upadhyaya-Singh 2 2330455
SRSWOR Singh-Kakran 2329395
SRSWOR Sisodia-Dwivedi 2331304
SRSWOR Traditional 2331436
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Note 3. The AP design still is not an exact πps design. The inclusion probabili-
ties will be larger than intended probabilities for small inclusion probabilities and
smaller than intended probabilities for large inclusion probabilities. At the ex-
treme case there will be risks of not selecting units which are intended to be taken
with probability 1, and of selecting units with intended inclusion probability 0.

Example 2. To analyze the performance of the suggested method in comparison
to other methods considered in this paper, a natural population data set from the
literature (Singh 1967) is being considered. The descriptions of these populations
are given below.

y: Percentage of hives affected by disease.
x: January average temperature.
We shall consider drawing a sample according to the AP design previously

developed. The exact and desired first-order inclusion probabilities are listed in
Table 2 and the second-order inclusion probabilities are in Table 3. Then, once we

get an AP sample, we can build estimator Ŷ
AP

HT of population mean Y , and the

variance of Ŷ
AP

HT is easily computed.

Table 2: The raw data and the first-order inclusion probabilities for the AP design ,the
2Pπps design, the CP design and Pareto design, N = 10, n = 4 in example 2.
Single data.

Unit i y x p πAPi π2Pπps
i πCPi πPari

1 49 35 0.3333333 0.3445468 0.3373678 0.3262696 0.3327040
2 40 35 0.3333333 0.3445468 0.3373678 0.3262696 0.3327040
3 41 38 0.3619048 0.3682212 0.3647676 0.3575523 0.3614987
4 46 40 0.3809524 0.3840479 0.3828163 0.3785839 0.3807203
5 52 40 0.3809524 0.3840479 0.3828163 0.3785839 0.3807203
6 59 42 0.4000000 0.3999062 0.4006775 0.3997285 0.3999585
7 53 44 0.4190476 0.4157930 0.4183399 0.4209603 0.4192101
8 61 46 0.4380952 0.4317052 0.4357925 0.4422518 0.4384713
9 55 50 0.4761905 0.4635925 0.4700272 0.4849000 0.4770065
10 64 50 0.4761905 0.4635925 0.4700272 0.4849000 0.4770065

From Table 4, we see that the proposed method has a smaller variance than
the CP design. Although the variance of the 2Pπps design is slightly smaller than
proposed method, the AP design is easy to implement and generally applicable.
In general, the AP design is extremely efficient and it is significantly higher than
ratio estimators of the SRSWOR design mentioned by Kadilar & Cingi (2004).

Example 3. The data we considered here is from 35 Scottish farms in Table 5.
Let sample size n be equal to 8. The descriptions of these populations are given
below (Asok & Sukhatme 1976, page 916).

y: Acreage under oats in 1957.
x: Recorded acreage of crops and grass for 1947.

The exact first-order and second-order inclusion probabilities for the AP design,
2Pπps design and CP design are calculated. In this example, the efficiencies for the

Revista Colombiana de Estadística 37 (2014) 127–140



134 Zaizai Yan & Yuxia Xue

Table 3: The second-order inclusion probabilities πAPij for the AP design, N = 10, n = 4
in example 2. Single data.

Unit j

1 2 3 4 5 6 7 8 9 10
Unit i
1 0.34455 0.09537 0.10268 0.10764 0.10764 0.11267 0.11777 0.12293 0.13347 0.13347
2 0.09537 0.34455 0.10268 0.10764 0.10764 0.11267 0.11777 0.12293 0.13347 0.13347
3 0.10268 0.10268 0.36822 0.11588 0.11588 0.12128 0.12675 0.13230 0.14361 0.14361
4 0.10764 0.10764 0.11588 0.38405 0.12146 0.12711 0.13284 0.13864 0.15047 0.15047
5 0.10764 0.10764 0.11588 0.12146 0.38405 0.12711 0.13284 0.13864 0.15047 0.15047
6 0.11267 0.11267 0.12128 0.12711 0.12711 0.39991 0.13901 0.14506 0.15740 0.15740
7 0.11777 0.11777 0.12675 0.13284 0.13284 0.13901 0.41579 0.15156 0.16442 0.16442
8 0.12293 0.12293 0.13230 0.13864 0.13864 0.14506 0.15156 0.43171 0.17152 0.17152
9 0.13347 0.13347 0.14361 0.15047 0.15047 0.15740 0.16442 0.17152 0.46359 0.18595
10 0.13347 0.13347 0.14361 0.15047 0.15047 0.15740 0.16442 0.17152 0.18595 0.46359

Table 4: The variances of the AP design, 2Pπps design, CP design and Pareto design
with n = 4 and MSE of SRSWOR ratio estimators in example 2. Single data.
Sampling scheme Method of estimation Variance(or MSE)

The AP design Ŷ
AP

HT = 1
N

∑
i∈s yi/π

AP
i 3.8268

The 2Pπps design Ŷ
2Pπps

HT = 1
N

∑
i∈s yi/π

2Pπps
i 3.7047

The CP design Ŷ
CP

HT = 1
N

∑
i∈s yi/π

CP
i 3.8681

The Pareto design Ŷ
Par

HT = 1
N

∑
i∈s yi/π

Par
i 3.7334

SRSWOR Upadhyaya-Singh 1 10.5488
SRSWOR Upadhyaya-Singh 2 15.6308
SRSWOR Singh-Kakran 10.9737
SRSWOR Sisodia-Dwivedi 10.4738
SRSWOR Traditional 10.5164

AP design, CP design and 2Pπps design are compared. From the results of Table
6, we conclude that the AP design is more efficient than the CP design. Since
the CP design and 2Pπ ps design are far more complex than the AP design, the
proposed design is significantly better than the CP design and 2Pπ ps design and
it is significantly higher than ratio estimators of the SRSWOR design mentioned
by Kadilar & Cingi (2004).

A primary purpose of this paper is to extend the theory of finite sampling
with unequal probabilities. Although the study variable y of the data presented
in Table 5 is often unknown in the real world, they do indicate that substantial
reductions in variance can be obtained by using the AP design (Table 1, 4 6). It
is the opinion of the authors that the technique suggested in this paper may be an
implemented utility in the real world for unknown study variable y. Hence, the
proposed method has potential application value.

Revista Colombiana de Estadística 37 (2014) 127–140



Exact Inclusion Probabilities for a Non-Rejective πps Sampling Design 135

Table 5: Recorded Acreage of Crops and Grass for 1947 and Acreage Under Oats in
1957 for 35 Farms in Orkney in example 3. Scottish forms data.
Farm No. x y Farm No. x y Farm No. x y

1 50 17 13 78 23 25 209 70
2 50 17 14 90 0 26 240 28
3 52 10 15 91 27 27 274 62
4 58 16 16 92 34 28 300 59
5 60 6 17 96 25 29 303 66
6 60 15 18 110 24 30 311 58
7 62 20 19 140 43 31 324 128
8 65 18 20 140 48 32 330 38
9 65 14 21 156 44 33 356 69
10 68 20 22 156 45 34 410 72
11 71 24 23 190 60 35 430 103
12 74 18 24 198 63

Table 6: The variances of the AP design, 2Pπps design, CP design with n = 8 and
MSE of SRSWOR ratio estimators in example 3. Scottish forms data.
Sampling scheme Method of estimation Variance(or MSE)

The AP design Ŷ
AP

HT = 1
N

∑
i∈s yi/π

AP
i 15.7658

The 2Pπps design Ŷ
2Pπps

HT = 1
N

∑
i∈s yi/π

2Pπps
i 15.3746

The CP design Ŷ
CP

HT = 1
N

∑
i∈s yi/π

CP
i 16.8456

SRSWOR Upadhyaya-Singh 1 99.4516
SRSWOR Upadhyaya-Singh 2 99.5016
SRSWOR Singh-Kakran 99.2217
SRSWOR Sisodia-Dwivedi 97.9005
SRSWOR Traditional 98.5479

4. Conclusions

We have shown that it is feasible to calculate the first-order and second-order in-
clusion probabilities in the AP design. Expressions for the third-order and fourth-
order inclusion probabilities under the AP sampling design can be obtained. The
proofs are similar to that of πk.

This study shows that the AP design possesses approximately the same effi-
ciency with the CP design and 2Pπps design. But the AP design is a non-rejective
sampling design and very close to the strict πps design. First and second-order
inclusion probabilities can be accurately calculated by using the formula given in
this paper. From these numerical illustrations, it is deduced that there is consid-
erable gain in efficiency by using the Horvitz-Thompson estimator under the AP
design over the other ratio-type estimators mentioned.
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Appendix

The derivation of the recursive formula is stated in this part.

A1. Recursive Formula of the First-Order Inclusion
Probabilities

Proof of Lemma 1. We use induction on ν. Let ν = 0, then PN0 = Pr(ns0 =

0) = Pr{
∑N
α=1 Iα = 0} = Pr{Ik = 0,

∑N
α=1,α6=k Iα = 0} = (1 − pk)Pr(n−ks0 = 0).

Hence Pr(n−ks0 = 0) = µkP
N
0 , Lemma 1 is true for ν = 0. Assume that equation

(1) is true for ν = j < N . Then

Pr(n−ks0 = j) = µk

j∑
i=0

(−1)j−i
( pk
1− pk

)j−i
PNi

Now, let ν = j + 1 ≤ N . Then PNj+1 = Pr(ns0 = j + 1) = pkPr(n
−k
s0 = j) +

(1− pk)Pr(n−ks0 = j + 1). By solving for Pr(n−ks0 = j + 1) and substituting in the
expression above for Pr(n−ks0 = j), we can get that

Pr(n−ks0 = j + 1) = µk

j+1∑
i=0

(−1)j+1−i( pk
1− pk

)j+1−i
PNi

Revista Colombiana de Estadística 37 (2014) 127–140



138 Zaizai Yan & Yuxia Xue

2

Proof of Lemma 2. By applying Lemma 1 to the reduced population U − {k},
we can get that

Pr(n−kls0 = ν) = µl

ν∑
j=0

(−1)ν−j
( pl
1− pl

)ν−j
Pr(n−ks0 = j)

Again, by substituting the expression for Pr(n−ks0 = j) given by Lemma 1. 2

Proof of Theorem 1. Firstly we note that

πk = Pr(k ∈ s) = Pr(k ∈ s, ns0 < n) + Pr(k ∈ s, ns0 ≥ n) (A1)

The first factor on the right of equation (A1) equals

Pr(k ∈ s, ns0 = 0) +

n−1∑
ν=1

[Pr(k ∈ s, Ik = 1, ns0 = ν) + Pr(k ∈ s, Ik = 0, ns0 = ν)],

where Pr(k ∈ s, ns0 = 0) =
n

N
Pr(ns0 = 0) =

n

N
(1−pk)Pr(n−ks0 = 0).

When 1 ≤ ν ≤ n− 1,

Pr(k ∈ s, ns0 = ν) = Pr(k ∈ s, Ik = 1, ns0 = ν) + Pr(k ∈ s, Ik = 0, ns0 = ν)

= pk · Pr(n−ks0 = ν − 1) + (1− pk) ·
n− ν
N − ν

· Pr(n−ks0 = ν),

where n−ks0 =
∑N
j 6=k Ij . The last equality follows from the fact that Ik and n−ks0 are

independent. After some simple algebraic operation, it follows that

Pr(k ∈ s, ns0 < n)

= n
N (1− pk)Pr(n−ks0 = 0) +

∑n−1
ν=1

[
pkPr(n

−k
s0 = ν − 1)

+(1− pk) n−νN−νPr
(
n−ks0 = ν

)] (A2)

With the same notation and technique, we also derive that the second factor on
the right of equation (A1) corresponds to

Pr(k ∈ s, ns0 ≥ n) =
N−1∑
ν=n−1

pk ·
n

ν + 1
· Pr(n−ks0 = ν) (A3)

By substituting (A3) and (A2) in the equation (A1) and some algebraic operations,
the first-order inclusion probabilities can then be expressed as

πk =

n−1∑
ν=0

[ (N − n)pk + (n− ν)
N − ν

· Pr(n−ks0 = ν)
]
+

N−1∑
ν=n

npk
ν + 1

· Pr(n−ks0 = ν) (A4)

By applying Lemma 1 to Pr(n−ks0 = ν) of equation (A4), we can get Theorem 1.
2
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A2. Recursive Formula of the Second-Order Inclusion
Probabilities

Proof of Lemma 2. The second-order inclusion probabilities can be written
as

πij = Pr(i ∈ s, j ∈ s, ns0 < n) + Pr(i ∈ s, j ∈ s, ns0 ≥ n) (A5)

The first expression on the right of equation (A5) equals

Pr(i ∈ s, j ∈ s, ns0 = 0) + Pr(i ∈ s, j ∈ s, ns0 = 1) +

n−1∑
ν=2

Pr(i ∈ s, j ∈ s, ns0 = ν),

where Pr(i ∈ s, j ∈ s, ns0 = 0) = qiqj
n(n−1)
N(N−1)Pr

(
n−ijs0 = 0

)
and

Pr(i ∈ s, j ∈ s, ns0 = 1)

= Pr(i ∈ s, j ∈ s, Ii = 0, Ij = 0, ns0 = 1)

+Pr(i ∈ s, j ∈ s, Ii = 1, Ij = 0, ns0 = 1)

+Pr(i ∈ s, j ∈ s, Ii = 0, Ij = 1, ns0 = 1)

= qiqj
(n− 1)(n− 2)

(N − 1)(N − 2)
Pr(n−ijs0 = 1) + (piqj + qipj)

(n− 1)

(N − 1)
Pr
(
n−ijs0 = 0

)
When 2 ≤ ν ≤ n− 1,

Pr(i ∈ s, j ∈ s, ns0 = ν)

= Pr(i ∈ s, j ∈ s, Ii = 0, Ij = 0, ns0 = ν)

+Pr(i ∈ s, j ∈ s, Ii = 1, Ij = 0, ns0 = ν)

+Pr(i ∈ s, j ∈ s, Ii = 0, Ij = 1, ns0 = ν)

+Pr(i ∈ s, j ∈ s, Ii = 1, Ij = 1, ns0 = ν)

= qiqj
(n− ν)(n− ν − 1)

(N − ν)(N − ν − 1)
P (n−ijs0 = ν) + (piqj + qipj)

n− ν
N − ν

Pr(n−ijs0 = ν − 1)

+pipjPr(n
−ij
s0 = ν − 2)

The second factor on the right of equation (A5) corresponds to

N∑
ν=n

Pr(i ∈ s, j ∈ s, Ii = 1, Ij = 1, ns0 = ν) =

N∑
ν=n

pi·pj ·
n(n− 1)

ν(ν − 1)
·Pr(n−ijs0 = ν − 2)

On substituting the expressions above in equation (A5), the πij becomes

πij =

n−2∑
ν=0

[
(1− pi)(1− pj)

(n− ν)(n−ν − 1)

(N−ν)(N−ν − 1)

+(pi + pj − 2pipj)
n− ν − 1

N − ν − 1
+ pipj

]
Pr
(
n−ijs0 = ν

)
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+

N−2∑
ν=n−1

pipj
n(n− 1)

(ν + 2)(ν + 1)
Pr
(
n−ijs0 = ν

)
(A6)

By using Lemma 2 to Pr(n−ijs0 = ν) of equation (A6), we may derive Theorem 2.
2
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Abstract

In this paper, we introduce a new four-parameter generalized version
of the Gompertz model which is called Beta-Gompertz (BG) distribution.
It includes some well-known lifetime distributions such as Beta-exponential
and generalized Gompertz distributions as special sub-models. This new
distribution is quite flexible and can be used effectively in modeling sur-
vival data and reliability problems. It can have a decreasing, increasing, and
bathtub-shaped failure rate function depending on its parameters. Some
mathematical properties of the new distribution, such as closed-form expres-
sions for the density, cumulative distribution, hazard rate function, the kth
order moment, moment generating function, Shannon entropy, and the quan-
tile measure are provided. We discuss maximum likelihood estimation of the
BG parameters from one observed sample and derive the observed Fisher’s
information matrix. A simulation study is performed in order to investigate
the properties of the proposed estimator. At the end, in order to show the
BG distribution flexibility, an application using a real data set is presented.

Key words: Beta generator, Gompertz distribution, Maximum likelihood
estimation.

Resumen

En este artículo, se introduce una versión generalizada en cuatro paráme-
tros de la distribución de Gompertz denominada como la distribución Beta-
Gompertz (BG). Esta incluye algunas distribuciones de duración de vida bien
conocidas como la Beta exponencial y distribuciones Gompertz generalizadas
como casos especiales. Esta nueva distribución es flexible y puede ser usada
de manera efectiva en datos de sobrevida y problemas de confiabilidad. Su
función de tasa de falla puede ser decreciente, creciente o en forma de bañera
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dependiendo de sus parámetros. Algunas propiedades matemáticas de la
distribución como expresiones en forma cerrada para la densidad, función
de distribución, función de riesgo, momentos k-ésimos, función generadora
de momentos, entropía de Shannon y cuantiles son presentados. Se discute
la estimación máximo verosímil de los parámetros desconocidos del nuevo
modelo para la muestra completa y se obtiene una expresión para la matriz
de información. Con el fin de mostrar la flexibilidad de esta distribución, se
presenta una aplicación con datos reales. Al final, un estudio de simulación
es desarrollado.

Palabras clave: distribución de Gompertz, estimación máximo verosímil,
función Beta.

1. Introduction

The Gompertz (G) distribution is a flexible distribution that can be skewed to
the right and to the left. This distribution is a generalization of the exponential
(E) distribution and is commonly used in many applied problems, particularly
in lifetime data analysis (Johnson, Kotz & Balakrishnan 1995, p. 25). The G
distribution is considered for the analysis of survival, in some sciences such as
gerontology (Brown & Forbes 1974), computer (Ohishi, Okamura & Dohi 2009),
biology (Economos 1982), and marketing science (Bemmaor & Glady 2012). The
hazard rate function (hrf) of G distribution is an increasing function and often
applied to describe the distribution of adult life spans by actuaries and demogra-
phers (Willemse & Koppelaar 2000). The G distribution with parameters θ > 0
and γ > 0 has the cumulative distribution function (cdf)

G(x) = 1− e−
θ
γ (eγx−1), x ≥ 0, β > 0, γ > 0 (1)

and the probability density function (pdf)

g(x) = θeγxe−
θ
γ (eγx−1) (2)

This case is denoted by X ∼ G(θ, γ).
Recently, a generalization based on the idea of Gupta & Kundu (1999) was

proposed by El-Gohary & Al-Otaibi (2013).
This new distribution is known as generalized Gompertz (GG) distribution

which includes the E, generalized exponential (GE), and G distributions (El-
Gohary & Al-Otaibi 2013).

In this paper, we introduce a new generalization of G distribution which results
of the application of the G distribution to the Beta generator proposed by Eugene,
Lee & Famoye (2002), called the Beta-Gompertz (BG) distribution.

Several generalized distributions have been proposed under this methodol-
ogy: beta-Normal distribution (Eugene et al. 2002), Beta-Gumbel distribution
(Nadarajah & Kotz 2004), Beta-Weibull distribution (Famoye, Lee & Olumolade
2005), Beta-exponential (BE) distribution, (Nadarajah & Kotz 2006), Beta-Pareto
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distribution (Akinsete, Famoye & Lee 2008), Beta-modified Weibull distribution
(Silva & Cordeiro 2010), Beta-generalized normal distribution (Cintra & Nascimento
2012). The BG distribution includes some well-known distributions: E distribu-
tion, GE distribution (Gupta & Kundu 1999), BE distribution (Nadarajah &
Kotz 2006), G distribution, GG distribution (El-Gohary & Al-Otaibi 2013).

This paper is organized as follows: In Section 2, we define the density and
failure rate functions and outline some special cases of the BG distribution. In
Sections 3 we provide some extensions and properties of the cdf, pdf, kth moment
and moment generating function of the BG distribution. Furthermore, in these
sections, we derive corresponding expressions for the order statistics, Shannon
entropy and quantile measure. In Section 4, we discuss maximum likelihood esti-
mation of the BG parameters from one observed sample and derive the observed
Fisher’s information matrix.

A simulation study is performed in Section 5. Finally, an application of the
BG using a real data set is presented in Section 6.

2. The BG Distribution

In this section, we introduce the four-parameter BG distribution. The idea of
this distribution rises from the following general class: If G denotes the cdf of a
random variable then a generalized class of distributions can be defined by

F (x) = IG(x)(α, β) =
1

B(α, β)

∫ G(x)

0

tα−1(1− t)β−1dt, α, β > 0 (3)

where Iy(α, β) =
By(α,β)
B(α,β) is the incomplete beta function ratio and By(α, β) =∫ y

0
tα−1(1− t)β−1dt is the incomplete beta function.

Consider that g(x) = dG(x)
dx is the density of the baseline distribution. Then

the probability density function corresponding to (3) can be written in the form

f(x) =
g(x)

B(α, β)
[G(x)]α−1[1−G(x)]β−1 (4)

We now introduce the BG distribution by taking G(x) in (3) to the cdf in (1) of
the G distribution. Hence, the pdf of BG can be written as

f(x) =
θeγxe−

βθ
γ (eγx−1)

B(α, β)
[1 − e−

θ
γ (eγx−1)]α−1 (5)

and we use the notation X ∼ BG(θ, γ, α, β).

Theorem 1. Let f(x) be the pdf of the BG distribution. The limiting behavior of
f for different values of its parameters is given below:

i. If α = 1 then limx→0+ f(x) = θβ
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ii. If α > 1 then limx→0+ f(x) = 0.

iii. If 0 < α < 1 then limx→0+ f(x) = ∞
iv. limx→∞ f(x) = 0

Proof . The proof of parts (i)-(iii) are obvious. For part (iv), we have

0 ≤ [1− e−
θ
γ (eγx−1)]α−1 < 1 ⇒ 0 < f(x) <

θeγxe−
βθ
γ (eγx−1)

B(α, β)

It can be easily shown that

lim
x→∞ θeγxe−

βθ
γ (eγx−1) = 0.

and the proof is completed.

The hrf of BG distribution is given by

h(x) =
θeγxe−

βθ
γ (eγx−1)

B(α, β)−BG(x)(α, β)
[1− e−

θ
γ (eγx−1)]α−1 (6)

Recently, it is observed (Gupta & Gupta 2007) that the reversed hrf plays an
important role in the reliability analysis. The reversed hrf of the BG(θ, γ, α, β) is

r(x) =
θeγxe−

βθ
γ (eγx−1)

BG(x)(α, β)
[1− e−

θ
γ (eγx−1)]α−1 (7)

Plots of pdf and hrf function of the BG distribution for different values of its
parameters are given in Figure 1 and Figure 2, respectively.

Some well-known distributions are special cases of the BG distribution:

1. If α = 1, β = 1, γ → 0, then we get the E distribution.

2. If β = 1, γ → 0, then we get the GE distribution which is introduced by
Gupta & Kundu (1999)

3. If β = 1, then we get the GG distribution which is introduced by El-Gohary
& Al-Otaibi (2013).

4. If α = 1, β = 1, then we get the G distribution.

5. If γ → 0, then we get the BE which is introduced by Nadarajah & Kotz
(2006).

If the random variable X has BG distribution, then it has the following prop-
erties:
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Figure 1: Plots of density functions of BG for different values of parameters.

1. the random variable
Y = 1− e−

θ
γ (eγX−1)

satisfies the Beta distribution with parameters α and β. Therefore,

T =
θ

γ
(eγX − 1)

satisfies the BE distribution with parameters 1, α and β (BE(1, α, β)).
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Figure 2: Plots of hrf of BG for different values of parameters.

2. If α = i and β = n − i, where i and n are positive integer values, then the
f(x) is the density function of ith order statistic of G distribution.

3. If V follows Beta distribution with parameters α and β, then

X = G−1(V ) =
1

γ
log
(
1− γ

θ
log(1 − V )

)
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follows BG distribution. This result helps in simulating data from the BG
distribution.

For checking the consistency of the simulating data set form BG distribution,
the histogram for a generated data set with size 100 and the exact BG density
with parameters θ = 0.1 and γ = 1.0 , α = 0.1, and β = 0.1, are displayed in
Figure 3 (left). Also, the empirical distribution function and the exact distribution
function is given in Figure 3 (right).
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Figure 3: The histogram of a generated data set with size 100 and the exact GPS
density (left) and the empirical distribution function and exact distribution
function (right).

3. Some Extensions and Properties

Here, we present some representations of the cdf, pdf, kth moment and mo-
ment generating function of BG distribution. Also, we provide expressions for the
order statistics, Shannon entropy and quantile measure of this distribution. The
mathematical relation given below will be useful in this section. If β is a positive
real non-integer and |z| < 1, then ( Gradshteyn & Ryzhik 2007, p. 25)

(1− z)β−1 =

∞∑
j=0

wjz
j

and if β is a positive real integer, then the upper of the this summation stops at
β − 1, where

wj =
(−1)jΓ(β)

Γ(β − j)Γ(j + 1)
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Proposition 1. We can express (3) as a mixture of distribution function of GG
distributions as follows:

F (x) =

∞∑
j=0

pj [G(x)]
α+j =

∞∑
j=0

pjGj(x)

where pj = (−1)jΓ(α+β)
Γ(α)Γ(β−j)Γ(j+1)(α+j) and Gj(x) = (G(x))α+j is the distribution func-

tion of a random variable which has a GG distribution with parameters θ, γ, and
α+ j. Also, we can write

G(x)α+j =

∞∑
k=0

(−1)k
(
α+ j

k

)
(1−G(x))k

=

∞∑
r=0

∞∑
k=r

(−1)k+r

(
α+ j

k

)(
k

r

)
G(x)r

(8)

and

F (x) =
∞∑
j=0

∞∑
r=0

∞∑
k=r

pj(−1)k+r

(
α+ j

k

)(
k

r

)
G(x)r =

∞∑
r=0

brG(x)
r (9)

where br =
∞∑
j=0

∞∑
k=r

pj(−1)k+r
(
α+j
k

)(
k
r

)
Proposition 2. We can express (5) as a mixture of density functions of a GG
distribution as follows:

f(x) =
∞∑
j=0

pj(α+ j)g(x)[G(x)]α+j−1 =
∞∑
j=0

pjgj(x)

where gj(x) is a density function of a random variable with a GG distribution and
parameters θ, γ, and α+ j.

Proposition 3. The cdf can be expressed in terms of the hypergeometric function
and the incomplete beta function ratio (see Cordeiro & Nadarajah 2011) in the
following way:

F (x) =
(G(x))α

αB(α, β)
2F1(α, 1 − β;α+ 1;G(x))

where 2F1(a, b; c; z) =
∞∑
k=0

((a)k(b)k)
((c)kk!)

zk and (a)k = a(a+ 1) · · · (a+ k − 1)

Proposition 4. The kth moment of the BG distribution can be expressed as a
mixture of the kth moment of GG distributions as follows:

E(Xk) =

∫ ∞

0

xk
∞∑
j=0

pj(α+ j)g(x)[G(x)]α+j−1 =

∞∑
j=0

pjE(Xk
j ) (10)
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where

E[Xk
j ] = ujk

∞∑
i=0

∞∑
r=0

(
α+ j − 1

i

)
(−1)i+r

Γ(r + 1)
e

θ
γ (i+1)[

θ

γ
(i+ 1)]r[

−1

γ(k + 1)
]s+1

ujk = (α+ j)θΓ(k + 1) and gj(x) is the density function of a random variable Xj

which has a GG distribution with parameters θ, γ, and α+ j.

Proposition 5. The moment generating function of the BG distribution can be
expressed as a mixture of moment generating function of GG distributions as fol-
lows:

MX(t) =
∫∞
0 etx

∞∑
j=0

pj(α+ j)g(x)[G(x)]α+j−1 =
∞∑
j=0

pjMXj (t) (11)

where

MXj (t) =
(α+ j)θ

γ

∞∑
i=0

∞∑
k=0

(−1)i
(
α+ j − 1

i

)( t
γ

k

)
Γ(k + 1)

[ (i+1)θ
γ ]k+1

and gj(x) is the density function of a random variable Xj which has a GG distri-
bution with parameters θ, γ, and α+ j.

3.1. Order Statistics

Moments of order statistics play an important role in quality control testing
and reliability. For example, if the reliability of an item is high, the duration of
an all items fail life test can be too expensive in both time and money.

Therefore, a practitioner needs to predict the failure of future items based on
the times of few early failures. These predictions are often based on moments of
order statistics.

Let X1, X2, . . . , Xn be a random sample of size n from BG(θ, γ, α, β). Then
the pdf and cdf of the ith order statistic, say Xi:n, are given by

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
m=0

(−1)m
(
n− i

m

)
f(x)F i+m−1(x) (12)

and

Fi:n(x) =

∫ x

0

fi:n(t)dt =
1

B(i, n− i+ 1)

n−i∑
m=0

(−1)m

m+ i

(
n− i

m

)
F i+m(x) (13)

respectively, where F i+m(x) = (
∞∑
r=0

brG(x)
r)i+m. Here and henceforth, we use an

equation by Gradshteyn & Ryzhik (2007), page 17, for a power series raised to a
positive integer n ( ∞∑

r=0

br u
r

)n

=

∞∑
r=0

cn,r u
r (14)
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where the coefficients cn,r (for r = 1, 2, . . .) are easily determined from the recur-
rence equation

cn,r = (r b0)
−1

r∑
m=1

[m (n+ 1)− r] bm cn,r−m, (15)

where cn,0 = bn0 . The coefficient cn,r can be calculated from cn,0, . . . , cn,r−1 and
hence from the quantities b0, . . . , br.

The equations (12) and (13) can be written as

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
m=0

∞∑
r=1

1

m+ i
(−1)mrci+m,rg(x)G

r−1(x)

and

Fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
m=0

∞∑
r=0

1

m+ i
(−1)mci+m,rG

r(x)

Therefore, the sth moments of Xi:n follows as

E[Xs
i:n] =

1

B(i, n− i+ 1)

n−i∑
m=0

∞∑
r=1

1

m+ i
(−1)mrci+m,r

∫ +∞

0

tsg(t)Gr−1(t)dt

=
1

B(i, n− i+ 1)

n−i∑
m=0

∞∑
r=1

1

m+ i
(−1)mrci+m,r

× θΓ(s+ 1)

∞∑
i1=0

∞∑
i2=0

(
r − 1

i1

)
(−1)i1+i2

Γ(i2 + 1)
e

θ
γ (i1+1)[

θ(i1 + 1)

γ
]i2 [

−1

γ(i2 + 1)
]s+1

3.2. Quantile Measure

The quantile function of the BG distribution is given by

Q(u) =
1

γ
log(1− γ

θ
log(1−Qα,β(u)))

where Qα,β(u) is the uth quantile of Beta distribution with parameters α and
β. The effects of the shape parameters α and β on the skewness and kurtosis
can be considered based on quantile measures. The Bowley skewness (Kenney &
Keeping 1962) is one of the earliest skewness measures defined by

B =
Q(34 ) +Q(14 )− 2Q(12 )

Q(34 )−Q(14 )

This adds robustness to the measure, since only the middle two quartiles are
considered and the other two quartiles are ignored. The Moors kurtosis (Moors
1988) is defined as

M =
Q(38 )−Q(18 ) +Q(78 )−Q(58 )

Q(68 )−Q(28 )
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Clearly, M > 0 and there is a good concordance with the classical kurtosis mea-
sures for some distributions. These measures are less sensitive to outliers and they
exist even for distributions without moments. For the standard normal distribu-
tion, these measures are 0 (Bowley) and 1.2331 (Moors).

In Figures 4 and 5, we plot the measures B and M for some parameter values.
These plots indicate that both measures B and M depend on all shape parameters.
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Figure 4: The Bowley skewness (left) and Moors kurtosis (right) coefficients for the BG
distribution as a function of γ.
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distribution as a function of θ.
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3.3. Shannon and Rényi Entropy

If X is a non-negative continuous random variable with pdf f(x), then Shan-
non’s entropy of X is defined by Shannon (1948) as

H(f) = E[− log f(X)] = −
∫ +∞

0

f(x) log(f(x))dx

and this is usually referred to as the continuous entropy (or differential entropy).
An explicit expression of Shannon entropy for BG distribution is obtained as

H(f) = log(
B(α, β)

θ
)− θβ

γ
− γE(X)

+
θβ

γ
MX(γ) + (α− 1)[ψ(α+ β)− ψ(α)]

(16)

where ψ(.) is a digamma function.
The Rényi entropy of order λ is defined as

Hλ(f) =
1

1− λ
log

∫ +∞

−∞
fλ(x)dx, ∀λ > 0 (λ 	= 1) (17)

where

H(X) = lim
λ→1

Hλ(X) = −
∫ +∞

−∞
f(x) log f(x)dx

is the Shannon entropy, if both integrals exist. Finally, an explicit expression of
Rényi entropy for BG distribution is obtained as

Hλ(f) = − log(θ) +
λ

λ− 1
log(B(α, β)) +

1

1− λ

[
log(B(α, (β − 1)λ+ 1))

+ log

( ∞∑
j=1

j∑
k=0

(−1)k
(
λ− 1

j

)(
j

k

)(γ
θ

)j Γ(j + 1)

(j + 1)k−1+(β−1)λ

)] (18)

4. Estimation and Inference

In this section, we determine the maximum-likelihood estimates (MLEs) of the
parameters of the BG distribution from a complete sample. Consider X1, . . . , Xn

is a random sample from BG distribution. The log-likelihood function for the
vector of parameters Θ = (θ, γ, α, β) can be written as

ln = ln(Θ)

= n log(θ)− n log(B(α, β)) + nγx̄− βθ

n∑
i=1

log(ti)

+ (α− 1)

n∑
i=1

log(1 − tθi )

(19)
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where x̄ = n−1
n∑

i=1

xi and ti = e
−1
γ (eγxi−1). The log-likelihood can be maximized

either directly or by solving the nonlinear likelihood equations obtained by differ-
entiating (19). The components of the score vector U(Θ) are given by

Uα(Θ) =
∂ln
∂α

= nψ(α+ β)− nψ(α) +

n∑
i=1

log(1 − tθi )

Uβ(Θ) =
∂ln
∂β

= nψ(α+ β) − nψ(β)− θ

n∑
i=1

log(ti)

Uθ(Θ) =
∂ln
∂θ

=
n

θ
− β

n∑
i=1

log(ti)− (α− 1)

n∑
i=1

tθi log(ti)

1− tθi

Uγ(Θ) =
∂ln
∂γ

= nx̄− βθ

n∑
i=1

di − θ(α− 1)

n∑
i=1

dit
θ
i

1− tθi

where ψ(.) is the digamma function, and

di =
∂ log(ti)

∂γ
=

1

γ
(− log(ti) + γxi log(ti)− xi)

For interval estimation and hypothesis tests on the model parameters, we re-
quire the observed information matrix. The 4×4 unit observed information matrix
J = Jn(Θ) is obtained as

J = −

⎡
⎢⎢⎣
Jαα Jαβ Jαθ Jαγ
Jαβ Jββ Jβθ Jβγ
Jαθ Jβθ Jθθ Jθγ
Jαγ Jβγ Jθγ Jγγ

⎤
⎥⎥⎦

where the expressions for the elements of J are

Jαα =
∂2ln
∂α2

= nψ′(α+ β)− nψ′(α), Jαβ =
∂2ln
∂α∂β

=
∂2ln
∂β∂α

= nψ′(α+ β)

Jαθ =
∂2ln
∂α∂θ

=
∂2ln
∂θ∂α

=

n∑
i=1

tθi log(ti)

1− tθi
, Jαγ =

∂2ln
∂α∂γ

=
∂2ln
∂γ∂α

= −θ
n∑

i=1

dit
θ
i

1− tθi
,

Jββ =
∂2ln
∂β2

= nψ′(α+ β)− nψ′(β), Jβθ =
∂2ln
∂β∂θ

=
∂2ln
∂θ∂β

= −
n∑

i=1

log(ti)

Jβγ =
∂2ln
∂β∂γ

=
∂2ln
∂γ∂β

= −θ
n∑

i=1

di, Jθθ =
∂2ln
∂θ2

= − n

θ2
+ θ(α− 1)

n∑
i=1

tθi (log(ti))
2

(1− tθi )
2

Jθγ =
∂2ln
∂θ∂γ

=
∂2ln
∂γ∂θ

= −β
n∑

i=1

di − (α− 1)

n∑
i=1

dit
θ
i

1− tθi

(
θ log(ti) + 1 +

θtθi log(ti)

1− tθi

)

Jγγ =
∂2ln
∂γ2

= −βθ
n∑

i=1

qi − θ(α− 1)

n∑
i=1

tθi
1− tθi

(qi + θd2i )− θ2(α− 1)

n∑
i=1

d2i t
2θ
i

1− tθi

where qi = ∂di

∂γ = di(xi − 2
γ ) +

xi

γ log(ti).
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5. Simulation Studies

In this section, we performed a simulation study in order to investigate the
proposed estimator of parameters based on the proposed MLE method. We gen-
erate 10,000 data sets with size n from the BG distribution with parameters a, b,
θ, and γ, and compute the MLE’s of the parameters. We assess the accuracy of the
approximation of the standard error of the MLE’s determined through the Fisher
information matrix and variance of the estimated parameters. Table 1 show the
results for the BG distribution. From these results, we can conclude that:

i. the differences between the average estimates and the true values are almost
small,

ii. the MLE’s converge to true value in all cases when the sample size increases,

iii. the standard errors of the MLEs decrease when the sample size increases.

From these simulations, we can conclude that estimation of the parameters using
the MLE are satisfactory.

6. Application of BG to a Real Data Set

In this section, we perform an application to real data and demonstrate the su-
periority of BG distribution as compared to some of its sub-models. The data have
been obtained from Aarset (1987), and widely reported in some literatures (for ex-
ample see Silva & Cordeiro 2010). It represents the lifetimes of 50 devices, and
also, possess a bathtub-shaped failure rate property. The numerical evaluations
were implemented using R software (nlminb function).

Based on some goodness-of-fit measures, the performance of the BG distribu-
tion is quantified and compared with others due to five literature distributions:
E, GE, BE, G, and GG, distributions. The MLE’s of the unknown parameters
(standard errors in parentheses) for these distributions are given in Table 2. Also,
the values of the log-likelihood functions (− log(L)), the Kolmogorov Smirnov
(KS) test statistic with its p-value, the statistics AIC (Akaike Information Crite-
rion), the statistics AICC (Akaike Information Citerion with correction) and BIC
(Bayesian Information Criterion) are calculated for the six distributions in order
to verify which distribution fits better to these data. All the computations were
done using the R software.

The BG distribution yields the highest value of the log-likelihood function and
smallest values of the AIC, AICC and BIC statistics. From the values of these
statistics, we can conclude that the BG model is better than the other distributions
to fit these data. The plots of the densities (together with the data histogram) and
cumulative distribution functions (with empirical distribution function) are given
in Figure 6. It is evident that the BG model provides a better fit than the other
models. In particular, the histogram of data shows that the BG model provides
an excellent fit to these data.
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For this data set, we perform the Likelihood Ratio Test (LRT) for testing the
following hypotheses:

1. H0: E distribution vs. H1: BG distribution

2. H0: GE distribution vs. H1: BG distribution

3. H0: BE distribution vs. H1: BG distribution

4. H0: G distribution vs. H1: BG distribution, or equivalently H0: (α, β) =
(1, 1) vs. H1: (α, β) 	= (1, 1)

5. H0: GG distribution vs. H1: BG distribution, or equivalently H0: β = 1 vs.
H1: β 	= 1.

Table 2: Parameter estimates (with std.), K-S statistic, p-value for K-S, AIC, AICC,
BIC, LRT statistic and p-value of LRT for the data set.

Distribution E GE BE G GG BG
α̂ — 0.9021 0.5236 — 0.2625 0.2158
(std.) — (0.1349) (0.1714) — (0.0395) (0.0392)
β̂ — — 0.0847 — — 0.2467
(std.) — — (0.0828) — — (0.0448)
θ̂ 0.0219 0.0212 0.2352 0.0097 0.0001 0.0003
(std.) (0.0031) (0.0036) (0.2111) (0.0029) (0.0001) (0.0001)
γ̂ — — — 0.0203 0.0828 0.0882
(std.) — — — (0.0058) (0.0031) (0.0030)
− log(L) 241.0896 240.3855 238.1201 235.3308 222.2441 220.6714
K-S 0.1911 0.1940 0.1902 0.1696 0.1409 0.1322
p-value (K-S) 0.0519 0.0514 0.0538 0.1123 0.2739 0.3456
AIC 484.1792 484.7710 482.2400 474.6617 450.4881 449.3437
AICC 484.2625 485.0264 482.7617 475.1834 451.0099 450.2326
BIC 486.0912 488.5951 487.9760 482.3977 456.2242 456.9918
LRT 40.8355 39.4273 34.8962 29.3179 3.1444 —
p-value (LRT) 0.0000 0.0000 0.0000 0.0001 0.0762 —

Values of the LRT statistic and its corresponding p-value for each hypotheses
are given in Table 2. From these results, we can conclude that the null hypotheses
are rejected in all situations, and therefore, the BG distribution is an adequate
model.
Note 1. El-Gohary & Al-Otaibi (2013) found the following estimations for the
parameters of th GG distribution:

â = 0.421, θ̂ = 0.00143, γ̂ = 0.044.

Based on these estimations, the log-likelihood function is equal to −224.1274. But
we found the following estimations for the parameters of GG distribution:

â = 0.2625, θ̂ = 0.0001, γ̂ = 0.0828.

Based on these estimations, the log-likelihood function is equal to −222.2441.
Therefore, the estimations of El-Gohary & Al-Otaibi (2013) for GG distribution
is not the MLE.
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butions for the data set.
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Abstract

In a growing number of quality control applications, the quality of a
product or process is best characterized and summarized by a functional
relationship between a response variable and one or more explanatory vari-
ables. Profile monitoring is used to understand and to check the stability of
this relationship over time. In some applications with compositional data,
the relationship can be characterized by a Dirichlet regression model. We
evaluate five T 2 control charts for monitoring these profiles in Phase I. A
real example from production of concrete is given.

Key words: Control chart, Dirichlet distribution, Statistical process
control.

Resumen

En un gran número de aplicaciones la calidad de un producto o proceso
está mejor representada por una relación funcional entre una variable de
respuesta y una o más variables explicatorias. El monitoreo de perfiles per-
mite entender y chequear la estabilidad de esta relación funcional a través
del tiempo. En algunas aplicaciones con datos composicionales, la relación
puede ser representada por un modelo de regresión Dirichlet. En este artículo
nosotros evaluamos cinco cartas de control T 2 para monitorear estos perfiles
en Fase I. Un ejemplo real asociado a la producción de concreto es presen-
tado.

Palabras clave: carta de control, control estadístico de procesos, distribu-
ción Dirichlet.
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1. Introduction

In most of the statistical process control (SPC) applications, the quality of
a process or product is represented by the distribution of a univariate or multi-
variate quality characteristic. However, in other applications, process quality is
better characterized by a relationship between a response variable and one or more
explanatory variables. This relationship is usually known as a profile. In these
situations, the focus of the SPC lies on the parameters of the profile monitoring
rather than on the monitoring of the univariate or multivariate characteristics.
Such profiles can be represented using linear or nonlinear models. Some discus-
sion of the general issues involving profile monitoring can be found in Woodall,
Spitzner, Montgomery & Gupta (2004), Woodall (2007), Noorossana, Saghaei &
Amiri (2012) and Qiu (2013). Profile practical applications have been reported
by many researchers, including Stover & Brill (1998), Kang & Albin (2000), Mah-
moud & Woodall (2004), Wang & Tsung (2005) and Kusiak, Zheng & Song (2009).
Several control chart approaches for monitoring simple linear profiles have been
developed by Kang & Albin (2000), Kim, Mahmoud &Woodall (2003), Zou, Zhang
& Wang (2006), Zou, Zhou, Wang & Tsung (2007), Mahmoud, Parker, Woodall &
Hawkins (2007), Soleimani, Narvand & Raissi (2013), Zhang, He, Zhang &Woodall
(2013), Yeh & Zerehsaz (2013) and Amiri, Zou & Doroudyan (2014). Proposals for
monitoring multivariate linear profiles (simple and/or multiple) have been devel-
oped by Mahmoud (2008), Noorossana, Eyvazian & Vaghefi (2010), Noorossana,
Eyvazian, Amiri & Mahmoud (2010), Eyvazian, Noorossana, Saghaei & Amiri
(2011) and Zou, Ning & Tsung (2012).

The linear regression model is commonly used for monitoring profiles. However,
it is not appropriate for situations where the response is restricted to the interval
(0, 1) since it may yield fitted values in the variable of interest that exceed its lower
and upper bounds. Ferrari & Cribari-Neto (2004) proposed a regression model that
is tailored for situations where the dependent variable Y is measured continuously
on the standard unit interval, i.e. 0 < Y < 1. The proposed model is based on
the assumption that the response is Beta distributed. The Beta distribution is
very flexible for modeling proportions since its density can have quite different
shapes depending on the values of the two parameters that index the distribution.
Vasconcellos & Cribari-Neto (2005) proposed a class of regression models where the
response is Beta distributed and the two parameters that index this distribution are
related to covariates and regression parameters. However, the proposed regression
models are restricted to the univariate case and cannot be applied in many practical
situations where data consist of multivariate positive observations summing to
one, that is, the study of compositional data, see Aitchison (1986) and Aitchison
(2003). Melo, Vasconcellos & Lemonte (2009) proposed a particular structure
for compositional data regression, based on the Dirichlet distribution, which is a
generalization of the Beta distribution for the simplex sample space. A profile
application in a concrete manufacturing plant, which after a preliminary study
was found to fit appropriately this structure motivated this paper.

Compositional data are frequently encountered in industries such as the chem-
ical, pharmaceutical, textil, plastic, concrete, steel, asphalt, among other. Sev-
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eral statistical methods for monitoring processes characterized by compositional
data have been studied. See for example, Sullivan & Woodall (1996), Boyles
(1997), Yang, Cline, Lytton & Little (2004) and Vives-Mestres, Daunis-i Estadella
& Martín-Fernández (2013). However, there are not methods for monitoring these
processes when the random vectors associated to the compositional data present
a functional relationship with a set of explanatory variables.

In this paper, the control charting mechanisms discussed by Williams, Woodall
& Birch (2007) and Yeh, Huwang & Li (2009) are extended for monitoring func-
tional relationships in Phase I characterized by a Dirichlet regression model using
a regression structure that allows the modeling of relationships between random
vectors with Dirichlet distribution and a set of explanatory variables.

The structure of this paper is outlined as follows: In Section 2, we show the
Dirichlet regression model for compositional data and the estimation of the model
parameters. Five T 2 control charts approaches used for monitoring linear profiles
in Phase I with compositional data are presented in Section 3. In Section 4, the
performance of the proposed approaches is evaluated through simulation studies.
A real example is given in Section 5. In the last section we conclude the paper.

2. Dirichlet Regression

Compositional data are used to indicate how parts contribute to the whole. In
most cases they are recorded as closed data, i.e. data summing to a constant, such
as 100%. Compositional data occupy a restricted space where variables can vary
only from 0 to 100, or any other given constant. Such a restricted space is known
formally as a simplex, see Pawlowsky-Glahn & Egozcue (2006).

Let c be a positive number. The p-dimensional closed simplex in Rn and
(p− 1)-dimensional open simplex in Rp−1 are defined by

Tp(c) =

(y1, . . . , yp)
t : yj > 0, 1 ≤ j ≤ p,

p∑
j=1

yj = c


and

Vp−1(c) =

(y1, . . . , yp−1)t : yj > 0, 1 ≤ j ≤ p− 1,

p−1∑
j=1

yj < c


respectively, where the superscript t means the function transpose. Furthermore,
let Tp = Tp(1) and Vp−1 = Vp−1(1).

A random vector Y = (Y1, . . . , Yp)
t ∈ Tp is said to have a Dirichlet distribution

if the density function of Y−p = (Y1, . . . , Yp−1)t is

f (Y−p|a) =

Γ

(
p∑
j=1

aj

)
p∏
j=1

Γ (aj)

p∏
j=1

y
aj−1
j , (y1, . . . , yp−1) ∈ Vp−1, (1)
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where a = (a1, . . . , ap)
t and aj > 0, j = 1 . . . p. We will write Y ∼ Dirichletp(a1,

. . . , ap), see Ng, Tian & Tang (2011).
When all aj → 0, the distribution becomes noninformative. When p = 2,

the Dirichlet distribution Dirichlet2(a1, a2) reduces to the Beta(a1, a2) distribu-
tion. The marginal distributions of the components of Y, Yj , j = 1, 2, . . . , p, are
distributed as Beta(aj , φ − aj), where φ =

∑p
j=1 aj . In this sense, the Dirich-

let distribution can be seen as a multivariate extension of the Beta distribution.
Therefore, we have

E(Yj) =
aj
φ
, j = 1, . . . , p (2)

V ar(Yj) =
aj(φ− aj)
φ2(φ+ 1)

, j = 1, . . . , p (3)

Cov(Yj , Yl) = − ajal
φ2(φ+ 1)

< 0, j 6= l; j, l = 1, . . . , p (4)

The Dirichlet distribution is widely used to model data in the form of pro-
portions, where each observation is a vector of positive numbers summing to one.
It allows great flexibility of modeling, provided by the appropriate choice of its
parameters. See Ng et al. (2011) and Melo et al. (2009).

Gueorguieva, Rosenheck & Zelterman (2008) described a Dirichlet multivariate
regression method which is useful for modeling data representing components as
a percentage of a total. They described each log(aj) as a separate linear function
of covariates and regression coefficients. That is, for each component j = 1, . . . , p
they used a log-link with

log aij = βtjXi (5)

for covariates Xi recorded on the ith individual (i = 1, . . . , n) and regression
coefficients βj to be estimated using maximum likelihood. These estimates are
denoted β̂j . The estimates âj = {âij} of aj = {aij} are defined by

âij = exp(β̂
t

jXi)

Gueorguieva et al. (2008) refer to the {aj} as meta − parameters because they
combine the effects of the covariates Xi using regression parameters {βj}.

Melo et al. (2009) proposed a generalization of this model. The proposed model
is defined by establishing relationships between the parameters that index the
Dirichlet distribution and linear predictors on the explanatory variables. They as-
sume a set of independent vector observations Y1, . . . ,Yn, where
Yi = (Yi1, . . . , Yip) with Yi1 + · · · + Yip = 1, for each i. They suppose that
Yi ∼ Dirichletp(ai1, . . . , aip) with

aij = gj(β1jxi1 + · · ·+ βkjxik) (6)

where each function gj : R → (0,∞) is three times differentiable, injective and
known, xi1, . . . , xik are the values corresponding to the ith observation for k ex-
planatory variables and β1j , . . . , βkj are k unknown parameters corresponding to
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the jth component. The model, therefore, has kp unknown parameters, which can
be estimated through maximum likelihood (See Melo et al. 2009).

The covariates of this regression model affect the vector mean, the variance
covariance structure of the distribution of the observations and the higher-order
moments. The functions gj play a similar role to the link functions of generalized
linear models, in the sense that they specifically define how the parameters of the
distribution of interest are linked to linear combinations of the covariates. The
coefficients of this linear combination are unknown. The regression parameters
are identifiable if the link functions are injective and the covariates are linearly
independent (See Melo et al. 2009).

In the Dirichlet regression model, if p = 2 we have the Beta regression model
described in Vasconcellos & Cribari-Neto (2005), Gueorguieva et al. (2008) and
Melo et al. (2009).

The regression coefficients can be estimated using maximum likelihood. Let
B the k × p matrix with the βhj ’s, h = 1, 2 . . . , k and j = 1, 2, . . . , p. The log-
likelihood function is given by

l(B) =

n∑
i=1

log[Γ(φi)]−
p∑
j=1

log[Γ(aij)] +

p∑
j=1

aij log(Yij)

 (7)

where φi = ai1 + · · ·+ aip for each i = 1, 2, . . . , n.

If B̂ is the maximum likelihood estimator for B, under some regularity con-
ditions,

√
nvec(B̂ − B)

a∼ Nkp(0,K(B)
−1

), when n is large, with a∼ denoting
asymptotically distributed, Nkp representing a kp-variate normal distribution and
K(B) representing the kp×kp information matrix for the vector version of B (See
Melo et al. 2009). The matrix K(B) can be obtained as

K(B) =
(
Ip
⊗

X
)t

L
(
Ip
⊗

X
)

(8)

where
⊗

represents the Kronecker product, L is an np × np matrix defined in
partitioned form as

L =

L11 · · · L1p

...
. . .

...
Lp1 · · · Lpp

 (9)

where each Lcd, with c = 1, 2, . . . , p and d = 1, 2, . . . , p, is a diagonal matrix having
ith element in the diagonal given by

l
(cd)
i =

{
−g′c(ηic)2[ψ′(φi)− ψ′(aic)], c = d

−g′c(ηic)g′d(ηid)ψ′(φi), c 6= d
(10)

where φi = ai1 + · · · + aip, for each i = 1, 2, . . . , n, ηij = β1jXi1 + · · · + βkjXik

with i = 1, 2, . . . , n, j = 1, 2, . . . , p, g′ is the first-order derivative of g with respect
to its argument and ψ (digamma function) is the first derivative of the log of the
gamma function.
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3. Profile Monitoring Control Charts

In this section, we propose and study five Hotelling T 2 control charts for moni-
toring linear profiles with compositional data using the Dirichlet regression model
described in the previous section. The study is limited for Phase I. We consider
the same charts analyzed by Yeh et al. (2009) in their study for profile monitoring
in binary responses: T 2 based on the sample mean vector and covariance ma-
trix (T 2

Usual), T
2 based on the sample average and successive differences estimator

(T 2
SD) proposed by Sullivan & Woodall (1996), T 2 based on the sample average

and intra−profile pooling (T 2
Int) Williams et al. (2007), T 2 based on the Minimum

Volume Ellipsoid (T 2
MVE) and T

2 based on the Minimum Covariance Determinant
(T 2
MCD) studied by Vargas (2003) and Jensen, Birch & Woodall (2007).

We assume that when the process is in control, the matrix of model parameters
is B0. In Phase I control, m independent samples are taken. In each sample r,
r = 1, . . . ,m, there are a set of nr independent vector observations Y1r, . . . ,Ynr r,
where Yir = (Yir1, . . . , Yirp) with Yir1 + · · · + Yirp = 1, for each i = 1, . . . , nr.
We suppose that Yir ∼ Dirichletp(ai1, . . . , aip). We assume that the relationship
between the parameters that index the Dirichlet distribution and k explanatory
variables (X1, . . . , Xk) given in equation (6) is gj = exp(·).

For any given sample r, r = 1, 2, . . . ,m, B̂r is the maximum likelihood estima-
tor of B. Let β̂r = vec(B̂r) = (β̂11r , β̂21r , . . . , β̂k1r , β̂12r , β̂22r , . . . , β̂k2r , . . . , β̂1pr ,

β̂2pr , . . . , β̂kpr ) β̂r is a multivariate random vector, where each β̂sjr represents
the estimator of the parameter corresponding to the explanatory variable Xs,
s = 1, . . . , k, applied on the j components of Yir.

The Hotelling’s T 2 statistic measures the Mahalanobis distance of the corre-
sponding vector from the sample mean vector. The general form of the statistic
is

T 2
r = (β̂r − β0)tΣ−10 (β̂r − β0)

where β0 is the expected value of β̂r when the process is in control, and Σ0 is the
in-control covariance matrix of β̂r.

In Phase I control, β0 and Σ0 both need to be estimated and the performance
of the control chart depends on the types of estimates being used. The T 2 statistics
for the proposed control charts are calculated by:

T 2
Usual,r = (β̂r − β)tS−1Usual(β̂r − β) (11)

where β = 1
m

∑m
r=1 β̂r and SUsual = 1

m−1
∑m
r=1(β̂r − β)(β̂r − β)t

T 2
SD,r = (β̂r − β)tS−1SD(β̂r − β) (12)

where SSD = 1
2(m−1)

∑m−1
r=1 (β̂r+1 − β̂r)(β̂r+1 − β̂r)t

T 2
Int,r = (β̂r − β)tS−1Int(β̂r − β) (13)
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where SInt = 1
m

∑m
r=1 v̂ar(β̂r), which is calculated using the observed information

matrix,
T 2
MVE,r = (β̂r − β̂MVE)tS−1MVE(β̂r − β̂MVE), (14)

where β̂MVE and SMVE are estimates of β0 and Σ0, respectively, based on the
MVE method (See Rousseeuw & Van Zomeren 1990), and

T 2
MCD,r = (β̂r − β̂MCD)tS−1MCD(β̂r − β̂MCD), (15)

where β̂MCD and SMCD are estimates of β0 and Σ0, respectively, based on the
MCD method (See Rousseeuw & Van Zomeren 1990).

Although β̂r is distributed asymptotically normal we do not know its sampling
distribution. Therefore, we used simulations to approximate the upper control
limit (UCL). For simplicity we consider that the number of components is p =
2, 3, 4, 5 and 8. For a chart given we generated m independent samples. For each
sample we generated a set of n independent vector observations Y1, . . . ,Yn, where
Yi ∼ Dirichletp(ai1, ai2, . . . , aip), i = 1 . . . , n. The parameters of the Dirichlet
distribution, aij with j = 1, 2, . . . , p, are described by aij = exp(β0j +β1jXi) with
β01 = 2, β11 = 3, β02 = 1, β12 = 4, β03 = 3, β13 = −2, β04 = 0, β14 = 2,
β05 = −0.1, β15 = 2.5, β06 = 1, β16 = 2, β07 = 3, β17 = 2, β08 = 1 and β18 = 2.5.
The values of the regressor variable (X) can be random but we have assumed
that X takes fixed values, X = 0.1, 0.2, . . . , 0.9. For the m samples generated we
calculate the maximum T 2, denoted by T 2

max. This process was then repeated
10,000 times which resulted in 10,000 T 2

max values. The 95th quantile of these
T 2
max values was then taken as an estimate of the UCL for that chart.
For each of the proposed charts, we ran the simulations for m = 30, 60 and

90 samples with a prespecified type I error probability α = 0.05. The UCLs
obtained are shown in Table 1. We used the R language to run the simulations, in
particular we used the DirichletReg-package written by Maier (2011) to calculate
the estimates of βr. We also used the functions cov.mve and cov.mcd from the
MASS-package to calculate β̂MVE and SMVE in equation (14), and β̂MCD and
SMCD in equation (15).

If a process is modeled using the multivariate normal regression, the response
variables can take any real value, (Noorossana, Eyvazian, Amiri & Mahmoud
2010). However, this assumption is not met here, because the response variables
for compositional data are always positive and range only from 0 to 100, or any
other constant. Therefore, the use of the multivariate normal regression in this
kind of processes can produce invalid results. For more details see Aitchison (2003)
and Pawlowsky-Glahn & Egozcue (2006).

4. The Performance Evaluation

In this section we compare the performance of the proposed methods for Phase
I, monitoring of compositional data, through linear regression profiles in terms of
the overall probability of a signal under step and drift shift and outliers. The
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Table 1: Values of simulated UCL for the proposed control charts with α = 0.05
Number Total
of components samples T 2

Usual T 2
SD T 2

Int T 2
MV E T 2

MCD

(p) (m)
30 20.941 24.610 87.627 212.263 246.696

2 60 35.680 37.925 117.805 154.041 164.521
90 47.359 48.993 139.634 163.259 162.749
30 19.505 26.127 56.683 161.556 362.290

3 60 30.644 34.035 75.480 102.306 124.628
90 38.699 41.184 87.004 96.878 103.855
30 19.905 30.427 49.128 186.489 799.903

4 60 28.324 32.960 58.086 87.104 139.786
90 32.124 35.336 60.897 70.180 81.265
30 20.815 37.366 47.412 253.064 1820.518

5 60 28.870 35.098 55.731 95.451 204.833
90 32.973 37.308 60.638 72.088 92.750
30 24.550 74.952 54.258 710.379 11972.690

8 60 33.487 47.861 61.769 175.620 521.925
90 38.155 46.609 65.442 103.688 187.424

signal probability is defined as the probability that at least one sample, of a total
of m samples, is considered to be out of control. When the process is out of
control, a large signal probability indicates better ability of a control chart to
detect the out-of-control process. However, when the process is in control, a large
signal probability actually works against a control chart since it gives a higher
false alarm rate (See Yeh et al. 2009).

We have that
√
nvec(B̂−B)

a∼ Nkp(0,K(B)
−1

). Following equations (6), (8),
(9) and (10), the information matrix K(B) depends on the unknown parameters of
the regression and of the values assigned to the regressor variable. For simplicity,
we consider that p = 2. So, for β0 = c(2, 3, 1, 4) and X = 0.1, 0.2, . . . , 0.9 we have
that

Σ0 = K(B)
−1

=


σ2
β01

σβ01β11
σβ01β02

σβ01β12

σβ11β01
σ2
β11

σβ11β02
σβ11β12

σβ02β01
σβ02β11

σ2
β02

σβ02β12

σβ12β01
σβ12β11

σβ12β02
σ2
β12



=


1.0322 −1.6290 0.9807 −1.5621

−1.6290 3.2702 −1.5615 3.1763

0.9807 −1.5615 1.0041 −1.5926

−1.5621 3.1763 −1.5926 3.2218


Let ∆ = (δ1σβ01 , δ2σβ11 , δ3σβ02 , δ4σβ12), where δj = 0, 1, 2, 3, j = 1, 2, 3, 4. If

βr changes from β0 to β1 = β0 + ∆, with ∆ 6= 0, the process is out-of-control.
The level of shifts in βr is described by the non-centrality parameter (ncp). The
non-centrality parameter measures the severity of a shift to the out-of-control
vector β1 from the in-control vector β0 and is defined by ncp = ∆tΣ−10 ∆ =
(β1 − β0)tΣ−10 (β1 − β0) (See Vargas (2003) and Yeh et al. (2009)).
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The out-of-control signal probabilities were calculated based on 5,000 simula-
tions, as the percentage of times the T 2

max exceeds the corresponding UCL.
For step shift or sustained shift, we generate a shift in the vector of parameters

of the regressions, β, from β0 to β1. The shift starts from the sample l, for
l = [m ∗ k] + 1, where [x] denotes the largest integer which is less or equal than
x and k = 1

4 ,
1
2 and 3

4 . So, for k = 1
2 the first half of the samples is in-control,

while the second half is in the out-of-control state. The signal probabilities for
each control chart, when m = 30, were calculated through simulation.

Table 2: Signal probabilities when the intercept and the slope of the profile correspond-
ing to the second component have not changed.

ncp δ1 δ2 δ3 δ4 T 2
Usual T 2

SD T 2
Int T 2

MV E T 2
MCD

0 0 0 0 0 0.0492 0.0494 0.0464 0.0452 0.0488
175.0568 1 0 0 0 0.0114 0.8052 0.8966 0.0312 0.0346
700.2274 2 0 0 0 0.0134 0.8976 1 0.0264 0.032
1575.512 3 0 0 0 0.0146 0.9078 1 0.0294 0.0328
297.7102 0 1 0 0 0.0086 0.843 0.9912 0.0234 0.031
910.8436 1 1 0 0 0.0102 0.8974 1 0.0284 0.031
1874.091 2 1 0 0 0.0092 0.8996 1 0.0256 0.0344
3187.452 3 1 0 0 0.0096 0.9144 1 0.025 0.0336
1190.841 0 2 0 0 0.009 0.9004 1 0.019 0.028
2242.051 1 2 0 0 0.0072 0.9142 1 0.0268 0.0322
3643.375 2 2 0 0 0.0056 0.9124 1 0.0222 0.029
5394.812 3 2 0 0 0.006 0.9058 1 0.03 0.0284
2679.391 0 3 0 0 0.0096 0.907 1 0.026 0.0328
4168.678 1 3 0 0 0.007 0.9064 1 0.0242 0.0294
6008.079 2 3 0 0 0.0046 0.8998 1 0.0256 0.0322
8197.593 3 3 0 0 0.0072 0.9016 1 0.0268 0.0338
6008.079 2 3 0 0 0.006 0.901 1 0.0262 0.033

Table 2 shows the signal probabilities of the five control charts considered for a
step shift occuring in l = [m/2] + 1 when the intercept and the slope of the profile
corresponding to the second component have not changed. When ncp = 0 the
signal probabilities for the T 2

Usual, T
2
SD, T

2
Int, T

2
MVE and T 2

MCD control charts are
close to 0.05. For other values of ncp, the signal probabilities of the T 2

Int control
chart are 1 o very near 1, showing an excellent performance to detect step shifts.

Figures 1 to 5 describe the signal probabilities of the T 2
Usual, T

2
SD, T

2
Int, T

2
MVE

and T 2
MCD control charts for a step shift occurring in three scenarios: the last

three quarters, the second half, and the last quarter of the 30 samples considered.
With exception of the T 2

Int control chart, the location of the step shift affects
the performance of the T 2 control charts considered. For example, the signal
probabilities decrease considerably when the shift stars in the half of the samples.
The effect is greater in the T 2

MVE and T 2
MCD control charts. These charts are

more powerful when the shifts occur at k = 1
4 and k = 3

4 .
For drift shifts, the first sample generated was in control, β1 = β0, and the

process parameter vector started to change from the second sample to β1, where
β1 = β0 + r−1

m−1(∆), with r = 2 . . . ,m and m = 30. Figure 6 shows the signal
probabilities found by simulation for the 256 possible values of ncp. We observe
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Figure 1: Signal probabilities of the T 2
Usual control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.

that the T 2
SD, T

2
Int control charts have a good performance for detecting shifts

with trend.
In the scenario considering the presence of outliers, 5 of them were inserted

randomly in the m samples, with m = 30. They were generated from β1, where
β1 = β0+(∆). Figure 7 presents the signal probabilities calculated by simulations.
T 2
Int, T

2
MVE and T 2

MCD control charts have the best performance for detecting
outliers.

5. Example of Application

The concrete is a composite material that essentially consists of a mixture
of cement, water and aggregates, which is regularly used in infrastructure and
buildings construction (Li 2011). The aggregates are rock fragments named coarse
aggregate and sand particles called fine aggregate, which be derived from land- or
sea-based deposits, from gravel pits or hard-rock quarries, from sand dunes or river
courses. The aggregate occupies between 70% and 75% of the concrete volume and
affect its strength, durability, workability and cohesiveness. One aspect of interest
in the quality of the aggregate is the particle size distribution known as gradation
(Alexander & Mindess 2005).

In order to obtain the gradation of the aggregate, a series of standard sieves
are nested or stacked, one on top of another, with increasing aperture size from
bottom to top, and through which a aggregate sample is passed from top, usually
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Figure 2: Signal probabilities of the T 2
SD control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.
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Figure 3: Signal probabilities of the T 2
Int control chart for a step shift occurring in

l = [m ∗ k] + 1, with k = 1
4
(on the left), k = 2

4
(on the middle), and k = 3

4

(on the right), when the number of samples is m = 30.

Revista Colombiana de Estadística 37 (2014) 159–181



170 Rubén Darío Guevara-González et al.

0 2000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ncp

P
R

O
B

A
B

IL
IT

Y

0 2000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ncp

P
R

O
B

A
B

IL
IT

Y

0 2000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ncp

P
R

O
B

A
B

IL
IT

Y

T2 BASED ON THE MVE

Figure 4: Signal probabilities of the T 2
MV E control chart for a step shift occurring in
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Figure 6: Signal probabilities of drift shifts for five control charts: usual, successive
differences, intra-profile, MVE and MCD.

Figure 7: Signal probabilities of outliers for five control charts: usual, successive differ-
ences, intra-profile, MVE and MCD.
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aided by shaking or vibrating the sieves (Alexander & Mindess 2005, Lyons 2008).
Figure 8 shows a kind of machine used in the gradation process. The sieves labeled
as 200, 100, 50, 30, 16, 8, 4, and P3, have the hole sizes of 0.075 mm, 0.149 mm,
0.297 mm, 0.595 mm, 1.19 mm, 2.38 mm, 4.75 mm and 9.5 mm, respectively.
The gradation results are the percent of aggregate retained on each sieve and the
fineness modulus, which measures the average particle size. This dimensionless
parameter is equal to sum of the percent of aggregate retained on each of sieve
divided by 100. A smaller fineness modulus indicates a finer aggregate and a higher
value represents a courser aggregate.

Figure 8: Series of sieves placed one above the other in order of size with the largest
sieve at the top.

In this work, 217 aggregate samples from a concrete manufacturing plant were
studied. The aggregate samples were daily tested during 31 weeks. The set of
daily observations obtained in a week is named weekly sample, therefore, 31 weekly
samples were considered. The proportion passing through of each sieve and the
fineness modulus were measured in each aggregate sample.

The components j = 1, 2, . . . , 8 are defined by the aggregate size retained
by each sieve. The proportion passing through the sieve j, j = 1, . . . , 8, is the
variable Yj . Each component corresponds to an aggregate with constant size
and the proportion of aggregate passing trough them is identified by the vec-
tor Y = (Y1, Y2, . . . , Y8). Figure 9 shows plots of the marginal frequencies of each
component for the aggregate samples. We observe that Y4, Y5 and Y7 are skewed,
which implies that Y does not have a multivariate normal distribution.

The weekly sample r, r = 1, . . . , 31, contains the daily observations (xir,Yir),
i = 1, . . . , n, with n = 7. The vectors Y1r, . . . ,Ynr are independent and Yir ∼
Dirichlet8(ai1, . . . , ai8). There is a relationship between the fineness modulus and
the proportion of aggregate passing through each sieve. Figures 10 and Figures
11 show these relationships for the components j = 1, 2, 3, 4, 5, 6, 7, 8 associated to
the sieves 200, 100, 50, 30, 16, 8, 4, and P3, respectively. A likelihood ratio test
(LRT) for each sample r, shows that the Dirichlet regression models are significant
at the 10%, so the null hypothesis H0 : β11 = β12 = · · · = β18 = 0 is rejected.
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Figure 9: Observed marginal frequencies Y1, Y2, . . . , Y8 of the individual components of
the aggregate gradings.
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Figure 10: Linear relationship between fineness modulus and the proportion of sand
passing through the sieves No 200, 100, 50 and 30.
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Through simulations we found the upper control limit for each T 2 control chart
proposed in the section (3). The T 2 control chart based on successive differences
suggests that the process does not present step and drift shifts, but the control
chart based on MVE detects the presence of outliers, see Figures 12 and 13.
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Figure 11: Linear relationship between fineness modulus and the proportion of sand
passing through the sieves No 16, 8, 4 and P3.

Although the engineers believed that the process was in-control, the intra-
profile control chart shows a lot of points outside the upper control limit, see
Figure 15. The usual T 2 control chart detects some of these points, see Figure 16.
Figure 17 describes the behaviour of the linear regressions associated with the first
sieve from the sample. This graph shows that the profile is not stable. The other
sieves have a similar behaviour. As a first result of this application, engineers
are reviewing and adjusting the process to ensure that the linear relationship
associated with each sieve is in-control.
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Figure 12: T 2 Control chart based on successive differences for the process of grading
of sand in a mine of a concrete manufacturing plant.

Figure 13: T 2 Control chart based on Minimum Volume Ellipsoid (MVE) for the pro-
cess of grading of sand in a mine of a concrete manufacturing plant.
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Figure 15: T 2 Control chart based on intra-profile pooling for the process of grading of
sand in a mine of a concrete manufacturing plant.
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concrete manufacturing plant.
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6. Conclusions

In this paper the control charting mechanisms discussed by Williams et al.
(2007) and Yeh et al. (2009) have been extended for monitoring compositional
data profiles in Phase I processes, whose response variable follows a Dirichlet
distribution. This methodology allows us monitoring the linear relationship be-
tween the parameters of a Dirichlet distribution and a set of explanatory variables,
and assess the stability of the parameters that characterize the studied regression
model.
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We used five Hotelling’s type T 2 control charts and compared their performance
for detecting step and drift shifts in the process parameters and outliers in the
studied profiles. Simulation procedures suggest that the T 2 control chart called
intra-profile pooling is an excellent tool in order to detect outliers in the profiles and
step and drift shifts in the parameters of the compositional data profile. The intra-
profile pooling T 2 control chart is based on the average of the sample covariance
matrices of the estimates of the parameters β characterizing the profile. The T 2

control chart based on the vector of successive differences of parameter estimates
is a good alternative for detecting step and drift shifts; while the T 2 control charts
based on robust estimates for the mean and covariance matrix, minimum volume
ellipsoid (MVE) and minimum covariance determinant (MCD) methods, are a
good option for detecting outliers.

We presented an example of application with real data of the proposed method-
ology, in order to control the quality of the aggregate gradation in the concrete.
The T 2 control chart based on successive differences suggests that the process is in-
control and does not present step and drift shifts, the control chart based on MVE
detects the presence of some outliers, and the intra-profile and usual T 2 control
charts show that the process is out-control. This methodology can be extended to
other processes with compositional data.

This paper constitutes an initial solution for monitoring compositional data
profiles. It would be worthwhile to study and compare the performance of other
control charts like the change point approach. Since the performance of the T 2

control charts deteriorates when number of parameters increases, it is needed more
research when the number of components in the response variable increase and/or
when the number of covariates increases. Reduction methods for multivariate data
or high dimensional methods need also future research.

When the process is out-of-control is important to identify the causes of the
anomaly in order to apply appropriate remedial measures. A future work can
implement diagnostic aids such as determining the parameters responsible for out-
of-control signal.

Finally, some methods for monitoring Dirichlet regression profiles in Phase II
can be developed.
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Abstract

In this paper we introduce a kind of asymmetric distribution for non-
negative data called log-proportional hazard distribution (LPHF). This new
distribution is used to study an asymmetrical regression model for data with
limited responses (censored) through the mixture of a Bernoulli distribution
with logit link and the LPHF distribution. Properties of the LPHF distribu-
tion are studied, maximum likelihood parameter estimation and information
matrices are addressed. An illustration with real data shows that the model
is a new alternative for studies with positive data censored.

Key words: Censoring, Fisher information matrix, Maximum likelihood es-
timators, Proportional hazard.

Resumen

En este artículo se introduce una forma de distribución asimétrica para
datos no-negativos llamada distribución log hazard proporcional (LPHF).
Esta nueva distribución es usada para estudiar un modelo de regresión asimé-
trico para datos con respuestas limitadas (censuradas) a través de mezclas
de una distribución Bernoulli con función link logit y la distribución LPHF.
Propiedades de la distribución LPHF son estudiadas, se abordan las estima-
ciones de máxima verosimilitud de los parámetros y las matrices de informa-
ción. Se presenta una ilustración con datos reales, donde se muestra que el
modelo propuesto es una nueva alternativa para estudios con datos positivos
censurados.

Palabras clave: censura, estimadores de máxima verosimilitud, hazard pro-
porcional, matriz de información de Fisher.

aProfessor. E-mail: gmartinez@correo.unicordoba.edu.co
bAssociate professor. E-mail: carlosbarrera@itm.edu.co

183



184 Guillermo Martínez-Flórez & Carlos Barrera

1. Introduction

The fundamental law of geochemistry enunciated by Ahrens (1954), “the con-
centration of a chemical element in a rock is distributed log-normal”, is an ap-
plication of the log-normal distribution. This distribution is also widely used to
model different types of information, including income in the economy and lifetime
distributions from materials, among others.

In many of these situations, both the kurtosis and the asymmetry of the dis-
tribution are above or below the expected for the log-normal model, reason why
it is necessary to think in a more flexible model that achieves such deviation in
modeling positive data.

In the case of positive data, Azzalini, dal Cappello & Kotz (2003), Mateu-
Figueras & Pawlosky-Glanh (2003) and Mateu-Figueras, Pawlosky-Glanh & Barcelo-
Vidal (2004) introduce the univariate distribution log-skew-normal (LSN), which
contains as special case, the log-normal model.

Its density function is given by:

φLSN (y; ξ, η, λ) =
2

ηy
φ

(
log(y)− ξ

η

)
Φ

(
λ

log(y)− ξ
η

)
, y ∈ R+

where ξ ∈ R, is a location parameter, η ∈ R+, is a scale parameter, λ is an asym-
metry parameter, φ(·) is the density function of a standard normal distribution
and Φ(·) is the respective cumulative distribution function. Notice that if λ = 0
then the ordinary log-normal distribution follows as it is the case with the ordinary
skew-normal model. Also, the information matrix is singular, thus regularity con-
ditions are no longer satisfied. One consequence of this fact is that likelihood ratio
statistics is no longer distributed according to the central chi-square distribution
(Arellano-Valle & Azzalini 2008).

Moreover, in many cases the asymmetrical positive random variable in the
study is limited, and in turn this is explained by a set of auxiliary covariates
X1, X2, ..., Xp, thus extensions to the censured case with covariates should be
addressed. The study of random variables with limited responders with covariates
was presented by Tobin (1958) who studied the model popularly known as Tobit.

This model has been extensively studied in the case of normally distributed
errors and is defined by considering that the observed random variable yi =
max{y∗i , 0} with y∗i = x′iβ+εi, i = 1, 2, . . . , n; where the error term εi ∼ N(0, σ2),
i = 1, . . . , n, xi is a p× 1 vector of known independent variables and β is a p× 1
unknown parameter vector.

Although the Tobit model is an alternative for censoring data; in some situa-
tions the proportion of censored data cannot be well explained by the normal
model since the tail of this distribution is more or less heavier than the proportion
of censored data.

For instance, Moulton & Halsey (1995) show an application with 330 children
in Haiti during 1987-1990 (see Job, Halsey, Boulos, Holt, Farrell, Albrecht, Brutus,
Adrien, Andre, Chan, Kissinger, Boulos & the CiteSoleil/JHU 1991) which exami-
nes the; Immunogenecity of children before the implementation of a vaccine, here
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the number of observations below the detection limit was 86 observations (26.1%),
which exceeds the expected value with a normal model, whereby the proportion of
censure cannot be explained by the Tobit model. These authors use asymmetric
models such as log-normal model.

In this sense, other works have been published, for instance, other distributions:
such as the log-skew-normal has been implemented by Chai & Bailey (2008) and
recently, Martínez-Florez, Bolfarine & Gómez (2013) implemented the model log-
alpha-power-normal.

The model proposed by Moulton & Halsey (1995) is a generalization of the
Cragg (1971) model, that in the classical literature is known as the two-part model,
which is an alternative to Tobit when the data rate below or above the threshold
is quite different from the probability of the tail obtained with the normal model.

The probability density function of yi under Cragg (1971) model can be ex-
pressed as

g(yi) = piIi + (1− pi)f(yi)(1− Ii)

where pi is the probability determining the relative contribution made by the
point distribution to the overall mixture distribution, f is a density function with
positive support, and Ii = 0 if yi > T and Ii = 1 if yi ≤ T.

Given the nature of the random variables involved in the Cragg (1971) model,
different processes determine the respective components of the model.

A positive response necessarily comes from f, on the other hand, a T value
comes from the point mass distribution. This model, however, does not consider
the situation of a lower limit and that part of the observations may be below this
lower limit.

If allowed to some limiting responses are the result of interval censored to f ,
we have the generalization of the two-part model exposed by Moulton & Halsey
(1995). This means that an observed T value can be either a realization from
the point-mass distribution or a partial observation from f with critical value not
precisely known but lying somewhat in (0, T ) for a small pre-specified constant T .
Formally,

g(yi) = [pi + (1− pi)F (T )]Ii + (1− pi)f(yi)(1− Ii)

where F is the cumulative distribution corresponding to f. If we vary the ba-
sic density f and the link function corresponding to pi, we can generate a large
family of mixed models. Models such as probit/trucated-normal, logit/lognormal,
logit/log-gamma, probit/log-skew-normal and logit/log-alpha-power normal have
been considered in practical applications in biology, economy, agricultural and so
on (Chai & Bailey 2008, Martínez-Florez, Bolfarine & Gómez 2013). Notice that
for pi = 0, i = 1, . . . , n, Moulton & Halsey (1995) model reduces to the Tobit
model (Tobin 1958).

This is an extension of the log-normal distribution allowing for one extra pa-
rameter which will be presented in the next section.
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2. Proportional Hazard Distribution

Recently, Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013) intro-
duced a new asymmetric model which is called proportional hazard model, this
model is defined as follows:

Let F be a continuous cumulative distribution function with probability density
function f , and hazard function h = f/(1−F ). We say that Z has a proportional
hazard distribution associated with F , f and the parameter α > 0 if its probability
density function is

ϕF (z;α) = αf(z){1− F (z)}α−1, z ∈ R,

where α is a positive real number. We use the notation Z ∼ PHF (α). The
distribution function of the PHF model is given by

F(z) = 1− {1− F (z)}α, z ∈ R.

This is why this type of distribution can also be regarded as an exponentia-
ted distribution or a fractional order statistic distribution, widely studied in the
literature.

If Z is a random variable from a standard PHF (α) distribution then the
location-scale extension of Z is obtained from the transformation X = ξ + ηZ,
where ξ ∈ R and η ∈ R+, is a scale parameter.

In the particular case where F = Φ(·), we have the family of distributions
called proportional hazard normal (PHN) and denoted PHN(ξ, η, α).

In Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013), we can see the
behavior of the PHN(0, 1, α) density and the model hazard function for some
values of the α parameter.

2.1. Log Proportional-Hazard Distribution

Let Y be a random variable with support in R+, we say that Y follows a uni-
variate log-proportional-hazard distribution with parameter α, if the transformed
variable X = log(Y ) ∼ PHF (α). We denote Y ∼ LPHF (α).

Then, the pdf for the random variable Y can be written as

ϕLF (y;α) =
α

y
f(log(y)) {1− F (log(y))}α−1

, y ∈ R+

where F is an absolutely continuous distribution function with density function
f = dF . This model is called standard log proportional-hazard distribution.

Let X ∼ PHF (ξ, η, α), where ξ ∈ R is a location parameter and η ∈ R+ is a
scale parameter. Hence, the transformation X = ln(Y ) leads to the location-scale
log proportional-hazard model, with pdf given by

ϕLF (y; ξ, η, α) =
α

ηy
f

(
log(y)− ξ

η

){
1− F

(
log(y)− ξ

η

)}α−1

, y ∈ R+
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We use the notation Y ∼ LPHF (ξ, η, α), so that LPHN(α) = LPHN(0, 1, α).
Its cumulative distribution function can be written as

FF (y;α) = 1− {1− F (log(y))}α , y ∈ R+. (1)

According to (1), the inversion method can be used for generating from a
random variable with distribution LPHF (ξ, η, α). That is, if U ∼ U(0, 1), then,
random variable Y = eξ+ηF

−1(1−(1−U)1/α) is distributed according to the LPHF
distribution with vector of parameters θ = (ξ, η, α)′.

In the special case where f = φ(·) and F = Φ(·), the density and distribution
functions of the standard normal distribution, respectively, we have the standard
log proportional-hazard-normal distribution.

We will denote this extension by using the notation Y ∼ LPHN(ξ, η, α).
Figure 1 shows the pdf’s for the LPHN distribution for α equals 0.75, 1, 2 and

3. Is clearly seen that the shape of the distribution is affected when changes the
value of α. For the log-normal case, when α = 1, the kurtosis is smaller than
when α = 2 and, similarly, for the log-skew case, when α = 3. Furthermore,
when α = 0.75 the kurtosis for the log-normal is greater. Asymmetry is always
positive and also controlled by parameter α. Hence, α controls asymmetry as well
as kurtosis for the LPHN distribution.
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Figure 1: Plots of pdf ϕLΦ(y; 0.5, 0.75, α), for α equals to 3 (solid line), 2 (dashed line),
1 (dotted line) and 0.75 (dashed and dotted line).

The r-th moment for the random variable Y ∼ LPHN is calculated numer-
ically. Using the results of the central moments µ́r, the coefficients of variation,
asymmetry and kurtosis are obtained.

Figure 2 shows the behavior of the mean and the coefficients of asymmetry and
kurtosis of the LPHN model.

The survival and hazard functions for the LPHN model are, respectively, given
by

S(t) = {1− Φ(log(t))}α and r(t) =
α

t

φ(log(t))

1− Φ(log(t))
= αrLN (t)

Revista Colombiana de Estadística 37 (2014) 183–198



188 Guillermo Martínez-Flórez & Carlos Barrera

1 2 3 4 5 6 7

0
2

4
6

8

α

M
ea

n

1 2 3 4 5 6 7

0
10

20
30

40
50

α

C
oe

ffi
ci

en
t o

f A
sy

m
m

et
ry

0.5 1.0 1.5 2.0 2.5

0
50

0
10

00
15

00
20

00
25

00

α

C
oe

ffi
ci

en
t o

f K
ur

to
si

s

Figure 2: Behavior of some characteristic values of the LPHN model. (a) mean, (b)
asymmetry coefficient and (c) coefficient of kurtosis.

where rLN (·) is the hazard function of the log-normal distribution. Then, the
hazard index T is proportional to the hazard index of the log-normal distribution.

2.2. Inference for Log Proportional-Hazard-Normal Model

For a random sample of size n, Y = (Y1, Y2, . . . , Yn)′ with Yi ∼ LPHN(ξ, η, α),
the log-likelihood function of θ = (ξ, η, α)′ given Y is

`(θ; Y) = n log(α)−n log(η)−
n∑
i=1

log(y)+

n∑
i=1

log(φ(zi))+(α−1)

n∑
i=1

log(1− Φ(zi)),

where zi = log(yi)−ξ
η . The corresponding score equations are similar to the obtained

in Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013), we only need to
consider the change in the log-likelihood function and obtain the MLE estimators
using numerical methods.
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The observed information matrix for location-scale PHN follows from minus
the second derivatives of the log-likelihood function. This result is similar to that
obtained by Martínez-Florez, Moreno-Arenas & Vergara-Cardozo (2013) but with
minor changes due to the difference in the log-likelihood function.

2.2.1. Expected Information Matrix for the Location-Scale PHN

Considering akj = E{zki w
j
i }, where wi = φ(zi)

1−Φ(zi)
, the expected information

matrix entries are:

Iξξ =
1

η2
[1 + (α− 1)(a02 − a11)] Iηξ =

2

η2
a10 +

α− 1

η2
[a01 − a02 + a12]

Iηη = − 1

η2
+

3

η2
a20 +

α− 1

η2
[a22 + 2a11 − a31]

Iαξ = −1

η
a01 Iαη = −1

η
a11 Iαα =

1

α2

The expected values of the above variables are generally calculated using nu-
merical integration. When α = 1, ϕLΦ(x; ξ, η, 1) = 1

ηyφ
(

log(y)−ξ
η

)
, the location-

scale log-normal density function. Thus, the information matrix becomes

I(θ) =

 1/η2 0 −a01/η

0 2/η2 −a11/η

−a01/η −a11/η 1


Numerical integration shows that the determinant is |I(θ)| = 1

η4 [2 − a2
11 −

2a2
01] 6= 0, so in the case of a log-normal distribution the model’s information ma-

trix is nonsingular. The upper left 2×2 submatrix is the log-normal distribution’s
information matrix.

For large n and under regularity conditions we have

θ̂
A→ N3(θ, I(θ)−1)

and the conclusion follows that θ̂ is consistent and asymptotically approaches the
normal distribution with I(θ)−1 as covariance matrix, for large samples.

This result shows that the information matrix for the LPHN model is nonsin-
gular and therefore the inference for large samples can be made, contrary to the
log-skew-normal model, whose information matrix is singular when λ = 0, that
consequently resulting likelihood ratio statistic is not distributed as a chi-square.

Note that as in the LPHN model, the information matrix of the log-skew-
normal model has the same structure or shape that the location-scale skew-normal
model, SN(ξ, η, λ), where now Z = (log(y)−ξ)/η. Is well known and was demons-
trated by Azzalini (1985), that the information matrix of the skew-normal model
is singular when its parameter of asymmetry λ = 0.
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3. Asymmetric Regression Model Logit/LPHN

We now extend the LPHN model to the case of random variables with a limit of
detection and the presence of covariates. Specifically, we consider the case of mo-
dels with limited response and excess zeros in the response variable. Considering
extensions of the generalized the two-part model of Moulton & Halsey (1995) to the
situations logit/log proportional hazard-normal model, jointly with covariates at
each step of the model. Initially, we develop the case of censored random variables
LPHN. Thus, calling p0 the proportion of observations at or below threshold point
T , the censored model LPHN(ξ, η, α) is represented by the probability density
function

g(yi) =

p0i + (1− p0i)
[
1−

{
1− Φ

(
log(T )−ξ

η

)}α]
, if yi ≤ T

(1− p0i)
α
ηyφ

(
log(yi)−ξ

η

){
1− Φ

(
log(yi)−ξ

η

)}α−1

, if yi > T

Now we extend this model to the case of presence of covariates in limited
response and when the response is not limited.

The above model can be extended to the situation where only a proportion
100p0% of censored observations comes from the censored LPHN, with the re-
maining 100(1 − p0)% of the observations coming from the population of low
responders, located below or at the point T.

Modeling this mixture as the outcome of a Bernoulli random variable D with

pr(D = 1) = 1− p0

while for D = 0, Y ≤ T with probability one. The contribution of yi to the
likelihood conditioning on D = 1 when Y is assumed to follow a LPHN model can
be written as[

1− (1− p0)

{
1− Φ

(
log(T )− ξ

η

)}α]Ii
[

(1− p0)α

ηyi
φ

(
log(yi)− ξ

η

){
1− Φ

(
log(yi)− ξ

η

)}α−1
]1−Ii

Then, assuming that the response yi = T is explained by the set of explana-
tory variables X11, X12, . . . , X1p, then we model this mixture as the outcome of a
Bernoulli random variable with logit link function with

p0i = prob(yi = T ) =
exp (x′(1)iβ(1))

1 + exp (x′(1)iβ(1))

and
1− p0i =

1

1 + exp (x′(1)iβ(1))
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where x(1)i = (1, x1i1, . . . , x1ip)
′, is a covariate vector of dimension p+1 associated

with the parameter vectors β(1) = (β10, β11, . . . , β1p)
′.

Taking into account the LPHN model, we have a covariate vector x(2) =
(1, X21, X22, . . . , X2r)

′ of dimension r, possibly different from x(1) and parameter
vector β(2) = (β20, β21, . . . , β2r)

′, for which

log(yi) ∼ PHN(x′(2)iβ(2), η, α), yi > T

where x(2)i = (1, x2i1, . . . , x2ir)
′.

This mixture of distributions we will call “linear logistic regression model” with
proportional hazard-normal distribution and will be denoted by

RLLPHN(β(1), β(2), η, α)

The logarithm of the likelihood function for θ = (β′(1),β
′
(2), η, α)′ given X(1),

X(2) and Y, is given by

`(θ) =
∑
i

Ii log
[
1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}α]

]
−

n∑
i=1

log
[
1 + exp(x′(1)iβ(1))

]
+
∑
i

(1− Ii)
{

log(α)− log(ηyi) + x′(1)iβ(1) + log(φ(zi)) + (α− 1) log(1− Φ(zi))
}

where zTi =
log(T )−x′(2)iβ(2)

η and zi =
log(yi)−x′(2)iβ(2)

η .

We denote by
∑

0 the sum over censored observations and
∑

1 the sum over
noncensored observations. The score function corresponding to the log-likelihood
function is given by (for j = 1, 2, . . . , p and k = 1, 2, . . . , r)

U(β(1)j) =
∑

0

x1ij exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

−
n∑
i=1

x1ij exp(x′(1)iβ(1))

1 + exp(x′(1)iβ(1))
+
∑

1

x1ij
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U(β(2)k) = −
∑

0

x2ik exp(x′(1)iβ(1))ϕLΦ(T, x′(2)iβ(2), η, α)

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

− 1

η

∑
1

x2ik

[
−zi − (α− 1)

φ (zi)

1− Φ (zi)

]

U(η) = −
∑

0

zTi exp(x′(1)iβ(1))ϕLΦ(T, x′(2)iβ(2), η, α)

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

− 1

η

∑
1

[
1− z2

i − (α− 1)zi
φ (zi)

1− Φ (zi)

]

U(α) = −
∑

0

exp(x′(1)iβ(1)) {1− Φ (zTi)}
α

log (1− Φ(zTi))

1 + exp(x′(1)iβ(1)) [1− {1− Φ(zTi)}
α

]

+
∑

1

[
1

α
+ log (1− Φ(zi))

]

The system of equations obtained by equating the score to zero has no solution
in closed form, and tends to be solved using iterative numerical methods.

The resulting equations require numerical procedures such as the Newton-
Raphson or quasi-Newton method. These optimization algorithms can be found
in the packages maxLik or optimx of the R software.

The observed information matrix is given by J(θ) = −H(θ) = − ∂2`(θ)

∂θ∂θT
, where

H(θ) is the hessian matrix, which is obtained in the Appendix for the vector of
parameters θ. In addition can be obtained information matrix defined as less n−1

times the expected value of the observed information matrix.

4. Numerical Illustration

The application of the logit/LPHN model, is carried out using the data des-
cribed by Moulton & Halsey (1995) in a study of measles vaccines conducted in
Haiti during 1987-1990. The detection limit was 0.1 international units (UI), or
log(0.1) = −2.306 in the natural log-scale. The codification for the covariates
involved in the study were X1 = EZ (vaccine type; 0:Schwarz , 1:Edmonston-
Zagreb); X2 = HI (vaccine dose; 0:medium, 1:high) and X3 = FEM (gender;
0:male, 1:female).

Such as Moulton & Halsey (1995), the aim in the present analysis is to study the
immunogenicity differential between boys and girls using the logit/ log-proportional-
hazard-normal (logit/LPHN) model.
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4.1. Models

A variety of models can be adjusted given the covariates in the study. We adjust
some of these models were carefully chosen from the cases studied by Moulton &
Halsey (1995).

Model 1: Covariates and censored data in limited response, without censored
data and covariates in the point-mass distribution located at zero;

Model 2: Censored data and covariates in limited response, without covariates
in the point-mass distribution located at zero;

Model 3: Censored data, covariates in limited response and in the point-mass
distribution located at zero;

Model 4: Censored data, covariates in limited response and in the point-mass
distribution located at zero, a particular model.

The summary statistics we have log(y) = −0.1793, s2 = 1.1055,
√
b1 = 0.7521

and b2 = 2.6286 where the quantities
√
b1 and b2 correspond to the sample coe-

fficients of asymmetry and kurtosis for values above 0.1. The high asymmetry
degree indicated by the sample coefficient of asymmetry (

√
b1) reveals that it

seems worthwhile trying to fit an asymmetric model for this data set.

Moulton & Halsey (1995), and Moulton & Halsey (1996) modeled this data
using the hybrids logit/log-normal (logit/LN) and logit/log-gamma (logit/LGM)
models.

As a first attempt, we fitted the ordinary Tobit model with covariates (model
1), which resulted in a poor fit to the data set under study. Here β̂(2)0 = 0.565,

β̂(2)1 = 0.248, β̂(2)2 = −0.191 and β̂(2)3 = 0.262, and AIC = 1291.81.

We adjust the mixtures logit/LN and logit/LGM, for 1-4 models, finding in
both cases the model 4 presents the best fit. The estimates for these models are
given in the Table 1. Note that δ is the shape parameter of the LGM model.

Table 1: Parameter estimation (standard error) and model fitting for one and two com-
ponents hybrid Bernoulli/log-distributions.

Bernoulli component Log-distributions components
density AIC INT EZ HI δ INT FEM
LN 986.19 0.652 0.808 0.422 −0.401 0.264

(0.220) (0.304) (0.288) (0.112) (0.155)
LGM 1022.43 0.572 0.656 0.374 −2.833 −1.179 0.053

(0.201) (0.261) (0.255) (0.510) (0.088) (0.056)

Hence, there is a clear indication that the conditions under which the Tobit
model is adequate, are not satisfied for the measles vaccine data set.

Estimates (MLEs) for the model parameters 1-4, were obtained, and the results
are shown in Tables 2.

To compare model fit, we computed the AIC criterion (Akaike 1974).
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Table 2: Parameter estimation (standard error) and model fitting for one and two com-
ponents hybrid logit/LPHN.

Bernoulli component Log-distributions components
Model AIC INT EZ HI FEM INT EZ HI FEM α

(1) 1022.95 2.418 0.256 0.081 0.180 6.669
(0.966) (0.192) (0.191) (0.191) (2.661)

(2) 992.17 1.051 -1.014 -0.162 -0.012 0.271 0.391
(0.138) (0.379) (0.148) (0.148) (0.149) (0.229)

(3) 979.98 0.875 1.027 0.385 -0.612 -1.514 -0.241 -0.104 0.142 0.074
(0.258) (0.330) (0.273) (0.291) (0.480) (0.178) (0.153) (0.143) (0.152)

(4) 975.44 0.488 0.911 0.368 -1.609 0.286 0.152
(0.203) (0.275) (0.262) (0.002) (0.060) (0.010)

We started by fitting the censored LPHN model with covariates (Model 1). It
is also fitted by the Bernoulli/LPHN model with covariates and logit link (models
2-4), for which the results are presented in the Table 2. According to the criterion
AIC, the best fit clearly is presented by the hybrid logit/LPHN model.

In the case of the Bernoulli/LPHN model, we found that of all hybrid models
fitted, the best is the Model 4.

In the continuous component we has that E(Y ) 6= X(2)β(2) since E(ε) 6= 0.
In order to have E(Y ) = X(2)β(2) we must correct the intercept taking β∗(2)0 =

β(0) + E(ε), where ε ∼ LPN(0, η, α), That is, the corrected estimator for the
intercept of the regression model corresponding to the continuous part. Therefore,
for model 4, we found that β̂∗(2)0 = −0.333.

Here, covariates EZ and HI entered only in the Bernoulli component, and
covariate FEM is the only associated with the LPHN component. Based on the
Model 4, for those observations above the detection limit, the girls had exp(0.286) =
1.331, and hence greater measles antibody concentration than boys.

As mentioned at the beginning of this illustration, the goal was to show that
the model censored logit/LPHN was a good alternative to adjust the data set
vaccine now we are going to show that this model is indeed different from the
model censored logit/LN, so, we test the hypothesis

H0 : α = 1 versus H1 : α 6= 1

Using the likelihood ratio statistics, we have that

−2 log(Λ) = −2(−511.18 + 480.72) = 60.91

which is greater than the 5% critical chi-square value 3.84, then we conclude that
the logit/LPHN model fits the data better than the logit/LN model.

As a proof of good fit of the proposed model, we can confirm that the proportion
of observations below the detection limit is 26.1% and the estimated proportion
from model 2 with the hybrid model logit/LPHN is 25.90%.

Finally, in order to check the fit of the model estimates, we make the QQplot of
the standardized residuals or scaled residuals of the continuous part, ei = (log(yi)−
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Figure 3: QQ-plot of the scaled residuals ei, from the fit of Model 4. (a) log-normal
(b)log-gamma and (c) log-proportional hazard-normal.

x′(2)iβ̂(2))/η̂ based on the model and to the LN, LGM and LPHN distributions.
Figure 3 presents QQplots for the scaled residuals.

Here, we can see that for vaccine data, the model LPHN fits better than the LN
and LGM models, and thus, the mixed model logit/LPHN may be a new option
to adjust censored data with covariates.

5. Conclusions

We proposed a new distribution that is used to study an asymmetrical regre-
ssion model for data with limited responses through the mixture of a Bernoulli
distribution with logit link and the LPHF distribution. Additionally, we made an
illustration with real data and showed that the proposed model is an alternative
for censored positive data.[

Recibido: noviembre de 2013 — Aceptado: abril de 2014
]
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Appendix

In this appendix we present the Hessian matrix for the logit/LPHN model. Its
elements are given by

U(β(1)jβ(1)r) =
∑

0

x1ijx1ir

[
exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2

]

−
n∑
i=1

x1ijx1ir exp(x′(1)iβ(1))

[1 + exp(x′(1)iβ(1))]2
,

U(β(2)kβ(1)j) =
−α
η

∑
0

x2ikx1ijφ(zTi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2

U(β(1)jη) =
−α
η

∑
0

x1ijzTiφ(zTi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

{1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]}2
,

U(β(1)jα) = −
∑

0

xij exp(x′(1)iβ(1)){1− Φ(zTi)}α log(1− Φ(zTi))

[1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]]2
,

U(β(2)kβ(2)s) =
−α
η2

∑
0

x2ikx2is

{
[zTi + (α− 1)Mi]Ai +A2

i

}
+

1

η2

∑
1

x2ikx2is

{
−1 + (α− 1)ziMi − (α− 1)M2

i

}
,

U(β(2)kη) =
α

η2

∑
0

{[
x2ik − x2ikz

2
Ti − (α− 1)x2ikzTiMi

]
Ai − αx2ikzTiA

2
i

}
+

1

η2

∑
1

{
x2ik

[
−2zi
η
− (1− z2

i )(α− 1)Mi − zi(α− 1)M2
i

]}
,
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U(β(2)kα) =
−1

η

∑
0

{
[1 + α log(1− Φ(zTi))]x2ikAi

+
αx2ik[1− Φ(zTi)] log(1− Φ(zTi))

φ(zTi)
A2
i

}
+

1

η

∑
1

x2ikMi,

U(ηη) =
α

η2

∑
0

{[
2zTi − z3

Ti + (α− 1)z2
TiMi

]
Ai + αz2

TiA
2
i

}
+

1

η2

∑
1

{
1− z2

i − (α− 1)ziMi

[
2− z2

i − φ(zi)zi
φ(zi)

Mi

]}
,

U(ηα) =
−1

η

∑
0

{
[zTi + αzTi log(1− Φ(zTi))]Ai

+

[
αzTi(1− Φ(zTi)) log(1− Φ(zTi))

zTiφ(zTi)

]
A2
i

}
+

1

η

∑
1

ziMi,

U(αα) = −
∑

0

{
{1− Φ(zTi)} log2(1− Φ(zTi))

φ(zTi)
Ai

+

[
{1− Φ(zTi)} log(1− Φ(zTi))

Φ(zTi)
Ai

]2
}
−
∑

1

1

α2

where

Ai =
φ(zi) exp(x′(1)iβ(1)){1− Φ(zTi)}α−1

1 + exp(x′(1)iβ(1))[1− {1− Φ(zTi)}α]
and Mi =

φ(zTi)

1− Φ(zTi)
.

Revista Colombiana de Estadística 37 (2014) 183–198



Revista Colombiana de Estadística
Junio 2014, volumen 37, no. 1, pp. 199 a 211

A New Difference-Cum-Exponential Type
Estimator of Finite Population Mean in Simple

Random Sampling

Un nuevo estimador tipo diferencia-cum-exponencial de la media de
una población finita en muestras aleatorias simple

Javid Shabbir1,a, Abdul Haq1,b, Sat Gupta2,c

1Department of Statistics, Quaid-I-Azam University, Islamabad, Pakistan
2Department of Mathematics and Statistics, The University of North Carolina at

Greensboro, Greensboro, USA

Abstract

Auxiliary information is frequently used to improve the accuracy of the
estimators when estimating the unknown population parameters. In this
paper, we propose a new difference-cum-exponential type estimator for the
finite population mean using auxiliary information in simple random sam-
pling. The expressions for the bias and mean squared error of the proposed
estimator are obtained under first order of approximation. It is shown theo-
retically, that the proposed estimator is always more efficient than the sample
mean, ratio, product, regression and several other existing estimators con-
sidered here. An empirical study using 10 data sets is also conducted to
validate the theoretical findings.

Key words: Ratio estimator, Auxiliary Variable, Exponential type estima-
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Resumen

Información auxiliar se utiliza con frecuencia para mejorar la precisión
de los estimadores al estimar los parámetros poblacionales desconocidos.
En este trabajo, se propone un nuevo tipo de diferencia-cum-exponencial
estimador de la población finita implicar el uso de información auxiliar en
muestreo aleatorio simple. Las expresiones para el sesgo y el error cuadrático
medio del estimador propuesto se obtienen en primer orden de aproximación.
Se muestra teóricamente, que el estimador propuesto es siempre más eficiente
que la media de la muestra, la relación de, producto, regresión y varios otros
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estimadores existentes considerados aquí. Un estudio empírico utilizando
10 conjuntos de datos también se lleva a cabo para validar los resultados
teóricos.

Palabras clave: estimador de razón, variables auxiliares, estimador tipo
exponencial, sesgo, error cuadrático medio.

1. Introduction

In sample surveys, auxiliary information can be used either at the design stage
or at the estimation stage or at both stages to increase precision of the estimators of
population parameters. The ratio, product and regression methods of estimation
are commonly used in this context. Recently many research articles have appeared
where authors have tried to modify existing estimators or construct new hybrid
type estimators. Some contribution in this area are due to Bahl & Tuteja (1991),
Singh, Chauhan & Sawan (2008), Singh, Chauhan, Sawan & Smarandache (2009),
Yadav & Kadilar (2013), Haq & Shabbir (2013), Singh, Sharma & Tailor (2014)
and Grover & Kaur, (2011, 2014).

Consider a finite population U = {U1, U2, . . . , UN}. We draw a sample of
size n from this population using simple random sampling without replacement
scheme. Let y and x respectively be the study and the auxiliary variables and yi
and xi, respectively be the observations on the ith unit. Let ȳ = 1

n

∑n
i=1 yi and

x̄ = 1
n

∑n
i=1 xi be the sample means and Ȳ = 1

N

∑N
i=1 yi and X̄ = 1

N

∑N
i=1 xi, be

the corresponding population means. We assume that the mean of the auxiliary
variable (X̄) is known. Let s2

y = 1
n−1

∑n
i=1 (yi−ȳ)2 and s2

x = 1
n−1

∑n
i=1 (xi−x̄)2 be

the sample variances and S2
y = 1

N−1

∑N
i=1 (yi− Ȳ )2and S2

x = 1
N−1

∑N
i=1 (xi− X̄)2,

be the corresponding population variances. Let ρyx be the correlation coefficient
between y and x. Finally let Cy =

Sy

Ȳ
and Cx = Sx

X̄
respectively be the coefficients

of variation for y and x.
In order to obtain the bias and mean squared error (MSE) for the proposed

estimator and existing estimators considered here, we define the following relative
error terms: Let δ0 = ȳ−Ȳ

Ȳ
and δ1 = x̄−X̄

X̄
, such that E(δi) = 0 for (i = 0, 1),

E(δ2
0) = λC2

y , E(δ2
1) = λC2

x and E(δ0δ1) = λρyxCyCx, where λ =
(

1
n −

1
N

)
.

In this paper, our objective is to propose an improved estimator of the finite
population mean using information on a single auxiliary variable in simple ran-
dom sampling. Expressions for the bias and mean squared error (MSE) of the
proposed estimator are derived under first order of approximation. Based on both
theoretical and numerical comparisons, we show that the proposed estimator out-
performs several existing estimators. The outline of the paper is as follows: in
Section 2, we consider several estimators of the finite population mean that are
available in literature. The proposed estimators are given in Section 3 along with
the corresponding bias and MSE expressions. In Section 4, we provide theoretical
comparisons to evaluate the performances of the proposed and existing estimators.
An empirical study is conducted in Section 5, and some concluding remarks are
given in Section 6.
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2. Some Existing Estimators

In this section, we consider several estimators of finite population mean.

2.1. Sample Mean Estimator

The variance of the sample mean ȳ, the usual unbiased estimator, is given by

V ar(ȳ) = λȲ 2C2
y (1)

2.2. Traditional Ratio and Product Estimators

Using information on the auxiliary variable, Cochran (1940) suggested a ratio
estimator ˆ̄YR for estimating Ȳ . It is given by

ˆ̄YR = ȳ(
X̄

x̄
) (2)

The MSE of ˆ̄YR, to first order of approximation, is given by

MSE( ˆ̄YR) ≈ λȲ 2(C2
y + C2

x − 2ρyxCyCx) (3)

On similar lines, Murthy (1964) suggested a product estimator ( ˆ̄YP ), given by

ˆ̄YP = ȳ
( x̄
X̄

)
(4)

The MSE of ˆ̄YP , to first order of approximation, is given by

MSE( ˆ̄YP ) ≈ λȲ 2(C2
y + C2

x + 2ρyxCyCx) (5)

The ratio and product estimators are widely used when the correlation coefficient
between the study and the auxiliary variable is positive and negative, respectively.
Both of the estimators, ˆ̄YR and ˆ̄YP , show better performances in comparison with
ȳ when ρyx > Cx

2Cy
and ρyx < − Cx

2Cy
, respectively.

2.3. Regression Estimator

The usual regression estimator ˆ̄YReg of Ȳ , is given by

ˆ̄YReg = ȳ + b(X̄ − x̄) (6)

where b is the usual slope estimator of the population regression coefficient β
(Cochran 1977). The estimator ˆ̄YReg is biased, but the bias approaches zero as
the sample size n increases.
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Asymptotic variance of ˆ̄YReg, is given by

V ar( ˆ̄YReg) = λȲ 2C2
y(1− ρ2

yx) (7)

The regression estimator ˆ̄YReg performs better than the usual mean estimator ȳ,
ratio estimator ˆ̄YR and product estimator ˆ̄YP when λȲ 2ρ2

yxC
2
y > 0, λȲ 2(Cx −

ρyxCy)2 > 0 and λȲ 2(Cx + ρyxCy)2 > 0, respectively.

2.4. Bahl & Tuteja (1991) Estimators

Bahl & Tuteja (1991) suggested ratio-and product type estimators of Ȳ , given
respectively by

ˆ̄YBT,R = ȳ exp

(
X̄ − x̄
X̄ + x̄

)
(8)

and
ˆ̄YBT,P = ȳ exp

(
x̄− X̄
x̄+ X̄

)
(9)

The MSEs of ˆ̄YBT,R and ˆ̄YBT,P , to first order of approximation, are given by

MSE( ˆ̄YBT,R) ≈ (1/4)λȲ 2(4C2
y + C2

x − 4ρxyCyCx) (10)

and
MSE( ˆ̄YBT,P ) ≈ (1/4)λȲ 2(4C2

y + C2
x + 4ρxyCyCx) (11)

2.5. Singh et al. (2008) Estimator

Following Bahl & Tuteja (1991), Singh et al. (2008) suggested a ratio-product
exponential type estimator ˆ̄YS,RP of Ȳ , given by

ˆ̄YS,RP = ȳ[α exp(
X̄ − x̄
X̄ + x̄

) + (1− α) exp(
x̄− X̄
x̄+ X̄

)] (12)

where α is an arbitrary constant.

The minimum MSE of ȲS,RP , up to first order of approximation, at optimum
value of α, i.e., α(opt) = 1

2 +
ρyxCy

Cx
, is given by

MSEmin( ˆ̄YS,RP ) ≈ λȲ 2(1− ρ2
yx)C2

y = V ar( ˆ̄YReg) (13)

The minimum MSE of ˆ̄YS,RP is exactly equal to variance of the linear regression
estimator ( ˆ̄YReg).
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2.6. Rao (1991) Estimator

Rao (1991) suggested a regression-type estimator of Ȳ , given by

ˆ̄YR,Reg = k1ȳ + k2(X̄ − x̄) (14)

where k1 and k2 are suitably chosen constants.
The minimum MSE of ȲR,Reg, upto first order of approximation, at optimum

values of k1 and k2, i.e., k1(opt) = 1
1+λ(1−ρ2yx)C2

y
and k2(opt) = − Ȳ ρyxCy

X̄Cx[−1+λ(−1+ρ2yx)C2
y ]
,

is given by

MSEmin( ˆ̄YR,Reg) ≈ Ȳ 2

{
1 +

1

−1 + λ(−1 + ρ2
yx)C2

y

}
(15)

2.7. Grover & Kaur (2011) Estimator

Following Rao (1991) and Bahl & Tuteja (1991), Grover & Kaur (2011) sug-
gested an exponential type estimator of Ȳ , given by

ˆ̄YGK = [d1ȳ + d2(X̄ − x̄)] exp(
X̄ − x̄
X̄ + x̄

) (16)

where d1 and d2 are suitably chosen constants.

The minimum MSE of ˆ̄YGK , up to first order of approximation, at optimum
values of d1 and d2 i.e., d1(opt) =

−8+λC2
x

8{−1+λ(−1+ρ2yx)C2
y}

and

d2(opt) =
Ȳ [−8ρyxCy + Cx

{
4− λC2

x + λρyxCyCx + 4λ(−1 + ρ2
yx)C2

y

}
8X̄Cx

{
−1 + λ(−1 + ρ2

yx)C2
y

}
is given by

MSEmin( ˆ̄YGK) ≈
λȲ 2[λC4

x − 16(−1 + ρ2
yx)(−4 + λC2

x)C2
y ]

64[−1 + λ(−1 + ρ2
yx)C2

y ]
(17)

Grover & Kaur (2011) derived the result

MSEmin( ˆ̄YGK) ≈ V ar( ˆ̄YReg)−
λ2Ȳ 2

{
C2
x + 8(1− ρ2

yx)C2
y

}2

64
{

1 + λ(1− ρ2
yx)C2

y

} (18)

Equation (18) shows that ˆ̄YGK is more efficient than the linear regression estimator
ˆ̄YReg.

Since regression estimator ˆ̄YReg is always better than ȳ, ˆ̄YR, ˆ̄YP , ˆ̄YBT,R, ˆ̄YBT,P ,
it can be argued that ˆ̄YGK is also always better than these estimators.
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3. Proposed Estimator

In this section, an improved difference-cum-exponential type estimator of the
finite population mean Ȳ using a single auxiliary variable is proposed. Expressions
for the bias and MSE of the proposed estimator are obtained upto first order of
approximation.

The conventional difference estimator ( ˆ̄YD) of Ȳ , is given by

ˆ̄YD = ȳ + w1(X̄ − x̄) (19)

where w1 is a constant.

From (8), (12), and (14), a difference-cum-exponential type estimator ( ˆ̄Y ∗
D) of

Ȳmay be given by

ˆ̄Y ∗
D =

[
ˆ̄Y ∗
S,RP + w1(X̄ − x̄)

]
exp

(
X̄ − x̄
X̄ + x̄

)
(20)

where ˆ̄Y ∗
S,RP = ȳ

2

[
exp

(
X̄−x̄
x̄+X̄

)
+ exp

(
x̄−X̄
x̄+X̄

)]
is the average of exponential ratio

and exponential product estimators ˆ̄YBT,R and ˆ̄YBT,P respectively.
Following Searls (1964) and Bahl & Tuteja (1991), Yadav & Kadilar (2013)

suggested the following estimator for Ȳ :

ˆ̄YY K = w2 ȳ exp

(
X̄ − x̄
X̄ + x̄

)
(21)

where w2 is a suitably chosen constant.
By combining the ideas in (20) and (21), a modified difference-cum-exponential

type estimator of Ȳ , is given by

ˆ̄Y ∗
P = [ ˆ̄Y ∗

S,RP + w1(X̄ − x̄) + w2ȳ] exp

(
X̄ − x̄
X̄ + x̄

)
(22)

where w1 and w2 are unknown constants to be determined later.

Rewriting ˆ̄Y ∗
P as

ˆ̄Y ∗
P =

[
ȳ

2

{
exp(

X̄ − x̄
x̄+ X̄

) + exp

(
x̄− X̄
x̄+ X̄

)}
+ w1(X̄ − x̄) + w2ȳ

]
exp

(
X̄ − x̄
X̄ + x̄

)
Solving ˆ̄Y ∗

P in terms of δi(i = 0, 1), to first order of approximation, we can write

ˆ̄Y ∗
P − Ȳ ≈ Ȳ w2 + Ȳ δo −

1

2
Ȳ δ1 − X̄δ1w1 + Ȳ δow2 −

1

2
Ȳ δ1w2

− 1

2
Ȳ δoδ1 +

1

2
Ȳ w2

1 +
1

2
X̄δ2

1w1 −
1

2
Ȳ δoδ1w2 +

3

8
Ȳ δ2

1w2 (23)

Taking expectation on both sides of (23), we get the bias of ˆ̄Y ∗
P , given by

Bias( ˆ̄Y ∗
P ) ≈ 1

8
[8Ȳ w2 +λC2

x

{
4X̄w1 + Ȳ (4 + 3w2)

}
−4Ȳ λCY Cx(1 +w2)ρyx] (24)
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Squaring both sides of (23) and using first order of approximation, we get

( ˆ̄Y ∗
P − Ȳ )2 ≈ Ȳ 2w2

2 + Ȳ 2δ2
o − Ȳ 2δoδ1

+
1

4
Ȳ 2δ2

1 − 2X̄Ȳ δoδ1w1 + X̄Ȳ δ2
1w1 + X̄2δ2

1w
2
1 + 2Ȳ 2δ2

ow2

− 3Ȳ 2δoδ1w2 +
3

2
Ȳ 2δ2

1w2 − 2X̄Ȳ δoδ1w1w2 + 2X̄Ȳ δ2
1w1w2

+ Ȳ 2δ2
ow

2
2 − 2Ȳ 2δoδ1w

2
2 + Ȳ 2δ2

1w
2
2

(25)

Taking expectation on both sides of (25), the MSE of ˆ̄Y ∗
P , to first order of approx-

imation, is given by

MSE( ˆ̄Y ∗
P ) ≈ 1

4
λC2

x

{
(Ȳ + 2X̄w1)2 + 2Ȳ (3Ȳ + 4X̄w1)w2 + 4Ȳ 2w2

2

}
+ Ȳ 2

{
w2

2 + λC2
Y (1 + w2)2

}
− Ȳ λρyxCyCx(1 + w2)(Ȳ + 2X̄w1 + 2Ȳ w2)

(26)

Partially differentiating (26) with respect to w1 and w2, we get

∂MSE( ˆ̄Y ∗
P )

∂w1
= X̄λCx

{
−2Ȳ ρyxCy(1 + w2) + Cx(Ȳ + 2X̄w1 + 2Ȳ w2)

}
∂MSE( ˆ̄Y ∗

P )

∂w2
=

1

2
Ȳ [4Ȳ

{
w2 + λC2

y(1 + w2)
}
− 2λρyxCyCx

{
2X̄w1 + Ȳ (3 + 4w2)

}
+ λC2

x

{
4X̄w1 + Ȳ (3 + 4w2)

}
]

Setting ∂MSE( ˆ̄Y ∗
P )

∂w2
=0 for i = 0, 1, the optimum values of w1 and w2 are given by

w1(opt) =
Ȳ [−4ρyxCy + Cx

{
2− λC2

x + λρyxCyCx + 2λ(−1 + ρ2
yx)C2

y

}
]

4X̄Cx
{
−1 + λ(−1 + ρ2

yx)C2
y

}
and w2(opt) =

λ(C2
x−4(−1+ρ2yx)C2

y)

4{−1+λ(−1+ρ2yx)C2
y}

, respectively.

Substituting the optimum values of w1 and w2 in (26), we can obtain the
minimum MSE of ˆ̄Y ∗

P , as given by

MSEmin( ˆ̄Y ∗
P ) ≈

λȲ 2
{
λC4

x − 8(−1 + ρ2
yx)(−2 + λC2

x)C2
y

}
16
{
−1 + λ(−1 + ρ2

yx)C2
y

} (27)

After some simplifications, (27) can be written as

MSEmin( ˆ̄Y ∗
P ) ≈MSE( ˆ̄YReg)− (T1 + T2) (28)

where T1 =
λ2Ȳ 2{C2

x+8(1−ρ2yx)C2
y}2

64{1+λ(1−ρ2yx)C2
y}

and T2 =
λ2Ȳ 2C2

x{3C2
x+16(1−ρ2yx)C2

y}
64{1+λ(1−ρ2yx)C2

y}

Note that both quantities, T1 and T2, are always positive.
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4. Efficiency Comparisons

In this section, we compare the proposed estimator with the existing estimators
considered in Section 2 and derive the following observations:
Observation (i): By (1) and (28)

V ar(ȳ)−MSEmin( ˆ̄Y ∗
P ) = λȲ 2ρ2

yxC
2
y + T1 + T2 > 0

Observation (ii): By (3) and (28)

MSE( ˆ̄YR)−MSEmin( ˆ̄Y ∗
P ) = λȲ 2(Cx − ρyxCy)2 + T1 + T2 > 0

Observation (iii): By (5), and (28)

MSE( ˆ̄YP )−MSEmin( ˆ̄Y ∗
P ) = λȲ 2(Cx + ρyxCy)2 + T1 + T2 > 0

Observation (iV): By (7), (13) and (28)

MSE( ˆ̄YReg)−MSEmin( ˆ̄Y ∗
P ) = MSE( ˆ̄YS,RP )−MSEmin( ˆ̄Y ∗

P ) = T1 + T2 > 0

Observation (V): By (10) and (28)

MSE( ˆ̄YBT,R)−MSEmin( ˆ̄Y ∗
P ) =

1

4
λȲ 2(Cx − 2ρyxCy)2 + T1 + T2 > 0

Observation (Vi): By (11) and (28)

MSE( ˆ̄YBT,P )−MSEmin( ˆ̄Y ∗
P ) =

1

4
λȲ 2(Cx + 2ρyxCy)2 + T1 + T2 > 0

Observation (Vii): By (15) and (28)

MSE( ˆ̄YR,Reg)−MSEmin( ˆ̄Y ∗
P ) =

λ2Ȳ 2C2
x

{
C2
x + 16(1− ρ2

yx)C2
y

}
64
{

1 + λ(1− ρ2
yx)C2

y

} + T2 > 0

Observation (Viii): By (18) and (28)

MSE( ˆ̄YGK)−MSEmin( ˆ̄Y ∗
P ) = T2 > 0

In the light of the eight observations made above, we can argue that the proposed
estimator performs better than all of the estimators considered here.

5. Empirical Study

In this section, we consider 10 real data sets to numerically evaluate the per-
formances of the proposed and the existing estimators considered here.

Population 1: [Source: Cochran (1977), pp. 196] Let y be the peach produc-
tion in bushels in an orchard and x be the number of peach trees in the orchard
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in North Carolina in June 1946. The summary statistics for this data set are:
N = 256, n = 100, Ȳ = 56.47, X̄ = 44.45, Cy = 1.42, Cx = 1.40, ρyx = 0.887.

Population 2: [Source: Murthy (1977), pp. 228] Let y be the output and x
be the number of workers. The summary statistics for this data set are:
N = 80, n = 10, Ȳ = 51.8264, X̄ = 2.8513, Cy = 0.3542, Cx = 0.9484,
ρyx = 0.915.

Population 3: [Source: Das (1988)] Let y be the number of agricultural labor-
ers for 1971 and x be the number of agricultural laborers for 1961. The summary
statistics for this data set are:
N = 278, n = 25, Ȳ = 39.068, X̄ = 25.111, Cy = 1.4451, Cx = 1.6198,
ρyx = 0.7213.

Population 4: [Source: Steel, Torrie & Dickey (1960), pp. 282] Let y be the
log of lef burn in sacs and x be the chlorine percentage. The summary statistics
for this data set are:
N = 30, n = 6, Ȳ = 0.6860, X̄ = 0.8077, Cy = 0.7001, Cx = 0.7493,
ρyx = −0.4996.

Population 5: [Source: Maddala (1977), pp. 282] Let y be the consumption
per capita and x be the deflated prices of veal. The summary statistics for this
data set are:
N = 16, n = 4, Ȳ = 7.6375, X̄ = 75.4343, Cy = 0.2278, Cx = 0.0986,
ρyx = −0.6823.

Population 6: [Source: Kalidar & Cingi (2007)] Let y be the level of apple
production (in 100 tones) and x be the number of apple trees in 104 villages in
the East Anatolia Region in 1999. The summary statistics for this data set are:
N = 104, n = 20, Ȳ = 6.254, X̄ = 13931.683, Cy = 1.866, Cx = 1.653,
ρyx = 0.865.

Population 7: [Source: Kalidar & Cingi (2005)] Let y be the apple production
amount in 1999 and x be the number of apple trees in 1999 in Black sea region of
Turkey. The summary statistics for this data set are:
N = 204, n = 50, Ȳ = 966, X̄ = 26441, Cy = 2.4739, Cx = 1.7171, ρyx = 0.71.

Population 8: [Source: Cochran (1977)] Let y be the number of ’placebo’
children and x be the number of paralytic polio cases in the placebo group. The
summary statistics for this data set are:
N = 34, n = 10, Ȳ = 4.92, X̄ = 2.59, Cy = 1.01232, Cx = 1.07201, ρyx = 0.6837.

Population 9: [Source: Srivnstava, Srivastava & Khare (1989)] Let y be the
measurement of weight children and x be the mid-arm circumference of children.
The summary statistics for this data set are:
N = 55, n = 30, Ȳ = 17.08, X̄ = 16.92, Cy = 0.12688, Cx = 0.07, ρyx = 0.54.

Population 10: [Source: Sukhatme & Chand (1977)] Let y be the apple trees
of bearing age in 1964 and x be the bushels harvested in 1964. The summary
statistics for this data set are:
N = 200, n = 20, Ȳ = 1031.82, X̄ = 2934.58, Cy = 1.59775, Cx = 2.00625,
ρyx = 0.93.
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In Table 1, the MSE values and percent relative efficiencies (PREs) of all the
estimators considered here are reported based on Populations 1-10.

We observe from Table 1 that:

1. The ratio estimator ( ˆ̄YR) performs better than ȳ in Populations 1, 3, 6-10
because the condition ρyx > Cx

2Cy
is satisfied. In other Populations 2, 4 and

5, its performance is poor.

2. The product estimator ( ˆ̄YP ) performs better than ȳ in Population 5 because
the condition ρyx < − Cx

2Cy
is satisfied.

3. The exponential ratio estimator ( ˆ̄YBT,R) performs better than ȳ in Popula-
tions 1-3, 6-10 because the condition ρyx > Cx

4Cy
is satisfied.

4. The exponential product estimator ( ˆ̄YBT,P ) performs better than ȳ in Pop-
ulations 4 and 5 because the condition ρyx < − Cx

4Cy
is satisfied.

5. It is also observed that, regardless of positive or negative correlation between
the study and the auxiliary variable, the estimators, ˆ̄YReg, ˆ̄YR,Reg, ˆ̄YGK

and ˆ̄Y ∗
P , always perform better than the unbiased sample mean, ratio and

product estimators considered here in all populations. Among all competitive
estimators, the proposed estimator ( ˆ̄Y ∗

P ) is preferable.

6. Conclusion

In this paper, we have suggested an improved difference-cum-exponential type
estimator of the finite population mean in simple random sampling using infor-
mation on a single auxiliary variable. Expressions for the bias and MSE of the
proposed estimator are obtained under first order of approximation. Based on
both the theoretical and numerical comparisons, we showed that the proposed es-
timator always performs better than the sample mean estimator, traditional ratio
and product estimators, linear regression estimator, Bahl & Tuteja (1991) esti-
mators, Rao (1991) estimator, and Grover & Kaur (2011) estimator. Hence, we
recommend the use of the proposed estimator for a more efficient estimation of
the finite population mean in simple random sampling.
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Abstract

In this paper, generalized exponential-type estimator has been proposed
for estimating the population variance using mean auxiliary variable in single-
phase sampling. Some special cases of the proposed generalized estimator
have also been discussed. The expressions for the mean square error and
bias of the proposed generalized estimator have been derived. The proposed
generalized estimator has been compared theoretically with the usual unbi-
ased estimator, usual ratio and product, exponential-type ratio and product,
and generalized exponential-type ratio estimators and the conditions under
which the proposed estimators are better than some existing estimators have
also been given. An empirical study has also been carried out to demonstrate
the efficiencies of the proposed estimators.
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Bias.

Resumen

En este artículo, de tipo exponencial generalizado ha sido propuesto con
el fin de estimar la varianza poblacional a través de una variables auxiliar
en muestreo en dos fases. Algunos casos especiales del estimador medio y
el sesgo del estimador generalizado propuesto son derivados. El estimador
es comprado teóricamente con otros disponibles en la literatura y las condi-
ciones bajos los cuales éste es mejor. Un estudio empírico es llevado a cabo
para comprar la eficiencia de los estimadores propuestos.
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1. Introduction

In survey sampling, the utilization of auxiliary information is frequently ac-
knowledged to higher the accuracy of the estimation of population characteristics.
Laplace (1820) utilized the auxiliary information to estimate the total number
of inhabitants in France. Cochran (1940) prescribed the utilization of auxiliary
information as a classical ratio estimator. Recently, Dash & Mishra (2011) pre-
scribed the few estimators with the utilization of auxiliary variables. Bahl & Tuteja
(1991) proposed the exponential estimator under simple random sampling with-
out replacement for the population mean. Singh & Vishwakarma (2007), Singh,
Chauhan, Sawan & Smarandache (2011), Noor-ul Amin & Hanif (2012),Singh &
Choudhary (2012), Sanaullah, Khan, Ali & Singh (2012), Solanki & Singh (2013b)
and Sharma, Verma, Sanaullah & Singh (2013) suggested exponential estimators
in single and two-phase sampling for population mean.

Estimating the finite population variance has great significance in various fields
such as in matters of health, variations in body temperature, pulse beat and blood
pressure are the basic guides to diagnosis where prescribed treatment is designed to
control their variation. Therefore, the problem of estimating population variance
has been earlier taken up by various authors. Gupta & Shabbir (2008) suggested
the variance estimation in simple random sampling by using auxiliary variables.
Singh & Solanki (2009, 2010) proposed the estimator for population variance by
using auxiliary information in the presences of random non-response. Subramani
& Kumarapandiyan (2012) proposed the variance estimation using quartiles and
their functions of an auxiliary variable. Solanki & Singh (2013b) suggested the im-
proved estimation of population mean using population proportion of an auxiliary
character. Singh & Solanki (2013) introduced the new procedure for population
variance by using auxiliary variable in simple random sampling. Solanki & Singh
(2013a) and Singh & Solanki (2013) also developed the improved classes of esti-
mators for population variance. Singh et al. (2011), and Yadav & Kadilar (2013)
proposed the exponential estimators for the population variance in single and two-
phase sampling using auxiliary variables.

In this paper the motivation is to look up some exponential-type estimators
for estimating the population variance using the population mean of an auxiliary
variable. Further, it is proposed a generalized form of exponential-type estimators.
The remaining part of the study is organized as follows: The Section 2 introduced
the notations and some existing estimators of population variance in brief. In
Section 3, the proposed estimator has been introduced, Section 4 is about the
efficiency comparison of the proposed estimators with some available estimators,
section 5 and 6 is about numerical comparison and conclusions respectively.

2. Notations and some Existing Estimators

Let (xi, yi), i = 1, 2, . . . , n be the n pairs of sample observations for the auxiliary
and study variables respectively from a finite population of size N under simple
random sampling without replacement (SRSWOR). Let S2

y and s2y are variances
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respectively for population and sample of the study variable say y . Let X̄ and
x̄ are means respectively for the population and sample mean of the auxiliary
variable say x. To obtain the bias and mean square error under simple random
sampling without replacement, let us define

e0 =
s2y − S2

y

S2
y

, e1 =
x̄− X̄
X̄

s2y = S2
y(1 + e0), x̄ = X̄(1 + e1)

 (1)

where, ei is the sampling error, Further, we may assume that

E(e0) = E(e1) = 0 (2)

When single auxiliary mean information is known, after solving the expectations,
the following expression is obtained as

E(e20) =
δ40
n
, E(e21) =

C2
x

n
, E(e0e1) =

δ21Cx
n

where

δpq =
µpq

µ
p/2
20 µ

q/2
02

, and µpq =
1

N

∑
(yi − Ȳ )p(xi − X̄)q


(3)

(p, q) be the non-negative integer and µ02, µ20 are the second order moments and

δpq is the moment’s ratio and Cx =
Sx
X̄

is the coefficient of variation for auxiliary
variable X . The unbiased estimator for population variance

S2
y =

1

N − 1

N∑
i

(Yi − Ȳ )2

is defined as
t0 = s2y (4)

and its variance is

var(t0) =
s4y
n

[δ40 − 1] (5)

Isaki (1983) proposed a ratio estimator for population variance in single-phase
sampling as

t1 = s2y
S2
x

s2x
(6)

The bias and the mean square error (MSE ) of the estimator in (6), up to first
order-approximation respectively are

Bias(t1) =
S2
y

n
[δ04 − δ22] (7)

MSE(t1) ≈
S4
y

n
[δ40 + δ04 − 2δ22] (8)
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Singh et al. (2011) suggested ratio-type exponential estimator for population vari-
ance in single-phase sampling as

t2 = s2y exp

[
S2
x − s2x
S2
x + s2x

]
(9)

The bias and MSE, up to first order-approximation is

Bias(t2) =
S2
y

n

[
δ04
8
− δ22

2
+

3

8

]
(10)

MSE(t2) ≈
S4
y

n

[
δ40 +

δ04
4
− δ22 −

1

4

]
(11)

Singh et al. (2011) proposed exponential product type estimator for population
variance in single-phase sampling as

t3 = s2y exp

[
s2x − S2

x

s2x + S2
x

]
(12)

The bias and MSE, up to first order-approximation is

Bias(t3) =
S2
y

n

[
δ04
8

+
δ22
2
− 5

8

]
(13)

MSE(t3) ≈
S4
y

n

[
δ40 +

δ04
4

+ δ22 −
9

4

]
(14)

Yadav & Kadilar (2013) proposed the exponential estimators for the population
variance in single-phase sampling as

t4 = s2y exp

[
S2
x − s2x

S2
x + (α− 1)s2x

]
(15)

The bias and MSE, up to first order-approximation is

Bias(t4) =
S2
y

n

[
δ04 − 1

2α2
(2α(1− λ)− 1)

]
(16)

MSE(t4) ≈
S4
y

n

[
(δ40 − 1) +

(δ04 − 1)

α2
(1− 2αλ)

]
(17)

where, λ = δ22−1
δ04−1 and α = 1

λ .

3. Proposed Generalized Exponential Estimator

Following Bahl & Tuteja (1991), new exponential ratio-type and product-type
estimators for population variance are as

t5 = s2y exp

[
X̄ − x̄
X̄ + x̄

]
(18)
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t6 = s2y exp

[
x̄− X̄
x̄+ X̄

]
(19)

Equations (18) and (19) lead to the generalized form as

tEG = λ s2y exp

[
α

(
1− ax̄

X̄ + (a− 1)x̄

)]
= λ s2y exp

[
α

(
X̄ − x̄

X̄ + (a− 1)x̄

)]
(20)

where the three different real constants are 0 < λ ≤ 1, and −∞ < α < ∞
and a > 0. It is observed that for different values of λ, α and a in (20), we
may get various exponential ratio-type and product-type estimators as new family
of tEG i.e. G = 0, 1, 2, 3, 4, 5. From this family, some examples of exponential
ratio-type estimators may be given as follows: It is noted that, for λ = 1, α = 0
and a = a0, tEG in (20) is reduced to

tE0 = s2y exp(0) = s2y (21)

which is an unbiased employing no auxiliary information.
For λ = 1, α = 0 and a = 0, tEG in (20) is reduced to

tE1 = s2y exp(1) (22)

For λ = 1, α = 1 and a = 2, tEG in (20) is reduced to

tE2 = s2y exp

[
X̄ − x̄
X̄ + x̄

]
= t5 (23)

For λ = 1, α = 1 and a = 1, tEG in (20) is reduced to

tE3 = s2y exp

[
X̄ − x̄
X̄

]
(24)

Some example for exponential product-type estimators may be given as follows:
For λ = 1, α = −1 and a = 2, tEG in (20) is reduced to

tE4 = s2y exp

[
−
{
X̄ − x̄
X̄ + x̄

}]
= t6 (25)

For λ = 1, α = −1 and a = 1, tEG in (20) is reduced to

tE5 = s2y exp

[
−
{
X̄ − x̄
X̄

}]
(26)

3.1. The Bias and Mean Square Error of Proposed Estimator

In order to obtain the bias and MSE, (20) may be expressed in the form of e’s
by using (1), (2) and (3) as

tEG = λ S2
y(1 + e0) exp

[
α

−e1
1 + (a− 1)(1 + e1)

]
(27)
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Further, it is assumed that the contribution of terms involving powers in e0 and
e1 higher than two is negligible

tEG ≈ λ S2
y

[
1 + e0 −

αe1
a

+
α2e21
2a2

− αe0e1
a

]
(28)

In order to obtain the bias, subtract S2
y both sides and taking expectation of (28),

after some simplification, we may get the bias as

Bias(tEG) ≈
S2
y

n

[
λ

{
1 +

α2

2a2
C2
x −

α

a
δ21Cx

}]
− S2

y (29)

Expanding the exponentials and ignoring higher order terms in e0 and e1 , we may
have on simplification

tEG − S2
y ≈ λ s2y

[{
1 + e0 −

αe1
a

}
− 1
]

(30)

Squaring both sides and taking the expectation we may get the MSE of (tEG)
from as (30)

MSE(tEG) ≈
S4
y

n

[
λ2
{

1 + (δ40 − 1)− 2
α

a
δ21Cx +

α2

a2
C2
x

}
+ (1− 2λ)

]
(31)

or

MSE(tEG) ≈
S4
y

n

[
λ2
{

1 + (δ40 − 1)− 2ωδ21Cx + ω2C2
x

}
+ (1− 2λ)

]
(32)

where, ω = α
a , The MSE (tEG) is minimized for the optimal values of λ and ω as,

ω = δ21(Cx)−1 and λ = (δ40 − δ221)−1. The minimum MSE (tEG) is obtained as

MSEmin(tEG) ≈
S4
y

n

[
1− 1

δ40 − δ221

]
(33)

On substituting the optimal values of λ = (δ40−δ221)−1, α and a into (20), we may
get the asymptotically optimal estimator as

tasym =
s2y

δ40 − δ221
exp

[
δ21(X̄ − x̄)

X̄ + (Cx−1)x̄

]
(34)

The values of λ, α and a can be obtained in prior from the previous surveys,
for case in point, see Murthy (1967), Ahmed, Raman & Hossain (2000), Singh &
Vishwakarma (2008), Singh & Karpe (2010) and Yadav & Kadilar (2013).

In some situations, for the practitioner it is not possible to presume the values
of λ, α and a by employ all the resources, it is worth sensible to replace λ, α and
a in (20) by their consistent estimates as

ω̂ = ˆδ21(Ĉx)−1 and λ̂ = ( ˆδ40 − ˆδ221)−1 (35)

ˆδ21 , and Ĉ respectively are the consistent estimates of δ21, and Cx.
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As a result, the estimator in (34) may be obtained as

t̂asym =
s2y

ˆδ40 − ˆδ221
exp

[
ˆδ21(X̄ − x̄)

X̄ + (Ĉx−1)x̄

]
(36)

Similarly the MSE (tEG) in (33) may be given as,

MSEmin(t̂asym) ≈
s4y
n

[
1− 1

ˆδ40 − ˆδ221

]
(37)

Thus, the estimator t̂asym, given in (36), is to be used in practice. The bias and
MSE expression for the new family of tEG, can be obtained by putting different
values of λ, α and a in (29) and (31) as

Bias(tE2) ≈
S2
y

n

[
1

8
C2
x −

1

2
δ21Cx

]
(38)

Bias(tE3) ≈
S2
y

n

[
1

2
C2
x − δ21Cx

]
(39)

Bias(tE4) ≈
S2
y

n

[
1

8
C2
x +

1

2
δ21Cx

]
(40)

Bias(tE5) ≈
S2
y

n

[
1

2
C2
x + δ21Cx

]
(41)

MSE(tE2) ≈
S4
y

n

[
(δ40 − 1)− δ21Cx +

1

4
C2
x

]
(42)

MSE(tE3) ≈
S4
y

n

[
(δ40 − 1)− 2δ21Cx + C2

x

]
(43)

MSE(tE4) ≈
S4
y

n

[
(δ40 − 1) + δ21Cx +

1

4
C2
x

]
(44)

MSE(tE5) ≈
S4
y

n

[
(δ40 − 1) + 2δ21Cx + C2

x

]
(45)

4. Efficiency Comparision of Proposed Estimators
with some Available Estimators

The efficiency comparisons have been made with the sample variance (t0),
Isaki (1983) ratio estimator (t1), Singh et al. (2011) ratio (t2), and product (t3),
estimators and Yadav & Kadilar (2013) ratio (t4), estimator using (5),(8),(11),(14)
and (17) respectively with the proposed generalized estimator and class of proposed
estimators.
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MSE (tEG) < Var (t0) 〈
if

δ40 + 1
f

2
> 1

〉
(46)

MSE (tEG) < MSE (t1) 〈
if δ40 + δ04 − 2δ22 +

1

f
> 1

〉
(47)

MSE (tEG) < MSE (t2)〈
if δ40 +

δ04
4
− δ22 −

1

4
+

1

f
> 1

〉
(48)

MSE (tEG) < MSE (t3)〈
if δ40 +

δ04
4

+ δ22 −
9

4
+

1

f
> 1

〉
(49)

MSE (tEG) < MSE (t4)〈
if

f [(d− δ40)− (δ22 − 1)2]

(d− f − δ40δ221)
> 1

〉
(50)

MSE (tE2) < Var (t0) 〈
if

4 δ21
Cx

> 1

〉
(51)

MSE (tE2) < MSE (t1)〈
if

4(δ40 − 2δ22 + δ21Cx + 1)

C2
x

> 1

〉
(52)

MSE (tE2) < MSE (t2)〈
if

(δ40 − 4δ22 + 4δ21Cx + 3)

C2
x

> 1

〉
(53)

MSE (tE3) < Var (t0) 〈
if

2 δ21
Cx

> 1

〉
(54)

MSE (tE3) < MSE (t1)〈
if

(δ04 − 2δ22 + 2δ21Cx + 1)

C2
x

> 1

〉
(55)
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MSE (tE3) < MSE (t2)〈
if

( δ044 − δ22 + 2δ21Cx + 3
4 )

C2
x

> 1

〉
(56)

MSE (tE4) < Var (t0) 〈
if − 4 δ21

Cx
> 1

〉
(57)

MSE (tE4) < MSE (t3)〈
if

(δ04 − 4δ22 − 4δ21Cx − 1)

C2
x

> 1

〉
(58)

MSE (tE5) < Var (t0) 〈
if − 2 δ21

Cx
> 1

〉
(59)

MSE (tE5) < MSE (t3)〈
if

( δ044 − δ22 − 2δ21Cx − 1
4 )

C2
x

> 1

〉
(60)

where f = δ40 − δ221 and d = δ40δ04 − δ04 + 1.
When the above conditions are satisfied the proposed estimators are more

efficient than t0, t1, t2, t3 and t4.

5. Numerical Comparison

In order to examine the performance of the proposed estimator, we have taken
two real populations. The Source, description and parameters for two populations
are given in Table 1 and Table 2

Table 1: Source and Description of Population 1 & 2.
Population Source Y X

1 Murthy (1967, pg. 226) output number of workers
2 Gujarati (2004, pg. 433) average (miles per gallon) top speed(miles per hour)

The comparison of the proposed estimator has been made with the unbiased
estimator of population variance, the usual ratio estimator due to Isaki (1983),
Singh et al. (2011) exponential ratio and product estimators and Yadav & Kadilar
(2013) generalized exponential-type estimator. Table 3 shows the results of Per-
centage Relative Efficiency (PRE) for Ratio and Product type estimators. These
estimators are compared with respect to sample variance.
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Table 2: Parameters of Populations.
Parameter 1 2

N 25 81
n 25 21
Ȳ 33.8465 2137.086
X̄ 283.875 112.4568
Cy 0.3520 0.1248
Cx 0.7460 0.4831
ρyx 0.9136 -0.691135
δ40 2.2667 3.59
δ21 0.5475 0.05137
δ04 3.65 6.820
δ22 2.3377 2.110

where ρyx is the correlation between
the study and auxiliary variable.

Table 3: Percent Relative Efficiencies (PREs) for Ratio and Product type estimators
with respect to sample variance (t0).

Estimator Population 1 Population 2
t0 = s2y 100 100
t1 102.05 *
t2 214.15 *
t3 * 86.349
t4 214.440 108.915
tE2 127.04 *
tE3 125.898 *
tE4 * 96.895
tE5 * 90.145
tEG 257.371 359.123
‘*’ shows the data is not applicable

6. Conclusions

Table 3 shows that the proposed generalized exponential-type estimator (tEG)
is more efficient than the usual unbiased estimator (t0), Isaki (1983) ratio esti-
mator, Singh et al. (2011) exponential ratio and product estimators and Yadav
& Kadilar (2013) generalized exponential-type estimator. Further, it is observed
that the class of exponential-type ratio estimators tE2, and tE3, are more efficient
than the usual unbiased estimator and Isaki (1983) ratio estimator. Furthermore,
it is observed that the class of exponential-type product estimators tE4 and tE5,
are more efficient than Singh et al. (2011) exponential product estimator.
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Abstract

In this paper we propose a new three-parameter lifetime distribution
with upside-down bathtub shaped failure rate. The distribution is a com-
pound distribution of the zero-truncated Poisson and the Lomax distribu-
tions (PLD). The density function, shape of the hazard rate function, a
general expansion for moments, the density of the rth order statistic, and
the mean and median deviations of the PLD are derived and studied in de-
tail. The maximum likelihood estimators of the unknown parameters are
obtained. The asymptotic confidence intervals for the parameters are also
obtained based on asymptotic variance-covariance matrix. Finally, a real
data set is analyzed to show the potential of the new proposed distribution.

Key words: Asymptotic variance-covariance matrix, Compounding, Life-
time distributions, Lomax distribution, Poisson distribution, Maximum like-
lihood estimation.

Resumen

En este artículo se propone una nueva distribución de sobrevida de tres
parámetros con tasa fallo en forma de bañera. La distribución es una mezcla
de la Poisson truncada y la distribución Lomax. La función de densidad, la
función de riesgo, una expansión general de los momentos, la densidad del
r-ésimo estadístico de orden, y la media así como su desviación estándar son
derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles
de los parámetros desconocidos son obtenidos. Los intervalos de confianza
asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica.
Finalmente, un conjunto de datos reales es analizado para construir el po-
tencial de la nueva distribución propuesta.

Palabras clave: mezclas, distribuciones de sobrevida, distribució n Lomax,
distribución Poisson, estomación máximo-verosímil.
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1. Introduction

Marshall & Olkin (1997) introduced an effective technique to add a new pa-
rameter to a family of distributions. A great deal of papers have appeared in
the literature used this technique to propose new distributions. In their paper,
Marshall & Olkin (1997) generalized the exponential and Weibull distributions.
Alice & Jose (2003) followed the same approach and introduced Marshall-Olkin
extended semi-Pareto model and studied its geometric extreme stability. Ghitany,
Al-Hussaini & Al-Jarallah (2005) studied the Marshall-Olkin Weibull distribution
and established its properties in the presence of censored data. Marshall-Olkin
extended Lomax distribution was introduced by Ghitany, Al-Awadhi & Alkhalfan
(2007). Compounding Poisson and exponential distributions have been considered
by many authors; e.g. Kus (2007) proposed the Poisson-exponential lifetime distri-
bution with a decreasing failure rate function. Al-Awadhi & Ghitany (2001) used
the Lomax distribution as a mixing distribution for the Poisson parameter and ob-
tained the discrete Poisson-Lomax distribution. Cancho, Louzada-Neto & Barriga
(2011) introduced another modification of the Poisson-exponential distribution.

Let Y1, Y2, . . . , YZ be independent and identically distributed random variables
each has a density function f , and let Z be a discrete random variable having a
zero-truncated Poisson distribution with probability mass function

PZ(z) ≡ PZ(z, λ) =
e−λλz

z!(1− e−λ)
, z ∈ {1, 2, . . .}, λ > 0. (1)

Suppose that X is a random variable representing the lifetime of a parallel-system
of Z components, i.e. X = max{Y1, Y2, . . . , Yz}, and Y ’s and Z are independent.
The conditional distribution function of X|Z has the probability density function
(pdf)

fX|Z(x|z) = zf(x)[F (x)]z−1. (2)

where F (x) is the cumulative distribution function (cdf) corresponding to f(x).

A compound probability function (pdf) of fX|Z(x|z) and PZ(z), where X is a
continuous random variable (r.v.) and Z a discrete r.v. is defined by

gX(x) =

∞∑
z=1

fX|Z(x|z)PZ(z). (3)

Substitution of (1) and (2) in (3) then yields

gX(x) =

∞∑
z=1

zf(x)[F (x)]z−1

(
λze−λ

z!(1− e−λ)

)
=

λf(x)e−λ(1−F (x))

(1− e−λ)
, x > 0, λ > 0.
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The reliability and the hazard rate functions of X are, respectively, given by

Ḡ(x, λ) =
1− e−λF̄ (x)

(1− e−λ)
, x > 0, (4)

hG(x, λ) =
λf(x)e−λF̄ (x)

1− e−λF̄ (x)
=

λf(x)

eλF̄ (x) − 1
. (5)

In this paper we propose a new lifetime distribution by compounding Poisson
and Lomax distributions. As we have mentioned in the previous chapters, the
Lomax distribution with two parameters is a special case of the generalized Pareto
distribution, and ti is also known as the Pareto of the second type. A random
variable X is said to have the Lomax distribution, abbreviated as X ∼ LD(α, β),
if it has the pdf

fLD(x;α, β) = αβ (1 + βx)
−(α+1)

, x > 0, α, β > 0. (6)

Here α and β are the shape and scale parameters, respectively. Analogous tu
above, the survival and hazard functions associated with (6) are given by

F̄LD(x;α, β) = (1 + βx)
−α

, x > 0, (7)

hLD(x;α, β) =
αβ

1 + βx
, x > 0. (8)

The rest of the paper is organized as follows. In Section 2, we give explicit forms
and interpretation for the distribution function and the probability density func-
tion. In Section 3, we discuss the distributional properties of the proposed dis-
tribution. Section 4 discusses the estimation problem using the maximum likeli-
hood estimation method. In Section 5, an illustrative example, model selections,
goodness-of-fit tests for the distribution with estimated parameters are all pre-
sented. Finally, we conclude in Section 6.

2. Model Formulation

Substitution of (7) in (4) yields the following reliability function:

Ḡ(x;α, β, λ) =
1− e−λ(1+βx)−α

(1− e−λ)
, x > 0, α, β, λ > 0. (9)

The pdf associated with (9) is expressed in a closed form and is given by

g(x;α, β, λ) =
αβλ (1 + βx)

−(α+1)
e−λ(1+βx)−α

(1− e−λ)
, x > 0, α, β, λ > 0. (10)

The density function given by (10) can be interpreted as a compound of the zero-
truncated Poisson distribution and the Lomax distribution. Suppose that X =
max{Y1, Y2, . . . , Yz}, and each Y is distributed according to the Lomax distribtion.
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The variable Z has zero-truncated Poisson distribution and the variables Y ’s and
Z are independent. Then the conditional distribution function of X|Z has the pdf

fX|Z(x|z;α, β) = zαβ(1 + βx)−(α+1)[1− (1 + βx)−α]z−1. (11)

The joint distribution of the random variables X and Z, denoted by fX,Z(x, z), is
given by

fX,Z(x, z) =
z

z!(1− e−λ)
αβ(1 + βx)−(α+1)[1− (1 + βx)−α]z−1e−λλz, (12)

the marginal pdf of X is as follows.

fX(x;α, β, λ) =
αβλe−λ(1 + βx)−(α+1)

(1− e−λ)

∞∑
z=1

[(1− (1 + βx)−α)λ]z−1

(z − 1)!

=
αβλe−λ(1 + βx)−(α+1)eλ(1−(1+βx)−α)

(1− e−λ)

=
αβλ(1 + βx)−(α+1)e−λ(1+βx)−α

(1− e−λ)
,

which is the distribution with the pdf given by (10). The distribution of X may be
referred to as the Poisson-Lomax distribution. Symbolically it is abbreviated by
X ∼ PLD(α, β, λ) to indicate that the random variable X has the Poisson-Lomax
distribution with parameters α, β and λ.

3. Distributional Properties

In this section, we study the distributional properties of the PLD. In particular,
if X ∼ PLD(α, β, λ) then the shapes of the density function, the shapes of the
hazard function, moments, the density of the rth order statistics, and the mean
and median deviations of the PLD are derived and studied in detail.

3.1. Shapes of pdf

The limit of the Poisson-Lomax density as x→∞ is 0 and the limit as x→ 0
is αβλ/(eλ − 1). The following theorem gives simple conditions under which the
pdf is decreasing or unimodal.

Theorem 1. The pdf, g(x), of X ∼ PLD(α, β, λ) is decreasing (unimodal) if the
function ξ(x) ≥ 0 (< 0) where ξ(x) = α(1− λ(1 + βx)−α) + 1, independent of β.

Proof . The first derivative of g(x) is given by

g′(x) = − αβ2λ

1− e−λ
(1 + βx)−(α+2) e−λ(1+βx)−αξ((1 + βx)−α),

where ξ(y) = α(1−λy) + 1, and y = (1 +βx)−α < 1. Then we have the following:
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(i) If ξ(1) = α(1− λ) + 1 > 0, then ξ(y) > 0 for all y < 1, and hence, g′(x) ≤ 0
for all x > 0, i.e. the function g(x) is decreasing.

(ii) If ξ(1) < 0, then ξ(y) has a unique zero at yξ = α+1
αλ < 1 . Since y =

(1 + βx)−α is one to one transformation, it follows that g(x) has also a
unique critical point at xg = 1

β (y
−1/α
ξ − 1).

Finally, since g(0) = αβλ/(eλ − 1) and g(∞) = 0 then xg must be a point of
absolute maximum for g(x).

Note 1. It should be noted that:

(i) When λ ∈ (0, 1], g(x) is decreasing in x > 0 for all values of α, β > 0.

(ii) When λ > 1, g(x) may still exhibit a decreasing behavior, depending on the
values of α, λ such that α(1− λ) + 1 > 0.

(iii) The mode of the Poisson-Lomax distribution is given by

Mode(x) =

 0, if α(1− λ) + 1 ≥ 0,

1
β

[(
αλ
α+1

)1/α

− 1

]
otherwsie.

(13)

Figure 1 shows the pdf curves for the PLD(α, β, λ) for selected values of the
parameters α, β and λ. From the curves, it is quite evident that the PLD is
positively skewed distribution. It becomes highly positively skewed for large values
of the involved parameters.

3.2. Hazard Rate Function

The hazard rate function (hrf) of a random variable X is defined by h(x) =
f(x)/F̄ (x), where F̄ = 1− F . The hazard function of X ∼ PLD(α, β, λ) is given
by

h(x) =
αβλ(1 + βx)−(α+1)

eλ(1+βx)−α − 1
, x > 0. (14)

The following theorem gives simple conditions under which the hrf, given in (14),
is decreasing or unimodal.

Theorem 2. The hrf, h(x), of X ∼ PLD(α, β, λ) is decreasing (unimodal) if
η(x) ≥ 0(< 0) where η(x) = −(α + 1) + (α + 1 − αλ(1 + βx)−α) eλ(1+βx)−α ,
independent of β.
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Figure 1: Plot of the probability density function for different values of the parameters
α, β and λ.

Proof . The first derivative of h(x) with respect to x is given by

h′(x) =
−αβ2λ(1 + βx)−(α+2)

(eλ(1+βx)−α − 1)2

[
(α+ 1) (eλ(1+βx)−α − 1)− αλ(1 + βx)−αeλ(1+βx)−α

]
=
−αβ2λ(1 + βx)−(α+2)

(eλ(1+βx)−α − 1)2

[
(α+ 1− αλ(1 + βx)−α) eλ(1+βx)−α − (α+ 1)

]
=
−αβ2λ(1 + βx)−(α+2)

(eλ(1+βx)−α − 1)2
η((1 + βx)−α),

where η(y) = −(α+1)+(α+1−αλy)eλy, and y = (1+βx)−α < 1. The remaining
of the proof is similar to that of Theorem 1.

Note 2. The following should be noted.

(i) For λ ∈ (0, 1], h(x) is decreasing in x > 0 for all values of α, β > 0.

(ii) For λ > 1, h(x) may still exhibit a decreasing behavior, depending on the
values of α and λ such that (1 + (1− λ)α)eλ − (α+ 1) ≥ 0.

(iii) Since (1 + (1 − λ)α)eλ − (α + 1) ≥ 0 implies that α(1 − λ) + 1 ≥ 0, then a
decreasing hrf implies decreasing pdf. The converse is not necessarily true,
e.g. α = 2, λ = 2 implies decreasing pdf but unimodal hrf.
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(iv) Since (1 + (1 − λ)α)eλ − (α + 1) < 0 implies that α(1 − λ) + 1 < 0, then
a unimodal pdf implies unimodal hrf. The converse is not necessarily true,
e.g., α = 2, λ = 2 implies unimodal hrf but decreasing pdf.

Figure 2 shows the hrf curves for the PLD(α, β, λ) for selected values of the
parameters α, β and λ.
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Figure 2: Plot of the hazard function for different values of the parameters α, β and λ.

3.3. Moments

We present an infinite sum representation for the rth moment, µ′r = E [Xr],
and consequently the first four moments and variance for the PLD.

Theorem 3. The rth moment about the origin of a random variable X, where
X ∼ PLD(α, β, λ), and α, β, λ > 0, is given by the following:

µ′r = E [Xr] =
α

βr(1− e−λ)

∞∑
n=0

r∑
j=0

(
r

j

)
λn+1(−1)n+r−j+1

(j − α(n+ 1))n!
, r = 1, 2, . . . (15)

Proof . The rth moment of X can be determined by direct integration using the
pdf, i.e. µ′r =

∫
xrf(x)dx. We use the Maclaurin expansion of ex =

∑∞
n=0 x

n/n!,
for all x. We also use the series representation

(1− w)k =

k∑
j=0

(
k

j

)
(−1)j wj , where k is a positive integer.

Revista Colombiana de Estadística 37 (2014) 225–245



232 Bander Al-Zahrani & Hanaa Sagor

Therefore, after some transformations and integrations we have

E [Xr] =

∫ ∞
0

xr
αβλ (1 + βx)

−(α+1)
e−λ(1+βx)−α

(1− e−λ)
dx.

Setting y = 1 + βx, dx = dy/β yields

E [Xr] =
αλ

βr(1− e−λ)

∫ ∞
1

(y − 1)ry−(α+1) e−λy
−α
dy

=
αλ

βr(1− e−λ)

∫ ∞
1


r∑
j=0

(
r

j

)
yj−α−1(−1)r−j

∞∑
n=0

(−λy−α)n

n!

 dy

=
αλ

βr(1− e−λ)

∫ ∞
1

∞∑
n=0

r∑
j=0

(
r

j

)
λn+1(−1)n+r−jyj−α(n+1)−1

n!
dy

=
α

βr(1− e−λ)

∞∑
n=0

r∑
j=0

(
r

j

)
λn+1(−1)n+r−j+1

(j − α(n+ 1))n!
.

This completes the proof of the theorem.

An alternative representation formula for (15) can readily be found by expand-
ing and substituting in the binomial expansion.

µ′r =
r!

βr(1− e−λ)

∞∑
k=1

(−1)k+r−1λk

k!(1− kα) · · · (r − kα)
, α 6= i

k
, i = 1, 2, · · · (16)

One may use this representation to obtain the mean and the variance of X.

Corollary 1. Let X ∼ PLD(α, β, λ), where α, β, λ > 0. Then the first four
moments of X are given, respectively, as follows:

µ = E [X] = 1
β(1−e−λ)

∑∞
k=1

(−1)kλk

k!(1−kα) ,

µ′2 = E [X2] = 2
β2(1−e−λ)

∑∞
k=1

(−1)k+1λk

k!(1−kα)(2−kα) ,

µ′3 = E [X3] = 6
β3(1−e−λ)

∑∞
k=1

(−1)k+2λk

k!(1−kα)(2−kα)(3−kα) ,

µ′4 = E [X4] = 24
β4(1−e−λ)

∑∞
k=1

(−1)k+3λk

k!(1−kα)(2−kα)(3−kα)(4−kα) .


(17)

Proof . Applying relations (15) or (16) for r = 1, 2, 3 and r = 4 yields the desired
results.

Based on the results given in relations (17), the variance of X, denoted by
σ2 = µ′2 − µ2 is given by

σ2 =
2

β2(1− e−λ)

∞∑
k=1

(−1)k+1λk

k!(1− kα)(2− kα)
−

[
1

β(1− e−λ)

∞∑
k=1

(−1)kλk

k!(1− kα)

]2
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It can be noticed from Table 1 that both the mean and the variance of the PL
distribution are decreasing functions of α and β but they are increasing in λ. Table
2 shows the skewness and kurtosis of the PLD for various selected values of the
parameters α, β and λ. The skewness is free of parameter β. Both the skewness
and kurtosis are decreasing functions of α and both are increasing of λ.

Table 1: Mean and variance of PLD for various values of α, β and λ.
β = 0.5 β = 1.0 β = 2.0

λ α µ σ2 µ σ2 µ σ2

0.5 4.0 0.1184 1.6233 0.0592 0.4058 0.0296 0.1014
4.5 0.1013 1.1089 0.0506 0.2772 0.0253 0.0693
5.0 0.0885 0.8062 0.0442 0.2015 0.0221 0.0503
5.5 0.0785 0.6128 0.0392 0.1532 0.0196 0.0383
6.0 0.0706 0.4816 0.0353 0.1204 0.0176 0.0301

1.5 4.0 0.5890 1.9955 0.2945 0.4988 0.1472 0.1247
4.5 0.5018 1.3402 0.2509 0.3350 0.1254 0.0837
5.0 0.4369 0.9618 0.2184 0.2404 0.1092 0.0601
5.5 0.3869 0.7237 0.1934 0.1809 0.0967 0.0452
6.0 0.3471 0.5641 0.1735 0.1410 0.0867 0.0352

2.0 4.0 0.8104 2.0752 0.4052 0.5188 0.2026 0.1297
4.5 0.6892 1.377 0.3446 0.3442 0.1723 0.0860
5.0 0.5993 0.9791 0.2996 0.2447 0.1498 0.0611
5.5 0.5301 0.7313 0.2650 0.1828 0.1325 0.0457
6.0 0.4752 0.5668 0.2376 0.1417 0.1188 0.0354

4.0 4 1.4409 2.3195 0.7204 0.5798 0.3602 0.1449
4.5 1.2179 1.4705 0.6089 0.3676 0.3044 0.0919
5 1.0542 1.0089 0.5271 0.2522 0.2635 0.0630
5.5 0.9289 0.7322 0.4644 0.1830 0.2322 0.0457
6 0.8301 0.5542 0.4150 0.1385 0.2075 0.0346

3.4. L-moments

Suppose that a random sample X1, X2, . . . , Xn is collected from X ∼ PLD(θ),
where θ = (α, β, λ). In what follows, we derive a general representation for the
L-moments of X.

The rth population L-moments is given by

E[Xr:n] =

∫ ∞
0

xf(Xr:n) dx

=

∫ ∞
0

x

r−1∑
i=0

n−r+i∑
j=0

(
r − 1

i

)(
n− r + i

j

)
(−1)i+j

{
n!αβλ

(r − 1)!(n− r)!

× (1 + βx)−(α+1)e−λ(1+βx)−α(j+1)

(1− e−λ)n−r+i+1

}
dx.
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Table 2: Skewness and kurtosis of PLD for various values of α, β and λ.
β = 0.5 β = 1.0 β = 2.0

λ α γ3 γ4 γ3 γ4 γ3 γ4
0.5 4.5 3.6525 65.367 3.6525 16.3418 3.6525 4.0854

5.0 3.1739 24.114 3.1739 6.0285 3.1739 1.5071
5.5 2.8845 12.696 2.8845 3.1741 2.8845 0.7935
6.0 2.6904 7.8535 2.6904 1.9633 2.6904 0.4908
6.5 2.5510 5.3396 2.5510 1.3349 2.5510 0.3337

1.5 4.5 3.0490 75.423 3.049 18.855 3.0490 4.7139
5.0 2.5371 26.405 2.5371 6.6014 2.5371 1.6503
5.5 2.2239 13.345 2.2239 3.3362 2.2239 0.8340
6.0 2.0116 7.9879 2.0116 1.9969 2.0116 0.4992
6.5 1.8579 5.2867 1.8579 1.3216 1.8579 0.3304

2.0 4.5 3.0915 84.916 3.0915 21.229 3.0915 5.3072
5.0 2.5372 29.211 2.5372 7.3029 2.5372 1.8257
5.5 2.1963 14.561 2.1963 3.6404 2.1963 0.9101
6.0 1.9641 8.6212 1.9641 2.1553 1.9641 0.5388
6.5 1.7952 5.6554 1.7952 1.4138 1.7952 0.3534

4.0 4.5 3.8191 128.068 3.8191 32.017 3.8191 8.0042
5.0 3.1425 42.525 3.1425 10.631 3.1425 2.6578
5.5 2.7233 20.595 2.7233 5.1489 2.7233 1.2872
6.0 2.4357 11.905 2.4357 2.9764 2.4357 0.7441
6.5 2.2251 7.6554 2.2251 1.9138 2.2251 0.4784

Let y = (1 + βx) so x = (y − 1)/β and dx = (1/β)dy. After some transformation,
we arrive to the formula:

E [Xr:n] =
1

β

∞∑
m=0

r−1∑
i=0

n−r+i∑
j=0

(j + 1)m(−λ)m+1 Aij
(m+ 1)!(1− α(m+ 1))

, (18)

where Aij is

Aij =
n!(−1)i+j

(r − 1)!(n− r)!(1− e−λ)
n−r+i+1

(
r − 1

i

)(
n− r + i

j

)
.

One readily can use the relation (18) to obtain the first L-moments of Xr:n. For
example, we take r = n = 1 to obtain λ1 = E [X1:1] which is the mean of the
random variable X.

λ1 = E[X1:1] =
1

β(1− e−λ)

∞∑
m=0

(−λ)m+1

(m+ 1)!(1− α(m+ 1))
,

This result is consistent with that obtained in relation (17). The other two
L-moments, λ2 and λ3, are respectively given by

λ2 = 1
β

[∑∞
m=0

∑1
i=0

∑i
j=0

(
1
i

)(
i
j

) (j+1)m(−1)i+j+m+1λm+1

(m+1)!(1−α(m+1))(1−e−λ)i+1

−
∑∞
m=0

∑1
j=0

(
1
j

) (j+1)m(−1)j+m+1λm+1

(m+1)!(1−α(m+1))(1−e−λ)2

]
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and

λ3 = 1
β

[∑∞
m=0

∑2
i=0

∑i
j=0

(
2
i

)(
i
j

) (j+1)m(−1)i+j+m+1λm+1

(m+1)!(1−α(m+1))(1−e−λ)i+1

−2
∑∞
m=0

∑1
i=0

∑i+1
j=0

(
1
i

)(
i+1
j

) 2(j+1)m(−1)i+j+m+1λm+1

(m+1)!(1−α(m+1))(1−e−λ)i+2

+
∑∞
m=0

∑2
j=0

(
2
j

) 2(j+1)m(−1)j+m+1λm+1

(m+1)!(1−α(m+1))(1−e−λ)3

]

The method of L-moments consists of equating the first L-moments of a pop-
ulation, λ1, λ2 and λ3, to the corresponding L-moments of a sample, l1, l2 and l3,
thus getting a number of equations that are needed to be solved, numerically, in
terms of the unknown parameters, θ.

3.5. Order Statistics

Let X1, X2, . . . , Xn be a random sample of size n from the PL distribution
in (10) and let X1:n, . . . , Xn:n denote the corresponding order statistics. Then,
the pdf of Xr:n, 1 ≤ r ≤ n, is given by (see, David & Nagaraja 2003, Arnold,
Balakrishnan & Nagaraja 1992)

g(r)(x) = Cr,ng(x)[G(x)]r−1[1−G(x)]n−r, 0 < x <∞, (19)

where Cr,n = [B(r, n− r + 1)]−1, with B(a, b) being the complete beta function.

Theorem 4. Let G(x) and g(x) be the cdf and pdf of a Poisson-Lomax distribution
for a random variable X. The density of the rth order statistic, say g(r)(x) is given
by

g(r)(x) = αβλCr,n

r−1∑
i=0

n−r+i∑
j=0

(
r − 1

i

)(
n− r + i

j

)
(−1)i+j(1 + βx)−(α+1) e−λ(1+βx)−α(j+1)

(1− e−λ)n−r+i+1
(20)

Proof . First it should be noted that (19) can be written as follows:

g(r)(x) = Cr,n

r−1∑
i=0

(
r − 1

i

)
(−1)ig(x)[Ḡ(x)]n−r+i (21)

then the proof follows by replacing the reliability, Ḡ(x), and the pdf, g(x), of X ∼
PLD(α, β, λ) which are obtained from (9) and (10), respectively, and substituting
them into relation (21), and expanding the term (1− e−λ(1+βx)−α)n−r+i using the
binomial expansion.
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3.6. Quantile Function

Let X denote a random variable with the probability density function given by
(10). The quantile function, denoted by Q(u), is

Q(u) = inf{x ∈ R : F (x) ≥ u}, where 0 < u < 1

By inverting the distribution function, F = 1− F̄ , we can write the following:

Q(u) =
1

β

[(
− ln(u(1− e−λ) + e−λ)

λ

)−1/α

− 1

]
(22)

The first quartile, the median and the third quartile can be obtained simply by
applying (22). The quartiles; Q1 first quartile, Q2 second quartile, or the median,
and Q3 third quartile are obtained in Table 3.

Table 3: The quartile values of the PLD for different values of α, β and λ.
β = 0.5 β = 1.0 β = 2.0

λ α Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0.5 4.0 0.1870 0.4583 0.9647 0.0935 0.2291 0.4824 0.0467 0.1146 0.2412
4.5 0.1654 0.4025 0.8379 0.0827 0.2013 0.4189 0.0413 0.1006 0.2095
5.0 0.1482 0.3589 0.7403 0.0741 0.1794 0.3701 0.0371 0.0897 0.1851
5.5 0.1343 0.3238 0.6629 0.0672 0.1619 0.3315 0.0336 0.0809 0.1657
6.0 0.1228 0.2949 0.6002 0.0614 0.1474 0.3001 0.0307 0.0737 0.1500

1.5 4.0 0.2893 0.6431 1.2469 0.1446 0.3216 0.6234 0.0723 0.1608 0.3117
4.5 0.2552 0.5625 1.0767 0.1276 0.2813 0.5384 0.0638 0.1406 0.2692
5.0 0.2282 0.4998 0.9470 0.1141 0.2499 0.4735 0.0571 0.1249 0.2368
5.5 0.2065 0.4496 0.8450 0.1032 0.2248 0.4225 0.0516 0.1124 0.2112
6.0 0.1885 0.4086 0.7626 0.0942 0.2043 0.3813 0.0471 0.1021 0.1907

2.0 4.0 0.3521 0.7418 1.3856 0.1760 0.3709 0.6928 0.0880 0.1855 0.3464
4.5 0.3101 0.6474 1.1933 0.1550 0.3237 0.5966 0.0775 0.1618 0.2983
5.0 0.2770 0.5742 1.0473 0.1385 0.2871 0.5237 0.0693 0.1435 0.2618
5.5 0.2503 0.5158 0.9328 0.1252 0.2579 0.4664 0.0626 0.1289 0.2332
6.0 0.2283 0.4681 0.8408 0.1142 0.2341 0.4204 0.0571 0.1170 0.2102

4.0 4.0 0.6324 1.1205 1.8827 0.3162 0.5602 0.9414 0.1581 0.2801 0.4707
4.5 0.5533 0.9700 1.6068 0.2766 0.4850 0.8034 0.1383 0.2425 0.4017
5.0 0.4917 0.8548 1.4003 0.2458 0.4274 0.7001 0.1229 0.2137 0.3501
5.5 0.4424 0.7640 1.2401 0.2212 0.3820 0.6201 0.1106 0.1910 0.3100
6.0 0.4020 0.6900 1.1125 0.2010 0.3452 0.5562 0.1005 0.1726 0.2781

3.7. Mean Deviations

The mean deviation about the mean and the mean deviation about the median
are, respectively, defined by

δ1(µ) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

zf(z)dz (23)

δ2(M) = 2MF (M)−M − µ+ 2

∫ ∞
M

zf(z)dz (24)
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Theorem 5. Let X be a random variable distributed according to the PL distribu-
tion. Then the mean deviation about the mean, δ1, and the mean deviation about
the median, δ2, are given as follows:

δ1(µ) =
2

1− e−λ

{
µ(e−λ(1+βµ)−α − 1)− α

β

∞∑
n=0

λn+1(−1)n

n!

×
(

(1 + βµ)1−α(n+1)

1− α(n+ 1)
+

(1 + βµ)−α(n+1)

α(n+ 1)

)} (25)

and

δ2(M) =
1

1− e−λ

{
M
(

2e−λ(1+βM)−α − e−α − 1
)

+
1

β

∞∑
n=0

(−1)nλn+1

(n+ 1)!(1− (n+ 1)α)

− 2α

β

∞∑
n=0

λn+1(−1)n

n!

(
(1 + βM)1−α(n+1)

1− α(n+ 1)

+
(1 + βM)−α(n+1)

α(n+ 1)

)}
(26)

Proof . The proof follows by plugging the density function of the PLD into equa-
tion (23) and working out the integration I, where

I =

∫ ∞
µ

xg(x)dx =
αβλ

1− e−λ

∫ ∞
µ

x(1 + βx)−(α+1)e−λ(1+βx)−αdx

Setting y = 1 +βx, so dy = βdx and using the expansion ex =
∑∞
n=0 x

n/n!, yields

I =
−α

β(1− e−λ)

∞∑
n=0

λn+1(−1)n

n!

(
(1 + βµ)1−α(n+1)

1− α(n+ 1)
+

(1 + βµ)−α(n+1)

α(n+ 1)

)
Substituting I into relation (23) and manipulating the other terms gives directly
the desired result. Similarly, the measure δ2(M) can be obtained.

4. Estimation

In this section we consider maximum likelihood estimation (MLE) to estimate
the involved parameters. Asymptotic distribution of θ̂ = (α̂, β̂, λ̂) are obtained
using the elements of the inverse Fisher information matrix.

4.1. Maximum Likelihood Estimation

The idea behind the maximum likelihood parameter estimation is to determine
the parameters that maximize the probability (likelihood) of the sample data. For
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this purpose, let X1, X2, . . . , Xn is be random sample from X ∼ PLD(θ), where
θ = (α, β, λ). Then the likelihood function of the observed sample is given by

L(θ;x) =

n∏
i=1

f(xi;θ)

=

n∏
i=1

λαβ(1 + βxi)
−(α+1) e−λ(1+βxi)

−α

(1− e−λ)

=
(λαβ)n

(1− e−λ)n

n∏
i=1

(1 + βxi)
−(α+1) e−λ

∑n
i=1(1+βxi)

−α
(27)

The log-likelihood function is given by

`(x;α, β, λ) = n ln(α) + n ln(β) + n ln(λ)− (α+ 1)

n∑
i=1

ln(1 + βxi)

−λ
n∑
i=1

(1 + βxi)
−α − n ln(1− e−λ) (28)

The MLEs of α, β and λ say α̂, β̂ and λ̂, respectively, can be worked out by the
solutions of the system of equations obtained by letting the first partial derivatives
of the total log-likelihood equal to zero with respect to α̂, β̂ and λ̂. Therefore, the
system of equations is as follows:

∂`

∂α
=
n

α
−

n∑
i=1

ln(1 + βxi) + λ

n∑
i=1

(1 + βxi)
−α ln(1 + βxi) = 0

∂`

∂β
=
n

β
− (α+ 1)

n∑
i=1

xi
1 + βxi

+ αλ

n∑
i=1

xi(1 + βxi)
−(α+1) = 0

∂`

∂λ
=
n

λ
−

n∑
i=1

(1 + βxi)
−α − n

(eλ − 1)
= 0

For simplicity, we define Ai to be as Ai = 1 + βxi. Thus, we have

α̂ = n

[
n∑
i=1

ln(Ai) (1− λA−αi )

]−1

(29)

β̂ = n

[
n∑
i=1

xi
Ai

(α+ 1− αλA−αi )

]−1

(30)

λ̂ = n

[
n∑
i=1

A−αi +
n

eλ − 1

]−1

(31)

The solutions of nonlinear equations (29), (30) and (31) are complicated to obtain,
therefore an iterative procedure is applied to solve these equations numerically.
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4.2. Asymptotic Distribution

We obtain the asymptotic distribution of θ̂ = (α̂, β̂, λ̂). The asymptotic vari-
ances of MLEs are given by the elements of the inverse of the Fisher information
matrix. The Fisher information matrix of θ, denoted by J(θ) = E(I,θ), where
Iij , i, j = 1, 2, 3 is the observed information matrix. The second partial derivatives
of the maximum likelihood function are given as the following:

I11 = − n

α2
− λ

n∑
i=1

(1 + βxi)
−α[ln(1 + βxi)]

2

= − n

α2
− λ

n∑
i=1

A−αi [ln(Ai)]
2

I12 = I21 =

n∑
i=1

−xi
(1 + βxi)

+ λ

n∑
i=1

xi(1 + βxi)
−(α+1) [1− α ln(1 + βxi)]

=

n∑
i=1

[
xi
Ai

(
−1− λαA−αi ln(Ai) + λA−αi

)]

I13 = I31 =

n∑
i=1

(1 + βxi)
−α ln(1 + βxi) =

n∑
i=1

A−αi ln(Ai)

I22 = − n

β2
+ (α+ 1)

n∑
i=1

x2
i

(1 + βxi)2
− λα(α+ 1)

n∑
i=1

x2
i (1 + βxi)

−α

(1 + βxi)2

= − n

β2
+ (α+ 1)

n∑
i=1

(
xi
Ai

)2 (
1− λαA−αi

)
I23 = I32 = α

n∑
i=1

xi(1 + βxi)
−(α+1) = α

n∑
i=1

xiA
−(α+1)
i

I33 = − n

λ2
+

neλ

(eλ − 1)2

The exact mathematical expressions for J(θ) = E(I,θ) are complicated to
obtain. Therefore, the observed Fisher information matrix can be used instead of
the Fisher information matrix. The variance-covariance matrix may be approxi-
mated as V ij = I−1

ij . The asymptotic distribution of the maximum likelihood can
be written as follows (see Miller 1981).[

(α̂− α), (β̂ − β), (λ̂− λ)
]
∼ N3 (0,V ) (32)

Since V involves the parameters α, β and λ, we replace the parameters by the
corresponding MLEs in order to obtain an estimate of V , which is denoted by V̂ .
By using (32), approximate 100(1 − ϑ)% confidence intervals for α, β and λ are
determined, respectively, as

α̂± Zϑ/2
√
V̂ 11, β̂ ± Zϑ/2

√
V̂ 22, λ̂± Zϑ/2

√
V̂ 33,

where Zϑ is the upper 100ϑ-th percentile of the standard normal distribution.
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In the order to numerically illustrate the estimation of the involved parameters,
we have simulated the ML estimators for different sample sizes. The calculation
of the estimation is based on 10, 000 simulated samples from the standard PLD.
Table 4 shows the MLEs, mean squared errors (MSE) and 95% confidence limits
(LCL & UCL ) for the parameters α, β, and λ. The true values of the parameters
used for simulation were α = 1, β = 1, and λ = 2. It is observed that when the
sample size n increases, the MLE of α and λ decrease to approach the true one
while the MLEs of the parameters β increase.

Table 4: Simulation study: parameter values used for simulation (TRUE) α = 1, β =
1, λ = 2, MLEs, mean squared errors (MSE) and 95% confidence limits (LCL
& UCL ) for the parameters.

95% Confi. Limits
Parameters n Estimates MSE LCL UCL

α 20 1.10868 0.05159 -2.00901 4.22637
30 1.08199 0.03129 -1.12927 3.29326
40 1.06866 0.02202 -0.62073 2.75807
50 1.06119 0.01762 -1.43696 3.55935
60 1.05224 0.01431 0.10648 1.99800
70 1.04646 0.01203 0.15111 1.94181
80 1.04378 0.01034 0.01529 2.07227
90 1.03915 0.00871 0.18454 1.89376
100 1.03811 0.00791 0.21745 1.85878
200 1.02512 0.00375 0.30619 1.74405

β 20 0.94360 0.05699 0.52240 1.36480
30 0.94997 0.03854 0.60608 1.29387
40 0.95472 0.03019 0.65637 1.25308
50 0.96011 0.02421 0.69225 1.22797
60 0.96078 0.02043 0.71629 1.20527
70 0.96329 0.01748 0.73662 1.18997
80 0.96387 0.01600 0.75180 1.17594
90 0.96371 0.01401 0.76389 1.16353
100 0.97031 0.01216 0.77951 1.16110
200 0.97528 0.00683 0.83990 1.11065

λ 20 2.07641 0.05612 0.38236 3.77045
30 2.05300 0.03373 0.67893 3.42706
40 2.03975 0.02294 0.85301 3.22649
50 2.03150 0.01773 0.97162 3.09137
60 2.02744 0.01478 1.06066 2.99422
70 2.02349 0.01221 1.12896 2.91801
80 2.02025 0.01077 1.18387 2.85662
90 2.01885 0.00929 1.23050 2.80719
100 2.01723 0.00845 1.26951 2.76495
200 2.00944 0.00388 1.48125 2.53762

5. Application

We have considered a dataset corresponding to remission times (in months) of
a random sample of 128 bladder cancer patients given in Lee & Wang (2003). The
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data are given as follows: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50,
2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63, 22.69. We have fitted the Poisson-Lomax distribution
to the dataset using MLE, and compared the proposed PLD with Lomax, extended
Lomax and Lomax-Logarithmic distributions.

The model selection is carried out using the AIC (Akaike information criterion),
the BIC (Bayesian information criterion), the CAIC (consistent Akaike information
criteria) and the HQIC (Hannan-Quinn information criterion).

AIC = −2l(θ̂) + 2q,

BIC = −2l(θ̂) + q log(n),

HQIC = −2l(θ̂) + 2q log(log(n)),

CAIC = −2l(θ̂) + 2qn
n−q−1

 (33)

where l(θ̂) denotes the log-likelihood function evaluated at the maximum likelihood
estimates, q is the number of parameters, and n is the sample size. Here we let
θ denote the parameters, i.e., θ = (α, β, λ). An iterative procedure is applied to
solve equations (29), (30) and (31) and consequently obtain θ̂ = (α̂ = 2.8737, β̂ =
8.2711, p̂ = 3.3515). At these values we calculate the log-likelihood function given
by (28) and apply relation (33). The model with minimum AIC (or BIC, CAIC
and HQIC) value is chosen as the best model to fit the data. From Table 5, we
conclude that the PLD is best comparable to the Lomax, extended Lomax and
Lomax-Logarithmic models.

Table 5: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC
and CAIC.

Estimates Measures
Models α̂ β̂ γ̂ λ̂ AIC BIC HQIC CAIC
Lomax 13.9384 121.0222 831.67 837.37 833.98 831.76

(15.3837) (142.6940)
MOEL 23.7437 2.0487 2.2818 825.08 833.64 828.56 825.27

(35.8106) (2.5891) (0.5551)
PLD 2.8737 8.2711 3.3515 824.77 833.33 828.25 824.96

(0.8869) (4.8795) (1.0302)

For an ordered random sample, X1, X2, . . . , Xn, from PLD(α, β, λ), where the
parameters α, β and λ are unknown, the Kolmogorov-Smirnov Dn, Cramér-von
Mises W 2

n , Anderson and Darling A2
n, Watson U2

n and Liao-Shimokawa L2
n tests

statistics are given as follows: (For details see e.g. Al-Zahrani (2012) and references
therein).
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Dn = max
i

[
i

n
−GPL(xi, α̂, β̂, λ̂), GPL(xi, α̂, β̂, λ̂)− i− 1

n

]
W 2
n =

1

12n
+

n∑
i=1

[
GPL(xi, α̂, β̂, λ̂)− 2i− 1

2n

]2

A2
n = −n− 1

n

n∑
i=1

(2i− 1)
[
log(GPL(xi, α̂, β̂, λ̂)) + log(1−GPL(xi, α̂, β̂, λ̂))

]2
U2
n = W 2

n +

n∑
i=1

[
GPL(xi, α̂, β̂, λ̂)

n
− 1

2

]2

Ln =
1√
n

n∑
i=1

maxi

[
i
n −GPL(xi, α̂, β̂, λ̂), GPL(xi, α̂, β̂, λ̂)− i−1

n

]
√
GPL(xi, α̂, β̂, λ̂)[1−GPL(xi, α̂, β̂, λ̂)]

.

Table 6 indicates that the test statisticsDn,W 2
n , A2

n, U2
n and Ln have the small-

est values for the data set under PLD model with regard to the other models. The
proposed model offers an attractive alternative to the Lomax, Lomax-Logarithmic
and extended Lomax models. Figure 3 displays the empirical and fitted densities
for the data. Estimated survivals for data are shown in Figure 4. The Poisson-
Lomax distribution approximately provides an adequate fit for the data. The
quantile-quantile or Q-Q plot is used to check the validity of the distributional
assumption for the data. Figure 5 shows that the data seems to follow a PLD
reasonably well, except some points on extreme.

Table 6: Goodness-of-fit tests.
Statistics

Distribution Dn W 2
n A2

n U2
n Ln

Lomax 0.0967 0.2126 1.3768 31.7017 1.0594
MOEL 0.0302 0.0151 0.0926 31.5177 0.3728
LLD 0.0821 0.1274 0.8739 31.6200 0.8491
PLD 0.0281 0.0134 0.0835 31.5164 0.3567

6. Concluding Remarks

In this paper we have proposed a new distribution, referred to as the PLD. A
mathematical treatment of the proposed distribution including explicit formulas
for the density and hazard functions, moments, order statistics, and mean and me-
dian deviations have been provided. The estimation of the parameters has been
approached by maximum likelihood. Also, the asymptotic variance-covariance ma-
trix of the estimates has been obtained. Finally, a real data set was analyzed to
show the potential of the proposed PLD. The result indicates that the PLD may
be used for a wider range of statistical applications. Further study can be con-
ducted on the proposed distribution. Here, we mention some of possible directions
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which are still open for further works. The problem of parameter estimation can
be studied using e.g. Bayesian approach and making future prediction. The pa-
rameters of the proposed distribution can be estimated based on censored data.
Some recurrence relations can be established for the single moments and product
moments of order statistics.
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Figure 3: Estimated densities for bladder cancer data.
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Figure 4: Estimated survivals for bladder cancer data.
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Héctor Zapata, Ph.D.
Hernan Tejeda, Ph.D.

Hongtu Zhu, Ph.D.
Housila P. Singh, Ph.D.
Huaihou Chen, Ph.D.
Hugo Salinas, Ph.D.
Ivana Mala, Ph.D.

Johannes Bausch, Ph.D.
John Hinde, Ph.D.

Jordan Stoyanov, Ph.D.
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