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José Alberto Vargas, Ph.D.
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Mónica Bécue, Ph.D.
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Maŕıa Elsa Correal, Ph.D.
Universidad de los Andes, Bogotá, Colombia
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An Introductory Review of a Structural VAR-X Estimation
and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479-508

Radhakanta Nayak & Lokanath Sahoo
Some Alternative Predictive Estimators of Population Variance . . . . . . . . . .509-521



 
 



Editorial

Leonardo Trujilloa

Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

Welcome to the third issue of the 35th volume of the Revista Colombiana de Esta-
distica (Colombian Journal of Statistics). The first issue was published last June
and the second one was a past Special Issue about Biostatistics with Professors Li-
liana Lopez-Kleine and Piedad Urdinola as Guest Editors. We will keep also, as the
first issue, the characteristic of being an issue entirely published in English langua-
ge as part of the requirements of being the winners of an Internal Grant for a second
year in a row at the National University of Colombia (Universidad Nacional de
Colombia) among many Journals (see editorial of December 2011). We are also very
proud to announce that the Colombian Journal of Statistics have maintained its ca-
tegorization as an A1 Journal by Publindex (Colciencias) which ranges the journals
in the country, being A1 the maximum category. Thanks to all the Editorial and
Scientific Committees and Patricia Chávez, our assistant in the Journal, as this is a
result of the continuous help obtained from all of them. More information available
at http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do.

The topics in this current issue range over diverse areas of statistics: two pa-
pers in Survey Sampling by Mahdizadeh and Arghami and another one by Nayak
and Sahoo; one paper in Biostatistics by Leiva, Ponce, Merchant and Bustos; one
paper in Censored Data by Salinas, Pérez, Gonzalez and Vaquera; one paper in
Expectation Maximization by Pereira, Marques and da Costa; one paper in Geos-
tatistics by Giraldo, Mateu and Delicado; one paper in Medical Statistics by Tovar
and Achcar; one paper in Nonparametric Statistics by Marozzi; one paper in Tex-
tual Statistics by Guerrero and one paper in Time Series Analysis by Ocampo and
Rodriguez.

The International Year of Statistics (Statistics2013) is now promoted around
the globe by the International Statistical Institute (ISI). It is important that
Colombian and world organizations including government institutions, research
institutions and universities join this big event in order to promote our disci-
pline throughout all over the world and its impact on all aspects of society.
You can find more information available at http://www.statistics2013.org/.
From Colombia, the following colleges and universities will be participants in
Statistics2013: Corporacion Universitaria Empresarial Alexander von Humboldt,
Universidad La Gran Colombia, Universidad Nacional de Colombia (Bogota and
Medellin branches), Universidad Industrial de Santander. Also, the Colombian
National Department of Statistics - DANE (http://www.statistics2013.org/

aEditor in chief.
E-mail: ltrujilloo@unal.edu.co
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participants.cfm). More information about how to get involved in these activi-
ties can be found at http://www.isi-web.org/recent-pages/621-statistics
2013-update-november-2012. Additionally, more than 100 scientific societies,
universities, research institutes, and organizations all over the world have ban-
ded together to dedicate 2013 as a special year for the Mathematics of Planet
Earth (http://mpe2013.org/).

For 2014, the XIII CLAPEM (Latin American Congress of Probability and
Mathematical Statistics) will be held for the first time in Colombia at the city of
Cartagena. It is held with the Latin American Chapter of the Bernoulli Society.
CLAPEM is the largest conference gathering scientists in the particular areas
of Probability and Mathematical Statistics in the region and takes place every
two/three years. It has already been organized in Argentina, Brazil, Chile, Cuba,
Mexico, Peru, Uruguay and Venezuela. The CLAPEM activities include lectures
held by invited researchers, satellite meetings, sessions of oral and poster contri-
butions, short courses, and thematic sessions. The XIII CLAPEM is organized by
the Bernoulli Society, Universidad Nacional de Colombia, Universidad del Rosario,
Universidad de los Andes and Universidad de Cartagena. The Scientific Commit-
tee is as follows: Alejandro Jara (Chile), Antonio Galves (Brazil), Graciela Boente
(Argentina), José Rafael Leon (Venezuela), Karine Bertin (Chile), Leonardo Tru-
jillo (Colombia), Pablo Ferrari (Argentina), Paola Belmolen (Uruguay), Ramón
Giraldo (Colombia), Serguei Popov (Brazil), Victor Perez Abreu (Mexico). The
Local and Scientific Committees have started to work and further information
will be available soon. If you are interested you can also get more details with
Ricardo Fraiman (president of the XIII CLAPEM, fraimanricardo@gmail.com) or
Leonardo Trujillo (ltrujilloo@unal.edu.co).

This year, four eminent statisticians have passed away: David Binder, George
Casella, James Durbin and Gad Nathan. We want to make recognition of their
work in this Editorial. David Binder got his PhD in 1977 at the Imperial College,
London, UK. He worked as a survey methodologist in Statistics Canada and deve-
loped methods in order to make inference from data obtained from complex survey
designs. These methods are now available in commercial statistical packages such
as SAS, SPSS, STATA and SUDAAN. He also published many papers at Biome-
trika, the Journal of the American Statistical Association, Survey Methodology
and The Canadian Journal of Statistics, among other journals.

George Casella (1951-2012) was born in New York, USA and he got a PhD in
Statistics from Purdue University. He was a Professor at the University of Florida.
His research interests were on decision theory, environmental statistics, genetic
statistics, objective and empirical Bayes and statistical confidence.

James Durbin (1923-2012) was a British econometrican and statistician, very
well-known from his contributions on balanced incomplete experimental designs
(Durbin test), Brownian motion, econometrics, estimating equations, goodness of
fit tests, linear algebra (Levinson-Durbin recursion), serial correlation in regression
(Durbin and Watson test) and time series analysis. He was a Professor at the
London School of Economics. He was president of the International Statistical
Institute and the Royal Statistical Society.

http://www.statistics2013.org/participants.cfm
http://www.statistics2013.org/participants.cfm
http://www.isi-web.org/recent-pages/621-statistics
2013-update-november-2012
http://mpe2013.org/


Gad Nathan was a distinguished professor in survey sampling and got his PhD
at the Case Institute of Technology in Cleveland, USA. His contributions ranged
from analyses from complex survey designs for longitudinal analysis, regression
analysis and tests of independence in contingency tables; non-response adjustments
and treatment of sensitive questions in surveys. A memorial session for him will
be held in Hong Kong at the next ISI Statistical Congress.



 
 



Editorial

Leonardo Trujilloa

Departamento de Estadística, Universidad Nacional de Colombia, Bogotá,
Colombia

Bienvenidos al tercer número del volumen 35 de la Revista Colombiana de Es-
tadística. El primer número fue publicado en Junio pasado y el segundo número
corresponde al Numero Especial en Bioestadística que conto con las Profesoras
Liliana López - Kleine y Piedad Urdinola como Editoras Invitadas. Hemos mante-
nido, como en el primer numero anterior, la característica de contar con artículos
publicados únicamente en idioma ingles como parte de los requerimientos de ser
ganadores por segundo año consecutivo de una Convocatoria Interna en la Univer-
sidad Nacional de Colombia entre otras revistas (ver editorial de Diciembre 2011).
Estamos también muy gratos de anunciar que la Revista Colombiana de Estadís-
tica ha mantenido su categoría A1 ante Publindex (Colciencias) que categoriza
las revistas a nivel nacional y siendo esta la máxima categoría de calidad para
revistas nacionales. Gracias a todos los Comités Científico y Editorial y a Patricia
Chávez, la asistente de la Revista, pues este es el resultado de la continua ayuda
obtenida por parte de todos ellos. Mas información disponible en la página web
http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do.

Los temas del presente numero varían a través de diversas áreas de la estadís-
tica: dos artículos en Muestreo por Mahdizadeh y Arghami y otro por Nayak y
Sahoo; un artículo en Análisis de Series de Tiempo por Ocampo y Rodríguez; un
artículo en Bioestadística por Leiva, Ponce, Merchant y Bustos; un artículo en Da-
tos Censurados por Salinas, Pérez, González y Vaquera; un artículo en Estadística
Medica por Tovar y Achcar; un artículo en Estadística no Paramétrica por Ma-
rozzi; un artículo en Estadística Textual por Guerrero; un artículo en Expectation
Maximization por Pereira, Marques y da Costa y un articulo en Geoestadística
por Giraldo, Mateu y Delicado.

Se ha iniciado la promoción del Año Internacional de la Estadística (Statis-
tics2013) alrededor del mundo por intermedio del International Statistical Institu-
te (ISI). Es importante que organizaciones nacionales e internacionales incluyendo
instituciones del gobierno, institutos de investigación y universidades se unan a este
gran evento con el fin de promover la disciplina estadística y su impacto en muchos
de los aspectos de la sociedad. Se puede encontrar mas información en la pagi-
na web http://www.statistics2013.org/. Por Colombia, las siguientes instituciones
educativas son participantes de Statistics2013: Corporación Universitaria Empre-
sarial Alexander von Humboldt, Universidad La Gran Colombia, Universidad Na-
cional de Colombia (sedes Bogotá y Medellín), Universidad Industrial de Santan-
der. También, el Departamento Administrativo Nacional de Estadística - DANE

aEditor
E-mail: ltrujilloo@unal.edu.co
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(http://www.statistics2013.org/participants.cfm). Para obtener mas información
acerca de como participar en estas actividades se puede encontrar en http://www.
isi-web.org/recent-pages/621-statistics2013-update-november-2012.
Adicionalmente, más de 100 sociedades científicas, universidades, institutos de
investigación y organizaciones alrededor del mundo se han unido con el fin de de-
dicar el año 2013 como año especial para las Matemáticas en el Planeta Tierra
(http://mpe2013.org/).

Para 2014, la XIII CLAPEM (Conferencia Latinoamericana de Probabilidad y
Estadística Matemática) será organizada por primera vez en Colombia en la ciu-
dad de Cartagena de Indias. Esta será organizada por el Capitulo Latinoamericano
de la Sociedad Bernoulli. CLAPEM es la principal y mayor conferencia que reúne
científicos en las áreas de Probabilidad y Estadística Matemática en la región y
toma lugar cada dos o tres años. Se ha llevado a cabo anteriormente en Argentina,
Brasil, Chile, Cuba, México, Perú, Uruguay y Venezuela. La conferencia incluye
actividades como charlas a cargo de investigadores internacionales invitados, cur-
sos cortos, reuniones satélites, sesiones de contribuciones orales y posters y sesiones
temáticas. La XIII CLAPEM será organizada por la Sociedad Bernoulli, la Univer-
sidad Nacional de Colombia, Universidad del Rosario, Universidad de los Andes y
Universidad de Cartagena. El Comité Científico esta conformado por: Alejandro
Jara (Chile), Antonio Galves (Brasil), Graciela Boente (Argentina), José Rafael
León (Venezuela), Karine Bertín (Chile), Leonardo Trujillo (Colombia), Pablo Fe-
rrari (Argentina), Paola Belmolen (Uruguay), Ramón Giraldo (Colombia), Ser-
guei Popov (Brasil), Víctor Pérez Abreu (México). Los Comités Científico y Local
han comenzado a trabajar y más información acerca del evento estará disponible
pronto. Si esta interesado puede obtener mas detalles con Ricardo Fraiman (pre-
sidente del XIII CLAPEM, fraimanricardo@gmail.com) o con Leonardo Trujillo
(ltrujilloo@unal.edu.co).

Este año, cuatro estadísticos eminentes han fallecido: David Binder, George
Casella, James Durbin y Gad Nathan. En esta Editorial queremos hacer un re-
conocimiento a su trabajo en Estadística. David Binder obtuvo su Doctorado en
el Imperial College de Londres en 1977. Se desempeño como metodólogo de en-
cuestas en Statistics Canada y desarrollo métodos para hacer inferencia en datos
provenientes de diseños muestrales complejos. Estos métodos se encuentran ahora
disponibles en paquetes estadísticos tales como SAS, SPSS, STATA y SUDAAN.
Binder publico muchos artículos en revistas como Biometrika, la Journal of the
American Statistical Association, Survey Methodology y The Canadian Journal
of Statistics, entre otras.

George Casella (1951-2012) nació en New York, USA y obtuvo su Doctorado en
Estadística en Purdue University. Fue Profesor de la Universidad de Florida. Sus
áreas de investigación fueron principalmente confiabilidad estadística, estadística
ambiental, estadística Bayesiana, estadística genética y teoría de la decisión.

James Durbin (1923-2012) fue un econometrista y estadístico británico, muy
conocido por sus contribuciones en algebra lineal (recursión de Levinson - Dur-
bin), análisis de series de tiempo, autocorrelación en regresión (prueba de Durbin
y Watson), diseños experimentales incompletos balanceados (test de Durbin), eco-

http://www.isi-web.org/recent-pages/621-statistics2013-update-november-2012
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nometría, ecuaciones de estimación, movimiento Browniano y pruebas de bondad
de ajuste. He was a Professor at the London School of Economics. He was president
of the International Statistical Institute and the Royal Statistical Society.

Gad Nathan fue un profesor israelí muy distinguido en muestreo y obtuvo su
Doctorado en el Case Institute of Technology en Cleveland, USA. Sus contribucio-
nes se extendieron desde ajustes por no respuesta; análisis para datos provenientes
de muestras complejas en análisis longitudinales, análisis de regresión y pruebas de
independencia para tablas de contingencia; y, tratamiento de preguntas sensibles
en encuestas. Una sesión en su memoria se organizara en Hong Kong en el próximo
Congreso Estadístico del ISI (International Statistical Institute).



 
 



Revista Colombiana de Estadística
Diciembre 2012, volumen 35, no. 3, pp. 331 a 347

Two Dependent Diagnostic Tests: Use of Copula
Functions in the Estimation of the Prevalence and

Performance Test Parameters

Dos pruebas para diagnóstico clínico: uso de funciones copula en la
estimación de la prevalencia y los parámetros de desempeño de las

pruebas

José Rafael Tovar1,a, Jorge Alberto Achcar2,b

1Centro de Investigaciones en Ciencias de la Salud (CISC), Escuela de Medicina y
Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia

2Departamento de Medicina Social FMRP, Faculdade de Saúde, Universidade de
São Paulo, Riberão Preto, Brasil

Abstract

In this paper, we introduce a Bayesian analysis to estimate the prevalence
and performance test parameters of two diagnostic tests. We concentrated
our interest in studies where the individuals with negative outcomes in both
tests are not verified by a gold standard. Given that the screening tests
are applied in the same individual we assume dependence between test re-
sults. Generally, to capture the possible existing dependence between test
outcomes, it is assumed a binary covariance structure, but in this paper,
as an alternative for this modeling, we consider the use of copula function
structures. The posterior summaries of interest are obtained using standard
MCMC (Markov Chain Monte Carlo) methods. We compare the results ob-
tained with our approach with those obtained using binary covariance and
assuming independence. We considerate two published medical data sets to
illustrate the approach.

Key words: Bayes analysis, Copula, Dependence, Monte Carlo Simulation,
Public health.

Resumen

En este articulo introducimos un análisis Bayesiano para estimar la preva-
lencia y los parámetros de desempeño de pruebas para diagnóstico clínico,
con datos obtenidos bajo estudios de tamizaje que incluyen el uso de dos
pruebas diagnósticas en los cuales, los individuos con resultado negativo en

aLecturer. E-mail: rtovar34@hotmail.com
bAssociate Professor. E-mail: achcar@fmrp.usp.br
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332 José Rafael Tovar & Jorge Alberto Achcar

las dos pruebas no son confirmados con una prueba patrón de oro. Dado que
las pruebas de tamizaje son aplicadas al mismo indivíduo, nosotros asum-
imos dependencia entre los resultados de las pruebas. Generalmente, para
capturar la posible dependencia existente entre los resultados de las prue-
bas diagnósticas, se asume una estrutura de covarianza binaria, pero en este
artículo, nosotros consideramos el uso de estructuras que pueden ser modal-
adas usando funciones cópula, como una alternativa al modelamiento de la
dependencia. Las estadísticas a posteriori de interés son obtenidas usando
métodos MCMC. Los resultados obtenidos usando nuestra aproximación son
comparados con los obtenidos usando modelos que asumen estructura binária
y con los obtenidos usando modelos bajo el supuesto de independencia entre
resultados de las pruebas para diagnóstico clínico. Para ilustrar la aplicación
del método y para hacer las comparaciones se usaron los datos de dos estu-
dios publicados en la literatura.

Palabras clave: análisis bayesiano, copula, dependencia, simulación Monte
Carlo, salud pública.

1. Introduction

In literature, there area designs to evaluate new screening tests it which more
than one diagnostic test is applied to the same individual and where in some cases
all patients cannot be verified by a test free of error to classify individuals or Gold
Standard. This situation implies in the presence of verification bias. When the
design considers the use of two continuous scale diagnostic tests transformed to a
binary scale using a cut-off point to classify an individual as positive or negative
to a given disease, these tests could have dependent outcomes within a continu-
ous dependence structure but as we have the final binary results to do the data
analysis, we could model the dependence considering a bivariate Bernoulli distri-
bution with the covariance as a dependence parameter. This approach has been
studied by different authors such as Thibodeau (1981), Vacek (1985) and Walter
& Irwig (1988), amongst others. Assuming binary structure, Böhning & Patilea
(2008), developed two indexes to study the dependence between two diagnostic
tests: a first is derived using the λ reparametrization introduced by Georgiadis,
Johnson & Gardner (2003) and a second index derived by applying the OR (odds
ratio) concept on 2× 2 probability tables associated with the two diagnostic test
results. Some approaches such as those of Brenner (1996), Qu & Hadgu (1998)
and Torrance-Rynard & Walter (1997), have considered the continuous structure
in the data to study the dependence between test outcomes using models of latent
variable.

In this paper, we introduce a Bayesian model to estimate the prevalence, per-
formance test parameters and the dependence between them, using two copula
functions, the FGM (Farlie-Gumbel-Morgenstern) copula and the Gumbel copula.
The FGM is a copula function that allows modeling very weak linear dependencies
usually not easily observed using traditional bivariate plots.

If the continuous traits that make up the diagnostic tests have a dependence
like FGM structure, usually the data analyst assumes independence in the statisti-

Revista Colombiana de Estadística 35 (2012) 331–347



Dependence between Diagnostic Tests 333

cal model used to obtain the parameter estimates. The form of the Gumbel copula
used in this work, models relatively weak negative linear dependencies but the cop-
ula parameter of dependence belongs in the space (0,1). In agreement with some
simulation results not showed in this paper, the bivariate plots obtained under
different levels of Gumbel copula dependence show a dispersion similar with that
observed when the data are obtained under independence assumption, then, it is
not easy to observe the presence of a negative correlation between test outcomes.
The use of this copula, also allows us to study dependencies with not necessar-
ily linear structures which is possible in diagnostic situations whose results are
obtained after dichotomization.

We compare the estimates obtained using copula models with those obtained
assuming binary covariance structure and independence assumption. In our ap-
proach, we assume that the diagnostic procedure includes two (observable or not)
variables measured on a continuous scale with some type of positive dependence
between them that can be modeled using copula functions. Copula functions have
been widely used for modeling the dependence between continuous scale variables
regardless the type of distribution underlying in the margins, in many other subject
or topic areas as hydrology and finance.

To illustrate our proposed models, we use two data sets introduced in the
literature. The first one, was obtained from Smith, Bullock & Catalona (1997),
who screened 19,476 men for prostate cancer using the Digital Rectal Exam (DRE)
and the Prostate Specific Antigen (PSA) in serum. With that same data set,
Böhning & Patilea (2008) and Martinez, Achcar & Louzada (2005) studied the
association between diagnostic test results. The second data set was introduced
by Ali, Moodambail, Hamrah, Bin-Nakhi & Sadeq (2007), where they evaluated a
fast method to detect urinary tract infection in 132 children of both genders with
ages ranging from three days to 11 years.

This paper is organized as follows: In Section 2 we introduce the model formu-
lation for two associated diagnostic tests; in Section 3, we present our Bayesian
estimation procedure; in Section 4, we introduce two examples; finally in section
5, we present some discussion on the obtained results.

2. Model Formulation for Two Dependent
Diagnostic Tests

We consider four different models that can be used, the first model assumes
conditionally independent tests results and the other three models assume that
the tests are dependent conditionally on the disease status.

2.1. Model Under Independence Assumption

Two diagnostic tests are respectively denoted by T1 and T2 where Tν = 1 is
related to a positive result for the test ν, ν = 1, 2 and Tν = 0 is related to a
negative result. In Table 1 we have a generic representation of the tests compared

Revista Colombiana de Estadística 35 (2012) 331–347



334 José Rafael Tovar & Jorge Alberto Achcar

with an ideal reference test. If the study design implies that individuals with
negative outcome in both tests are not verified by a test free of error to classify
the individuals (“Gold Standard”), the values d, h, n+ and n− (showed in brackets),
are unknown although the sum u = n+ + n− is known.

Table 1: Tests results. Values in brackets are unknown under verification bias.
Diseased subjects Non-diseased subjects

T2 = 1 T2 = 0 Total T2 = 1 T2 = 0 Total
T1 = 1 a b a+ b e f e+ f

T1 = 0 c [d ] c+ [d ] g [h] g + [h]

Total a+ c b+ [d ] [n+] e+ g f + [h] [n−]

Let us denote by p the prevalence of a disease and by D the true status, when
D = 1 denotes a diseased individual and D = 0 denotes a non-diseased individual.
That is, p = P (D = 1). The sensitivities are given by Sν = P (Tν = 1 | D = 1)
and the specificities are given by Eν = P (Tν = 0 | D = 0).

For the independence assumption model, we use the Bayesian estimation pro-
cedure developed by Martinez et al. (2005) to obtain the likelihood contributions
of the eight possible combinations of results among tests and true disease state as
appear in the left column in Table 2.

2.2. Model Under Binary Dependence Structure

For a binary structure model, we assume as dependence parameter, a positive
covariance between tests based on the joint Bernoulli distribution. We assumed
that the dependence between tests is similar in diseased and non-diseased popula-
tions in the same way as considered by Dendukuri & Joseph (2001) to obtain the
contributions to likelihood function of the eight combinations of results among the
two diagnostic tests and the Gold Standard. The results are showed in Table 2.

Table 2: Likelihood contributions of all possible combinations of outcomes of T1, T2

and D. (fi = number of individuals in the cell i; i = 1, 2, . . . , 8. Values in
brackets are unknown under verification bias).

Contribution to likelihood
i D T1 T2 fi Independence assumption Binary dependence
1 1 1 1 a pS1S2 p[S1S2 + ψD]

2 1 1 0 b pS1(1− S2) p[S1(1− S2)− ψD]

3 1 0 1 c p(1− S1)S2 p[(1− S1)S2 − ψD]

4 1 0 0 [d] p(1− S1)(1− S2) p[(1− S1)(1− S2) + ψD]

5 0 1 1 e (1− p)(1− E1)(1− E2) (1− p)[(1− E1)(1− E2) + ψND]

6 0 1 0 f (1− p)(1− E1)E2 (1− p)[(1− E1)E2 − ψND]

7 0 0 1 g (1− p)E1(1− E2) (1− p)[E1(1− E2)− ψND]

8 0 0 0 [h] (1− p)E1E2 (1− p)[E1E2 + ψND]
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2.3. Model Assuming a Dependence Copula Structure

Let us assume that the test outcomes are realizations of the random variables
V1 and V2 measured on a positive continuous scale (V1 > 0 and V2 > 0) which
represent the expression of two biological traits whose behavior is altered by the
presence of disease or infection process. Also, let us assume that two cut-off values
ξ1 and ξ2 are chosen for each test in order to determine when an individual is
classified as positive or negative. In this way we assume that an individual is
classified as positive for test ν if Vν > ξν that is, Tν = 1 if and only if Vν > ξν for
ν = 1, 2. To model the dependence structure between the random variables V1 and
V2, let us consider the use of copula functions, which has been studied by many
authors ((Nelsen 1999) is a classical book on this topic). Multivariate distribution
functions F can be written in the form of a copula function, that is, if F (v1, . . . vm)
is a joint multivariate distribution function with univariate marginal distribution
functions F1(v1), . . . , Fm(vm), thus there exists a copula function C(u1, . . . , um)
such that,

F (v1, . . . , vm) = C(F1(v1), . . . , Fm(vm)) (1)

When the marginal distributions are continuous, a copula function always exists
and can be found from the relation

C(u1, . . . , um) = F (F−1
1 (u1), . . . , F

−1
m (um)) (2)

For the special case of bivariate distributions, we have m = 2. The approach
to formulate a multivariate distribution using a copula is based on the idea that
a simple transformation (U = F1(V1) and W = F2(V2)) can be made of each
marginal variable in such a way that each transformed marginal variable has a
uniform distribution. Specifying dependence between V1 and V2 is the same as
specifying dependence between U and W , thus the problem reduces to specifying
a bivariate distribution between two uniform variables, that is a copula.

2.3.1. Model Considering Dependence Type FGM Copula

The third model considered for the study of the dependence structure for two
tests, is based in the Farlie Gumbel Morgenstern (FGM) copula widely studied by
authors as Nelsen (1999), Amblard & Girard (2002, 2005, 2008). The FGM copula
is defined by,

CI(u,w) = uw[1 + ϕ(1− u)(1− w)] (3)

where u = F1(v1), w = F2(v2) and ϕ is a copula parameter such that −1 ≤ ϕ ≤ 1.
If ϕ = 0, we have two independent marginal random variables. We assume different
parameters ϕD and ϕND for diseased and non-diseased individuals, respectively.

From (3) the cumulative joint distribution and the join survival function for
the random variables V1 and V2 is given by,

FI(v1, v2) = CI(F1(v1), F2(v2))

= F1(v1)F2(v2)[1 + ϕ(1− F1(v1))(1− F2(v2))] (4)
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S(v1, v2) = P (V1 > v1, V2 > v2) = 1− F1(v1)− F2(v2) + F (v1, v2) (5)

Within the diseased individuals group, we have,

FD1 (ξ1) = P (V1 ≤ ξ1|D = 1) = 1− S1

FD2 (ξ2) = P (V2 ≤ ξ2|D = 1) = 1− S2

From (4), we have

FD(ξ1, ξ2) = FD1 (ξ1)F
D
2 (ξ2)[1 + ϕ(1− FD1 (ξ1))(1− FD2 (ξ2))]

= (1− S1)(1− S2)(1 + ϕDS1S2)

and from (5) we have,

P (T1 = 1, T2 = 1|D = 1) = SD(ξ1, ξ2)

= 1− (1− S1)− (1− S2) + (1− S1)(1− S2)(1 + ϕDS1S2)

That is,

P (T1 = 1, T2 = 1|D = 1) = S1S2(1 + ϕD(1− S1)(1− S2))

and
P (T1 = 1, T2 = 1, D = 1) = pS1S2(1 + ϕD(1− S1)(1− S2))

Observe that, if ϕD = 0 (independent test outcomes), we have

P (T1 = 1, T2 = 1, D = 1) = pS1S2

as given in Table 2.
Also,

P (T1 = 1, T2 = 0, D = 1) = P (D = 1)P (T1 = 1, T2 = 0|D = 1)

= pP (V1 > ξ1, V2 ≤ ξ2|D = 1)

On the other hand,

P (V1 > ξ1, V2 ≤ ξ2|D = 1) = P (V2 ≤ ξ2|D = 1)− P (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= FD2 (ξ2)− FD(ξ1, ξ2)

Thus,

P (T1 = 1, T2 = 1, D = 1) = p(1− S2)S1[1− ϕDS2(1− S1)]

If ϕD = 0, we have

P (T1 = 1, T2 = 0, D = 1) = pS1(1− S2)

as in the independent case (see Table 2).
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Similarly,

P (T1 = 0, T2 = 1, D = 1) = P (D = 1)P (T1 = 0, T2 = 1|D = 1)

= pP (V1 ≤ ξ1, V2 > ξ2|D = 1)

Since,

P (V1 ≤ ξ1, V2 > ξ2|D = 1) = P (V1 ≤ ξ1|D = 1)− P (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= FD1 (ξ1)− FD(ξ1, ξ2)

then,
P (T1 = 0, T2 = 1, D = 1) = p(1− S1)S2[1− ϕDS1(1− S2)]

When ϕD = 0 we have P (T1 = 0, T2 = 1, D = 1) = pS2(1 − S1) as in the
independent case (see Table 2).

We also have,

P (T1 = 0, T2 = 0, D = 1) = P (D = 1)P (T1 = 0, T2 = 0|D = 1)

= pP (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= pFD(ξ1, ξ2),

that is,

P (T1 = 0, T2 = 0, D = 1) = p(1− S1)(1− S2)[1 + ϕDS1S2]

Within the non-diseased individuals group, we have:

P (T1 = 1, T2 = 1, D = 0) = P (D = 0)P (T1 = 1, T2 = 1 | D = 0)

= (1− p)P (V1 > ξ1, V2 > ξ2|D = 0)

= (1− p)SND(ξ1, ξ2)
= (1− p)(1− FND1 (ξ1)− FND2 (ξ2) + FND(ξ1, ξ2)

Observe that,

P (T1 = 0|D = 0) = P (V1 ≤ ξ1|D = 0) = FND1 (ξ1) = E1 and

P (T2 = 0|D = 0) = P (V2 ≤ ξ2|D = 0) = FND2 (ξ1) = E2

Using (4), we have

FND(ξ1, ξ2) = E1E2[1 + ϕND(1− E1)(1− E2)]

That is,

P (T1 = 1, T2 = 1, D = 0) = (1− p)(1− E1)(1− E2)[1 + ϕNDE1E2]

The contributions to the likelihood for all situations with diseased and non-
diseased individuals are given in Table 3.
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2.3.2. Model Considering Dependence Type Gumbel Copula

The last considered model, is derived from Gumbel copula function defined as;

CII(u,w) = u+ w − 1 + (1− u)(1− w) exp{−φ log(1− u) log(1− w)} (6)

In this model, the joint cumulative distribution function for the random vari-
ables V1 and V2 is given by,

FII(v1v2) = F1(v1) + F2(v2)− 1 + (1− F1(v1))(1− F2(v2))

exp{−φ log(1− F1(v1)) log(1− F2(v2))} (7)

As pointed out by (Gumbel 1960) for this copula model, when φ = 1 the
Pearson correlation linear coefficient (ρ) takes the value −0.40365. In this case,
the parameter of the Gumbel copula, does not models positive linear correlations.
Also, when the two variables are independent, φ takes the zero value.

Employing the same arguments considered with the FGM copula and using (7)
we obtain all the contributions for the likelihood function when it is assumed a
Gumbel copula dependence structure (Table 3).

Table 3: Likelihood contributions of all possible combinations of outcomes of T1, T2 and
D when the dependence has the “FGM copula” or “Gumbel copula” structure.
(fi = number of individuals in the cell i; i = 1, 2, . . . , 8. Values in brackets are
unknown under verification bias).

Contribution to likelihood
i D T1 T2 fi “FGM copula” “Gumbel copula”
1 1 1 1 a pS1S2[1 + ϕD(1 − S1)(1 − S2)] pS1S2Q1

2 1 1 0 b pS1(1 − S2)[1 − ϕD(1 − S1)S2] pS1[1 − S2Q1]

3 1 0 1 c p(1 − S1)S2[1 − ϕDS1(1 − S2)] pS2[1 − S1Q1]

4 1 0 0 [d] p(1 − S1)(1 − S2)[1 + ϕDS1S2] p[1 − S1 − S2 + S1S2Q1]

5 0 1 1 e (1 − p)(1 − E1)(1 − E2)[1 + ϕNDE1E2] (1 − p)(1 − E1)(1 − E2)Q2

6 0 1 0 f (1 − p)(1 − E1)E2[1 − ϕNDE1(1 − E2)] (1 − p)(1 − E1)[1 − (1 − E2)Q2]

7 0 0 1 g (1 − p)E1(1 − E2)[1 − ϕNDE2(1 − E1)] (1 − p)(1 − E2)[1 − (1 − E1)Q2]

8 0 0 0 [h] (1 − p)E1E2[1 + ϕND(1 − E1)(1 − E2)] (1 − p)[E1 + E2 − 1 + (1 − E1)(1 − E2)Q2]

Observe that; Q1 = exp(−φD logS1 logS2), Q2 = exp(−φND log(1 − E1) log(1 − E2))

3. Bayesian Approach

For a Bayesian analysis of the proposed models, we consider different Beta prior
distributions on the prevalence, performance measure parameters (sensitivities and
specificities) and the copula parameters. In some cases, we could have some prior
information on the parameters from experts in diagnostic medical tests or from
previous studies on the subject.

For a Bayesian analysis of the models, we assumed positive dependence be-
tween the diagnostic tests in the same way as it was considered by Dendukuri
& Joseph (2001) (therefore P (ϕ < 0) = 0 and P (ψ < 0) = 0) we could assume
uniform U(a,b) as non-informative prior distributions and Beta(a,b) distributions
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for the informative situation for FGM and Gumbel dependence parameters and
for prevalence and performance test parameters. If we need to elicit informative
prior distributions for binary covariance, we could use the Generalized Beta(a,b)
distribution in the same way that was considered by Martinez et al. (2005). For
the non-informative case the Uniform U(0,1) distribution should be a good option.

Usually, we do not have any kind of information about the copula parameters,
that is, for both copula dependence parameters. In this case, we used the procedure
developed by Tovar (2012) to obtain the prior hyperparameters and we assume that
the dependence takes values within of some interval (θ1, θ2) within of parametric
space. In this way, if we assumed that the dependence is weak, the parameter could
belong to the interval (0, 1/4); when the dependence is moderate the parameter
should be in to the interval (1/4, 3/4) and when the dependence is strong, the
parameter should be in to the interval (3/4, 1). To obtain the hyperparameter
values, we take the midpoint of the interval as the mean E(θ) and we apply the
Chebychev’s inequality to approximate the variance V (θ), as follows:

P (|θ − E(θ)| ≥ kσ) ≤ 1

k2
= γ

P ([θ − E(θ)]2 ≥ k2σ2) ≤ γ

P (α[θ − θ0]2 ≥ σ2) ≤ γ (8)

where γ is the prior probability of θ do not belong to the constructed interval.
Therefore, the variance will be a function of the prior established probability

to interval values of the unknown quantity and the distance between θ0 and a
percentile of the distribution. If it is replaced θ by some of the known values θ1 or
θ2 in the equation (8) it is easy to obtain a approximated value for the variance
of the Beta prior distribution, as follows;

σ2 ≤ α[θ1 − θ0]2 ∼=
ab

(a+ b)2(a+ b+ 1)
(9)

And as the mean θ0 = E(θ) and the variance σ2 = V (θ) can be written as
functions of the Beta prior hyperparameters, it is necessary to solve a system of
two equations with two unknowns to find values of a and b i.e:

ω =
θ0

(1− θ0)
a = ωb

b =
ω − [(ω + 1)2σ2]

(ω3 + 3ω2 + 3ω + 1)σ2
(10)

In this way, assuming γ = 0.05 in (8), for the FGM and Gumbel dependence
parameters we have evaluated a Beta(17, 122) distribution, a Beta(39.5, 39.5) dis-
tribution and a Beta(122, 17) distribution as informative prior distributions and
finally we have selected as selection criteria the Deviance Information Criteria
DIC Spiegelhalter, Thomas, Best & Lunn (2003) obtained within the WinBUGS
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environment and a heuristic procedure that assumes two criteria: quality in the
convergence of the MCMC procedure and concentration of the posterior distri-
bution using the coefficient of variation (CV). The best model should have the
lower DIC, the best performance in MCMC convergence and highest concentra-
tion around the posterior mean (lowest CV).

We have seven parameters to be estimated, two sensitivities, two specificities,
one prevalence, one dependence parameter for diseased individuals and another
one for non-diseased individuals. If we assume a design with the presence of ver-
ification bias, we have only four degrees of freedom for the estimation process
and if we assume a design without verification bias, we have six information com-
ponents. Therefore, in both cases the model is non-identified. Using a classical
approach, the problem has been addressed giving fixed values to a subset of pa-
rameters and estimating the remaining unconstrained parameters (Vacek 1985),
but since all parameters are typically unknown, the division into constrained and
unconstrained sets is often quite arbitrary. Since the Bayesian paradigm some
authors as Joseph, Gyorkos & Coupal (1995), have proposed to construct informa-
tive prior distribution over a subset or over all unknown quantities. In accordance
with Dendukuri & Joseph (2001), informative priors would be needed on at least
as many parameters as would be constrained when using the most frequent ap-
proach. In this approach, the prior information is used to distinguish between the
numerous possible solutions for the non-identifiable problem. This approach is
approximately numerically equivalent to the most frequent approach when a de-
generate (point mass) distribution is used that matches the constrained parameter
values and diffuse prior distributions are used for the non-constrained parameters.
In order to treat the non-identifiability problem, first, we assume informative prior
distributions over the subset of dependence parameters and non-informative prior
distributions on prevalence and performance test parameters and next, we assume
informative prior distributions on all set of parameters in accordance with what
was suggested by Joseph et al. (1995).

As the posterior distributions do not have closed forms, we have used MCMC
methods, especially Metropolis-Hastings algorithm to obtain estimates for the pa-
rameters. For all models, 500, 000 Gibbs samples were simulated from the condi-
tional distributions. From these generated samples, we discarded the first 50, 000
samples to eliminate the effect of the initial values and we also considered a spac-
ing of 100. Convergence of the algorithm was verified graphically and also using
standard existing methods implemented in the software CODA (Best, Cowles &
Vines 1995).

4. Examples

4.1. Cancer Data

As a first example, we have used a data set introduced by (Smith et al. 1997).
They screened 19,476 men for prostate cancer using Digital Rectal Examination
(DRE) and Prostate-Specific Antigen (PSA) in serum. The PSA level was consid-
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ered suspicious for cancer if it exceeded 4.0 ng/ml. Subjects with positive results
on either DRE or PSA were submitted to an ultrasound guided needle biopsy test
which was considered as “gold standard”. This data set obtained under verification
bias is related to approximately 20,000 individuals, as such, it may be considered
as a large sample size.

For prior distribution elicitation, we have used the results introduced by Böh-
ning & Patilea (2008). We get the values for the δ and λ indexes and from these
results, we estimated the quantities d and h of non-verified subjects given in Table
1. (See Table 4).

Table 4: Estimated values for the dependence indexes and quantities of non-verified
individuals using Böhning’s results. The values in brackets were calculated
using δi index, the another one using λi index.

Diseased subjects λ1 = 2.42, δ1 = 3.08 Non-diseased subjects λ0 = 2.40, δ0 = 3.03

DRE+ DRE− Total DRE+ DRE− Total
PSA+ 189 292 481 141 755 896
PSA− 145 1431[691] 1576[836] 1002 15521[16261] 16523[17263]

Total 334 1723[983] 2057[1317] 1143 16276[17016] 17419[18159]

Using the data in Table 4 we assumed prior independence between the com-
ponents of the parameter vector [θ1 = S1, θ2 = S2, θ3 = E1, θ4 = E2, θ5 = p] to
obtain estimates and intervals where it is possible assume to find each component
with a probability 1− γ = 0.95. (See Table 5).

Table 5: Informative prior distribution hyperparameters for performance test parame-
ters, prevalence and covariance (Martinez’s prior informative distributions for
ψ).
PARAMETER INTERVAL E(θ) aθ bθ

S1 0.236 - 0.365 0.3006 303 704
S2 0.162 - 0.254 0.2080 324 1232
E1 0.949 - 0.951 0.950 902500 47500
E2 0.934 - 0.937 0.9355 501758 34595
p 0.068 - 0.106 0.0866 379 4002
ψD 0.004659 - 0.004719 0.004689 486303 103225102
ψND 0.080 - 0.133 0.1722 289 2421

Assuming prior independence, for each interval we take the midpoint of each
interval as the expected value of the prior distribution and we use the Chebychev
inequality to get approximations for the variance of each parameter in the way
that was described in Section 3 and we obtained the hyperparameter values that
appear in Table 5. For this set of parameters we have used U(0,1) distributions as
non-informative priors.

To elicit binary covariance prior distributions, we have used the results ob-
tained by Martinez et al. (2005). They estimated the covariance parameter for
the same cancer data under a Bayesian approach assuming non-informative prior
distributions for ψD and ψND. We have used the 95% credible regions obtained
by them and we applied the same procedure employed with the test parameters
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and prevalence. As non-informative distributions we have used GenBeta(1/2, 1/2)
distributions.

For the copula parameters θ2 = [ϕD, ϕND, φD, φND] we assumed the Beta
distributions Beta(17, 122), Beta(39.5, 39.5) and Beta(122, 17) as prior distribu-
tions and Uniform U(0,1) as non-informative prior distributions. To address the
lack identifiability problem of we have putting informative prior distributions on
a subset or on the complete set of parameters considering two set of models as
follows:

• Set 1 of models: informative prior distribution for the copula parameters and
non-informative prior distributions for the prevalence and test parameters

• Set 2 of models: informative prior distributions for all parameters (See Table
6)

Table 6: Bayesian posterior summaries obtained by analyzing the data considering in-
dependence between tests assumption and different dependence structures.
(Posterior means and 95% credible intervals (95% CrI) for each parameter of
interest).

Set 1 of models Set 2 of models
Model Parameter Means 95% CrI Model Parameter Means 95% CrI

S1 0.567 0.529 - 0.605 S1 0.258 0.252 - 0.264
M1,1 S2 0.394 0.363 - 0.394 M2,1 S2 0.226 0.208 - 0.244

DIC = 180.4 E1 0.952 0.950 - 0.954 DIC = 337.1 E1 0.948 0.946 - 0.950
E2 0.946 0.943 - 0.949 E2 0.947 0.944 - 0.950
p 0.044 0.041 - 0.047 p 0.080 0.075 - 0.085
ψD 0.0316 0.019 - 0.046 ψD 0.046 0.037 - 0.055
ψND 0.005 0.004 - 0.006 ψND 0.005 0.004 - 0.006

M1,2 S1 0.470 0.380 - 0.548 M2,2 S1 0.295 0.274 - 0.316
DIC = 55.2 S2 0.335 0.273 - 0.393 DIC = 54.4 S2 0.211 0.196 - 0.227

E1 0.951 0.948 - 0.955 E1 0.950 0.950 - 0.950
E2 0.937 0.933 - 0.940 E2 0.936 0.935 - 0.936
p 0.051 0.044 - 0.062 p 0.082 0.076 - 0.088
ϕD 0.156 0.136 - 0.176 ϕD 0.135 0.123 - 0.148
ϕND 0.040 0.036 - 0.044 ϕND 0.041 0.039 - 0.043

M1,3 S1 0.538 0.480 - 0.595 M2,3 S1 0.320 0.300 - 0.343
DIC = 156.5 S2 0.384 0.339 - 0.430 DIC = 225.5 S2 0.225 0.209 - 0.242

E1 0.952 0.948 - 0.955 E1 0.950 0.949 - 0.950
E2 0.937 0.933 - 0.941 E2 0.936 0.935 - 0.936
p 0.045 0.040 - 0.050 p 0.074 0.069 - 0.079
φD 0.120 0.072 - 0.179 φD 0.047 0.028 - 0.072
φND 0.017 0.010 - 0.026 φND 0.018 0.011 - 0.027

M1,4 S1 0.593 0.540 - 0.645 M2,4 S1 0.330 0.307 - 0.353
DIC = 192.7 S2 0.424 0.379 - 0.469 DIC = 294.4 S2 0.228 0.211 - 0.245

E1 0.952 0.948 - 0.955 E1 0.950 0.949 - 0.951
E2 0.937 0.933 -0.941 E2 0.936 0.935 - 0.936
p 0.040 0.037 - 0.044 p 0.072 0.0671 - 0.0771

Mj,1, j = 1, 2: Models under assumption of independence between tests
Mj,2, j = 1, 2: Covariance parameters with informative prior distributions
Mj,3, j = 1, 2: FGM dependence parameters with Beta(122, 17) prior distributions
Mj,4, j = 1, 2: Gumbel dependence parameters with Beta (17, 122) prior distributions

From the results in Table 6, we observe that in this example with a large
sample size (almost 20,000 individuals), we have great differences in the posterior
summaries of interest, especially for the sensitivities Sν , ν = 1, 2 of the tests
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considering different priors for the parameters and different modeling structures.
It is also interesting to observe that the specificities Eν ν = 1, 2, that is, the
probabilities of negative tests given that the individuals are not diseased, are
almost not affected by the different priors and different modeling structures in
presence or not of an dependence parameter. These results could be of great
interest for medical diagnostic tests.

We also observe a large variability on the obtained DIC values considering each
assumed model. The smallest DIC values are obtained for the class of models with
a bivariate binary structure.

4.2. Urinary Tract Infection (UTI)

In this example, we consider a data set introduced by Ali et al. (2007) who
evaluated a fast method to detect urinary tract infection. In this case, we can
suspect an association between tests, since the results of the tests are more likely
to be positive when the individual has a greater presence of infection. The au-
thors considered the presence of nitrites (N = test1), and the levels of leukocyte
esterase in urine (LE = test2) as screening tests and a bacterial culture as the
confirmatory test. They applied the three methods in 132 children of both gen-
ders with ages ranging from three days to 11 years. The obtained performance test
and prevalence estimates were compared with those obtained in other five studies.
Since one of those studies had incomplete data, we only considered the results
of the four complete studies to elicit our prior distributions. For each estimated
parameter, we calculated the mean and variance of the results obtained in the
five studies (including Ali’s study) and used them as prior means and variances
of the parameters. Thus, the informative prior distributions for prevalence and
performance test parameters are given by:

S1 ∼ Beta(4.15, 4.5), S2 ∼ Beta(15.7, 2.4)

E1 ∼ Beta(0.5, 13), E2 ∼ Beta(8.3, 2.8)

and
p ∼ Beta(2.1, 22.3)

For copula and covariance parameters, we assume the same informative pri-
ors used for copula parameters considered in the first example. We also assume
uniform U(0,1) prior distributions for the performance test parameters as non-
informative priors and applied the same procedure for the estimation process used
in the cancer data example. The results obtained are given in Table 7.

In this example with a small sample size, but not including missing data, we
observe from Table 7, that the sensitivities Sν ν = 1, 2 were not greatly affected
by the choice of prior distributions (informative or not) and modeling structures,
but the specificities Eν ν = 1, 2 have a great variability considering the different
modeling structures. We also observe that the prevalences have similar poste-
rior summaries considering each model and the DIC values do not present great
differences for each modeling structure.
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Table 7: Bayesian posterior summaries obtained by analyzing the data considering in-
dependence between tests assumption and different dependence structures.
(Posterior means and 95% credible intervals (95% CrI) for each parameter of
interest).

Set 1 of models Set 2 of models
Model Parameter Means 95% CrI Model Parameter Means 95% CrI

S1 0.387 0.318 - 0.457 S1 0.387 0.318 - 0.457
M1,1 S2 0.855 0.803 - 0.901 M2,1 S2 0.855 0.803 - 0.901

DIC = 36.6 E1 0.875 0.799 - 0.935 DIC = 40.3 E1 0.769 0.682 - 0.846
E2 0.513 0.402 - 0.625 E2 0.544 0.438 - 0.648
p 0.673 0.616 - 0.728 p 0.625 0.568 - 0.679
ψD 0.029 0.016 - 0.048 ψD 0.028 0.015 - 0.049
ψND 0.036 0.014 - 0.067 ψND 0.077 0.049 - 0.110

M1,1 S1 0.384 0.287 - 0.484 M2,1 S1 0.392 0.298 - 0.489
DIC = 36.4 S2 0.847 0.767 - 0.912 DIC = 47.9 S2 0.857 0.785 - 0.916

E1 0.870 0.756 - 0.949 E1 0.702 0.582 - 0.809
E2 0.567 0.424 - 0.702 E2 0.541 0.420 - 0.660
p 0.672 0.590 - 0.748 p 0.583 0.505 - 0.658
ϕD 0.050 0.027 - 0.794 ϕD 0.053 0.028 - 0.085
ϕND 0.161 0.104 - 0.208 ϕND 0.068 0.025 - 0.130

M1,2 S1 0.392 0.289 - 0.487 M2,2 S1 0.385 0.289 - 0.487
DIC = 52.6 S2 0.855 0.783 - 0.915 DIC = 40.0 S2 0.845 0.764 - 0.911

E1 0.681 0.556 - 0.795 E1 0.866 0.753 - 0.948
E2 0.610 0.479 - 0.735 E2 0.578 0.433 - 0.716
p 0.583 0.505 - 0.658 p 0.672 0.590 - 0.748
φD 0.118 0.071 - 0.175 φD 0.118 0.071 - 0.175
φND 0.119 0.072 - 0.177 φND 0.121 0.073 - 0.179

M1,3 S1 0.387 0.290 - 0.488 M2,3 S1 0.392 0.298 - 0.490
DIC = 42.6 S2 0.847 0.766 - 0.913 DIC = 55.3 S2 0.857 0.784 - 0.916

E1 0.864 0.751 - 0.946 E1 0.679 0.553 - 0.792
E2 0.576 0.431 - 0.715 E2 0.625 0.494 - 0.748
p 0.672 0.590 - 0.748 p 0.582 0.504 - 0.658

Mj,1, j = 1, 2: Models under assumption of independence between tests
Mj,2, j = 1, 2: Models using GenBeta(39.5, 39.5) prior distributions for the covariance parameters
Mj,3, j = 1, 2: Models taken GenBeta(122, 17) prior distributions for the association FGM parameter
Mj,4, j = 1, 2: Models with Beta(17, 122) prior distributions for association Gumbel parameter

Considering DIC as discrimination criteria, we could assume a model with inde-
pendence between the diagnostic tests considering informative or non-informative
prior distributions or a model with dependence between tests given by a bivariate
Bernoulli distribution (small DIC and similar performance test parameter esti-
mates).

In this case, the copula parameter in non-diseased individuals presents an im-
portant change when we use informative priors over all parameters, while in the
other group it remains unchanged. The specificity of the test N (test1) shows
changes in the three models whether we use or do not use informative priors over
the vector of non-dependence parameters. For the binary covariance and Gumbel
models, the E1 estimate with informative priors is lower than in the other mod-
els while in FGM model we observed an opposite behavior. When we have small
sample size, the FGM model shows a more unstable behavior in the estimation of
association parameter for non-diseased individuals. The DIC values for the differ-
ent models do not show important changes. It is important, to observe that the
DIC value of the FGM model with informative priors over all parameters is very
similar with the DIC value of the Gumbel model when we use non-informative
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priors over test parameters. On the other hand, the DIC value obtained assum-
ing non-informative priors over test parameters in one model is similar with those
obtained using informative priors over complete set in the other one. It is also
interesting to see that the behavior of the FGM model with small sample size data
is similar to the behavior observed in the Gumbel model when we have a large
sample size.

5. Conclusion and Remarks

The main goal of this paper was to develop a Bayesian procedure to estimate
the prevalence, performance test and copula parameters of two diagnostic tests in
presence of verification bias and considering the dependence between test results.

We proposed the use of copula structure models to get the estimation of the
parameters under dependence assumption and specifically, we have used the Far-
lie Gumbel Morgenstern (FGM) and the Gumbel copula models to compare the
obtained results with a model under independence assumption between tests and
another one assuming dependent binary tests in designs that consider two diag-
nostic tests with continuous outcome for screening, a perfect “gold standard” and
verification bias presence. The estimation model obtained under verification bias
presence, implies a lack of identifiability problem, because we have more parame-
ters than informative pieces in the likelihood function. Given that, our approach
considers the continuous dependence structure in the data but the estimation
process is made with the binary observations in presence of verification bias, we
consider that to estimate the parameters under the Bayesian approach is easier
than under the frequentist approach, because many times it is possible that we do
not have the continuous values, for instance, when the measured continuous traits
are non-observable (they are latent variables).

We illustrated the procedure using two published data sets: one with a large
sample size and another one with a small sample size of individuals. In both
cases, the better fit for the data was obtained assuming binary associated tests
and taking the covariance as a parameter. The FGM model showed better fit when
compared to the Gumbel copula, regardless the sample size. With a large sample
size, the FGM model presented DIC values lower when it was fitted assuming
non-informative prior distributions on test parameters and the estimates are very
close with those obtained using maximum likelihood method, reflecting the effect
that has the observed data in the estimation process.

However, to use informative prior on all parameters allow us to obtain sensi-
tivity estimates with shorter credibility regions which is very good if we consider
that within the large sample used, the true positives are a small part. The pre-
vious conclusion is reinforced by the results observed with the data of the small
sample size, which the informative prior on all parameters gave better fit. With
the Gumbel model, we obtained similar results with large sample size, but the use
of non-informative prior distributions on the test parameters gave better fit with
small sample size. For binary covariance models the choice of prior distribution
plays an important role in the estimation procedure, especially with large sample
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sizes, where the posterior summaries of interest do not have important changes as-
suming informative or non-informative prior distributions. With small sample sizes
and binary covariance structure, we observed better fit assuming non-informative
prior distributions on the test parameters and informative prior distributions on
covariance parameter.

It is important to point out that we could consider other copula families intro-
duced in the literature to model dependence between diagnostic tests. A special
case is given by the Clayton copula which is useful when the dependence is mainly
concentrated in the lower tail or the Frank copula which is radial symmetric. The
use of these other copulas in dependent diagnostic tests will be the goal of a future
work, since an appropriate choice is essential in order to get an optimal result.
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Abstract

Mortality processes and the distribution of the diameter at breast height
(DBH) of trees are two important problems in forestry. Trees die due to sev-
eral factors caused by stress according to a phenomenon similar to material
fatigue. Specifically, the force (rate) of mortality of trees quickly increases at
a first stage and then reaches a maximum. In that moment, this rate slowly
decreases until stabilizing at a constant value in the long term establishing a
second stage of such a rate. Birnbaum-Saunders (BS) distributions are mod-
els that have received considerable attention currently due to their interesting
properties. BS models have their genesis from a problem of material fatigue
and present a failure or hazard rate (equivalent to the force of mortality)
that has the same behavior as that of the DBH of trees. Then, BS distribu-
tions have arguments that transform them into models that can be useful in
forestry. In this paper, we present a methodology based on BS distributions
associated with this forest thematic. To complete this study, we perform an
application of five real DBH data sets (some of them unpublished) that pro-
vides statistical evidence in favor of the BS methodology in relation to the
forestry standard methodology. This application provides valuable financial
information that can be used for making decisions in forestry.

Key words: data analysis, force of mortality, forestry, hazard rate.

Resumen
aProfessor. E-mail: victor.leiva@uv.cl
bAssistant profesor. E-mail: gponce@utalca.cl
cAssistant profesor. E-mail: carolina.marchant@uv.cl
dAssistant professor. E-mail: obustos@utalca.cl

349



350 Víctor Leiva, M. Guadalupe Ponce, Carolina Marchant & Oscar Bustos

Los procesos de mortalidad y la distribución del diámetro a la altura del
pecho (DAP) de árboles son dos problemas importantes en el área forestal.
Los árboles mueren debido a diversos factores causados por estrés mediante
un fenómeno similar a la fatiga de materiales. Específicamente, la fuerza
(tasa) de mortalidad de árboles crece rápidamente en una primera fase y
luego alcanza un máximo, momento en el que comienza una segunda fase
en donde esta tasa decrece lentamente estabilizándose en una constante en
el largo plazo. Distribuciones Birnbaum-Saunders (BS) son modelos que
han recibido una atención considerable en la actualidad debido a sus intere-
santes propiedades. Modelos BS nacen de un problema de fatiga de mate-
riales y poseen una tasa de fallas (equivalente a la fuerza de mortalidad)
que se comporta de la misma forma que ésa del DAP de árboles. Entonces,
distribuciones BS poseen argumentos que las transforman en modelos que
puede ser útiles en las ciencias forestales. En este trabajo, presentamos una
metodología basada en la distribución BS asociada con esta temática fore-
stal. Para finalizar, realizamos una aplicación con cinco conjuntos de datos
reales (algunos de ellos no publicados) de DAP que proporciona una eviden-
cia estadística en favor de la metodología BS en relación a la metodología
estándar usada en ciencias forestales. Esta aplicación entrega información
que puede ser valiosa para tomar decisiones forestales.

Palabras clave: análisis de datos, fuerza de mortalidad, silvicultura, tasa
de riesgo.

1. Introduction

The determination of the statistical distribution of the diameter at breast
height (DBH) of trees, and its relationship to the age, composition, density and
geographical location where a forest is localized are valuable information for dif-
ferent purposes (Bailey & Dell 1973, Santelices & Riquelme 2007). Specifically,
the distribution of the DBH is frequently used to determine the volume of wood
from a stand allowing us to make decisions about: (i) productivity (quantity); (ii)
diversity of products (quality); (iii) tree ages (mortality); and (iv) harvest policy
and trees pruning (regeneration). Then, to know the DBH distribution may help
to plan biological and financial management aspects of a forest in a more efficient
way (Rennolls, Geary & Rollinson 1985). For example, trees with a large diame-
ter are used for wood production, while trees with a small diameter are used for
cellulose production. Thus, the four mentioned concepts (quality, quantity, mor-
tality and regeneration) propose a challenge to postulate models that allow us to
describe the forest behavior based on the DBH distribution.

Several statistical distributions have been used in the forestry area mainly to
model the DBH. These distributions (in chronological order) are the models:

(i) Exponential (Meyer 1952, Schmelz & Lindsey 1965);

(ii) Gamma (Nelson 1964);

(iii) Log-normal (Bliss & Reinker 1964);
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(iv) Beta (Clutter & Bennett 1965, McGee & Della-Bianca 1967, Lenhart &
Clutter 1971, Li, Zhang & Davis 2002, Wang & Rennolls 2005);

(v) Weibull (Bailey & Dell 1973, Little 1983, Rennolls et al. 1985, Zutter, Oder-
wald, Murphy & Farrar 1986, Borders, Souter, Bailey & Ware 1987, McEwen
& Parresol 1991, Maltamo, Puumalinen & Päivinen 1995, Pece, de Benítez
& de Galíndez 2000, García-Güemes, Cañadas & Montero 2002, Wang &
Rennolls 2005, Palahí, Pukkala & Trasobares 2006, Podlaski 2006);

(vi) Johnson SB (Hafley & Schreuder 1977, Schreuder & Hafley 1977);

(vii) Log-logistic (Wang & Rennolls 2005);

(viii) Burr XII (Wang & Rennolls 2005) and

(ix) Birnbaum-Saunders (BS) (Podlaski 2008).

The most used distribution is the Weibull model and the most recent is the
BS model. In spite of the wide use of different statistical distributions to describe
the DBH, the model selection has been based in empirical arguments supported
by goodness-of-fit methods and not by theoretical arguments that justify its use.
In order to propose DBH distributions with better arguments, mortality models
based on cumulative stress can be considered (Podlaski 2008).

A statistical distribution useful for describing non-negative data that has re-
cently received considerable attention is the BS model. This two-parameter dis-
tribution is unimodal and positively skewed. For more details about the BS dis-
tribution, see Birnbaum & Saunders (1969) and Johnson, Kotz & Balakrishnan
(1995, pp. 651-663). The interest for the BS distribution is due to its theoret-
ical arguments based on the physics of materials, its properties and its relation
to the normal distribution. Some extensions and generalization of the BS dis-
tributions are attributed to Díaz-García & Leiva (2005); Vilca & Leiva (2006);
Guiraud, Leiva & Fierro (2009). In particular, the BS-Student-t distribution has
been widely studied (Azevedo, Leiva, Athayde & Balakrishnan 2012). Although
BS distributions have their origin in engineering, these have been applied in sev-
eral other fields, such as environmental sciences and forestry (Leiva, Barros, Paula
& Sanhueza 2008, Podlaski 2008, Leiva, Sanhueza & Angulo 2009, Leiva, Vilca,
Balakrishnan & Sanhueza 2010, Leiva, Athayde, Azevedo & Marchant 2011, Vilca,
Santana, Leiva & Balakrishnan 2011, Ferreira, Gomes & Leiva 2012, Marchant,
Leiva, Cavieres & Sanhueza 2013). Podlaski (2008) employed the BS model to
describe DBH data for silver fir (Abies alba Mill.) and European beech (Fagus
sylvatica L.) from a national park in Poland, using theoretical arguments. In ad-
dition, based on goodness-of-fit methods, he discovered that the BS distribution
was the model that best described these data, displacing the Weibull distribution.

The aims of the present work are: (i) to introduce a methodology based on BS
distributions (one of them being novel) for describing DBH data that can be use-
ful for making decisions in forestry and (ii) to carry out practical applications of
real DBH data sets (some of them unpublished) that illustrate this methodology.
The article is structured as follows: In the second section, we explain the methods
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employed in this study, including a theoretical justification for the use of the BS
distribution to model DBH data. In the third section, we establish an application
with five real data sets of DBH using a methodology based on BS distributions.
This methodology furnishes statistical evidence in its favor, in relation to the stan-
dard methodology used in forestry. This application provides valuable financial
information that can be used for making decisions in forestry. Finally, we sketch
some discussions and conclusions.

2. Methods

2.1. A Fatigue Model

The BS distribution is based on a physical argument that produces fatigue
in the materials (Birnbaum & Saunders 1969). This argument is the Miner or
cumulative damage law (Miner 1945). Birnbaum & Saunders (1968) provided a
probabilistic interpretation of this law. The BS or fatigue life distribution was
obtained from a model that shows failures to occur due to the development and
growing of a dominant crack provoked by stress. This distribution describes the
total time elapsed until a type of cumulative damage inducted by stress exceeds a
threshold of resistance of the material producing its failure or rupture. Birnbaum
& Saunders (1969) demonstrated that the failure rate (hazard rate or force of
mortality) associated with their model has two phases. During the first phase,
this rate quickly increases until a maximum point (change or critical point) and
then a second phase starts when the failure rate begins to slowly decrease until it
is stabilized at a constant greater than zero. Fatigue processes have failure rates
which usually present in this way. In addition, these processes can be divided into
three stages:

(A1) The beginning of an imperceptible fissure;

(A2) The growth and propagation of the fissure, which provokes a crack in the
material specimen due to cyclic stress and tension; and

(A3) The rupture or failure of the material specimen due to fatigue.

The stage (A3) occupies a negligible lifetime. Therefore, (A2) contains most
of the time of the fatigue life. For this reason, statistical models for fatigue pro-
cesses are primarily concerned with describing the random variation of lifetimes
associated with (A2) through two-parameter life distributions. These parameters
allow those specimens subject to fatigue to be characterized and at the same time
predicting their behavior under different force, stress and tension patterns.

Having explained the physical framework of the genesis of the BS distribution,
it is now necessary to make the statistical assumptions. Birnbaum & Saunders
(1969) used the knowledge of certain type of materials failure due to fatigue to
develop their model. The fatigue process that they used was based on the following:
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(B1) A material specimen is subjected to cyclic loads or repetitive shocks, which
produce a crack or wear in this specimen;

(B2) The failure occurs when the size of the crack in the material specimen exceeds
a certain level of resistance (threshold), denoted by ω;

(B3) The sequence of loads imposed in the material is the same from one cycle to
another;

(B4) The crack extension due to a load li (Xi say) during the jth cycle is a random
variable (r.v.) governed by all the loads lj , for j < i, and by the actual crack
extension that precedes it;

(B5) The total size of the crack due to the jth cycle (Yi say) is an r.v. that follows
a statistical distribution of mean µ and variance σ2; and

(B6) The sizes of cracks in different cycles are independent.

Notice that the total crack size due to the (j + 1)th cycle of load is Yj+1 =
Xjm+1+· · ·+Xjm+m, for j,m = 0, 1, 2, . . . Thus, the accumulated crack size at the
end of the nth stress cycle is Sn =

∑n
j=1 Yj . Then, based on it, (B1)-(B6) and the

central limit theorem, we have Zn = [Sn−nµ]/
√
nσ2 ·∼ N(0, 1), as n approaches to

∞, i.e., Zn follows approximately a standard normal distribution. Now, let N be
the number of stress cycles until the specimen fails. The cumulative distribution
function (c.d.f.) of N , based on the total probability theorem, is P(N ≤ n) =
P(N ≤ n, Sn > ω) + P(N ≤ n, Sn ≤ ω) = P(Sn > ω) + P(N ≤ n, Sn ≤ ω).
Notice that P(N ≤ n, Sn ≤ ω) > 0, because Sn follows approximately a normal
distribution, but this probability is negligible, so that P(N ≤ n) ≈ P(Sn > ω),
and hence

P(N ≤ n) ≈ P
(
Sn−nµ
σ
√
n

> ω−nµ
σ
√
n

)
= Φ

(√
ωµ

σ

[√
n
ω/µ −

√
ω/µ
n

])
(1)

where Φ(·) is the normal standard c.d.f. However, we must suppose the proba-
bility that Yj given in (B5) takes negative values is zero. Birnbaum & Saunders
(1969) used (1) to define their distribution, considering the discrete r.v. N as a
continuous r.v. T , i.e., the number of stress cycles until to fail N is replaced by
the total time until to fail T and the nth cycle by the time t. Thus, considering
the reparameterization α = σ/

√
ωµ and β = ω/µ, and that (1) is exact instead of

approximated, we obtain the c.d.f. of the BS distribution for the fatigue life with
shape (α) and scale (β) parameters given by

FT (t) = Φ

(
1
α

[√
t
β −

√
β
t

])
, t > 0, α > 0, β > 0 (2)

To suppose (1) is exact, it means to suppose Yj follows exactly a N(µ, σ2) distri-
bution in (B5).
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2.2. Birnbaum-Saunders Distributions

If an r.v. T has a c.d.f. as in (2), then it follows a BS distribution with shape
(α > 0) and scale (β > 0) parameters, which is denoted by T ∼ BS(α, β). Here,
the parameter β is also the median. Hence, BS (T say) and normal standard (Z
say) r.v.’s are related by

T = β

[
αZ
2

+
√{

αZ
2

}2
+ 1

]2
∼ BS(α, β) and Z = 1

α

[√
T
β
−
√

β
T

]
∼ N(0, 1) (3)

In addition, W = Z2 follows a χ2 distribution with one degree of freedom (d.f.),
denoted by W ∼ χ2(1). The probability density function (p.d.f.) of T is

fT (t) = 1√
2π

exp
(
− 1

2α2

[
t
β + β

t − 2
])

1
2αβ

[{
t
β

}−1/2

+
{
t
β

}−3/2
]
, t > 0 (4)

The qth quantile of T is tq = β[αzq/2 +
√
{αzq/2}2 + 1]2, for 0 < q < 1, where

tq = F−1
T (q), with F−1

T (·) being the inverse c.d.f. of T , and zq the N(0, 1) qth
quantile. The mean, variance and coefficient of variation (CV) of T are

E[T ] = β
2

[
2 + α2

]
, V[T ] = β2α2

4

[
4 + 5α2

]
and CV[T ] = α

√
4+5α2

2+α2 (5)

Although the BS distribution can be useful to model the DBH, there are several
reasons to consider that the DBH distribution could start from a value greater
than zero. In such a situation, a shifted version of the BS (ShBS) distribution,
with shape (α > 0), scale (β > 0) and shift (γ ∈ R) parameters, is needed, which is
denoted by T ∼ ShBS(α, β, γ). Leiva et al. (2011) characterized this distribution
assuming that if T = β[αZ/2 +

√
{αZ/2}2 + 1]2 ∼ ShBS(α, β, γ), then, Z =

[1/α][
√
{T − γ}/β −

√
β/{T − γ}] ∼ N(0, 1) and so again W = Z2 ∼ χ2(1).

Therefore, in this case, the p.d.f. and c.d.f. of T are

fT (t) = 1√
2π

exp
(
− 1

2α2

[
t−γ
β + β

t−γ − 2
])

1
2αβ

[{
t−γ
β

}−1/2

+
{
t−γ
β

}−3/2
]

(6)

and FT (t) = Φ([1/α][
√
{t− γ}/β −

√
β/{t− γ}]), for t > γ, respectively. In

addition, the qth quantile of T is similar to that from the non-shifted case plus
the value γ at the end of such an expression. The mean, variance and CV of T
are now

E [T ] = β
2

[
2 + α2 + 2γ

β

]
, V[T ] = β2 α2

4 [4 + 5α2] and CV[T ] = αβ
√

4+5α2

β[2+α2]+2γ (7)

2.3. Birnbaum-Saunders-t-Student Distributions

If an r.v. T follows a BS-t distribution with shape (α > 0, ν > 0) and scale
(β > 0) parameters, then the notation T ∼ BS-t(α, β; ν) is used. Thus, if T =
β[αZ/2+

√
{αZ/2}2 + 1]2 ∼ BS-t(α, β; ν), then Z = [1/α][

√
T/β−

√
β/T ] ∼ t(ν),
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with ν d.f., and W = Z2 ∼ F(1, ν). Therefore, in this case, the p.d.f. and c.d.f.
of T are

fT (t; ν) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

[
1 +

{
t
β + β

t − 2
}
/{2α2 ν}

]− [ν+1]
2 1

2αβ

[{
t
β

}−1/2

+
{
t
β

}−3/2
]

FT (t; ν) = Φt(t) = 1
2

[
1 + I [1/α2][t/β+β/t−2]

[1/α2][t/β+β/t−2]+ν

(
1
2 ,

ν
2

) ]
, t > 0 (8)

respectively, where Ix(a, b) = [
∫ x

0
ta−1{1 − t}b−1 dt]/

∫ 1

0
ta−1{1 − t}b−1 dt is the

incomplete beta function ratio. The qth quantile of T is

tq = β[αzq/2 +
√
{αzq/2}2 + 1]2,

where zq is the qth quantile of the t(ν) distribution. The mean, variance and CV
of T are now

E[T ] = β
2

[
2 +Aα2

]
, V[T ] = β2α2

4

[
4A+ 5B α2

]
and CV[T ] = α

√
4A+5B α2

2+Aα2 (9)

where A = ν/[ν − 2], for ν > 2, and B = ν2[ν − 1]/[{ν − 6}{ν − 2}2], for ν > 6.
Such as in the case of the BS distribution, we can define a new shifted version

of the BS-t (ShBS-t) distribution, with shape (α > 0, ν > 0), scale (β > 0) and
shift (γ ∈ R) parameters, which is denoted by T ∼ ShBS-t(α, β, γ; ν). Thus, if T =
β[αZ/2 +

√
{αZ/2}2 + 1]2 ∼ ShBS-t(α, β, γ; ν), then Z = [1/α][

√
{T − γ}/β −√

β/{T − γ}] ∼ t(ν) and so again W = Z2 ∼ F(1, ν). Therefore, in this case, the
p.d.f. and c.d.f. of T are

fT (t; ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) [1 +

{
t− γ
β

+
β

t− γ
− 2

}
/{2α2 ν}

]− [ν+1]
2

1

2αβ

[{
t− γ
β

}−1/2

+

{
t− γ
β

}−3/2
]

FT (t; ν) = Φt(t− γ) = 1
2

[
1 + I [1/α2][{t−γ}/β+β/{t−γ}−2]

[1/α2][{t−γ}/β+β/{t−γ}−2]+ν

(
1
2 ,

ν
2

) ]
, t > γ (10)

respectively. The qth quantile of T is obtained in an analogous way as in the ShBS
case. The mean, variance and CV of T respectively are now

E [T ] = β
2

[
2 +Aα2 + 2γ

β

]
, V[T ] = β2 α2

4 [4A+ 5Bα2] and CV[T ] = αβ
√

4A+5B α2

β[2+Aα2]+2γ

(11)
where A and B are as given in (9).

2.4. Force of Mortality

Hazard can be defined as the probability that a dangerous event that could
develop into an emergency or disaster. Origin of this event can be provoked by an
environmental agent that could have an adverse effect. Then, hazard is a chance
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and not a real fact. This means that hazard should be evaluated as the frequency
or intensity of an r.v., e.g., the DBH. A useful function in hazard analysis is the
hazard rate (h.r.) or force of mortality defined as hT (t) = fT (t)/[1−FT (t)], where
fT (·) and FT (·) are the p.d.f. and c.d.f. of the r.v. T , respectively (Johnson
et al. 1995). The h.r. can be interpreted as the velocity or propensity that a
specific event occurs, expressed per unit of the r.v. (in general, time, but in the
case of DBH is a unit of length). A characteristic of the h.r. is that it allows
us to identify statistical distributions. For example, distributions with shapes
similar for their p.d.f.’s could have h.r.’s which are totally different (such as is
the case with the BS and Weibull distributions). As mentioned in Subsection 2.1,
the BS distribution has a non-monotone h.r., because it is first increasing, until
a critical point in its phase I and then it is decreasing until its stabilization at a
positive constant greater than zero in its phase II. Specifically, for the BS case, if
t approaches to ∞, then the h.r. hT (t) converges to the constant 1/[2α2β] > 0,
for t > 0. Figure 1(a) shows the behavior of the BS p.d.f. for some values of the
shape parameter (α). Notice that, as α decreases, the shape of the BS p.d.f. is
approximately symmetrical. Graphical plots for different values of the parameter
β were not considered, because this parameter only modifies the scale. Figure
1(b) displays the behavior of the BS h.r. for some values of α. Notice that, as α
decreases, the shape of the h.r. is approximately increasing. For a recent study of
the BS-t h.r., the interested reader is referred to (Azevedo et al. 2012).
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Figure 1: BS p.d.f. (left), BS h.r. (center) and theoretical TTT plots (right) for the
indicated values.

When continuous data are analyzed (for example, DBH data) and we want
to propose a distribution for modeling such data, one usually constructs a his-
togram. This graphical plot is an empirical approximation of the p.d.f. How-
ever, it is always convenient to look also for the h.r. of the data. The problem
is that to approximate empirically the h.r. is not an easy task. A tool that
is being used for this purpose is the total time on test (TTT) plot, which al-
lows us to have an idea about the shape of the h.r. of an r.v. and, as conse-
quence, about the distribution that the data follows. The TTT function of the
r.v. T is given by H−1

T (u) =
∫ F−1

T (u)

0
[1 − FT (y)] dy and its scaled version by

WT (u) = H−1
T (u)/H−1

T (1), for 0 ≤ u ≤ 1, where once again F−1
T (·) is the in-

verse c.d.f. of T . Now, WT (·) can be approximated allowing us to construct
the empirical scaled TTT curve by plotting the points

[
k/n,Wn(k/n)

]
, where
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Wn(k/n) = [
∑k
i=1 T(i) + [n − k]T(k)]/

∑n
i=1 T(i), for k = 1, . . . , n, with T(i) being

the ith order statistic, for i = 1, . . . , n. Specifically, if the TTT plot is concave
(convex), then a model with increasing (decreasing) h.r. is appropriate. Now,
if the TTT plot is first concave (convex) and then convex (concave), an inverse
bathtub (IBT) shaped (bathtub –BT–) h.r. must be considered. If the TTT plot
is a straight line, then the exponential distribution must be used. For example, the
normal distribution is in the increasing h.r. class, while the gamma and Weibull
distributions admit increasing, constant and decreasing h.r.’s. However, the BS
and log-normal distributions have non-monotone h.r.’s, because these are initially
increasing until their change points and then decreasing (IBT shaped h.r.) to zero,
in the log-normal case, or to a constant greater than zero, in the BS case. This
last case must be highlighted because biological entities (such as humans, insects
and trees) have h.r.’s of this type (Gavrilov & Gavrilova 2001). In Figure 1(c), we
see several theoretical shapes of the TTT plot, which correspond to a particular
type of h.r. (Aarset 1987).

2.5. Model Estimation and Checking

Parameters of the BS, ShBS, BS-t and ShBS-t distributions can be estimated by
the maximum likelihood (ML) method adapted by a non-failing algorithm (Leiva
et al. 2011). To obtain the estimates of the parameters of these distributions,
their corresponding likelihood functions must be constructed using (4), (6), (8)
and (10), respectively. When these parameters have been estimated, we must
check goodness-of-fit of the model to the data. Distributions used for describing
DBH data can be compared using model selection criteria based on loss of in-
formation such as Akaike (AIC) and Bayesian (BIC) information criteria. AIC
and BIC allows us to compare models for the same model and they are given by
AIC = −2`(θ̂) + 2p and BIC = −2`(θ̂) + p log (n), where `(θ̂) is the logarithm of
the likelihood function (log-likelihood) of the model with vector of parameters θ

evaluated at θ = θ̂, n is the size of the sample and p is the number of model pa-
rameters. For the case of BS, ShBS, BS-t and ShBS-t models, as mentioned, `(θ)
must be obtained by (4), (6), (8) and (10), respectively. AIC and BIC correspond
to the log-likelihood function plus a component that penalizes such a function as
the model has more parameters making it more complex. A model with a smaller
AIC or BIC is better.

Differences between two values of the BIC are usually not very noticeable.
Then, the Bayes factor (BF) can be used to highlight such differences, if they
exist. Assume the data belongs to one of two possible models, according to prob-
abilities P(Data | Model 1) and P(Data | Model 2), respectively. Given proba-
bilities P(Model 1) and P(Model 2) = 1 − P(Model 1), the data produce condi-
tional probabilities P(Model 1 | Data) and P(Model 2 | Data) = 1 − P(Model 1 |
Data), respectively. The BF allows us to compare Model 1 (considered as cor-
rect) to Model 2 (to be contrasted with Model 1) and it is given by B12 =
P(Data | Model 1)/P(Data | Model 2), which can be approximated by 2 log(B12) ≈
2
[
`(θ̂1) − `(θ̂2)

]
− [d1 − d2] log (n), where `(θ̂k) is the log-likelihood function for
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the parameter θk under the kth model evaluated at θk = θ̂k, dk is the dimen-
sion of θk, for k = 1, 2, and n is the sample size. Notice that the above ap-
proximation is computed by sustracting the BIC value from Model 2, given by
BIC2 = −2`(θ2) + d2 log (n), to the BIC value of Model 1, given by BIC1 =
−2`(θ1) + d1 log (n). In addition, notice that if Model 2 is a particular case of
Model 1, then the procedure corresponds to applying the likelihood ratio (LR)
test. In this case, 2 log(B12) ≈ χ2

12 − df12 log(n), where χ2
12 is the LR test statis-

tic for testing Model 1 versus Model 2 and df12 = d1 − d2 are the d.f.’s asso-
ciated with the LR test, so that one can obtain the corresponding p-value from
2 log(B12) ·∼ χ2(d1 − d2), with d1 > d2. The BF is informative, because it presents
ranges of values in which the degree of superiority of one model with respect to
another can be quantified. An interpretation of the BF is displayed in Table 1.

Table 1: Interpretation of 2 log(B12) associated with the BF.
2 log (B12) Evidence in favor of Model 1

< 0 Negative (Model 2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥ 10 Very strong

2.6. Quantity and Quality of Wood

Because the DBH varies depending on the composition, density, geographic
location and stand age, the diameter can be considered as an r.v. that we denote by
T . As mentioned, information on the distribution of T in a forest plantation is an
important element to quantify the products come from thinning and clearcutting
activities. This information can help to plan the management and use of forest
resources more efficiently. It is important to model the distribution of the DBH
since this is the most relevant variable in determining the tree volume and then
the forest production.

The forest volume quantification allows us to make decisions about the pro-
duction and forest management, for example, to know when the forest should be
harvested. However, the variable to maximize is diameter instead volume. Fur-
thermore, the DBH is related to other variables such as cost of harvest, quality and
product type. While the productivity is an important issue for timber industry,
wood quality is also relevant in order to determine its use. Thus, volume and di-
ameter distribution of trees determine what type of product will be obtained. For
example, large diameter trees are used for saw wood and those of small diameter
for pulpwood. This implies a financial analysis of forest harvest, i.e., how and
when to harvest and what method to use. Studies from several types of climates
and soils show trees growth as a function of the basal area. Making decisions using
the forest basal area are related to pruning and thinning. These activities aim to
improve tree growth and produce higher quality wood. The basal area of a tree is
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the imaginary basal area at breast height (1.3 m above ground level) given by

B =
π

4
T 2

where B is the basal area and T the DBH.
The sum of the individual basal area of all trees in one hectare leads to the

basal area per hectare. However, it is the volume which allows for the planning of
various forestry activities. There are several formulae to determine the volume of
logs using the mean diameter measured without bark, and the log length. Volume
allows for the planning of silvicultural and harvesting activities. In general, the
formula used for the volume of a tree is given by

V = F BH =
π

4
F T 2H (12)

where V is the tree volume, B its basal area, H its height and F the form factor,
which is generally smaller than a value equal to one depending on the tree species.

2.7. Mortality and Tree Regeneration

The DBH is related to tree mortality, which is affected by stress factors such as
light, nutrients, sunlight, temperature and water. The light and temperature can
cause stress in minutes, whereas lack of water can cause stress in days or weeks.
However, lack of nutrients in the soil can take months to generate stress. The
mortality of a tree is similar to the material fatigue process described in Section
2.1, because the force of mortality of trees is growing rapidly in phase I, reaching
a maximum and then decreases slowly until it is stabilized in phase II, which is
consistent for almost all tree species.

Podlaski (2008) identified in a national park in Poland the following stress
factors: (i) abiotic factors, such as severe weather (frost, hail, humidity, snow,
temperature, wind), deficiency or excess of soil nutrients and toxic substances in
air and soil, and (ii) biotic factors, such as bacteria (canker), fungi (dumping-off
spots, root rots, rusts), insects and worms (nematodes), mycoplasma (elm phloem
necrosis), parasitic plants (mistletoes) and viruses (elm mosaic). These factors
caused the death of trees of the species Abies alba. From a theoretical point of
view, the force of mortality of spruce could be more appropriately described by
the h.r. of the BS distribution rather than using other distributions employed to
model DBH. Podlaski (2008) indicated that mortality of spruce stand caused more
openings within the stand and the canopy. Thus, with more spaces and gaps, trees
of the species Fagus sylvatica, a kind that grows in temperate zones of the planet,
tended to regenerate.

The regeneration process has been closely connected with the death of fir,
whose speed in phase I also resulted in a rapid regeneration of beech, and the
subsequent occurrence of understory vegetation in the stand. The decrease in the
intensity of spruce mortality in phase II, as well as shading of soil by the understory,
caused a gradual decrease in the intensity of the regeneration of beech. The stands
generated by this process are characterized by a vertical structure of tree layers
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of different heights. These layers correspond to multiple layers of canopy whose
statistical distribution of the DBH is asymmetric and positively skewed, as in the
BS model. Most of the spruce stands had diameters of approximately 0.15 m
to 0.35 m. The interruption of the regeneration process resulted in the death of
these stands, which had a DBH of less than 0.1 m. The necessary condition for
the creation of stands with DBH distributions approximated by the BS model is
the simultaneous death of fir at all levels of the stand with regeneration of beech,
i.e., a death that considers the different forest layers and has a similar degree of
seasonality in the subsequent occurrence of the understory.

3. Application

Next, we apply the methodology outlined in this article using real data of the
DBH and a methodology based on BS models. First, we perform an exploratory
data analysis (EDA) of DBH. Then, based on this EDA, we propose statistical
distributions to model the DBH. We use goodness-of-fit methods to find the more
suitable distribution for modeling the DBH data under analysis. Finally, we make a
confirmatory analysis and furnish information that can be useful to make financial
and forestry decisions.

3.1. The Data Sets

The five DBH data sets to be analyzed are presented next. These data (all of
them given in cm) are expressed in each case with the data frequency in parentheses
and nothing when the frequency is equal to one.
Giant paradise (Melia azedarach L.) This is an exotic tree species originated
from Asia and adapted to the province of Santiago del Estero, Argentina. Giant
paradise produces wood of very good quality in a short time. We consider DBH
data of giant paradise trees from four consecutive annual measurements collected
since 1994 in 40 sites located at a stand in the Departamento Alberdi to the
northwest of the province of Santiago del Estero, Argentina. Specifically, we use
measurements collected at Site 7 due to the better conformation and reliability of
the database (Pece et al. 2000). The data are: 16.5, 16.6, 17.8, 18.0 18.4, 18.5,
18.8, 18.9, 19.2, 19.3, 19.8, 20.3, 20.4, 20.6(2), 22.1, 22.2 23.5, 23.6, 26.7.
Silver fir (Abies alba). This is a species of tree of the pine family originated
from mountainous regions in Europe. We consider DBH data of silver fir trees
from 15 sites located at Świeta Katarzyna and Świety Krzyzÿ forest sections of
the Świetokrzyski National Park, in Świetokrzyskie Mountains (Central Poland).
Specifically, we use measurements collected at Site 10 due to similar reasons to
that from Melia azedarach (Podlaski 2008). The data are: 11(2), 12, 13, 14(5),
15(4), 16(5), 17(4), 18(4), 19(3), 20(8), 21(4), 22(3), 23(4), 24(5), 25(6), 26(5),
27(5), 28(2), 29(5), 30(2), 31(7), 32(3), 33(2), 34(4), 35, 36(2), 37(2), 39(2), 40(3),
41(2), 42, 43(2), 44(3), 46(3), 47(2), 48, 50(2), 51, 52, 53, 54, 55, 56, 57, 59, 61,
66, 70, 89, 97.

Revista Colombiana de Estadística 35 (2012) 349–370



Distributions Useful for Modeling Diameter and Mortality of Trees 361

Loblolly pine (Pinus taeda L.) This variety of tree is one of several native
pines at the Southeastern of the United States (US). The data set corresponds to
DBH of 20 year old trees from a plantation in the Western Gulf Coast of the US
(McEwen & Parresol 1991). The data are: 6.2, 6.3, 6.4, 6.6(2), 6.7, 6.8, 6.9(3),
7.0(2), 7.1, 7.2(2), 7.3(3), 7.4(4), 7.6(2), 7.7(3), 7.8, 7.9(4), 8.1(4), 8.2(3), 8.3(3),
8.4, 8.5(3), 8.6(4), 8.7, 8.8(2), 8.9(3), 9.0(4), 9.1(5), 9.5(2), 9.6, 9.8(3), 10.0(2),
10.1, 10.3.

Ruíl (Nothofagus alessandrii Espinosa). This is an endemic species of central
Chile, which is at risk of extinction. This tree variety is the older species of the
family of the Fagaceae in the South Hemisphere, i.e., these stands are the older
formations in South America. The data set of DBH was collected close to the
locality of Gualleco, Región del Maule, Chile (Santelices & Riquelme 2007). The
data are: 16(2), 18(2), 20(2), 22, 24, 26(2), 28, 30(2), 32, 34.

Gray birch (Betula populifolia Marshall). This is a perennial species from
the US that has its best growth during spring and summer seasons. Gray birch
has a short life in comparison with other plant species and a rapid growth rate.
During its maturity (around 20 years), gray birch reaches an average height of 10
m. The data used for this study correspond to DBH of gray birch trees that are
part of a natural forest of 16 hectares located at Maine, US. This data set was
chosen because its collection is reliable and the database is complete, so it allows
an adequate illustration for the purpose of this study. The data are: 10.5(5),
10.6, 10.7, 10.8(3), 10.9, 11.0, 11.2, 11.3(5), 11.4, 11.5(3), 11.6(2), 11.7(3), 11.9(2),
12.0(3), 12.1(3), 12.2(2), 12.3, 12.4(3), 12.5(3), 12.6, 12.7(2), 12.8(3), 12.9(5),
13.0(7), 13.1(4), 13.2(2), 13.3(3), 13.5(2), 13.6(3), 13.7(5), 13.8(2), 14.0(3), 14.1(4),
14.2(3), 14.3, 14.4(2), 14.5(5), 14.6(3), 14.8(4), 14.9(3), 15.0, 15.1(3), 15.2, 15.3(2),
15.6(2), 15.7(2), 15.8, 15.9(2), 16.0(2), 16.1(2), 16.4, 16.5, 16.6(2), 16.7, 16.9(2),
17.0(2), 17.5(2), 17.8(2), 18.3, 18.4, 18.5, 19.2, 19.4(2), 19.9(2), 20.0, 20.3, 20.5,
21.3, 21.9, 23.1, 24.4, 26.0, 28.4, 39.3.

We call S1, S2, S3, S4 and S5 to the DBH data sets of the varieties of Melia
azedarach, Abies alba, Pinus taeda, Nothofagus alessandrii, and Betula populifolia,
respectively.

3.2. Exploratory Data Analysis

Table 2 presents a descriptive summary of data sets S1-S5 that includes me-
dian, mean, standard deviation (SD), CV and coefficients of skewness (CS) and
kurtosis (CK), among other indicators. Figure 2 shows histograms, usual and ad-
justed for asymmetrical data boxplots (Leiva et al. 2011) and TTT plots for S1-S5.
From Table 2 and Figure 2, we detect distributions with positive skewness, differ-
ent degrees of kurtosis, increasing and IBT shaped h.r.’s and a variable number of
atypical DBH data. Specifically, the TTT plot of the DBH presented in Figure 2
(fifth panel) shows precisely a h.r. as those that the tree DBH should theoretically
have and that coincides with the h.r. of the BS fatigue models. In addition, mini-
mum values for S1-S5 indicate to us the necessity for considering a shift parameter
in the modeling. As a consequence, based on this EDA, the different BS models
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presented in this paper seem to be good candidates for describing S1-S5, because
they allow us to accommodate the different aspects detected in the EDA for these
data sets. Particularly, BS-t and ShBS-t models allow us to accommodate atypical
data in a robust statistically way. Also, BS distributions have a more appropriate
h.r. to model such DBH data. This is a relevant aspect because DBH data have
been widely modeled by the Weibull distribution. However, this distribution has a
different h.r. to those that the tree DBH should theoretically have. Therefore, in
the next section of model estimation and checking, we compare usual and shifted
BS and Weibull models by means of a goodness-of-fit analysis in order to valuate
whether this theoretical aspect is validated by the data or not.

Table 2: Descriptive summary of DBH for the indicated data set
Set Median Mean SD CV CS CK Range Minimum Maximum n

S1 19.55 20.09 2.53 12.58% 0.82 3.20 10.20 16.50 26.70 20
S2 27.00 30.68 14.85 48.42% 1.52 6.33 86.00 11.00 97.00 134
S3 8.20 8.19 1.01 12.37% 0.05 2.16 4.10 6.20 10.30 75
S4 24.00 24.00 5.95 24.80% 0.14 1.50 18.00 16.00 34.00 15
S5 13.70 14.54 3.61 24.85% 5.89 13.97 28.80 10.50 39.30 160

3.3. Model Estimation and Checking

As mentioned, the parameters of the BS, ShBS, BS-t, ShBS-t distributions
can be estimated by the ML method adapted by a non-failing algorithm (Leiva
et al. 2011). The estimation of the parameters of the BS distributions, as well
as those of the usual and shifted Weibull distributions (as comparison), for S1-S5
are summarized in Table 3 together with the negative value of the corresponding
log-likelihood function. In addition to the model selection criteria (AIC and BIC)
presented in Section 2.1, the fit of the model to SI-S5 can be checked using the
Kolmogorov-Smirnov test (KS). This test compares the empirical and theoretical
c.d.f.’s (in this case of the BS and Weibull models). The p-values of the KS test,
as well as the values of AIC, BIC and 2log(B12) are also provided in Table 3.
Based on the KS test and BF results presented in Table 3, we conclude that the
BS distributions fit S1-S5 better than Weibull distributions. All this information
supports the theoretical justification given in Section 2.
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Figure 2: Histograms, usual and adjusted boxplots and TTT plots for S1 (first panel)
to S5 (fifth panel).
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Table 3: Indicators for the indicated data set and distribution.
Indicator BS BS-t ShBS ShBS-t ShWeibull Weibull

S1
α̂ 0.118 0.117 0.374 0.443 1.587 7.736
β̂ 19.950 19.934 6.161 3.260 4.810 21.228
ν̂ - 87 - 1 - -
γ̂ - - 13.498 16.498 15.900 -
−`(θ̂) 45.534 45.533 44.752 43.367 44.811 48.565
AIC 95.069 97.067 95.503 94.733 95.622 101.131
BIC 97.061 100.053 98.490 98.716 98.609 103.121
2 log(B12) - 2.992 1.429 1.655 1.548 6.060
KS p-value 0.806 0.829 0.986 0.963 0.882 0.385

S2
α̂ 0.452 0.448 0.590 0.588 1.440 2.193
β̂ 27.840 27.803 21.301 21.171 22.453 34.760
ν̂ - 100 - 100 - -
γ̂ - - 5.666 5.778 10.358 -
−`(θ̂) 525.820 525.889 524.255 524.306 524.772 540.361
AIC 1055.640 1057.777 1054.511 1056.612 1055.544 1084.721
BIC 1061.436 1066.472 1063.204 1068.203 1064.238 1090.518
2 log(B12) - 5.036 1.768 6.768 2.802 29.082
KS p-value 0.899 0.912 0.959 0.815 0.828 0.129

S3
α̂ 0.124 0.123 0.124 0.124 2.514 8.952
β̂ 8.125 8.127 8.125 8.127 2.635 8.636
ν̂ - 100 - 100 - -
γ̂ - - 0.000 0.000 5.850 -
−`(θ̂) 107.038 107.180 107.038 107.180 105.798 108.609
AIC 218.076 220.360 218.076 222.360 217.596 221.219
BIC 222.711 227.312 222.711 227.312 224.548 225.853
2 log(B12) - 4.601 - 4.601 1.837 3.142
KS p-value 0.876 0.874 0.876 0.874 0.918 0.840

S4
α̂ 0.245 0.2445 0.394 0.585 2.837 4.685
β̂ 23.298 23.304 14.625 9.207 16.568 26.282
ν̂ - 100 - 1 - -
γ̂ - - 8.240 15.995 9.300 -
−`(θ̂) 47.327 47.377 47.292 44.460 47.098 47.515
AIC 98.656 100.754 100.584 96.920 100.195 99.0294
BIC 100.070 102.878 102.708 99.752 104.084 100.446
2 log(B12) 0.319 3.126 2.956 - 4.332 0.694
KS p-value 0.933 0.934 0.858 0.936 0.894 0.852

S5
α̂ 0.208 0.151 0.727 0.563 1.502 3.467
β̂ 14.230 13.817 3.774 4.232 4.749 15.920
ν̂ - 4 - 8 - -
γ̂ - - 9.761 9.439 10.180 -
−`(θ̂) 399.776 389.438 380.330 378.912 386.075 448.921
AIC 803.553 816.853 766.659 765.826 778.152 901.842
BIC 809.702 794.102 775.886 778.125 787.376 907.992
2 log(B12) 33.817 18.216 - 2.239 11.490 132.107
KS p-value 0.052 0.400 0.530 0.773 0.467 < 0.001
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Due to space limitations, in order to visualize the model fit to the DBH data,
we only focus on S5. In addition, we only depict three plots corresponding to the
shifted versions of the BS, BS-t and Weibull distributions, which are those that fit
the data better. Comparison between the empirical (gray line) and ShBS, ShBS-t
and ShWeibull theoretical (black dots) c.d.f.’s are shown in Figure 3. Histograms
with the estimated ShBS, ShBS-t and ShWeibull p.d.f. curve are shown in Figure 4.
Probability plots with “envelopes” based on the BS, BS-t and Weibull distributions
for S5 are shown in Figure 5. The term “envelope” is a band for the probability plot
built by means of a simulation process that facilitates the adjustment visualization.
For example, for the BS distribution, this “envelope” is built using an expression
given in (3). From Figure 5, we can see the excellent fit that the ShBS-t model
provides to S5 and the bad fit provided by the ShWeibull model. Then, once the
ShBS-t model has been considered as the most appropriate within the proposed
distributions to model S5, we provide information that can be useful to make
economical and forestry decisions based on this model and the methodology given
in this study.
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Figure 3: Empirical (bold) and theoretical (gray) c.d.f.’s for S5 using the ShBS, ShBS-t
and ShWeibull distributions.

3.4. Financial Evaluation

We select S5 for carrying out a financial analysis. In this case, the ShBS-t
distribution is considered as the best model. Then, we propose a forest production
problem to illustrate the methodology presented in this article. Once the ShBS-t
model parameters are estimated, we determine the mean volume per tree in a
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Figure 4: Histogram with ShBS, ShBS-t and ShWeibull p.d.f.’s for S5.
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Figure 5: Probability plots with envelopes for S5 using the ShBS, ShBS-t and ShWeibull
distributions.
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stand by using (12) that leads to E[V ] = (250/3)πE[T 2], recalling that T is the
DBH, H the known height of the tree equal to 10 m (1000 cm, because the data
are expressed in cm) and F the form factor being it equal to 1/3 due to the birch
case, which has conical shape, with the DBH equivalent to the diameter at the
base of the cone. Using the expected value and variance of T given in (11), we get
the expected volume as

E[V ] = 250
3 π

[
β2

{
1 + α2(2A+ 5

4Bα
2 + A2α2

4 )

}
+ γ

{
γ + β(2 +Aα2)

}]
The stand considered in this study only produces native wood that can be sold to
sawmills at a price of US$250 (international price in US dollars) per cubic meter.
This stand of Maine, US, had in the spring of 2004 an amount of 3327 trees, of
which 160 (4.8%) were of the gray birch variety. Thus, the estimated expected
economical value for gray birch wood of this forest (stand) based on the ShBS-t
model is

US$0.25× Ê[V ]× 160 = 10000π
[
β̂2

{
1 + α̂2(2A+

5

4
Bα̂2 +

A2α̂2

4
)

}
+ γ̂
{
γ̂+

β̂(2 +Aα̂2)
}]

(13)

being its estimation based on the proposed methodology and S5 of US$7,342,267.

4. Concluding Remarks

In this paper, we have presented, developed, discussed and applied a statistical
methodology based on Birnbaum-Saunders distributions to address the problem
of managing forest production. Specifically, we have linked a fatigue model to a
forestry model through Birnbaum-Saunders distributions. This linkage has been
possible because the hazard rate of this distribution has two clearly marked phases
that coincide with the force of mortality of trees. This mortality is related to
the diameter at breast height of trees. We have modeled the distribution of this
diameter because this variable is the most relevant in determining the basal area of
a tree. For its part, the basal area allows the volume of a tree to be determinated
setting thus the production of a forest. Finally, we have shown the applicability of
this model using five real data sets, obtaining for one of them financial information
that may be valuable in forest decision making. The unpublished data used in
the economical evaluation corresponded to the diameter at breast height of 10 m
height mature gray birch trees collected in 2004, which are part of the inventory
of a natural forest of area 16 hectares of different species located at Maine, US.
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Abstract

The most common approach to develop a test for jointly detecting loca-
tion and scale changes is to combine a test for location and a test for scale.
For the same problem, the test of Cucconi should be considered because it
is an alternative to the other tests as it is based on the squares of ranks
and contrary-ranks. It has been previously shown that the Cucconi test is
robust in level and is more powerful than the Lepage test, which is the most
commonly used test for the location-scale problem. A modification of the
Cucconi test is proposed. The idea is to modify this test consistently with
the familiar approach which develops a location-scale test by combining a
test for location and a test for scale. More precisely, we will combine the
Cucconi test with the Wilcoxon rank test for location and a modified Levene
test following the theory of the nonparametric combination. A power com-
parison of this modified Cucconi test with the original one, the Lepage test
and the Podgor-Gastwirth PG2 test, shows that the modified Cucconi test
is robust in size and markedly more powerful than the other tests for every
considered type of distributions, from short- to normal- and long-tailed ones.
A real data example is discussed.

Key words: Combining tests, Location-scale model, Rank tests.

Resumen

La alternativa más común para implementar una prueba que detecta
cambios en localización y escala conjuntamente es combinar una prueba de
localización con una de escala. Para este problema, la prueba de Cucconi
es considerada como una alternativa de otras pruebas que se basan en los
cuadrados de los rangos y los contrarangos. Esta prueba es robusta en nivel
y es más poderosa que la prueba de Lepage la cual es la más usada para
el problema de localización-escala. En este artículo se propone una modi-
ficación de la prueba de Cucconi. La idea es modificar la prueba mediante

aProfessor. E-mail: mmarozzi@unical.it

371



372 Marco Marozzi

la combinación de una prueba de localización y uno de escala. Mas precisa-
mente, se sugiere combinar la prueba de Cucconi con la prueba de rangos de
Wilcoxon para localizacion y una prueba modificada de Levene siguiendo la
teoría de la combinación no paramétrica. Una comparación de la potencia
de esta prueba modificada de Cucconi con la prueba original, la prueba de
Lepage y la prueba PG2 de Podgor-Gastwirth muestran que la prueba de
Cucconi modificada es robusta en tamaño y mucho más poderosa que las
anteriores para todas las distribuciones consideradas desde la normal hasta
algunas de colas largas. Se hace una aplicación a datos reales.

Palabras clave: combinación de pruebas, modelo de localización y escala,
pruebas de rangos.

1. Introduction

The two sample Behrens-Fisher problem is to test that the locations, but not
necessarily the scales, of the distribution functions associated to the populations
behind the samples are equal. There exist situations of practical interest, how-
ever, when it is appropriate to jointly test for change in locations and change in
scales. For example, Snedecor & Cochran (1989) emphasize that the application
of a treatment (e.g. a drug) to otherwise homogeneous experimental units often
results in the treated group differing not only in location but also in scales. The
practitioner generally has no a prior knowledge about the distribution functions
from which the data originate. Therefore, in such situations, an appropriate test
does not require distributional assumptions. The test proposed by Perng & Littel
(1976) for the equality of means and variances is not appropriate because is a
combination of the t test and the F test, as the F test is not α robust for data
from heavier than normal tailed distributions. According to Conover, Johnson &
Johnson (1981) a test is α robust if its type one error rate is less than 2α. The cut
off point is set to 1.5α by Marozzi (2011). As the Perng & Littel (1976) test which
uses the Fisher combining function, the tests for the location-scale problem are
generally expressed as functions of two tests, one sensitive to location changes and
the other to scale changes. The corresponding statistics are generally obtained
as direct combination of (i.e. by summing) a standardized statistic sensitive to
location changes and a standardized statistic sensitive to scale changes. The most
familiar test statistic for the location-scale problem, due to Lepage (1971), which
is a direct combination of the squares of the standardized Wilcoxon and Ansari-
Bradley statistics. It is important to note that Lepage-type tests can be obtained
following Podgor & Gastwirth (1994). Marozzi (2009) compared several Podgor
& Gastwirth (1994) efficiency robust tests and found that the PG2 test is the
most powerful one. To perform the PG2 test it is necessary to regress the group
indicator on the ranks and on the squares of the ranks of the data and to test that
the two regression coefficients are zero. The PG2 test can be recast as a quadratic
combination of the Wilcoxon test and the Mood squared rank test. For the same
problem, the test of Cucconi (1968) should be considered because it is different
from the other tests being not based on the combination of a test for location
and a test for scale. It is a nonparametric test based on the squares of ranks
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and contrary-ranks. Marozzi (2009) computed for the very first time exact criti-
cal values for this test, compared its power to that of the Lepage and other tests
that included several Podgor-Gastwirth tests and showed that the test of Cucconi
maintains the size very close to the nominal level and is more powerful than the
Lepage test. In this paper we are not interested in the general two sample problem,
and therefore we do not consider tests like the Kolmogorov-Smirnov, Cramer-Von
Mises or Anderson-Darling tests. In Section 2 we introduce a modification of the
Cucconi test developed within the framework of the nonparametric combination
of dependent tests (Pesarin 2001). A power comparison of this modified Cucconi
test with the original one, the Lepage test and the Podgor-Gastwirth PG2 test is
carried out in Section 3. These tests are applied to a real data set in Section 4.
The conclusions are reported in Section 5.

2. The Modified Cucconi Test

In this section we introduce a modification of the Cucconi (Cucconi 1968)
test. The idea is to modify this test consistently with the familiar approach which
develops a location-scale test by combining a test for location and a test for scale.
More precisely, following the theory of the nonparametric combination (Pesarin
2001) we will combine the Cucconi test with the Wilcoxon test for location and
the modified Levene test for scale proposed by Brown & Forsythe (1974). We
consider the Wilcoxon test and the modified Levene test because they have good
properties in addressing the location and the scale problem respectively. Among
other things, they are robust against non normality and they have good power,
see Hollander & Wolfe (1999) and Marozzi (2011).

Let X1 = (X11, . . . , X1n1
) and X2 = (X21, . . . , X2n2

) be independent random
samples of iid observations. Let F1 and F2 denote the absolutely continuous dis-
tribution functions associated to the populations underlying the samples. We wish
to test

H0 : F1(g) = F2(g) for all g ∈ R (1)

versus the location-scale alternative

H1 : F2(g) = F1(
g − ϑ
τ

) with ϑ ∈ R, τ > 0 (2)

Note that for ϑ = 0, H1 reduces to a pure scale alternative and for τ = 1 to a pure
location alternative. Let µj and σj denote the location and scale of Fj , j = 1, 2.
H0 can be equivalently represented as

H0 = H0l ∩H0s where H0l : ϑ = µ1 − µ2 = 0 and H0s : τ = σ1/σ2 = 1 (3)

H1 can be equivalently represented as

H1 = H1l ∪H1s where H1l : µ1 − µ2 6= 0 and H1s : σ1/σ2 6= 1 (4)

This representation of the system of hypotheses emphasizes that it is composed
by two partial systems of hypotheses: the location and the scale one.
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The test of Cucconi (1968) is based on

C = C (U, V ) =
U2 + V 2 − 2ρUV

2(1− ρ2)

where

U = U(S1) =

6
n1∑
i=1

S2
1i − n1(n+ 1)(2n+ 1)√

n1n2(n+ 1)(2n+ 1)(8n+ 11)/5
,

V = V (S1) =

6
n1∑
i=1

(n+ 1− S1i)
2 − n1(n+ 1)(2n+ 1)√

n1n2(n+ 1)(2n+ 1)(8n+ 11)/5

n = n1 + n2, S1 = (S11, . . . , S1n1)

S1i denotes the rank of X1i in the pooled sample

X = (X1,X2) = (X11, . . . , X1n1 , X21, . . . , X2n2) = (X1, . . . , Xn1 , Xn1+1, . . . , Xn)

and ρ = 2(n2−4)
(2n+1)(8n+11) − 1. Note that U is based on the squares of the ranks S1i,

while V is based on the squares of the contrary-ranks (n + 1 − S1i) of the first
sample. Cucconi (1968) showed that under H0 (U, V ) has mean (0,0) because

E(
n1∑
i=1

S2
1i) = n1(n + 1)(2n + 1)/6, and that V AR(U) = V AR(V ) = 1 because

V AR(
n1∑
i=1

S2
1i) = n1n2(n + 1)(2n + 1)(8n + 11)/180. Of course, it is E(

n1∑
i=1

(n +

1 − S1i)
2) = E(

n1∑
i=1

S2
1i) and V AR(

n1∑
i=1

(n + 1 − S1i)
2) = V AR(

n1∑
i=1

S2
1i). U and V

are negatively correlated, more precisely, since CORR(U, V ) = COV AR(U, V ) =
2(n2−4)

(2n+1)(8n+11)−1 = ρ then −1 ≤ CORR(U, V ) < −7/8, where the minimum occurs
when n = 2 and the supremum is reached when n → ∞. It has been also shown
that under H0 if n1, n2 → ∞ and n1/n → λ ∈]0, 1[ then Pr(U ≤ u) → Φ(u)
and Pr(U ≤ v) → Φ(v), where Φ is the standard normal distribution function,
moreover (U, V ) converges in distribution to the bivariate normal with mean (0,0)
and correlation ρ0 = −7/8

Pr(U ≤ u, V ≤ v)→
∫ u

−∞

∫ v

−∞

1

2π
√

1− ρ20
exp

(
−q

2 + r2 − 2ρ0qr

2 (1− ρ20)

)
dqdr

Therefore the points (u, v) outside the rejection region are close to (0,0), i.e. satisfy
1

2π
√

1−ρ20
exp

(
−u

2+v2−2ρ0uv
2(1−ρ20)

)
≥ k, where the constant k is chosen so that the

type-one error rate is α. Let k = α
(

2π
√

1− ρ20
)−1

, then it follows that if the

point (u, v) is such that u2+v2−2ρ0uv
2(1−ρ20)

< − lnα then we failed to have evidence

against H0. It is interesting to note that the rejection region E of the test is the
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set of points (u, v) outside the ellipse u2 + v2 − 2ρ0uv = −2(1 − ρ20) lnα. The

test has size α because
∫ ∫

E
1

2π
√

1−ρ20
exp

(
− q

2+r2−2ρ0qr
2(1−ρ20)

)
dqdr = α. Note that

in practice, unless you have large samples, ρ0 should be replaced by ρ. Cucconi
(1968) proved also that the test is unbiased and consistent for the location-scale
problem.

We develop the modified Cucconi MC∗ test following the nonparametric com-
bination of dependent tests theory, which operates within the permutation frame-
work, by combining the permutation version of the Cucconi test with the permuta-
tion version of the Wilcoxon W test for comparing locations and the Levene W50
test for comparing scales. The Wilcoxon W test is based on

W =
|
∑n2

i=1 S2i − n2 (n+ 1) /2|
n1n2 (n+ 1) /12

The Levene W50 test is based on the Student t statistic computed on Rji =

|Xji − X̃j | where X̃j is the median of the jth sample. Let us denote the mean of
Rji, i = 1, . . . , nj by Rj , j = 1, 2, the Levene statistic is

W50 =

∣∣R1 −R2

∣∣√(
1
n1

+ 1
n2

) ∑n1
i=1(R1i−R1)

2
+
∑n2

i=1(R2i−R2)
2

n−2

Large values of W and W50 are evidence of difference in locations and scales
respectively. It is desirable that the good performance in detecting separately
location and scale changes shown by the W and the W50 tests are transferred to
the combined test resulting in an improved power for jointly detecting location
and scale changes with respect to the original Cucconi test. It has been shown
that the nonparametric combination of dependent tests theory is very useful to
address the location problem, see Marozzi (2004b), Marozzi (2004a) and Marozzi
(2007), and the scale problem, see Marozzi (2011) and Marozzi (2012). We would
like to see whether this theory is also useful to address the location-scale problem.

We describe now the permutation version C∗ of the Cucconi test. Let X∗ =
(X∗1,X

∗
2) = (Xu∗

1
, . . . , Xu∗

n
) = (X∗1 , . . . , X

∗
n) denote a random permutation of the

combined sample, where (u∗1, . . . , u
∗
n) is a permutation of (1, . . . , n), and so X∗1 =

(Xu∗
1
, . . . , Xu∗

n1
) and X∗2 = (Xu∗

n1+1
, . . . , Xu∗

n
) are the two permuted samples. The

permutation version of the C statistic is

C∗ = C (X∗1) = C (U∗, V ∗) =
(U∗)

2
+ (V ∗)

2 − 2ρU∗V ∗

2(1− ρ)

where U∗ = U (S∗1), V ∗ = V (S∗1) and S∗1 contains the ranks of X∗1 elements. The
observed value of C∗ is 0C = C(U, V ). To compute the p-value we compute the
permutation null distribution of the C statistic as the distribution function of its
permutation values: 1C

∗, . . . ,k C
∗, . . . ,K C

∗ where kC∗ = C (kX
∗
1), kX∗1 contains

the first n1 elements of the kth permutation of X and k = 1, . . . ,K = n!/(n1!n2!).
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Therefore the p-value is

LC∗(0C) =
1

K

K∑
k=1

I (kC
∗ ≥0 C)

where I(.) denotes the indicator function.
We briefly describe now the permutation version of the W and W50 tests. Let

Y = (X1/SD (X1) ,X2/SD (X2))

= (X1/SD (X1) , . . . , Xn/SD (X2))

= (Y1, . . . , Yn)

be the standardized pooled sample, and let

Z = (X1 − E (X1) ,X2 − E (X2))

= (X1 − E (X1) , . . . , Xn − E (X2))

= (Z1, . . . , Zn)

be the mean aligned pooled sample. Let Y ∗ and Z∗ be a random permutation
of Y and Z respectively, it is important to emphasize that the Y and Z ele-
ments are not exactly exchangeable under H0 and so the permutation solution
is approximate; however it becomes asymptotically exact. Z elements would be
exchangeable if µ1 and µ2 were known and used in place of E(X1) and E(X2),
see Pesarin & Salmaso (2010, pp. 73-74) and Good (2000, pp. 38-41). Y el-
ements would be exchangeable if σ1 and σ2 were known and used in place of
SD(X1) and SD(X2), see Pesarin & Salmaso (2010, pp. 25 and 166-167). Al-
ternatively, we considered also the median absolute deviation and the median
in place of the standard deviation and the mean respectively in transforming
X and we obtained very similar results to those presented in section 3. It is
also to be emphasized that, in order to preserve the within individual depen-
dence on the transformed data [X,Y ,Z], the permutations must be carried on
the n three-dimensional individual vectors [(X1, Y1, Z1), . . . , (Xn, Yn, Zn)]. So that
[X∗,Y ∗,Z∗] = [(Xu∗

i
, Yu∗

i
, Zu∗

i
), i = 1, . . . , n].

In the permutation version W ∗ of the W test, the p-value is computed as
LW∗(0W ) = 1

K

∑K
k=1 I (kW

∗ ≥0 W ), where 0W is the observed value of the
Wilcoxon statistic (that is computed on Y ) and kW

∗ is the Wilcoxon statistic com-
puted on the kth permutation kY

∗ of Y . In the permutation version W50∗ of the
W50 test, the p-value is computed as LW50∗(0W50) = 1

K

∑K
k=1 I (kW50∗ ≥0 W50),

where 0W50 is the observed value of the W50 statistic (that is computed on Z)
and kW50∗ is the W50 statistic computed on the kth permutation kZ

∗ of Z.
To obtain the MC∗ test we combine the p-values of the C∗, W ∗ and W50∗

tests. This is equivalent to combine the test statistics being one to one decreasingly
related to the p-values. Pesarin (2001, pp. 147-149) reports several combining
functions, with the most familiar being

• the Fisher combining function ln (1/LC∗) + ln (1/LW∗) + ln (1/LW50∗);

Revista Colombiana de Estadística 35 (2012) 371–384



Modified Cucconi Test 377

• the Tippett combining function max(1− LC∗ , 1− LW∗ , 1− LW50∗);

• the Liptak combining function

Φ−1 (1− LC∗) + Φ−1 (1− LW∗) + Φ−1 (1− LW50∗) ;

and noted that the Tippett combining function has a good power behavior when
only one among the partial alternatives is true; that the Liptak combining function
is generally good when the partial alternatives are jointly true; that the Fisher
combining function has an intermediate behavior with respect to the Tippett and
Liptak ones and therefore it is suggested when nothing is expected about the
partial alternatives. Since we would like a combined test that is sensitive in all
the three alternative situations: that are when H1l alone is true, when H1s alone
is true, when H1l and H1s are jointly true, we use the Fisher combining function
to obtain the test statistic for the null hypothesis H0 = H0l ∩H0s

MC∗ = ln (1/LC∗) + ln (1/LW∗) + ln (1/LW50∗)

Note that the Fisher combining function is used also by Perng & Littel (1976). The
observed value of theMC∗ statistic is 0MC = ln (1/LC∗ (0C))+ln (1/LW∗ (0W ))+
ln (1/LW50∗ (0W50)). The null distribution of the MC∗ statistic is the distribu-
tion function of 1MC∗, . . . ,kMC∗, . . . ,KMC∗ where kMC∗ = ln (1/LC∗ (kC

∗)) +
ln (1/LW∗ (kW

∗)) + ln (1/LW50∗ (kW50∗)). Large values of 0MC are evidence
against H0, that should be rejected if LMC∗(0MC) ≤ α where LMC∗(0MC) =
1
K

∑K
k=1 I (kMC∗ ≥0 MC). According to Pesarin (2001) it is possible to combine

even a large, although finite, number of tests. In our case, we limit the number
of tests to be combined to avoid the possibility that the type one error rate of
the combined test may inflate too much, because under H0 Y and Z elements are
only approximately exchangeable.

3. Size and Power Study

We investigate via Monte Carlo simulation (5000 replications) the robustness of
the significance level and the power of the modified CucconiMC∗ test in detecting
location and scale changes, and we made comparisons with the classical Cucconi
C test, the Lepage L test and the PG2 test. The Lepage test is based on

L = W 2 +
(A− E(A))

2

V AR(A)

where A =
∑n2

i=1A2i is the Ansari-Bradley statistic, Aji denotes the Ansari-
Bradley score of Xji in the combined sample. To compute the Ajis assign the
score 1 to both the smallest and largest observations in the pooled sample, the
score 2 to the second smallest and second largest, and so on. E(A) and V AR(A)
denote the expected value and variance of A under H0. Since the scoring de-
pends on whether n is even or odd, two cases should be distinguished, E(A) =
n2(n+ 2)/4 and V AR(A) = n1n2 (n+ 2) (n− 2)/ (48 (n− 1)) when n is even, and
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E(A) = n2(n+ 1)2/ (4n) and V AR(A) = n1n2 (n+ 1) (3 + n2)/
(
48n2

)
when n is

odd.
Let Ii i = 1, . . . , n be a group indicator so that Ii = 1 when the ith element

of the combined sample belongs to the first sample, Ii = 0 otherwise. The PG2
test statistic is the F statistic with 2 and n− 3 df computed by regressing group
indicators Ii on the ranks Sji and the squared ranks S2

ji of the observations in the
combined sample

PG2 =

(
bTST I − n21/n

)
/2(

n1 − bTST I
)
/ (n− 3)

where T denotes the transpose operator, b is the 3× 1 column vector of the OLS
estimate of the intercept term and the regression coefficients, S is a n× 3 matrix
with the first column of 1s, the second column of Sji and the third column of S2

ji,
i = 1, . . . , nj , j = 1, 2, I is the nx1 column of the group indicators I1, . . . , In.

The nominal 5% level is used throughout. We consider the following distribu-
tions that cover a wide range from short-tailed to very long-tailed distributions:

1. standard normal N(0,1);

2. uniform between −
√

3 and
√

3;

3. bimodal obtained as a mixture of a N(-1.5,1) with probability 0.5 and a
N(1.5,1) with 0.5;

4. Laplace double exponential with scale parameter of 1/
√

2;

5. 10% outlier obtained as a mixture of a N(0,1) with probability 0.9 and a
N(1,10) with 0.1;

6. 30% outlier obtained as a mixture of a N(0,1) with probability 0.7 and a
N(1,10) with 0.3;

7. Student’s t with 2 df;

8. standard Cauchy, which corresponds to a Student’s t with 1 df.

Note that distributions 7 and 8 have infinite second moment, and that distribu-
tion 8 has an undefined first moment. We consider only symmetric distributions
because if one considers skewed distributions, a change in location is not qualita-
tively different with respect to a change in scale and therefore the location-scale
alternative is not well specified in terms of µ1 − µ2 and σ1/σ2. We consider the
balanced cases (n1, n2) = (10, 10) and (30, 30) as well as the unbalanced cases
(n1, n2) = (10, 30) and (30, 10). We emphasize that p-values of the PG2 test have
been computed exactly for all the sample size settings. p-values of the Lepage
and Cucconi tests have been computed exactly for (n1, n2) = (10, 10) and have
been estimated by considering a random sample of 1 million permutations in the
remaining settings. p-values of the MC∗ test have been estimated by considering
a random sample of 1000 permutations. The results in terms of the proportion of
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times H0 is rejected are reported in Table 1 and Table 2 for the estimates of the
size and power. The first two lines of the tables display the parameter choice: in
the first column we are under H0, while in the others we are under H1. Note that
all the tests are robust in size because their maximum estimated significance level
(MESL) does not exceed 0.07. More precisely the MESL is 0.067, 0.058, 0.057 and
0.058 for the MC∗, L, C and PG2 tests respectively. It is important to note that
the MESL of all the tests is greater than .05 and that the MESL of theMC∗ test is
the greatest one. Note that the cut-off point for the robustness in size is set to 0.1
by Conover et al. (1981) and more stringently to 0.075 by Marozzi (2011). Even if
we caution that the results are obtained via simulations, they are very clear and
show that the MC∗ test is more powerful than the other tests for all distribution
and sample size settings considered here. The results show that the combination of
the Cucconi test with the Wilcoxon test for location and the modified Levene test
for scale markedly improve the power of the Cucconi test in detecting separately
location and scale changes, and in jointly detecting location and scale changes,
for distributions that range from light-, to normal- and heavy-tailed distributions.
The cost to be paid is the slightly liberality of the test that has a MESL of .067
(the other tests have a MESL between .057 and .058).

4. Application

Table 3 shows expenditure in Hong Kong dollars of 20 single men and 20 single
women on the commodity group housing including fuel and light. This real data
example is taken from Hand, Daly, Lunn, McConway & Ostrowski (1994, p. 44).
Figure 1 presents the box plots of the data.

M
en

W
om

en

500 1000 1500 2000

Figure 1: Box-plot of household expenditures.

We see from the box plots that the distributions of the data in the two groups
seem to have different locations as well as different scales. This example illustrates
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Table 1: Size and power of some tests for location and scale changes, (n1, n2) = (10, 10)
and (10, 30).

(n1, n2) = (10, 10) (n1, n2) = (10, 30)

Normal Normal
µ1 − µ2 0 0 1 1 1 µ1 − µ2 0 0 0.75 0.75 0.75
σ1/σ2 1 2 2 1 3 σ1/σ2 1 1.5 1.5 1 2.5
MC∗ 0.055 0.423 0.646 0.595 0.821 MC∗ 0.057 0.349 0.628 0.544 0.896

L 0.050 0.249 0.383 0.415 0.585 L 0.044 0.201 0.427 0.383 0.690
C 0.052 0.281 0.414 0.410 0.639 C 0.048 0.257 0.473 0.388 0.780

PG2 0.053 0.286 0.418 0.413 0.642 PG2 0.046 0.253 0.467 0.381 0.775
Uniform Uniform

µ1 − µ2 0 0 1 1 1 µ1 − µ2 0 0 0.75 0.75 0.75
σ1/σ2 1 2 2 1 3 σ1/σ2 1 1.5 1.5 1 2.5
MC∗ 0.065 0.582 0.730 0.533 0.912 MC∗ 0.063 0.519 0.688 0.518 0.966

L 0.053 0.381 0.435 0.348 0.683 L 0.051 0.324 0.430 0.340 0.778
C 0.053 0.456 0.489 0.327 0.764 C 0.050 0.430 0.503 0.343 0.882

PG2 0.054 0.462 0.494 0.331 0.767 PG2 0.049 0.424 0.497 0.339 0.879
Bimodal Bimodal

µ1 − µ2 0 0 2.5 1.5 1.5 µ1 − µ2 0 0 2 1 1
σ1/σ2 1 1.5 1.5 1 2.5 σ1/σ2 1 1.5 1.5 1 1.5
MC∗ 0.062 0.285 0.718 0.431 0.824 MC∗ 0.061 0.489 0.801 0.356 0.634

L 0.048 0.174 0.453 0.261 0.587 L 0.051 0.305 0.555 0.222 0.379
C 0.047 0.203 0.441 0.251 0.652 C 0.053 0.396 0.611 0.222 0.459

PG2 0.048 0.206 0.446 0.253 0.657 PG2 0.050 0.389 0.605 0.216 0.453
Laplace Laplace

µ1 − µ2 0 0 1 1 1 µ1 − µ2 0 0 0.75 0.75 0.75
σ1/σ2 1 2 2 1 3 σ1/σ2 1 1.5 1.5 1 2.5
MC∗ 0.064 0.293 0.616 0.689 0.741 MC∗ 0.054 0.243 0.681 0.690 0.844

L 0.057 0.164 0.435 0.543 0.539 L 0.058 0.144 0.537 0.563 0.682
C 0.055 0.175 0.449 0.547 0.572 C 0.053 0.177 0.554 0.560 0.739

PG2 0.056 0.176 0.452 0.549 0.576 PG2 0.051 0.174 0.548 0.554 0.735
10% outlier 10% outlier

µ1 − µ2 0 0 1.5 1 1 µ1 − µ2 0 0 1 0.75 0.75
σ1/σ2 1 2.2 2.2 1 3.5 σ1/σ2 1 2 2 1 2.2
MC∗ 0.056 0.306 0.542 0.434 0.593 MC∗ 0.063 0.355 0.606 0.443 0.557

L 0.055 0.225 0.408 0.303 0.493 L 0.054 0.331 0.513 0.289 0.482
C 0.050 0.235 0.423 0.310 0.501 C 0.053 0.370 0.549 0.294 0.526

PG2 0.051 0.238 0.427 0.312 0.505 PG2 0.051 0.365 0.541 0.288 0.521
30% outlier 30% outlier

µ1 − µ2 0 0 3.6 1.3 1.3 µ1 − µ2 0 0 1.8 1 1
σ1/σ2 1 3 3 1 6 σ1/σ2 1 2.2 2.2 1 3
MC∗ 0.055 0.296 0.617 0.351 0.618 MC∗ 0.057 0.306 0.608 0.350 0.569

L 0.047 0.238 0.491 0.260 0.520 L 0.052 0.242 0.503 0.239 0.464
C 0.046 0.224 0.502 0.270 0.488 C 0.052 0.259 0.506 0.243 0.480

PG2 0.047 0.227 0.504 0.271 0.494 PG2 0.049 0.255 0.500 0.238 0.475
Student Student

µ1 − µ2 0 0 2 1 1 µ1 − µ2 0 0 1.1 0.8 0.8
σ1/σ2 1 2.4 2.4 1 3.6 σ1/σ2 1 1.8 1.8 1 2.2
MC∗ 0.055 0.369 0.669 0.376 0.671 MC∗ 0.058 0.310 0.608 0.410 0.605

L 0.046 0.242 0.506 0.252 0.490 L 0.049 0.234 0.474 0.264 0.464
C 0.047 0.255 0.521 0.262 0.509 C 0.050 0.272 0.500 0.274 0.515

PG2 0.048 0.258 0.525 0.263 0.514 PG2 0.047 0.267 0.495 0.267 0.508
Cauchy Cauchy

µ1 − µ2 0 0 3 1.5 1.5 µ1 − µ2 0 0 1.5 1 1
σ1/σ2 1 3 3 1 5 σ1/σ2 1 2 2 1 3
MC∗ 0.053 0.320 0.591 0.425 0.577 MC∗ 0.062 0.218 0.536 0.395 0.521

L 0.046 0.255 0.490 0.318 0.495 L 0.051 0.195 0.457 0.249 0.483
C 0.048 0.250 0.494 0.321 0.488 C 0.051 0.217 0.466 0.244 0.503

PG2 0.049 0.255 0.498 0.324 0.493 PG2 0.050 0.214 0.460 0.239 0.496
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Table 2: Size and power of some tests for location and scale changes, (n1, n2) = (30, 10)
and (30, 30).

(n1, n2) = (30, 10) (n1, n2) = (30, 30)

Normal Normal
µ1 − µ2 0 0 1 0.75 0.75 µ1 − µ2 0 0 0.5 0.5 0.5
σ1/σ2 1 1.8 1.8 1 2.5 σ1/σ2 1 1.3 1.3 1 1.75
MC∗ 0.059 0.416 0.726 0.512 0.854 MC∗ 0.060 0.256 0.578 0.470 0.858

L 0.046 0.240 0.427 0.391 0.579 L 0.050 0.144 0.374 0.357 0.641
C 0.045 0.240 0.431 0.397 0.612 C 0.053 0.164 0.394 0.353 0.715

PG2 0.042 0.230 0.417 0.390 0.599 PG2 0.053 0.165 0.396 0.355 0.716
Uniform Uniform

µ1 − µ2 0 0 1 0.75 0.75 µ1 − µ2 0 0 0.5 0.5 0.5
σ1/σ2 1 1.8 1.8 1 2.5 σ1/σ2 1 1.3 1.3 1 1.75
MC∗ 0.059 0.600 0.808 0.472 0.954 MC∗ 0.053 0.450 0.662 0.464 0.957

L 0.053 0.395 0.488 0.343 0.782 L 0.049 0.272 0.425 0.340 0.796
C 0.053 0.458 0.470 0.345 0.844 C 0.051 0.376 0.478 0.327 0.896

PG2 0.052 0.446 0.458 0.339 0.836 PG2 0.052 0.379 0.480 0.330 0.896
Bimodal Bimodal

µ1 − µ2 0 0 2 1 1 µ1 − µ2 0 0 1.1 0.75 0.75
σ1/σ2 1 1.5 1.5 1 1.75 σ1/σ2 1 1.3 1.3 1 1.4
MC∗ 0.067 0.328 0.740 0.318 0.671 MC∗ 0.054 0.385 0.742 0.356 0.724

L 0.057 0.218 0.487 0.217 0.403 L 0.047 0.242 0.512 0.246 0.493
C 0.056 0.216 0.421 0.212 0.391 C 0.048 0.298 0.547 0.231 0.555

PG2 0.054 0.209 0.410 0.208 0.378 PG2 0.049 0.301 0.549 0.234 0.558
Laplace Laplace

µ1 − µ2 0 0 1 0.75 0.75 µ1 − µ2 0 0 0.5 0.5 0.5
σ1/σ2 1 1.8 1.8 1 2.5 σ1/σ2 1 1.3 1.3 1 1.75
MC∗ 0.055 0.285 0.727 0.648 0.734 MC∗ 0.055 0.184 0.637 0.632 0.783

L 0.048 0.145 0.515 0.561 0.446 L 0.050 0.108 0.481 0.519 0.593
C 0.048 0.129 0.531 0.554 0.469 C 0.052 0.118 0.482 0.514 0.624

PG2 0.046 0.124 0.522 0.550 0.455 PG2 0.052 0.119 0.485 0.517 0.627
10% outlier 10% outlier

µ1 − µ2 0 0 1.5 0.75 0.75 µ1 − µ2 0 0 0.75 0.5 0.5
σ1/σ2 1 2 2 1 3 σ1/σ2 1 1.5 1.5 1 1.8
MC∗ 0.066 0.329 0.646 0.365 0.632 MC∗ 0.059 0.234 0.599 0.383 0.560

L 0.053 0.240 0.524 0.290 0.557 L 0.048 0.217 0.509 0.269 0.511
C 0.052 0.218 0.523 0.295 0.514 C 0.051 0.233 0.514 0.272 0.518

PG2 0.050 0.211 0.514 0.288 0.507 PG2 0.051 0.235 0.516 0.273 0.520
30% outlier 30% outlier

µ1 − µ2 0 0 3 1 1 µ1 − µ2 0 0 1.2 0.7 0.7
σ1/σ2 1 2.5 2.5 1 4.5 σ1/σ2 1 1.8 1.8 1 2.3
MC∗ 0.054 0.283 0.664 0.324 0.617 MC∗ 0.057 0.315 0.610 0.334 0.603

L 0.047 0.249 0.513 0.258 0.541 L 0.055 0.261 0.500 0.240 0.521
C 0.047 0.189 0.513 0.260 0.454 C 0.057 0.246 0.487 0.241 0.487

PG2 0.046 0.184 0.506 0.254 0.447 PG2 0.058 0.247 0.491 0.244 0.489
Student Student

µ1 − µ2 0 0 1.7 0.8 0.8 µ1 − µ2 0 0 0.8 0.6 0.6
σ1/σ2 1 2.2 2.2 1 3 σ1/σ2 1 1.6 1.6 1 1.8
MC∗ 0.060 0.414 0.712 0.344 0.703 MC∗ 0.056 0.331 0.660 0.406 0.632

L 0.048 0.278 0.506 0.260 0.515 L 0.051 0.248 0.512 0.300 0.502
C 0.050 0.244 0.527 0.263 0.500 C 0.049 0.262 0.521 0.298 0.515

PG2 0.048 0.238 0.515 0.258 0.493 PG2 0.049 0.265 0.525 0.299 0.518
Cauchy Cauchy

µ1 − µ2 0 0 2.5 1 1 µ1 − µ2 0 0 1.2 0.8 0.8
σ1/σ2 1 2.5 2.5 1 4 σ1/σ2 1 1.8 1.8 1 2.2
MC∗ 0.063 0.322 0.588 0.297 0.567 MC∗ 0.055 0.269 0.608 0.424 0.557

L 0.050 0.258 0.457 0.238 0.511 L 0.046 0.250 0.530 0.302 0.520
C 0.048 0.208 0.473 0.238 0.441 C 0.044 0.245 0.519 0.300 0.505

PG2 0.046 0.202 0.465 0.232 0.435 PG2 0.044 0.246 0.522 0.302 0.508
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Table 3: Household expenditures (Honk Kong dollars) of a group of men and a group
of women.

Men
497 839 798 892 1585 755 388 617 248 1641

1180 619 253 661 1981 1746 1865 238 1199 1524
Women

820 184 921 488 721 614 801 396 864 845
404 781 457 1029 1047 552 718 495 382 1090

that in practice we may have situations where F1 and F2 are different in both
location and scale. With the aim at finding out whether household expenditures
differ from men to women, we use the modified Cucconi test. By considering a
random sample of 1 million permutations, the estimated p-value of the MC∗ test
is 0.0105, that suggests to reject the null hypothesis at level 5%. This result is
consistent with the results obtained using the original Cucconi test and the PG2
test whose p-values are 0.0446 (estimated by considering a random sample of 1
million permutations) and 0.0441 (exact computation) respectively. The estimated
p-value of the Lepage test is 0.0896 and suggests to reject H0 at level 10%. At the
basis of these results we conclude that household expenditures of men and women
differ. It is worth noting that, with respect to the MC∗ test, the other tests need
a higher level in order to reject H0. This might suggest a gain in power of the
modified Cucconi test with respect to the original one and to the other tests.

5. Conclusion

We introduced a modification of the Cucconi test. The main objetive was to
modify this test consistently with the familiar approach which develops a location-
scale test by combining a test for location and a test for scale. More precisely we
combined the Cucconi test with the Wilcoxon test for location and the modified
Levene test for scale proposed by Brown & Forsythe (1974) following the theory of
the nonparametric combination (Pesarin 2001). We compared the performance of
the modified Cucconi test with the original one, the Lepage test and the Podgor-
Gastwirth PG2 test in separately detecting location and scale changes as well as in
jointly detecting location and scale changes. The results show that the combination
of the Cucconi test with the Wilcoxon test for location and the modified Levene
test for scale gives rise to a test which is slightly more liberal and markedly more
powerful than the other tests for all the considered distributions, from short- to
normal- and long-tailed ones. In the light of our findings, we recommend the
practitioner to use the modified Cucconi test to address the location-scale problem,
with caution on its type-one error rate.

[
Recibido: diciembre de 2011 — Aceptado: agosto de 2012

]
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Abstract

Spatially correlated curves are present in a wide range of applied dis-
ciplines. In this paper we describe the R package geofd which implements
ordinary kriging prediction for this type of data. Initially the curves are
pre-processed by fitting a Fourier or B-splines basis functions. After that
the spatial dependence among curves is estimated by means of the trace-
variogram function. Finally the parameters for performing prediction by
ordinary kriging at unsampled locations are by estimated solving a linear
system based estimated trace-variogram. We illustrate the software analyz-
ing real and simulated data.

Key words: Functional data, Smoothing, Spatial data, Variogram.

Resumen

Curvas espacialmente correlacionadas están presentes en un amplio rango
de disciplinas aplicadas. En este trabajo se describe el paquete R geofd que
implementa predicción por kriging ordinario para este tipo de datos. Inicial-
mente las curvas son suavizadas usando bases de funciones de Fourier o B-
splines. Posteriormente la dependencia espacial entre las curvas es estimada
por la función traza-variograma. Finalmente los parámetros del predictor
kriging ordinario son estimados resolviendo un sistema de ecuaciones basado
en la estimación de la función traza-variograma. Se ilustra el paquete anal-
izando datos reales y simulados.
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aAssociate professor. E-mail: rgiraldoh@unal.edu.co
bProfessor. E-mail: mateu@mat.uji.es
cAssociate professor. E-mail: pedro.delicado@upc.edu

385



386 Ramón Giraldo, Jorge Mateu & Pedro Delicado

1. Introduction and Overview

The number of problems and the range of disciplines where the data are func-
tions has recently increased. This data may be generated by a large number of mea-
surements (over time, for instance), or by automatic recordings of a quantity of in-
terest. Since the beginning of the nineties, functional data analysis (FDA) has been
used to describe, analyze and model this kind of data. Functional versions for a
wide range of statistical tools (ranging from exploratory and descriptive data anal-
ysis to linear models and multivariate techniques) have been recently developed
(see an overview in Ramsay & Silverman 2005). Standard statistical techniques for
FDA such as functional regression (Malfait & Ramsay 2003) or functional ANOVA
(Cuevas, Febrero & Fraiman 2004) assume independence among functions. How-
ever, in several disciplines of the applied sciences there exists an increasing interest
in modeling correlated functional data: This is the case when functions are ob-
served over a discrete set of time points (temporally correlated functional data)
or when these functions are observed in different sites of a region (spatially cor-
related functional data). For this reason, some statistical methods for modeling
correlated variables, such as time series (Box & Jenkins 1976) or spatial data
analysis (Cressie 1993), have been adapted to the functional context. For spatially
correlated functional data, Yamanishi & Tanaka (2003) developed a regression
model that enables to model the relationship among variables over time and space.
Baladandayuthapani, Mallick, Hong, Lupton, Turner & Caroll (2008) showed an
alternative for analyzing an experimental design with a spatially correlated func-
tional response. For this type of modeling an associate software in MATLAB
(MATLAB 2010) is available at http://odin.mdacc.tmc.edu/∼vbaladan. Staicu,
Crainiceanu & Carroll (2010) propose principal component-based methods for the
analysis of hierarchical functional data when the functions at the lowest level of
the hierarchy are correlated. A software programme accompanying this methodol-
ogy is available at http://www4.stat.ncsu.edu/∼staicu. Delicado, Giraldo, Comas
& Mateu (2010) give a review of some recent contributions in the literature on
spatial functional data. In the particular case of data with spatial continuity
(geostatistical data) several kriging and cokriging predictors (Cressie 1993) have
been proposed for performing spatial prediction of functional data. In these ap-
proaches a smoothing step, usually achieved by means of Fourier or B-splines basis
functions, is initially carried out. Then a method to establish the spatial depen-
dence between functions is proposed and finally a predictor for carrying out spatial
prediction of a curve on a unvisited location is considered. Giraldo, Delicado &
Mateu (2011) propose a classical ordinary kriging predictor, but considering curves
instead of one-dimensional data; that is, each curve is weighted by a scalar param-
eter. They called this method “ordinary kriging for function-valued spatial data”
(OKFD). This predictor was initially considered by Goulard & Voltz (1993). On
the other hand; Giraldo, Delicado & Mateu (2010) solve the problem of spatial
prediction of functional data by weighting each observed curve by a functional
parameter. Spatial prediction of functional data based on cokriging methods are
given in Giraldo (2009) and Nerini, Monestiez & Manté (2010). All of above-
mentioned approaches are important from a theoretical and applied perspective.
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A comparison of these methods based on real data suggests that all of them are
equally useful (Giraldo 2009). However, from a computational point of view the
approach based on OKFD is the simplest because the parameters to estimate are
scalars. In other cases the parameters are functions themselves and in addition it
is necessary to estimate a linear model of coregionalization (Wackernagel 1995) for
modeling the spatial dependence among curves, which could be restrictive when
the number of basis functions used for smoothing the data set is large. For this
reason the current version of the package geofd implemented within the statistical
environment R (R Development Core Team 2011) only contains functions for do-
ing spatial prediction of functional data by OKFD. However, the package will be
progressively updated including new R functions.

It is important to clarify that the library geofd allows carrying out spatial pre-
diction of functional data (we can predict a whole curve). This software cannot be
used for doing spatio-temporal prediction. There is existing software that analyzes
and models space-time data by considering a space-time covariance model and us-
ing to make this model predictions. There is no existing software for functional
spatial prediction except the one we present in this paper. We believe there is
no reason for confusion and the context gives us the necessary information to use
existing space-time software or our software.

The package geofd has been designed mainly to support teaching material
and to carry out data analysis and simulation studies for scientific publications.
Working in geofd with large data sets can be a problem because R has limited
memory to deal with such a large object. A solution can be use R packages for big
data support such as bigmemory (http://www.bigmemory.org) or ff (http://ff.r-
forge.r-project.org/).

This work is organized as follows: Section 2 gives a brief overview of spatial
prediction by means of OKFD method, Section 3 describes the use of the package
geofd based on the analysis of real and simulated data and conclusions are given
in Section 4.

2. Ordinary Kriging for Functional Data

Ferraty & Vieu (2006) define a functional variable as a random variable X
taking values in an infinite dimensional space (or functional space). Functional
data is an observation x of X. A functional data set x1, . . . , xn is the observation
of n functional variables X1, . . . , Xn distributed as X. Let T = [a, b] ⊆ R. We
work with functional data that are elements of

L2(T ) = {X : T → R, such that
∫
T

X(t)2dt <∞}

Note that L2(T ) with the inner product 〈x, y〉 =
∫
T
x(t)y(t)dt defines an Eu-

clidean space.
Following Delicado et al. (2010) we define a functional random process as

{Xs(t) : s ∈ D ⊆ Rd, t ∈ T ⊆ R}, usually d = 2, such that Xs(t) is a func-
tional variable for any s ∈ D. Let s1, . . . , sn be arbitrary points in D and assume
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that we can observe a realization of the functional random process Xs(t) at these n
sites, xs1(t), . . . , xsn(t). OKFD is a geostatistical technique for predicting Xs0(t),
the functional random process at s0, where s0 is a unsampled location.

It is usually assumed that the functional random process is second-order sta-
tionary and isotropic, that is, the mean and variance functions are constant and
the covariance depends only on the distance between sampling points (however,
the methodology could also be developed without assuming these conditions). For-
mally, we assume that

1. E(Xs(t)) = m(t) and V (Xs(t)) = σ2(t) for all s ∈ D and all t ∈ T .

2. COV (Xsi(t), Xsj (t)) = C(‖si − sj‖)(t) = Cij(h, t), si, sj ∈ D, t ∈ T , where
h = ‖si − sj‖.

3. 1
2V (Xsi(t) − Xsj (t)) = γ(‖si − sj‖)(t) = γ(h, t), si, sj ∈ D, t ∈ T, where
h = ‖si − sj‖.

These assumptions imply that V (Xsi(t) −Xsj (t)) = E(Xsi(t) −Xsj (t))2 and
γ‖si − si‖(t) = σ2(t)− C(‖si − sj‖)(t).

The OKFD predictor is defined as (Giraldo et al. 2011)

X̂s0(t) =

n∑
i=1

λiXsi(t), λ1, . . . , λn ∈ R (1)

The predictor (1) has the same expression as the classical ordinary kriging
predictor (Cressie 1993), but considering curves instead of variables. The predicted
curve is a linear combination of observed curves. Our approach considers the whole
curve as a single entity, that is, we assume that each measured curve is a complete
datum. The kriging coefficients or weights λ in Equation (1) give the influence
of the curves surrounding the unsampled location where we want to perform our
prediction. Curves from those locations closer to the prediction point will naturally
have greater influence than others more far apart. These weights are estimated in
such a way that the predictor (1) is the best linear unbiased predictor (BLUP). We
assume that each observed function can be expressed in terms ofK basis functions,
B1(t), . . . , BK(t), by

xsi(t) =

K∑
l=1

ailBl(t) = aTi B(t), i = 1, . . . , n (2)

where ai = (ai1, . . . , aiK), B(t) = (B1(t), . . . , BK(t))

In practice, these expressions are truncated versions of Fourier series (for peri-
odic functions, as it is the case for Canadian temperatures) or B-splines expansions.
Wavelets basis can also be considered (Giraldo 2009).

To find the BLUP, we consider first the unbiasedness. From the constant
mean condition above, we require that

∑n
i=1 λi = 1. In a classical geostatis-

tical setting we assume that the observations are realizations of a random field
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{
Xs : s ∈ D,D ∈ Rd

}
. The kriging predictor is defined as X̂s0 =

∑n
i=1 λiXsi , and

the BLUP is obtained by minimizing

σ2
s0 = V (X̂s0 −Xs0)

subject to
∑n
i=1 λi = 1. On the other hand in multivariable geostatistics (Myers

1982, Ver Hoef & Cressie 1993, Wackernagel 1995) the data consist of
{
Xs1 , . . . ,

Xsn

}
, that is, we have observations of a spatial vector-valued process {Xs : s ∈ D},

where Xs = (Xs(1), . . . , Xs(m)) and D ∈ Rd. In this context V (X̂s0 −Xs0) is a
matrix, and the BLUP of m variables at an unsampled location s0 can be obtained
by minimizing

σ2
s0 =

m∑
i=1

V
(
X̂s0(i)−Xs0(i)

)
subject to constraints that guarantee unbiasedness conditions, that is, minimizing
the trace of the mean-squared prediction error matrix subject to some restrictions
given by the unbiasedness condition (Myers 1982). Extending the criterion given in
Myers (1982) to the functional context by replacing the summation by an integral,
the n parameters in Equation (1) are obtained by solving the following constrained
optimization problem (Giraldo et al. 2011)

min
λ1,...,λn

∫
T

V (X̂s0(t)−Xs0(t))dt, s.t.
n∑
i=1

λi = 1 (3)

which after some algebraic manipulation can be written as
n∑
i=1

n∑
j=1

λiλj

∫
T

Cij(h, t)dt+

∫
T

σ2(t)dt− 2

n∑
i=1

∫
T

Ci0(h, t)dt+ 2µ(

n∑
i=1

λi− 1) (4)

where µ is the Lagrange multiplier used to take into account the unbiasedness
restriction. Minimizing (4) with respect to λ1, . . . , λn and µ, we find the following
linear system which enables to estimate the parameters

∫
T γ‖s1 − s1‖(t)dt · · ·

∫
T γ‖s1 − sn‖(t)dt 1

...
. . .

...
...∫

T γ‖sn − s1‖(t)dt · · ·
∫
T γ‖sn − sn‖(t)dt 1

1 · · · 1 0




λ1
...
λn
−µ



=


∫
T γ‖s0 − s1‖(t)dt

...∫
T γ‖s0 − sn‖(t)dt

1

 (5)

The function γ(h) =
∫
T
γ‖si − sj‖(t)dt, is called the trace-variogram. In order

to solve the system in (5), an estimator of the trace-variogram is needed. Given
that we are assuming that Xs(t) has a constant mean function m(t) over D,
V (Xsi(t)−Xsj (t)) = E[(Xsi(t)−Xsj (t))2]. Note that, using Fubini’s theorem

γ(h) =
1

2
E

[∫
T

(Xsi(t)−Xsj (t))2dt

]
, for si, sj ∈ D with h = ‖si − sj‖ (6)
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Then an adaptation of the classical method-of-moments (MoM) for this ex-
pected value, gives the following estimator

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

∫
T

(Xsi(t)−Xsj (t))2dt (7)

where N(h) = {(si, sj) : ‖si − sj‖ = h}, and |N(h)| is the number of distinct
elements in N(h). For irregularly spaced data there are generally not enough
observations separated by exactly a distance h. Then N(h) is modified to {(si, sj) :
‖si − sj‖ ∈ (h− ε, h+ ε)}, with ε > 0 being a small value.

Once we have estimated the trace-variogram for a sequence of K values hk,
a parametric model γ(h; θ) such as spherical, Gaussian, exponential or Matérn
(Ribeiro & Diggle 2001) must be fitted.

The prediction trace-variance of the functional ordinary kriging based on the
trace-variogram is given by

σ2
s0 =

∫
T

V (X̂s0(t)−Xs0(t))dt =

n∑
i=1

λi

∫
T

γ‖si − s0‖(t)dt− µ (8)

This parameter should be considered as a global uncertainty measure, in the
sense that it is an integrated version of the classical pointwise prediction variance
of ordinary kriging. For this reason its estimation cannot be used to obtain a
confidence interval for the predicted curve. There is not, to the best of our knowl-
edge, a method which allows us to do spatial prediction of functional data with
an estimation of a prediction variance curve. We must take into account that we
predict a whole curve and is not possible with this methodology to get point-wise
confidence intervals, as we can obtain by using space or space-time models. It is
clear that spatial-functional data and spatial temporal models have a common link
in the sense that we have evolution of a spatial process through time or through
any other characteristic. But at the same time there is an important difference.
Spatial temporal models consider the evolution of a spatial process through time
and models the interdependency of space and time. In this case we have X(s, t)
a single variable and we want to predict a variable at an unsampled location. In
the spatial-functional case Xs(t) is itself a function and thus we aim at predicting
a function.

3. Illustration

Table 1 summarizes the functions of the package geofd. To illustrate its use
we analyze real and simulated data. Initially in Sections 3.1 and 3.2 we apply
the methodology to temperature measurements recorded at 35 weather stations
located in the Canadian Maritime Provinces (Figure 1, left panel). Then the
results with a simulated data set are shown in Section 3.3

The Maritime Provinces cover a region of Canada consisting of three provinces:
Nova Scotia (NS), New Brunswick (NB), and Prince Edward Island (PEI). In par-
ticular, we analyze information of daily mean temperatures averaged over the

Revista Colombiana de Estadística 35 (2012) 385–407



geofd: An R Package for Function-Valued Geostatistical Prediction 391

Bertrand
Bathurst

Miramichi
Aroostook Alberton

Doaktown

Woodstock

Fredericton
Accadia

Saint John

Annapolis
Grenwood

Kentville

Liverpoll
Keminkujik Bridgewater

Shearwater

Rexton
Bouctouche Summerside

Charlottetown
Moncton

Halifax

Parrsboro
TruroParrsboro

NappanPugwash

Alma
Sussex

OromoctoGagetown

Middle musquodoboit

Cheticamp Ingonish
Beach

Baddeck Sydney

Figure 1: Averages (over 30 years) of daily temperature curves (right panel) observed
at 35 weather stations of the Canadian Maritime provinces (left panel).

Table 1: Summary of the geofd functions.
Function Description
fit.tracevariog Fits a parametric model to the trace-variogram
.geofd.viewer Graphical interface to plot multiple predictions
l2.norm Calculates the L2 norm between all pairs of curves
maritimes.data Temperature values at 35 weather stations of Canada
maritimes.avg Average temperature at Moncton station
okfd Ordinary kriging for function-value data
okfd.cv Cross-validation analysis for ordinary kriging for function-value data
plot.geofd Plot the trace-variogram function and some adjusted models
trace.variog Calculates the trace-variogram function

years 1960 to 1994 (February 29th combined with February 28th) (Figure 1, right
panel). The data for each station were obtained from the Meteorological Service of
Canada (http://www.climate.weatheroffice.ec.gc.ca/climateData/). Our package
makes use of the R libraries fda (Ramsay, Hooker & Graves 2009) for smooth-
ing data (by Fourier or B-splines basis) and geoR (Ribeiro & Diggle 2001) for
fitting a variogram model to the estimated trace-variogram function. The tem-
perature data set considered (Figure 1, right panel) is periodic and consequently
a Fourier basis function is the most appropriate choice for smoothing it (Ramsay
& Silverman 2005). However for illustrative purposes we also use a B-spline ba-
sis function. We can make a prediction at only one site or at multiple locations.
Both alternatives are considered in the examples (Figure 2). In Section 3.1 we
smooth the temperature data using a B-splines basis and, make a prediction at an
unvisited location (left panel, Figure 2). In Section 3.2 we smooth the data using
a Fourier basis and predict the temperature curves at ten randomly chosen sites
(right panel, Figure 2).
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Figure 2: Prediction sites. A fixed site considered in the first example (left panel) and
ten randomly selected sites considered in the second one (right panel).

3.1. Using a B-splines Basis

The following code illustrates how to use the library geofd for predicting a
temperature curve at an unsampled location when the data are smoothed by using
a B-splines basis. Initially we read and plot the data set (Figure 1, right panel),
plot the coordinates of visited sites and choose a site for carrying out a prediction
(Figure 2, left panel). The R code is the following.

R> library (geofd)
R> data(maritimes)

The library(geofd) command loads the package geofd (and other dependent
packages) into the R computing environment. The data(maritimes) command
loads the maritimes data set containing 35 temperature curves obtained at the
same number of weather stations of the maritime provinces of Canada. The first
five temperature values for four weather stations are

R> head(maritimes.data[,1:4], n=5)

Fredericton Halifax Sydney Miramichi
[1,] -7.9 -4.4 -3.8 -8.60
[2,] -7.5 -4.2 -3.5 -8.32
[3,] -9.3 -5.3 -4.6 -9.87
[4,] -8.7 -5.4 -5.0 -9.55
[5,] -9.1 -5.6 -4.1 -9.58

The next five lines of commands allow to plot the data and the coordinates.

R> matplot(maritimes.data,type="l",xlab="Day",ylab="degress C")
R> abline(h=0, lty=2)
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R> plot(maritimes.coords)
R> coord.cero <- matrix(c(-64.06, 45.79),nrow=1,ncol=2)
R> points(coord.cero, col=2, lwd=3)

The main function of geofd is okfd (Table 1). This function allows to carry out
predictions by ordinary kriging for function-valued data by considering a Fourier
or a B-splines basis as methods for smoothing the observed data set. This covers
from the smoothing step and trace-variogram estimation to data prediction. Al-
though the estimation of the trace-variogram can be obtained by directly using
the function okfd, it is also possible to estimate it in a sequential way by using
the functions l2.norm, trace.vari and fit.tracevariog, respectively (Table 1).
Now we give an illustration in this sense. In this example the data set is smoothed
by using a B-splines basis with 65 functions without penalization (Figure 3, left
panel). The number of basis functions was chosen by cross-validation (Delicado
et al. 2010). We initially define the parameters for smoothing the data. We use
here the fda library. An overview of the smoothing functional data by means of
B-splines basis using the library fda library can be found in (Ramsay, Wickham,
Graves & Hooker 2010). The following code illustrates how to run this process
with the maritime data set.

R> n<-dim(maritimes.data)[1]
R> argvals<-seq(1,n, by=1)
R> s<-35
R> rangeval <- range(argvals)
R> norder <- 4
R> nbasis <- 65
R> bspl.basis <- create.bspline.basis(rangeval, nbasis, norder)
R> lambda <-0
R> datafdPar <- fdPar(bspl.basis, Lfdobj=2, lambda)
R> smfd <- smooth.basis(argvals,maritimes.data,datafdPar)
R> datafd <- smfd$fd
R> plot(datafd, lty=1, xlab="Day", ylab="Temperature (degrees C)")

The smoothed curves are shown in the left panel of Figure 3. Once wi have
smoothed the data, we can use the functions above for estimating the trace-
variogram. First we have to calculate the L2 norm between the smoothed curves
using the function l2.norm. The arguments for this function are the number s of
sites where curves are observed, datafd a functional data object representing a
smoothed data set and M a symmetric matrix of order equal to the number of basis
functions defined by the B-splines basis object, where each element is the inner
product of two basis functions after applying the derivative or linear differential
operator defined by Lfdobj (Ramsay et al. 2010).

R> M <- bsplinepen(bspl.basis,Lfdobj=0)
R> L2norm <- l2.norm(s, datafd, M)

In the above commands the results are assigned to the variable L2norm. This
one stores a matrix whose values correspond to the L2 norm between each pair
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Figure 3: Smoothed data of daily temperature by using a B-splines basis (left panel)
and a Fourier basis (right panel) with 65 functions.

of functional data into the data set. This matrix is then passed to the function
trace.variog for estimating the trace-variogram function. The output can be re-
turned as a trace-variogram “cloud" or as a binned trace-variogram (see Equation
7). The following code shows how this function can be used in combination with
fit.tracevariog for fitting a model to the trace-variogram function obtained
with the maritime data set. The main arguments of the function trace.variog
are coords the geographical coordinates in decimal degrees where data where
recorded, L2 norm a matrix whose values are the L2 norm between all pair of
smoothed functions (an output from the function l2.norm), bin which is a logical
argument indicating whether the output is a binned variogram, maxdist a nu-
merical value defining the maximum distance for calculating the trace-variogram.
Other arguments such as uvec, breaks and nugget.tolerance are defined as in
the function variog of the package geoR. In order to fit a theoretical model (ex-
ponential, Gaussian, spherical or Matern) to the estimated trace-variogram we
can use the function fit.tracevariog. This function makes use of the function
variofit of geoR. The arguments of these functions are the estimations of the
trace-variogram function (an output of the function trace.variog), model a list
with the models that we want to fit, and some initial values for the parameters in
these models. The command lines below show the use of these functions.

R> dista=max(dist(maritimes.coords))*0.9
R> tracev=trace.variog(maritimes.coords, L2norm, bin=FALSE,
+ max.dist=dista,uvec="default",breaks="default",nugget.tolerance)
R> models=fit.tracevariog(tracev, models=c("spherical","exponential",
+ "gaussian","matern"),sigma2.0=2000, phi.0=4, fix.nugget=FALSE,
+ nugget=0, fix.kappa=TRUE, kappa=1, max.dist.variogram=dista)

The variable tracev above stores the output of the function trace.variog which
is used posteriorly in the function plot.geofd for plotting the trace-variogram
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Figure 4: Estimated trace-variogram “cloud” and four fitted models (left panel). Esti-
mated trace-variogram “bin” and the best fitted model (right panel).

“cloud”. On the other hand the variable model stores the results obtained with the
function fit.tracevariog. The use of the function plot.geofd in combination
with the command lines (models$fitted) produces the plot shown in Figure
4 (left panel), this is, the estimated trace-variogram “cloud” and the four fitted
models (exponential, Gaussian, spherical and Matern).

R> plot(tracev, xlab="Distancia", ylab="Trace-Variogram")
R> lines(models$fitted[[1]], lwd=2)
R> lines(models$fitted[[2]], lwd=2, col=4)
R> lines(models$fitted[[3]], lwd=2, col=7)
R> lines(models$fitted[[4]], lwd=2, col=6)
R> legend("topleft", c("empirical trace variogram", "spherical",
+ "exponential", "gaussian", "matern"), lty=c(-1,1,1,1,1),
+ col=c(1,1,4,7,6), pch=c(1,-1,-1,-1,-1))

In Figure 4 (right panel) the estimated trace-variogram “bin” and the best fitted
model are shown. This plot is obtained by using the code below. In this case we
use the option bin=TRUE in the function trace.variog, and the command line
lines(models$fitted[[2]], lwd=2, col=4) to plot the exponential model.

R> tracevbin=trace.variog(maritimes.coords, L2norm, bin=TRUE,
+ max.dist=dista)
R> plot(tracevbin$u, tracevbin$v, ylim=c(0,3000), xlim=c(0, 7),
+ xlab="Distance", ylab="Trace-Variogram")
R> lines(models$fitted[[2]], lwd=2, col=4)

The numerical results of the function fit.tracevariog are stored in the ob-
ject models. This list contains the estimations of the parameters (τ2, σ2, and
φ) for each trace-variogram model and the minimized sum of squared errors (see

Revista Colombiana de Estadística 35 (2012) 385–407



396 Ramón Giraldo, Jorge Mateu & Pedro Delicado

variofit from geoR). According to the results below we can observe that the best
model (least sum of squared errors) is the exponential model.

R>models

[[1]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: spherical
fixed value for tausq = 0
parameter estimates:

sigmasq phi
3999.9950 12.0886
Practical Range with cor=0.05 for asymptotic range: 12.08865
variofit: minimised sum of squares = 529334304
[[2]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: exponential
fixed value for tausq = 0
parameter estimates:

sigmasq phi
4000.0003 6.2689
Practical Range with cor=0.05 for asymptotic range: 18.77982
variofit: minimised sum of squares = 524840646
[[3]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: gaussian
fixed value for tausq = 0
parameter estimates:

sigmasq phi
2092.8256 2.2886
Practical Range with cor=0.05 for asymptotic range: 3.961147
variofit: minimised sum of squares = 541151209
fitted[[4]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: Matern with fixed kappa = 1
fixed value for tausq = 0
parameter estimates:

sigmasq phi
2693.1643 1.9739
Practical Range with cor=0.05 for asymptotic range: 7.892865
variofit: minimised sum of squares = 529431348

Once fitted, the best trace-variogram model we can use the okfd function for
performing spatial prediction at an unvisited location. The arguments of this
function are new.coords an n × 2 matrix containing the coordinates of the new
n prediction sites, coords an s × 2 matrix containing the coordinates of the s
sites where functional data were recorded, data an m × s matrix with values
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for the observed functions, smooth.type a string with the name of smoothing
method to be used (B-splines or Fourier), nbasis a numeric value defining the
number of basis functions used to smooth the discrete data set recorded at each
site, argvals a vector containing argument values associated with the values to
be smoothed, lambda (optional) a penalization parameter for smoothing the ob-
served functions, and cov.model a string with the name of the correlation function
(see variofit from geoR). Other additional arguments are fix.nugget, nugget
value, fix.kappa, kappa (related to the parameters of the correlation model),
and max.dist.variogram a numerical value defining the maximum distance con-
sidered when fitting the variogram model. The code below allows to predict a
temperature curve at the Moncton weather station (see Figure 1).

R> okfd.res<-okfd(new.coords=coord.cero, coords=maritimes.coords,
+ cov.model="exponential", data=maritimes.data, nbasis=65,
+ argvals=argvals, fix.nugget=TRUE)
R> plot(okfd.res$datafd, lty=1,col=8, xlab="Day",
+ ylab="Temperature (degrees C)",
+ main="Prediction at Moncton")
R> lines(okfd.res$argvals, okfd.res$krig.new.data, col=1, lwd=2,
+ type="l", lty=1, main="Predictions", xlab="Day",
+ ylab="Temperature (Degrees C)")
R> lines(maritimes.avg, type="p", pch=20,cex=0.5, col=2, lwd=1)

A graphical comparison between real data (see maritimes.avg in Table 1) and
the predicted curve (Figure 5) allows to conclude that the method OKFD has a
good performance with this data set.

Figure 5: Smoothed curves by using a B-splines basis with 65 functions (gray), real
data at Moncton weather station (red dots) and prediction at Moncton by
ordinary kriging for function-value spatial data.
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3.2. Using a Fourier basis

Now we use the package geofd for carrying out spatial prediction of temperature
curves at ten randomly selected locations in the Canadian Maritimes Provinces
(Figure 2, right panel). We use a Fourier basis with 65 functions for smoothing the
data set (the same number of basis functions K as in Section 3.1) . In this example
we show how the function okfd allows both smoothing the data and estimating
directly a trace-variogram model. Posteriorly the estimation is used for performing
spatial predictions of temperature curves on the ten locations already mentioned.
The R code is the following

R> argvals<-seq(1,n, by=1)
R> col1<-sample((min(maritimes.coords[,1])*100):
(max(maritimes.coords[,1]) + *100),10, replace=TRUE)/100
R> col2<-sample((min(maritimes.coords[,2])*100):
(max(maritimes.coords[,2]) + *100),10, replace=TRUE)/100
R> new.coords <- cbind(col1,col2)

The variable argvals contains argument values associated with the values to be
smoothed by using a Fourier basis. The variables col1, col2, and new.coords
are used for defining the prediction locations (Figure 2, right panel). The variable
argvals and new.coords are used as arguments of the function okfd in the code
below

R> okfd.res<-okfd(new.coords=new.coords, coords=maritimes.coords,
+ data=maritimes.data, smooth.type="fourier", nbasis=65,
+ argvals=argvals, kappa=0.7)

In this example the arguments smooth.type="fourier" and nbasis=65 in the
function okfd allows us to smooth the data by using a Fourier basis with 65 func-
tions (the number of basis functions was determined by cross-validation). In the
example in Section 3.1 we use directly cov.model="exponential" in the function
okfd because we chose this model previously by using the functions trace.variog
and fit.tracevariog. If we do not specify a covariance model the function okfd
estimates several models and selects the model with the least sum of squared errors.
The parameter kappa=.7 indicates that in addition to the spherical, exponential
and Gaussian model, a Matern model with κ = .7 is also fitted.

A list with the objects stored in the variable okfd.res is obtained with the
command line

R> names(okfd.res)

[1] "coords" "data"
[3] "argvals" "nbasis"
[5] "lambda" "new.coords"
[7] "emp.trace.vari" "trace.vari"
[9] "new.Eu.d" "functional.kriging.weights"
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Figure 6: Estimated trace-variogram “cloud” and four fitted models (left panel). Esti-
mated trace-variogram “bin” and the best fitted model (right panel).

[11] "krig.new.data" "pred.var"
[13] "trace.vari.array" "datafd"

We can use these objects for plotting the trace-variogram function, the esti-
mated models and the predictions. A plot with the four fitted models and the best
model is shown in Figure 6. We obtain this figure by using the command lines

R> plot(okfd.res, ylim=c(0,6000))
R> trace.variog.bin<-trace.variog(okfd.res$coords,
+ okfd.res$emp.trace.vari$L2norm, bin=TRUE)
R> plot(trace.variog.bin, ylim=c(0,6000), xlab="Distance",
+ ylab="Trace-variogram", main="Trace-variogram Bin")
R> lines(okfd.res$trace.vari, col=4, lwd=2)

Numerical results of the trace-variogram fitted models are obtained by using the
command line

okfd.res$trace.vari.array

[[1]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: spherical
parameter estimates:

tausq sigmasq phi
178.4011 644834.9056 2328.6674

Practical Range with cor=0.05 for asymptotic range: 2328.667
variofit: minimised sum of squares = 539799716
[[2]]
variofit: model parameters estimated by OLS (ordinary least squares):
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covariance model is: exponential
parameter estimates:

tausq sigmasq phi
109.9118 11006.6152 23.1467

Practical Range with cor=0.05 for asymptotic range: 69.34139
variofit: minimised sum of squares = 539566326
[[3]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: gaussian
parameter estimates:

tausq sigmasq phi
369.1311 2103.8708 3.3617

Practical Range with cor=0.05 for asymptotic range: 5.818404
variofit: minimised sum of squares = 552739397
[[4]]
variofit: model parameters estimated by OLS (ordinary least squares):
covariance model is: matern with fixed kappa = 0.7
parameter estimates:

tausq sigmasq phi
200.4886 4486.5365 5.8946

Practical Range with cor=0.05 for asymptotic range: 20.31806
variofit: minimised sum of squares = 541310787

The model with least sum of squared errors is again a exponential model (Figure
6, right panel). Consequently the function okfd above uses this model for solving
the system in Equation 5 and for carrying out the predictions. Numerical values
of predictions and prediction variances can be checked by using the commands

R> okfd.res[11]
R> okfd.res[12]

The predictions can be plotted by using the following command line

R>.geofd.viewer(okfd.res, argnames=c("Prediction","Day",
"Temperature"))

The function .geofd.viewer implements a Tcl/Tk interface (Grosjean 2010) for
showing OKFD prediction results. This viewer presents two frames, the left one
presents the spatial distribution of the prediction sites. The right one presents
the selected prediction curve based on the point clicked by the user on the left
frame. In Figure 7 we show the result of using this function. In the left panel a
scatterplot with the coordinates of the prediction locations are shown. The dark
point in the left panel is the clicked point and, the curve in the right panel shows
the prediction at this site.

On the other hand if we want to plot all the predicted curves and analyze them
simultaneously we can use the following command line
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Figure 7: An example of the function .geofd.viewer. Left panel: Scatterplot with
the coordinates of prediction locations. Right panel: Prediction on a clicked
point (red point in left panel).

R> matplot(okfd.res$argvals, okfd.res$krig.new.data, col=1, lwd=1,
type="l", + lty=1, main="Predictions", xlab="Day",
ylab="Temperature (degrees C)")

We can observe that the predicted curves (Figure 8) are consistent with the
behavior of the original data set (Figure 1). This result indicates empirically that
the OKFD method shows a good performance.
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Figure 8: OKFD Predictions at ten randomly selected sites from Canadian Maritimes
Provinces. Observed data were previously smoothed by using a Fourier basis.
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Figure 9: Left panel: Grid of simulated locations. Right panel: B-splines basis used in
the simulation algorithm.

3.3. Using Simulated Data

In this section we discuss algorithms proposed in our package and evaluate the
performance of the methodologies proposed in Section 2 by means of a simulation
study.

We fixed the thirty six sites shown in Figure 9, and simulated a discretized set
of spatially correlated functional data according to the model

Xsi(t) =

15∑
l=1

ailBl(t) + εi(t), i = 1, . . . , 36 (9)

with B(t) = (B1(t), . . . , B15(t)) a B-splines basis (see right panel Figure 9), ail,
a realization of a Gaussian random field al ∼ N36(10,Σ), where Σ is a 36 × 36
covariance matrix defined according to the exponential model C(h) = 2 exp(−h8 )
with h = ‖si − sj‖, i, j = 1, . . . , 36, and ε(t) ∼ N36(0.09, 1) is a random error for
each fixed t, with t = 1, . . . , 365. The number of basis functions and the parameters
for simulating coefficients and errors were chosen empirically.

The R code for obtaining the simulated curves is the following

R> coordinates<-expand.grid(x= c(-3,-2, -1, 0, 1, 2),
+ y=c(-3,-2,-1,0, 1, 2))
R> mean.coef=rep(10,36)
R> covariance.coef <- cov.spatial(distance, cov.model=model,
+ cov.pars=c(2,8))
R> normal.coef=mvrnorm(15,mean.coef,covariance.coef)
R> mean.error<-rep(0, 36)
R> covariance.error <-cov.spatial(distance, cov.model=model,
+ cov.pars=c(0.09,0))
R> normal.error<-mvrnorm(365,mean.error,covariance.error)
R> argvals=seq(1, 365, len = 365)
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R> nbasis=15
R> lambda=0
R> rangeval <- range(argvals)
R> norder <- 4
R> bspl.basis <- create.bspline.basis(rangeval, nbasis,
+ norder)
R> data.basis=eval.basis(argvals, bspl.basis, Lfdobj=0)
R> func.data=t(normal.coef)%*%t(data.basis)
R> simulated.data= func.data+ normal.error

A plot with the simulated data and smoothed curves (by using a B-splines basis)
is obtained with the following code

R> datafdPar <- fdPar(bspl.basis, Lfdobj=2, lambda)
R> smooth.datafd <- smooth.basis(argvals, simulated.data,
+ datafdPar)
R> simulated.smoothed=eval.fd(argvals, smooth.datafd$fd,
+ fdobj=0)
R> matplot(simulated.data, type="l", lty=1, xlab="Time",
+ ylab="Simulated data")
R> matplot(simulated.smoothed, lty=1, xlab="Time",
+ ylab="Smoothed data", type="l")

The simulated data are shown in the left panel of Figure 10. These data were
smoothed by using a B-splines basis with 15 functions (right panel Figure 10).
Once obtaining the smoothed curves we carry out a cross-validation prediction
procedure. Each data location in Figure 9 is removed from the dataset and a
smoothed curve is predicted at this location using OKFD based on the remaining
smoothed functions.

Figure 10: Left panel: Simulated data. Right panel: Smoothed curves (by using a
B-splines basis).

The R code for obtaining the cross-validation predictions is

R> predictions= matrix(0, nrow=365, ncol=36)
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R> for (i in 1:36)
R> {
R> coord.cero=matrix(coordinates[i,], nrow=1,ncol=2)
R> okfd.res<-okfd(new.coords=coord.cero,
+ coords=coordinates[-i,], cov.model="exponential",
+ data=simulated.data[,-i], smooth.type="bsplines",
+ nbasis=15, argvals=argvals, fix.nugget=TRUE)
R> predictions[,i]=okfd.res$krig.new.data
R> }

We can plot the cross-validation predictions and the cross-validation residuals by
using the following code

R> matplot(predictions, lty=1, xlab="Time",ylab="Predictions",
+ main="Cross-validation predictions", type="l")
R> cross.residuals=simulated.smoothed-predictions
R> matplot(cross.residuals, lty=1, xlab="Time",
+ ylab="Residuals", main="Cross-validation residuals",
+ type="l")

The cross-validation predictions (left panel Figure 11) shows that the predictions
have the same temporal behavior as the smoothed curves (right panel Figure 10).
Note also that the prediction curves have less variance. This is not surprising,
because kriging is itself a smoothing method.

Figure 11 (right panel) shows cross-validation residuals. The predictions are
plausible in all sites because all the residual curves are varying around zero.

Figure 11: Left panel: Simulated data. Right panel: Smoothed curves (by using a
B-splines basis).

The cross-validation results based on simulated data show a good performance
of the proposed predictor, and indicate from a descriptive point of view that it can
be adopted as a valid method for modeling spatially correlated functional data.
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4. Conclusion

This paper introduces the R package geofd through an example. This package
contains functions for modeling the trace-variogram function and for carrying out
spatial prediction using the method of ordinary kriging for functional data. The
advancements in this package would not be possible without several other impor-
tant contributions to CRAN; these are reflected as geofd’s package dependencies.
The fda package by (Ramsay et al. 2010) provides methods for smoothing data by
using basis functions. The geoR package (Ribeiro & Diggle 2001) provides func-
tions to enable modeling the trace-variograma function. There remains scope for
further extensions to geofd. We can consider other approaches for smoothing the
data. For example, the use of wavelets could be useful for smoothing data with
rapid changes in behavior. We plan to continue adding methods to the package.
Continuous time varying kriging (Giraldo et al. 2010) and methods based on multi-
variable geostatistics (Giraldo 2009, Nerini et al. 2010) can be implemented in the
package. However the use of these approaches could be restrictive when the num-
ber of basis functions used for smoothing the data set is large. Computationally
efficient strategies are needed in this sense.
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Abstract
In this article goodness of fit tests for the Gumbel distribution with type

II right censored data are proposed. One test is based in earlier works u-
sing the Kullback Leibler information modified for censored data. The other
tests are based on the sample correlation coefficient and survival analysis
concepts. The critical values of the tests were obtained by Monte Carlo
simulation for different sample sizes and percentages of censored data. The
powers of the proposed tests were compared under several alternatives. The
simulation results show that the test based on the Kullback-Leibler informa-
tion is superior in terms of power to the correlation tests.

Key words: Correlation coefficient, Entropy, Monte Carlo simulation, Power
of a test.

Resumen
En este artículo se proponen pruebas de bondad de ajuste para la dis-

tribución Gumbel para datos censurados por la derecha Tipo II. Una prueba
se basa en trabajos previos en los que se modifica la información de Kullback-
Leibler para datos censurados. Las otras pruebas se basan en el coeficiente
de correlación muestral y en conceptos de análisis de supervivencia. Los va-
lores críticos se obtuvieron mediante simulación Monte Carlo para diferentes
tamaños de muestras y porcentajes de censura. La potencia de la pruebas se
compararon bajo varias alternativas. Los resultados de la simulación mues-
tran que la prueba basada en la Divergencia de Kullback-Leibler es superior
a las pruebas de correlación en términos de potencia.
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1. Introduction

The Gumbel distribution is one of the most used models to carry out risk ana-
lysis in extreme events, in reliability tests, and in life expectancy experiments. This
distribution is adequate to model natural phenomena, such as rainfall, floods, and
ozone levels, among others. In the literature there exist some goodness of fit tests
for this distribution, for example Stephens (1986), Lin, Huang & Balakrishnan
(2008), Castro-Kuriss (2011). Several of these proposals modify well known tests,
like the Kolmorogov-Smirnov and Anderson-Darling tests for type II censored data.

Ebrahimi, Habibullah & Soofi (1992), Song (2002), Lim & Park (2007), Pérez-
Rodríguez, Vaquera-Huerta & Villaseñor-Alva (2009), among others, provide evi-
dence that goodness of fit tests based on the Kullback-Leibler (1951) information
show equal or greater power performance than tests based on the correlation co-
efficient or on the empirical distribution function. Motivated by this fact, in this
article a goodness of fit test for the Gumbel distribution for type II right censored
samples is proposed, using concepts from survival analysis and information theory.

This paper is organized as follows. Section 2 contains the proposed test based
on Kullback-Leibler information as well as tables of critical values. In Section 3
we introduce two goodness of fit tests based on the correlation coefficient. Section
4 contains the results of a Monte Carlo simulation experiment performed in order
to study the power and size of the tests against several alternative distributions.
Section 5 presents two application examples with real datasets. Finally, some
conclusions are given in Section 6.

2. Test Statistic Based on Kullback-Leibler
Information

2.1. Derivation

Let X be a random variable with Gumbel distribution with location parameter
ξ ∈ R and scale parameter θ > 0, with probability density function (pdf) given
by:

f0(x; ξ, θ) =
1

θ
exp

{
−x− ξ

θ
− exp

{
−x− ξ

θ

}}
I(−∞,∞)(x) (1)

Let X(1), . . . , X(n) be an ordered random sample of size n of an unknown dis-
tribution F , with density function f(x) ∈ R and finite mean. If only the first r
(fixed) observations are available X(1), . . . , X(r) and the remaining n− r are unob-
served but are known to be greater than X(r) then we have type II right censoring.
We are interested in testing the following hypotheses set:

H0 : f(x; ·) = f0(x; ξ, θ) (2)
H1 : f(x; ·) 6= f0(x; ξ, θ) (3)
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That is, we wish to test if the sample comes from a Gumbel distribution with
unknown parameters ξ and θ. To discriminate between H0 and H1, the Kullback-
Leibler information for type II right censored data will be used, as proposed by
Lim & Park (2007). To measure the distance between two known densities, f(x)
and f0(x), with x < c; the incomplete Kullback-Leibler information from Lim &
Park (2007) can be considered, which is defined as:

KL(f, f0 : c) =

∫ c

−∞
f(x) log

f(x)

f0(x)
dx (4)

In the case of complete samples, it is easy to see that KL(f, f0 :∞) ≥ 0, and
the equality holds if f(x) = f0(x) almost everywhere. However, the incomplete
Kullback-Leibler information does not satisfy non-negativity any more. That is
KL(f, f0 : c) = 0 does not imply that f(x) be equal to f0(x), for any x within the
interval (−∞, c).

Lim & Park (2007) redefine the Kullback-Leibler information for the censored
case as:

KL∗(f, f0 : c) =

∫ c

−∞
f(x) log

f(x)

f0(x)
dx+ F0(c)− F (c) (5)

which has the following properties:

1. KL∗(f, f0 : c) ≥ 0.

2. KL∗(f, f0 : c) = 0 if and only if f(x) = f0(x) almost everywhere for x in
(−∞, c).

3. KL∗(f, f0 : c) is an increasing function of c.

In order to evaluate KL∗(f, f0 : c), f and f0 must be determined. So it
is necessary to propose estimators of these quantities based on the sample and
considering the hypothesis of interest. From equation (5), using properties of
logarithms we get:

KL∗(f, f0 : c) =

∫ c

−∞
f(x) log f(x)dx−

∫ c

−∞
f(x) log f0(x)dx︸ ︷︷ ︸

(?)

+F0(c)− F (c) (6)

To estimate f(x) for x < c, Lim & Park (2007) used the estimator proposed
by Park & Park (2003), which is given by:

f̂(x) =

{
0 if x < ν1

n−1 2m
x(i+m)−x(i−m)

if νi < x ≤ νi+1, i = 1, . . . , r
(7)

where νi=(x(i−m) + · · · + x(i+m−1))/(2m), i = 1, . . . , r and m is an unknown
window size and a positive integer usually smaller than n/2. From (7) Lim &
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Park (2007), built an estimator for
∫ c
−∞ f(x) log f(x)dx = −H(f : c) in (6), which

is given by:

H(m,n, r) =
1

n

r∑
i=1

log
[ n

2m

(
x(i+m) − x(i−m)

)]
(8)

where x(i) = x(1) for i < 1, x(i) = x(r) for i > r.

To estimate (?) in (6), Lim & Park (2007) proposed
∫ νr+1

−∞ f(x) log f0(x)dx,
which can be written as:

νr+1∫
−∞

f(x) log f0(x)dx =

ν2∫
ν1

f(x) log f0(x)dx+ · · ·+
νr+1∫
νr

f(x) log f0(x)dx

=

r∑
i=1

νi+1∫
νi

f(x) log f0(x)dx

︸ ︷︷ ︸
(??)

(9)

Substituting (1) and (7) in the i-th term of equation (9), we get:

(??) =
2mn−1

x(i+m) − x(i−m)

νi+1∫
νi

log f0 (x) dx

=
2mn−1

x(i+m) − x(i−m)

νi+1∫
νi

{
− log θ − x− ξ

θ
− exp

(
−x− ξ

θ

)}
dx

=
2mn−1

x(i+m) − x(i−m)

[
− log θx− 1

θ

(
x2

2
− ξx

)
+ θ exp

(
−x− ξ

θ

)]∣∣∣∣νi+1

νi

(10)

The estimator of F (c) in (6) can be obtained using (7), and it is given by
r/n (Lim & Park 2007). Finally, the estimator of the incomplete Kullback-Leibler
information for type II right censored dataKL∗(f, f0 : c), denoted asKL∗(m,n, r),
is obtained by substituting (8), (9), (10) and the Gumbel distribution function in
(6):

KL∗ (m,n, r) = −H(m,n, r) + exp

{
− exp

(
−νr+1 − ξ̂

θ̂

)}

− r

n
−

r∑
i=1

2mn−1

x(i+m) − x(i−m)

[
− log θ̂x− 1

θ̂

(
x2

2
− x
)]∣∣∣∣νi+1

νi

−
r∑
i=1

2mn−1

x(i+m) − x(i−m)

[
θ̂ exp

(
−x− ξ̂

θ̂

)]∣∣∣∣∣
νi+1

νi

(11)

where ξ̂ and θ̂ are Maximum Likelihood Estimators (MLE) of ξ and θ, respectively.
In the context of censored data, the estimators of Θ = (ξ, θ)

′ are obtained by
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numerically maximizing the following likelihood function:

L(Θ) =

n∏
i=1

{f0(xi; Θ)}δi {1− F0(xi; Θ)}1−δi

where δi = 0 if the i-th observation is censored and δi = 1 otherwise. We used
the Nelder & Mead (1965) algorithm included in optim routine available in R (R
Core Team 2012) to maximize this likelihood.

2.2. Decision Rule

Notice that under H0 the values of the test statistic should be close to 0,
therefore H0 is rejected at the significance level α if and only if KL∗(m,n, r) ≥
Km,n,r (α), where the critical value Km,n,r (α) is the (1− α)×100% quantile of the
distribution of KL∗(m,n, r) under the null hypothesis, which fulfills the following
condition:

α = P (Reject H0 | H0)

= P [KL∗(m,n, r) ≥ Km,n,r(α) | H0]

2.3. Distribution of the Test Statistic and Critical Values

The distribution of the test statistic under the null hypothesis is hard to obtain
analytically, since it depends on the unknown value of m and on non trivial trans-
formations of certain random variables, and of course it also depends on the degree
of censorship. Monte Carlo simulation was used to overcome these difficulties. The
distribution of KL∗(m,n, r) can be obtained using the following procedure.

1. Fix r, n, ξ, θ, m.

2. Generate a type II right censored sample of the Gumbel distribution, (x(1),
. . . ,x(n)),(δ1, . . . , δn).

3. Obtain the maximum likelihood estimators of ξ and θ.

4. Calculate KL∗(m,n, r) using (11).

5. Repeat steps 2, 3 and 4, B times, where B is the number of Monte Carlo
samples hereafter.

Figure 1 shows the distribution of the test statistic KL∗(m,n, r) for m = 3,
n = 50, r = 45, B = 10, 000, and for different values of parameters ξ and θ.
This figure deserves at least two comments. First of all, the distribution has a big
mass of probability close to 0 as expected under H0. Second, the distribution of
KL∗(m,n, r) is location and scale invariant under H0, that is, this distribution
does not depend on ξ, neither on θ, so the critical values can be obtained by setting
ξ = 0 and θ = 1 or any other pair of possible values.
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Figure 1: Estimated empirical distributions of KL∗(m = 3, n = 50, r = 45) generated
with B = 10, 000 samples from the Gumbel distribution for the parameters
specified in the legend.

The critical values Km,n,r (α) were obtained by Monte Carlo Simulation. The
used significance levels were α = 0.01, 0.02, 0.05, 0.10 and 0.15. Random samples
of the standard Gumbel distribution were generated for n ≤ 200, r/n = 0.5, 0.6,
0.7, 0.8, 0.9, and B = 10, 000. The value of KL∗(m,n, r) was calculated for
each m < n/2. For each m, n and r, the critical values were obtained with the
(1− α) × 100% quantiles of the empirical distribution function of KL∗(m,n, r).
For fixed values of n and r, the m value that minimizes Km,n,r (α) was taken.
Figure 2 plots the critical values Km,n,r(α) for n = 50, r = 40 and α = 0.05,
corresponding to several values of m. The value of m that minimizes Km,n,r (α)
in this case is m = 6. More details about how to fix m and get the critical values
can be found in Song (2002) and in Pérez-Rodríguez et al. (2009), among others.
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Figure 2: Critical values Km,n,r for n = 50, r = 40 and α = 0.05.
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Table 1 shows the critical values obtained by the simulation process described
above. An R program (R Core Team 2012) to get the critical values for any sample
size and percentage of censored observations is available upon request from the first
author.

Table 1: Critical values Km,n,r (α) of KL∗(m,n, r) test obtained by Monte Carlo simu-
lation.

α 0.01 0.02 0.05 0.10 0.15

n r m Km,n,r m Km,n,r m Km,n,r m Km,n,r m Km,n,r

8 6 0.1497 5 0.1393 5 0.1242 5 0.1145 4 0.1079
10 5 0.1662 6 0.1560 6 0.1361 5 0.1300 5 0.1237
12 8 0.1741 8 0.1688 7 0.1560 5 0.1460 5 0.1403

20 14 9 0.1912 8 0.1835 6 0.1724 6 0.1604 6 0.1566
16 7 0.2119 10 0.2061 9 0.1919 7 0.1845 7 0.1747
18 11 0.2470 11 0.2400 6 0.2225 5 0.2114 4 0.1990
15 10 0.1435 6 0.1379 6 0.1238 7 0.1122 6 0.1084
18 8 0.1592 7 0.1477 8 0.1381 7 0.1290 7 0.1220

30 21 10 0.1688 9 0.1609 8 0.1543 8 0.1424 5 0.1495
24 11 0.1865 10 0.1779 9 0.1708 8 0.1591 4 0.1342
27 14 0.2230 11 0.2075 6 0.1864 7 0.1732 4 0.1586
20 10 0.1302 10 0.1216 8 0.1105 8 0.1005 5 0.0981
24 10 0.1405 10 0.1337 12 0.1248 9 0.1152 6 0.1092

40 28 14 0.1540 11 0.1461 6 0.1385 8 0.1289 5 0.1155
32 13 0.1704 12 0.1640 10 0.1540 4 0.1371 6 0.1247
36 6 0.1989 7 0.1817 7 0.1604 7 0.1445 6 0.1318
25 11 0.1180 9 0.1107 10 0.1015 9 0.0954 7 0.0887
30 11 0.1273 12 0.1201 8 0.1148 7 0.1040 6 0.0956

50 35 12 0.1432 12 0.1342 6 0.1248 8 0.1103 5 0.1031
40 7 0.1597 7 0.1464 6 0.1301 6 0.1166 6 0.1102
45 6 0.1697 8 0.1559 7 0.1361 7 0.1274 6 0.1153
30 12 0.1084 12 0.1043 9 0.0949 5 0.0852 6 0.0784
36 12 0.1201 13 0.1144 6 0.1040 7 0.0920 6 0.0861

60 42 14 0.1342 11 0.1269 9 0.1116 7 0.0981 7 0.0900
48 6 0.1422 9 0.1325 7 0.1177 7 0.1069 8 0.0987
54 8 0.1499 8 0.1410 6 0.1248 7 0.1128 8 0.1043
35 12 0.1000 12 0.0953 5 0.0878 8 0.0787 5 0.0698
42 11 0.1129 9 0.1052 10 0.0974 6 0.0847 6 0.0797

70 49 8 0.1226 9 0.1116 6 0.1008 9 0.0922 7 0.0839
56 8 0.1289 9 0.1181 7 0.1084 7 0.0968 8 0.0893
63 7 0.1322 6 0.1282 9 0.1168 9 0.1027 7 0.0960
40 14 0.0949 7 0.0909 8 0.0827 6 0.0732 7 0.0670
48 11 0.1080 8 0.0988 7 0.0891 8 0.0793 7 0.0736

80 56 9 0.1051 9 0.1044 9 0.0940 8 0.0842 6 0.0779
64 10 0.1218 9 0.1114 7 0.0991 8 0.0884 8 0.0813
72 9 0.1251 6 0.1186 10 0.1028 9 0.0942 8 0.0873
45 10 0.0899 9 0.0854 7 0.0762 8 0.0680 9 0.0641
54 10 0.0949 10 0.0930 8 0.0804 8 0.0748 8 0.0700

90 63 10 0.1023 7 0.0954 9 0.0860 7 0.0785 10 0.0733
72 9 0.1115 10 0.1028 8 0.0933 10 0.0831 8 0.0767
81 9 0.1149 10 0.1085 8 0.0965 9 0.0866 8 0.0824
50 7 0.0877 8 0.0801 7 0.0709 7 0.0650 8 0.0596
60 7 0.0907 8 0.0849 9 0.0770 7 0.0691 9 0.0648
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Table 1. (Continuation)
α 0.01 0.02 0.05 0.10 0.15

n r m Km,n,r m Km,n,r m Km,n,r m Km,n,r m Km,n,r

100 70 8 0.0981 9 0.0901 7 0.0817 7 0.0725 7 0.0694
80 8 0.0981 12 0.0948 8 0.0857 10 0.0773 9 0.0723
90 9 0.1077 11 0.1000 9 0.0899 8 0.0834 9 0.0772
60 8 0.0754 11 0.0711 8 0.0644 8 0.0573 8 0.0536
72 10 0.0791 9 0.0744 10 0.0696 8 0.0630 8 0.0586

120 84 7 0.0860 10 0.0809 8 0.0745 9 0.0659 8 0.0628
96 9 0.0869 10 0.0841 9 0.0771 10 0.0714 10 0.0659
108 12 0.0943 10 0.0903 9 0.0810 10 0.0742 8 0.0682
70 8 0.0692 11 0.0652 9 0.0572 8 0.0534 9 0.0491
84 10 0.0746 11 0.0695 8 0.0632 8 0.0574 8 0.0524

140 98 10 0.0767 10 0.0737 8 0.0660 9 0.0599 9 0.0566
112 10 0.0812 14 0.0791 11 0.0701 11 0.0636 11 0.0602
126 12 0.0871 11 0.0807 10 0.0734 10 0.0659 9 0.0643
80 11 0.0638 11 0.0606 12 0.0542 10 0.0481 9 0.0452
96 8 0.0675 11 0.0622 10 0.0577 9 0.0530 9 0.0488

160 112 13 0.0731 9 0.0674 11 0.0601 10 0.0564 10 0.0529
128 11 0.0750 11 0.0704 10 0.0635 9 0.0594 12 0.0561
144 12 0.0762 11 0.0755 11 0.0675 11 0.0615 11 0.0575
90 8 0.0592 11 0.0561 9 0.0504 8 0.0448 9 0.0432
108 14 0.0628 10 0.0578 10 0.0536 12 0.0483 10 0.0454

180 126 10 0.0652 13 0.0623 9 0.0565 9 0.0530 12 0.0486
144 12 0.0709 14 0.0671 12 0.0600 11 0.0550 10 0.0523
162 12 0.0723 13 0.0688 11 0.0628 10 0.0576 12 0.0555
100 12 0.0548 10 0.0522 12 0.0466 9 0.0423 10 0.0403
120 14 0.0582 12 0.0564 12 0.0506 11 0.0459 9 0.0436

200 140 13 0.0620 10 0.0591 12 0.0531 11 0.0488 13 0.0462
160 10 0.0665 13 0.0623 12 0.0564 12 0.0523 13 0.0491
180 13 0.0680 13 0.0631 14 0.0594 11 0.0541 13 0.0516

3. Correlation Tests

In this section we derive two tests based on the correlation coefficient for the
Gumbel distribution for type II right censored data. The proposed tests will allow
us to test the set of hypotheses given in (2) and (3) with unknown parameters ξ
and θ. The first test is based on Kaplan & Meier (1958) estimator for the survival
function, and the second test is based on Nelson (1972) and Aalen (1978) estimator
for the cumulative risk function. A similar test was proposed by Saldaña-Zepeda,
Vaquera-Huerta & Arnold (2010) for assessing the goodness of fit of the Pareto
distribution for type II right censored random samples.

Note that the survival function for the Gumbel distribution is:

S(x) = 1− F0(x) = 1− exp

{
− exp

{
−x− ξ

θ

}}
Then

1− S (x) = exp

{
− exp

{
−x− ξ

θ

}}
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Thus, taking logarithms twice on both sides of the last expression, we have

y = log {− log {1− S (x)}} =
x− ξ
θ

(12)

Equation (12) indicates that, under H0, there is a linear relationship between
y and x. Once a type II right censored random sample of size n is observed, it is
possible to obtain an estimation of S(x) using the Kaplan-Meier estimator:

Ŝ (x) =
∏

x(i)≤x

(
n− i

n− i+ 1

)δi
(13)

where δi = 0 if the i−th observation is censored and δi = 1 otherwise.
It is well known that the survival function can also be obtained from the cu-

mulative risk function H(x) since S(x) = exp(−H(x)). The function H(x) can
be estimated using Nelson (1972) and Aalen (1978) estimator, which for a type
II right censored random sample of size n from a continuous population, can be
calculated as follows:

H̃(x(i)) =

i∑
j=1

1

n− j + 1
(14)

Substituting S(x) = exp(−H(x)) into equation (12) we have:

z = log {− log {1− exp(−H (x))}} =
x− ξ
θ

(15)

Equation (15) indicates that, under H0, there is a linear relationship between
z and x.

The sample correlation coefficient is used for measuring the degree of linear
association between x and y (x and z), which is given by:

R =

∑n
i=1 (xi − x) (yi − ȳ)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2

where x̄ =
∑n
i=1 xi/n and ȳ =

∑n
i=1 yi/n.

LetRK−M andRN−A denote the sample correlation coefficient based on Kaplan-
Meier and Nelson-Aalen estimators, respectively. Notice that, underH0, the values
of RK−M and RN−A are expected to be close to one. Therefore, the decision rules
for the tests based on RK−M and RN−A are:

• Reject H0 at a significance level α if RK−M ≤ KK−M (α), where α =
P (RK−M ≤ KK−M (α)|H0).

• Reject H0 at a significance level α if RN−A
≤ KN−A(α), where α = P (RN−A ≤ KN−A(α)|H0).
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The critical values KK−M (α) and KN−A(α) are the 100α% quantiles of the
null distributions of RK−M and RN−A respectively. These values can be obtained
by Monte Carlo simulation using the following algorithm:

1. Fix n, r, ξ = 0, θ = 1.

2. Generate a type II right censored random sample from the Gumbel distri-
bution,

(
x(1), . . . , x(n)

)
, (δ1, . . . , δn).

3. Compute Ŝ (x) and H̃ (x) using expressions (13) and (14).

4. Calculate y and z using expressions (12) and (15).

5. Calculate RK−M and RN−A.

6. Repeat steps 2 to 5 B times.

7. Take KK−M (α) and KN−A(α) equal to the αB-th order statistic of the
simulated values of RK−M and RN−A, respectively.

Figure 3 shows the null distributions of RK−M and RN−A for n = 100, r = 80
and several values for the location and scale parameters, which were obtained using
B = 10, 000 Monte Carlo samples. Observe that the null distributions of RK−M
and RN−A are quite similar. Also notice that the mass of probability is concen-
trated close to one, as expected. This Figure provides an empirical confirmation
of the well known fact that the sample correlation coefficient is location-scale in-
variant.
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Figure 3: Null distribution of RK−M (left) and RN−A (right) for B = 10, 000, n = 100,
r = 80 and different values of the location and scale parameters.

Tables 2 and 3 contain the critical values for RK−M and RN−A tests corres-
ponding to n ≤ 100, % of censorship = 10(10)80 and α = 0.051. Notice that for

1An R program (R Core Team 2012) to get the critical values of RK−M and RN−A tests for
any sample size, percentage of censorship and test size is available from the first author.
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every fixed value of n, the critical values decrease as the percentage of censored
observations increases. For a fixed percentage of censorship, the critical values
decrease as the sample size increases, since the sample correlation coefficient is a
consistent estimator.

Table 2: Critical values KK−M (α) for RK−M test obtained with 10,000 Monte Carlo
samples.

n
% Censored

10 20 30 40 50 60 70 80
10 0.9013 0.9017 0.8948 0.8871 0.8754 0.8629 0.8686 –
20 0.9459 0.9424 0.9385 0.9296 0.9169 0.9048 0.8852 0.8686
30 0.9626 0.9619 0.9564 0.9483 0.9386 0.9271 0.9071 0.8859
40 0.9715 0.9707 0.9672 0.9608 0.9521 0.9414 0.9261 0.9006
50 0.9771 0.9757 0.9725 0.9685 0.9600 0.9507 0.9375 0.9135
60 0.9811 0.9799 0.9766 0.9722 0.9664 0.9576 0.9444 0.9238
70 0.9838 0.9824 0.9795 0.9763 0.9708 0.9632 0.9504 0.9337
80 0.9857 0.9846 0.9824 0.9789 0.9740 0.9670 0.9561 0.9398
90 0.9871 0.9863 0.9842 0.9806 0.9768 0.9703 0.9605 0.9428
100 0.9887 0.9878 0.9861 0.9830 0.9793 0.9729 0.9628 0.9460

Table 3: Critical values KN−A(α) for RN−A test obtained with 10,000 Monte Carlo
samples.

n
% Censored

10 20 30 40 50 60 70 80
10 0.9097 0.9030 0.8960 0.8839 0.8779 0.8658 0.8671 –
20 0.9484 0.9441 0.9383 0.9302 0.9188 0.9036 0.8866 0.8679
30 0.9642 0.9618 0.9568 0.9492 0.9408 0.9260 0.9084 0.8851
40 0.9724 0.9703 0.9666 0.9612 0.9539 0.9416 0.9246 0.8997
50 0.9778 0.9762 0.9727 0.9681 0.9608 0.9508 0.9351 0.9148
60 0.9818 0.9796 0.9765 0.9726 0.9664 0.9572 0.9441 0.9239
70 0.9839 0.9831 0.9806 0.9761 0.9712 0.9631 0.9514 0.9314
80 0.9862 0.9851 0.9826 0.9786 0.9740 0.9676 0.9557 0.9380
90 0.9875 0.9864 0.9841 0.9810 0.9762 0.9698 0.9608 0.9423
100 0.9887 0.9877 0.9857 0.9832 0.9790 0.9727 0.9630 0.9471

4. Power and Size of the Tests

A Monte Carlo simulation experiment was conducted in order to study the
actual level and power of the Kullback-Leibler test (KL) and the correlation tests
based on Kaplan-Meier and Nelson-Aalen estimators (RK−M and RN−A).

Table 4 presents the actual levels of tests for several test sizes (α = 0.01, 0.02,
0.05, 0.10 and 0.15). Observe that the estimated test size is close to the nominal
test size in almost all cases.

Table 5 shows the estimated powers of KL, RK−M and RN−A tests against the
following alternative distributions: Weibull(3, 1), Weibull(0.5, 1), Gamma(3, 1),
Gamma(0.8, 1), Log−normal(1, 1) and Log−normal(5, 3). These alternatives in-
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Table 4: Estimated test size of the KL, RK−M and RN−A tests.
n % Censored α RK−M RN−A KL

0.01 0.011 0.007 0.011
0.02 0.019 0.016 0.019

20 50 0.05 0.055 0.050 0.058
0.10 0.099 0.103 0.113
0.15 0.150 0.146 0.148
0.01 0.017 0.012 0.014
0.02 0.018 0.019 0.025

50 20 0.05 0.047 0.050 0.053
0.10 0.097 0.101 0.107
0.15 0.150 0.146 0.145

clude monotone increasing, monotone decreasing and non-monotone hazard func-
tions, just as in Saldaña-Zepeda et al. (2010). Every entry of this table was
calculated using B = 10, 000 Monte Carlo samples at a significance level α = 0.05.

The main observations that can be made from this table are the following:

• The powers of the tests increase as the sample size increases.

• Under every considered alternative distribution, the tests lose power as the
percentage of censorship gets larger for a fixed sample size.

• The KL test is in general more powerful than the correlation tests. RN−A
is slightly more powerful than RK−M .

• The tests RN−A and RK−M have little power against Gamma(3, 1) alterna-
tives.

• The three tests have no power against Weibull(3, 1) alternatives.

Table 5: Estimated power of theKL, RK−M and RN−A tests under several alternatives,
for a significance level α = 0.05.

Alternative n (%) Censored RK−M RN−A KL

Weibull(3, 1) 20 20 0.0950 0.0860 0.0701
50 0.0547 0.0541 0.0493

50 20 0.1636 0.1640 0.1264
50 0.0559 0.0543 0.0526

100 20 0.2989 0.2806 0.2023
50 0.0693 0.0623 0.0907

Weibull(0.5, 1) 20 20 0.8095 0.8445 0.9642
50 0.5890 0.6177 0.8151

50 20 0.9998 0.9995 1.0000
50 0.9844 0.9850 0.9996

100 20 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000

Gamma(3, 1) 20 20 0.0330 0.0372 0.0913
50 0.0425 0.0444 0.1090

50 20 0.0390 0.0472 0.1344
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Table 5. (Continuation)

Alternative n (%) Censored RK−M RN−A KL

50 0.0368 0.0420 0.1342
100 20 0.0704 0.0697 0.1959

50 0.0527 0.0530 0.1504
Gamma(0.8, 1) 20 20 0.2613 0.3034 0.6168

50 0.2091 0.2277 0.4588
50 20 0.7775 0.8081 0.9762

50 0.6054 0.6239 0.9321
100 20 0.9957 0.9955 0.9998

50 0.9608 0.9632 0.9967
Log − normal(1, 1) 20 20 0.2180 0.2666 0.4917

50 0.0964 0.1053 0.2864
50 20 0.6337 0.6641 0.8254

50 0.2242 0.2434 0.5691
100 20 0.9543 0.9559 0.9887

50 0.5671 0.5569 0.7433
Log − normal(5, 2) 20 20 0.7914 0.8280 0.9466

50 0.4237 0.4416 0.6815
50 20 0.9990 0.9997 1.0000

50 0.9059 0.9043 0.9929
100 20 1.0000 1.0000 1.0000

50 0.9989 0.9991 1.0000

5. Application Examples

In this section, two application examples are presented, in which the hypotheses
stated in equation (2) and (3) will be proven. This will allow us to carry out
the goodness of fit test of the Gumbel distribution, using the Kullback-Leibler,
Kaplan-Meier, and Nelson-Aalen test statistics.

Example 1. The data used in this example are from a life expectancy experiment
reported by Balakrishnan & Chen (1999). Twenty three ball bearings were placed
in the experiment. The data corresponds to the millions of revolutions before
failure for each of the bearings. The experiment was terminated once the twentieth
ball failed. The data are shown in Table 6.

Table 6: Millions of revolutions before failure for the ball bearing experiment.
xi δi xi δi xi δi xi δi xi δi

17.88 1 45.60 1 55.56 1 84.12 1 105.84 0
28.92 1 48.48 1 67.80 1 93.12 1 105.84 0
33.00 1 51.84 1 68.64 1 96.64 1 105.84 0
41.52 1 51.96 1 68.65 1 105.12 1
42.12 1 54.12 1 68.88 1 105.84 1

The MLE for the location and scale parameters are ξ̂ = 55.1535 and θ̂ =
26.8124. The critical values for n = 23 and r = 20 can be obtained from Tables
1, 2 and 3 using interpolation. Table 7, shows the critical values for α = 0.05, the
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value of the statistics KL∗(m,n, r), RK−M and RN−A. The conclusion is that we
do not have enough evidence to reject H0 indicating that the data adjust well to
a Gumbel model.

Table 7: Test comparison for example 1.
Test Critical value Value of the test statistic Decision
KL KL7,23,20(0.05) = 0.2037 KL∗

m,n,r = 0.1373 Not reject H0

KM KK−M (0.05) = 0.9501 RK−M = 0.9885 Not reject H0

NA KN−A(0.05) = 0.9520 RN−A = 0.9880 Not reject H0

Example 2. The data used in this example were originally presented by Xia,
Yu, Cheng, Liu & Wang (2009) and then were analyzed by Saraçoğlu, Kinaci &
Kundu (2012) under different censoring schemas. The data corresponds to break-
ing strengths of jute fiber for different gauge lengths. For illustrative purposes, we
assume that only the 24/30 smallest breaking strengths for 20 mm gauge length
were observed. The data are shown in Table 8. It is known that this dataset
can be modeled by using an exponential distribution, so we expect to reject the
null hypothesis given in (2) when applying the goodness of fit tests previously
discussed.

Table 8: Breaking strength of jute fiber of gauge length 20 mm.
xi δi xi δi xi δi xi δi xi δi

36.75 1 113.85 1 187.85 1 419.02 1 585.57 0
45.58 1 116.99 1 200.16 1 456.60 1 585.57 0
48.01 1 119.86 1 244.53 1 547.44 1 585.57 0
71.46 1 145.96 1 284.64 1 578.62 1 585.57 0
83.55 1 166.49 1 350.70 1 581.60 1 585.57 0
99.72 1 187.13 1 375.81 1 585.57 1 585.57 0

The maximum likelihood estimators for the location and scale parameters are
ξ̂ = 232.0995 and θ̂ = 210.0513, respectively. Table 9 shows the critical values
for α = 0.05 (from Tables 1, 2 and 3) and the values of the test statistics for
the data previously discussed. The three statistics reject the null hypothesis, so
there is evidence that shows that the data can not be modeled by using a Gumbel
distribution.

Table 9: Test comparison for example 2.
Test Critical value Value of the test statistic Decision
KL KL9,30,24(0.05) = 0.1708 KL∗

m,n,r = 0.2274 Reject H0

KM KK−M (0.05) = 0.9618 RK−M = 0.9595 Reject H0

NA KN−A(0.05) = 0.9619 RN−A = 0.9577 Reject H0

6. Concluding Remarks

The simulation results indicate that the proposed tests KL∗(m,n, r), RK−M
have a good control of the type I error probability, while the RN−A test under-
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estimate this level. The test based on the Kullback-Leibler information is better
in terms of power than the tests based on the sample correlation coefficient under
the considered alternative distributions. In future work, it would be interesting
to derive the null distribution of the test statistics for finite samples as well as for
the limit case.
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Abstract
A discussion on the entropy of the Spanish language by means of a practi-

cal method for calculating the entropy of a text by direct computer processing
is presented. As an example of application, thirty samples of Spanish text
are analyzed, totaling 22.8 million characters. Symbol lengths from n = 1 to
500 were considered for both words and characters. Both direct computer
processing and the probability law of large numbers were employed for cal-
culating the probability distribution of the symbols. An empirical relation
on entropy involving the length of the text (in characters) and the number of
different words in the text is presented. Statistical properties of the Spanish
language when viewed as produced by a stochastic source, (such as origin
shift invariance, ergodicity and asymptotic equipartition property) are also
analyzed.

Key words: Law of large numbers, Shannon entropy, Stochastic process,
Zipf’s law.

Resumen
Se presenta una discusión sobre la entropía de la lengua española por

medio de un método práctico para el cálculo de la entropía de un texto me-
diante procesamiento informático directo. Como un ejemplo de aplicación,
se analizan treinta muestras de texto español, sumando un total de 22,8 mil-
lones de caracteres. Longitudes de símbolos desde n = 1 hasta 500 fueron
consideradas tanto para palabras como caracteres. Para el cálculo de la
distribución de probabilidad de los símbolos se emplearon procesamiento di-
recto por computador y la ley de probabilidad de los grandes números. Se
presenta una relación empírica de la entropía con la longitud del texto (en
caracteres) y el número de palabras diferentes en el texto. Se analizan tam-
bién propiedades estadísticas de la lengua española cuando se considera como
producida por una fuente estocástica, tales como la invarianza al desplaza-
miento del origen, ergodicidad y la propiedad de equipartición asintótica.

Palabras clave: entropía de Shannon, ley de grandes números, ley de Zipf,
procesos estocásticos.
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1. Introduction

Spanish is a language which is used by more than four hundred million people
in more than twenty countries, and it has been making its presence increasingly
felt on the Internet (Marchesi 2007). Yet this language has not been as extensively
researched at entropy level. The very few calculations which have been reported
have been obtained, as for most languages, by indirect methods, due in part to the
complexity of the problem. Having accurate entropy calculations for the Spanish
language can thus be considered a pending task. Knowing the value of H, in
general for any language, is useful for source coding, cryptography, language space
dimension analysis, plagiarism detection, and so on. Entropy calculation is at the
lowest level of language analysis because it only takes into account source symbol
statistics and their statistical dependence, without any further consideration of
more intelligent aspects of language such as grammar, semantics, punctuation
marks (which can considerably change the meaning of a sentence), word clustering,
and so on.

Several approaches have been devised for several decades for finding the entropy
of a language. Shannon (1948) initially showed that one possible way to calculate
the entropy of a language, H, would be through the limit H = limn→∞− 1

nH(Bi),
where Bi is a sequence of n symbols. Finding H using methods such as the one
suggested by this approach is difficult since it assumes that the probability of
the sequences, p(Bi), is an asymptotically increasing function of n, as n tends
to infinity. Another difficulty posed by this approach is that an extremely large
sample of text would be required, one that considered all possible uses of the lan-
guage. Another suggested way to calculate H is by taking H = limn→∞ Fn, where
Fn = H(j|Bi) = H(Bij) −H(Bi). Bi is a block of n-1 symbols, j is the symbol
next to Bi, H(j|Bi) is the conditional entropy of symbol j given block Bi. In this
approach, the series of approximations F1, F2, . . . provides progressive values of
conditional entropy. Fn, in bits/symbol, measures the amount of information in a
symbol considering the previous n−1 consecutive symbols, due to the statistics of
the language. The difficulty of using these previous methods in practice was put
under evidence when in his pioneering work Shannon (1951) used instead a hu-
man prediction approach for estimating the entropy of English, getting 0.6 and 1.3
bits/letter as bounds for printed English, considering 100-letter sequences. Gam-
bling estimations have also been used, providing an entropy estimation of 1.25 bits
per character for English (Cover & King 1978). The entropy rate of a language
could also be estimated using ideal source coders since, by definition, this kind of
coder should compress to the entropy limit. A value of 1.46 bits per character has
been reported for the entropy of English by means of data compression (Teahan &
Cleary 1996). The entropy of the fruit fly genetic code has been estimated using
universal data compression algorithms (Wyner, Jacob & Wyner 1998). As for the
Spanish language, values of 4.70, 4.015, and 1.97 bits/letter for F0, F1, and FW

respectively were reported (Barnard III 1955) using an extrapolation technique
on frequency data obtained from a sample of 6,513 different words. FW is the
entropy, in bits/letter, based on single-word frequency.
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Another venue for finding H has been based on a purely mathematical frame-
work derived from stochastic theory, such as the one proposed by Crutchfield &
Feldman (2003). Unfortunately, as the same authors recognize it, it has lead, in
practice, to very limited results for finding the entropy of a language. In general,
as all these results suggest, finding the entropy of a language by classic methods
has proved to be a challenging task. Despite some remarkable findings in the past
decades, the search for a unified mathematical model continues to be an open
problem (Debowski 2011).

In the past it was implicitly believed that attempting to find the average un-
certainty content of a language by direct analysis of sufficiently long samples could
be a very difficult task to accomplish. Fortunately, computer processing capacity
available at present has made feasible tackling some computing intensive problems
such as the search in large geometric spaces employed in this work. Michel, Shen,
Aiden, Veres, Gray, Team, Pickett, Hoiberg, Clancy, Norvig, Orwant, Pinker,
Nowak & Aiden (2011) discuss, as an example of this trend, the use of huge com-
putational resources to research the relationship between linguistics and cultural
phenomena. This paper is organized as follows: In Section 2 the methodology
used to obtain all the values reported is discussed; in Section 3 the results of the
observations are presented; Section 4 presents a discussion and analysis of the
most relevant results and, finally, in Section 5 the main conclusions of this work
are summarized. All the samples and support material used in this work are pub-
licly available at http://sistel-uv.univalle.edu.co/EWS.html. Aspects such as the
analysis of grammar, semantics, and compression theory are beyond the scope of
this paper.

2. Methodology

Thirty samples of literature available in Spanish were chosen for this study.
Tables 1 and 2 show the details of the samples and its basic statistics. The works
used in this paper as samples of written Spanish were obtained from public li-
braries available on the Internet such as librodot 1 and the virtual library Miguel
de Cervantes 2. The selection of the samples was done without any particular con-
sideration of publication period, author’s country of origin, and suchlike. A file of
news provided to the author by the Spanish press agency EFE was also included
in the samples for analysis. The selected material was processed using a T3500
Dell workstation with 4 GB RAM. The software used to do the all the calculations
presented in this work was written in Mathematica R© 8.0. For simplicity, a slight
preprocessing was done on each sample, leaving only printable characters. Strings
of several spaces were reduced to one character and the line feed control character
(carry return) was replaced by a space character, allowing for fairer comparisons
between samples. The samples were character encoded using the ISO 8859-1 stan-
dard (8-bit single-byte coded graphic character sets - Part 1: Latin alphabet No.
1) which has 191 characters from the Latin script, providing a full set of charac-

1http://www.librodot.com
2http://www.cervantesvirtual.com
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ters for the Spanish language. For instance, the ñ letter corresponds to 0xf1, etc.
The total amount of characters of the thirty samples in table 1 is 22,882,449 and
the total amount of words is 4,024,911. The rounded average for the number of
different one-character symbols (uppercase, lowercase, and punctuation marks) for
the thirty samples was 93. The reason we consider the distinction between upper-
case and lowercase symbols is that when characterizing an information source at
entropy level, lowercase and uppercase symbols produce different message vectors
from the transmission point of view (e.g. the word HELLO produces a completely
different message vector than the word hello).

Table 1: Set of Text Samples
Sample Name Author
1 La Biblia Several authors
2 efe-B2 EFE Press agency
3 Amalia José Mármol
4 Crimen y Castigo Fyodor Dostoevsky
5 Rayuela Julio Cortázar
6 Doña Urraca de Castilla F. Navarro Villoslada
7 El Corán Prophet Muhammad
8 Cien Años de Soledad Gabriel García Márquez
9 La Araucana Alonso de Ercilla
10 El Papa Verde Miguel Angel Asturias
11 América Franz Kafka
12 La Altísima Felipe Trigo
13 Al Primer Vuelo José María de Pereda
14 Harry Potter y la Cámara Secreta J.K. Rowling
15 María Jorge Isaacs
16 Adiós a las Armas Ernest Hemingway
17 Colmillo Blanco Jack London
18 El Alférez Real Eustaquio Palacios
19 Cañas y Barro Vicente Blasco Ibáñez
20 Aurora Roja Pío Baroja
21 El Comendador Mendoza Juan C. Valera
22 El Archipiélago en Llamas Jules Verne
23 Doña Luz Juan Valera
24 El Cisne de Vilamorta Emilia Pardo Bazán
25 Cuarto Menguante Enrique Cerdán Tato
26 Las Cerezas del Cementerio Gabriel Miró
27 Tristana Benito Pérez Galdós
28 Historia de la Vida del Buscón Francisco de Quevedo
29 El Caudillo Armando José del Valle
30 Creció Espesa la Yerba Carmen Conde

In Table 2 the parameter α is the average word length, given by
∑
Lipi, where

Li and pi are the length in characters and the probability of the i-th word respec-
tively. The weighted average of α for the whole set of samples is 4.491 letters per
word. The word dispersion ratio, WDR, is the percentage of different words over
the total number of words.

The values of entropy were calculated using the entropy formula
∑
pi log2 pi.

The frequency of the different symbols (n-character or n-word symbols) and the law
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of large numbers were used to find the symbol probabilities as pi ≈ ni/ntotal. First,
we started considering word symbols, since words are the constituent elements of
the language. However, a more refined analysis based on characters was also
carried out. Entropy values for both n-character and n-word symbols from n=1
to 500 were calculated. Considering symbols up to a length of five hundred was a
suitable number for practical proposes, this will be discussed in the next section.

Table 2: Sample Details

Sample Number of
Characters

Alphabet
Size (AS)

Number of
Words

Different
Words

WDR(%) α

1 5722041 100 1049511 40806 3.89 4.27
2 1669584 110 279917 27780 9.92 4.80
3 1327689 88 231860 18871 8.14 4.51
4 1215215 91 207444 17687 8.53 4.63
5 984129 117 172754 22412 12.97 4.50
6 939952 84 161828 17487 10.81 4.58
7 884841 93 160583 12236 7.62 4.32
8 805614 84 137783 15970 11.59 4.73
9 751698 82 129888 15128 11.65 4.63

10 676121 93 118343 16731 14.14 4.45
11 594392 88 101904 11219 11.01 4.66
12 573399 89 98577 14645 14.86 4.53
13 563060 82 100797 13163 13.06 4.35
14 528706 89 91384 10884 11.91 4.60
15 499131 87 88376 12680 14.35 4.45
16 471391 91 81803 10069 12.31 4.49
17 465032 91 81223 10027 12.35 4.58
18 462326 89 82552 10699 12.96 4.43
19 436444 79 75008 10741 14.32 4.66
20 393920 90 68729 10598 15.42 4.47
21 387617 86 69549 10289 14.79 4.38
22 363171 88 61384 8472 13.80 4.73
23 331921 83 59486 9779 16.44 4.41
24 312174 77 53035 11857 22.36 4.65
25 304837 87 49835 12945 25.98 4.95
26 302100 75 51544 10210 19.81 4.64
27 299951 82 52571 10580 20.13 4.48
28 232236 74 42956 7660 17.83 4.23
29 224382 83 36474 7470 20.48 5.00
30 159375 81 27813 6087 21.89 4.48

One worthwhile question at this point is “does entropy change when changing
the origin point in the sample?”. For this purpose, we calculated entropy values
considering symbols for different shifts from the origin for non overlapping symbols,
as illustrated by figure 1, for the case of trigrams.

It can easily be seen that, for symbols of length n, symbols start repeating (i.e.,
symbols are the same as for shift=0, except for the first one) after n shifts. As
a result, the number of individual entropy calculations when analyzing symbols
from length n = 1 up to k was k(k+1)

2 . For the k = 500 case used in this work,
this gives 125,250 individual entropy calculations for every sample analyzed. The
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Figure 1: Origin invariance analysis.

individual shift entropies so obtained were then averaged for every n. Values of n
for which the maximum value of entropy was produced were identified, as well as
values of n from which all symbols present in the text become equiprobable with
reasonable certainty, i.e., none of them repeat more than once in the sample.

3. Results

3.1. Entropy Values Considering Words

Figure 2 shows the values of average entropy for n-word symbols. For ease of
display, only data for samples 1, 2, 12 and 30 and n = 1 to 20 are shown. The rest
of the literary works exhibited the same curve shapes with values in between. All
the analyzed samples exhibited invariance to origin shift. For example, for sample
8 (Cien Años de Soledad) the values for n = 4 were: 15.024492 (shift = 0),
15.028578 (shift = 1), 15.025693 (shift = 2), 15.027212 (shift = 3). This means
that P (w1, ..wL) = P (w1+s, ..wL+s) for any integer s, where {w1, ..wL} is a L-word
sequence. This is a very useful property to quickly find the entropy of a text it
because it makes necessary to compute values for just one shift thus reducing the
process to a few seconds for practical purposes.

Also since the weighted value for 1-word entropy for the set analyzed was
10.0064 bits/character, the weighted value of FW is therefore 2.23 bits/character.

3.2. Entropy Values Considering n-Character Symbols

Figure 3 shows the averaged entropy values for n-character symbols. Again for
ease of display, only data for samples 1, 2, 12 and 30 and n = 1 to 100 are shown.
All samples also exhibited the origin shift invariance property. For example, for
sample 8 (Cien Años de Soledad), the values of entropy for n = 4 characters were:
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Figure 2: Entropy for n-word symbols for samples 1, 2, 12 and 30.

12.267881 (shift = 0), 12.264343 (shift = 1), 12.268751 (shift = 2), 12.269691
(shift = 3). Therefore, P (c1, .., cL) = P (c1+s, .., cL+s) for any integer s. As in
the case of words, the rest of literary works exhibited the same curve shapes with
values in between.
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Figure 3: Log Plot of entropy for n-character symbols for samples 1, 2, 12 and 30.

3.3. Processing Time

Figure 4 shows the processing time of every sample for both words and charac-
ters for all shifts of n (1 ≤ n ≤ 500), that is, 125,250 entropy calculations for each
sample. Due to the origin shift invariance property, only calculations for one shift
(for instance shift = 0) are strictly required thus reducing the time substantially.
For example, the processing time of sample 1 for only one shift was 433 seconds
while the processing time for sample 30 was just nine seconds. Analysis for all
shifts of n were done in this work in order to see if entropy varied when changing
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the point of origin in the text. A carefully designed algorithm based on Math-
ematica’s sorting functions was employed to obtain the probability of symbols,
however, a discussion on the optimality of this processing is beyond the scope of
this paper.
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Figure 4: Processing time considering all shifts of n (125,250 entropy calculations)

3.4. Reverse Entropy

If we take the text in reverse order, for instance “yportne eht no” instead of “on
the entropy”, it is possible to evaluate the reverse conditional entropy, that is, the
effect of knowing how much information can be gained about a previous character
when later characters are known. It was observed that entropy of the reverse text
carried out for the same set of samples produced exactly the same values as for
the forward entropy case. This was first observed by Shannon for the case of the
English language in his classical work (Shannon 1951) on English prediction.

4. Discussion

4.1. Frequency of Symbols and Entropy

Figure 5 shows a plot of the fundamental measure function of information,
pi log2 pi, which is at the core of the entropy formula. This function has its max-
imum, 0.530738, at pi = 0.36788. Therefore, infrequent symbols, as well as very
frequent symbols, add very little to the total entropy. This should not be con-
fused with the value of pi = 1

n that produces the maximum amount of entropy for
a probability space with n possible outcomes. The entropy model certainly has
some limitations because entropy calculation is based solely on probability distri-
bution. In fact, two different texts with very different location of words can have
the same entropy, yet one of them can lead to a very much more efficient source
encoding than the other.
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Figure 5: Fundamental function of information.

4.2. Log-log Plots and the Spanish Language Constant

The fact that the basic statistical properties of entropy are essentially the same
for short length symbols regardless of the sample (and the entropy is similar for
any shift of the origin) means it is possible to use a sufficiently long sample, for
instance sample 2, to study the Spanish language constant. Figure 6 shows the
log-log plot for sample 2 which contained 82,656 different 3-word symbols, 79,704
different 2-word symbols, and 27,780 different 1-word symbols. Log-log plots for
the rest of samples were found to be similar to those of figure 6, at least for 2-word
and 1-word symbols.

Figure 6: Symbol rank versus n-word probability in Sample 2.
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Smoothing the 1-word curve in figure 6, the probability of the r-th most fre-
quent 1-word symbol is close to 0.08/r, assuming r is not too large. This behavior
corresponds to the celebrated Zipf law first presented in 1939 (Zipf 1965) which
nowadays some authors also call the Zipf-Mandelbrot law (Debowski 2011). Fig-
ure 7 shows the log-log plot for for sample 2 which contained 14,693 different
trigrams, 2,512 different digrams, and 110 different characters; all values consid-
ered for shift = 0. Log-log plots for the rest of the samples were found to be similar
to those of figure 7. Even when a distinction between upper case and lower case
symbols is made in this work, no significant difference was found with the constant
obtained when analyzing the database of the 81,323 most frequent words (which
makes no distinction between upper case and lower case symbols). This database
was compiled by Alameda & Cuetos (1995) from a corpus of 1,950,375 words of
written Spanish.

Figure 7: Symbol rank versus n-character probability for Sample 2.

4.3. Conditional Entropy

We now evaluate the uncertainty content of a character given some previous
text. Initially F0, in bits per character, is given by log2(AS), where AS is the
alphabet size. F1 takes into account single-character frequencies and it is given by
F1 =

∑
i

pi log2 pi. F2 considers the uncertainty content of a character given the

previous one:

F2 = −
∑
i,j

p(i, j) log2 p(j|i) = −
∑
i,j

p(i, j) log2 p(i, j) +
∑
i

pi log2 pi (1)
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Similarly, F3 gives the entropy of a character given the previous two characters
(digram):

F3 = −
∑
i,j,k

p(i, j, k) log2 p(k|ij) = −
∑
i,j,k

p(i, j, k) log2 p(i, j, k) +
∑
i,j

pi,j log2 pi,j

(2)
and so on. Table 3 shows, for simplicity, values for Fn from F1 to F15 only,

rounded to two significant digits.

Table 3: Conditional Entropy Fn
n

Si 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4.51 3.43 2.76 2.18 1.72 1.33 0.98 0.68 0.43 0.26 0.14 0.06 0.01 -0.02 -0.04
2 4.52 3.46 2.82 2.13 1.52 1.05 0.69 0.42 0.22 0.09 0.01 -0.03 -0.06 -0.06 -0.07
3 4.39 3.34 2.73 2.11 1.57 1.11 0.72 0.42 0.21 0.08 -0.01 -0.05 -0.07 -0.08 -0.08
4 4.43 3.39 2.74 2.09 1.54 1.07 0.67 0.37 0.18 0.06 -0.01 -0.05 -0.06 -0.07 -0.08
5 4.40 3.41 2.81 2.16 1.55 1.02 0.59 0.30 0.12 0.01 -0.05 -0.08 -0.08 -0.09 -0.09
6 4.39 3.35 2.74 2.13 1.56 1.05 0.62 0.32 0.13 0.02 -0.04 -0.07 -0.08 -0.09 -0.09
7 4.46 3.31 2.57 1.93 1.40 0.96 0.61 0.36 0.20 0.09 0.03 -0.02 -0.04 -0.06 -0.06
8 4.27 3.27 2.67 2.06 1.50 1.02 0.63 0.34 0.16 0.05 -0.02 -0.06 -0.07 -0.08 -0.08
9 4.32 3.28 2.70 2.11 1.58 1.06 0.61 0.29 0.10 -0.01 -0.06 -0.09 -0.10 -0.10 -0.09

10 4.40 3.36 2.78 2.16 1.51 0.95 0.51 0.22 0.05 -0.04 -0.08 -0.09 -0.10 -0.10 -0.09
11 4.33 3.32 2.66 2.00 1.43 0.93 0.54 0.28 0.11 0.01 -0.04 -0.07 -0.08 -0.09 -0.09
12 4.44 3.38 2.74 2.11 1.46 0.90 0.47 0.20 0.03 -0.05 -0.09 -0.10 -0.10 -0.10 -0.10
13 4.36 3.31 2.71 2.07 1.47 0.93 0.52 0.23 0.07 -0.03 -0.07 -0.09 -0.09 -0.10 -0.09
14 4.44 3.40 2.69 1.98 1.35 0.84 0.47 0.22 0.08 -0.01 -0.05 -0.07 -0.08 -0.09 -0.09
15 4.38 3.33 2.72 2.07 1.43 0.87 0.46 0.20 0.05 -0.04 -0.08 -0.09 -0.10 -0.10 -0.09
16 4.46 3.35 2.69 2.00 1.37 0.83 0.44 0.19 0.05 -0.03 -0.07 -0.08 -0.09 -0.09 -0.09
17 4.32 3.30 2.63 1.98 1.39 0.89 0.50 0.24 0.07 -0.01 -0.06 -0.08 -0.09 -0.09 -0.09
18 4.35 3.33 2.71 2.05 1.41 0.86 0.45 0.19 0.04 -0.04 -0.08 -0.09 -0.10 -0.09 -0.09
19 4.29 3.29 2.64 1.98 1.37 0.87 0.49 0.23 0.08 -0.01 -0.06 -0.08 -0.09 -0.09 -0.09
20 4.44 3.37 2.73 2.03 1.34 0.78 0.37 0.14 0.01 -0.06 -0.08 -0.10 -0.10 -0.10 -0.09
21 4.37 3.33 2.71 2.04 1.37 0.79 0.39 0.13 0.00 -0.05 -0.09 -0.09 -0.11 -0.06 -0.12
22 4.38 3.34 2.65 1.91 1.26 0.75 0.40 0.17 0.05 -0.03 -0.05 -0.08 -0.08 -0.08 -0.08
23 4.34 3.30 2.67 2.00 1.35 0.78 0.38 0.13 0.01 -0.06 -0.09 -0.10 -0.10 -0.10 -0.09
24 4.38 3.36 2.78 2.08 1.34 0.71 0.30 0.06 -0.05 -0.09 -0.11 -0.11 -0.11 -0.10 -0.10
25 4.32 3.37 2.80 2.09 1.32 0.69 0.29 0.06 -0.05 -0.09 -0.10 -0.11 -0.11 -0.10 -0.10
26 4.42 3.35 2.71 2.01 1.28 0.71 0.32 0.10 -0.03 -0.07 -0.10 -0.11 -0.10 -0.10 -0.10
27 4.37 3.34 2.74 2.06 1.33 0.72 0.31 0.08 -0.04 -0.09 -0.11 -0.11 -0.11 -0.10 -0.10
28 4.33 3.25 2.63 1.94 1.26 0.71 0.32 0.10 -0.03 -0.09 -0.10 -0.11 -0.11 -0.10 -0.10
29 4.28 3.28 2.62 1.89 1.21 0.68 0.32 0.11 0.00 -0.07 -0.09 -0.10 -0.10 -0.09 -0.09
30 4.40 3.35 2.66 1.89 1.11 0.52 0.17 0.01 -0.08 -0.11 -0.12 -0.11 -0.11 -0.11 -0.10

We observe in table 3 that, at some point, conditional entropies become nega-
tive. Although H(X,Y ) should always be greater or equal to H(Y ), the estimation
on conditional entropy in this study becomes negative because the length of the
text is not sufficiently long, in contrast to the required condition of the theo-
retical model n → ∞. This behavior has also been observed in the context of
bioinformatics and linguistics (Kaltchenko & Laurier 2004). The following ex-
ample should help to clarify the explanation. Let’s consider first the following
text in Spanish which has 1000 characters: 〈〈Yo, señora, soy de Segovia. Mi
padre se llamó Clemente Pablo, natural del mismo pueblo; Dios le tenga en el
cielo. Fue, tal como todos dicen, de oficio barbero, aunque eran tan altos sus pen-
samientos que se corría de que le llamasen así, diciendo que él era tundidor de
mejillas y sastre de barbas. Dicen que era de muy buena cepa, y según él bebía
es cosa para creer. Estuvo casado con Aldonza de San Pedro, hija de Diego de
San Juan y nieta de Andrés de San Cristóbal. Sospechábase en el pueblo que no
era cristiana vieja, aun viéndola con canas y rota, aunque ella, por los nombres
y sobrenombres de sus pasados, quiso esforzar que era descendiente de la gloria.
Tuvo muy buen parecer para letrado; mujer de amigas y cuadrilla, y de pocos en-
emigos, porque hasta los tres del alma no los tuvo por tales; persona de valor y
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conocida por quien era. Padeció grandes trabajos recién casada, y aun después,
porque malas lenguas daban en decir que mi padre metía el dos de bastos para sacar
el as de oros〉〉. This text has 250 four-character symbols (e.g. {Yo, },{seño},{ra,
}) with 227 of them being different. Factorizing common probability terms we find:
H4−char = 209( 1

250 log2
1

250 )+14( 1
125 log2

1
125 )+3( 3

250 log2
3

250 )+
2

125 log2
2

125 = 7.76
bits/symbol. This text has 200 five-character symbols (e.g.{Yo, s},{eñora},{, soy})
with 192 being different five-character symbols. Factorizing common probability
terms we find: H5−char = 184( 1

200 log2
1

200 ) + 8( 1
100 log2

1
100 ) = 7.56 bits/symbol.

Thus the entropy of a character given the previous four characters are know and
would be H(X|Y ) = H5−char − H4−char = −0.20 bits/character. For sample
1 (which has 5,722,040 characters) a similar behavior is observed: The greatest
number of different symbols (418,993) occurs for n=10 (572,204 total 10-character
symbols) for whichH=18.26 bits/symbol. The highest entropy, 18.47 bits/symbol,
is produced by 13-character symbols (there are 440,156 total 13-character symbols,
and 395,104 different 13-character symbols). For 14-character symbols (408,717
total; 378,750 different) the entropy is 18.45 bits/symbol. Then the entropy
of a character given the previous thirteen characters are know, in this case, is
18.45− 18.47 = −0.02 bits/character. With increasing n, the probability distribu-
tion tends to become uniform and H starts decreasing monotonically with n, as
shown in figure 3 of the paper. When the symbols in the sample become equiproba-
ble the value of H is given by log2b total number of characters

n c. Again, these seemingly
paradoxical values are explained by the differences between mathematical models
and real world, as well as the assumptions on which they are based3.

4.4. Entropy Rate and Redundancy

To estimate the entropy rate, a polynomial interpolation of third degree is first
applied to the values of Fn. As an example, figure 8 shows the interpolated curves
for samples one and thirty.

Figure 8 shows that Fn becomes negative after crossing by zero, and from this
point asymptotically approaches zero as n→∞. Therefore,

lim
n→∞

Fn = lim
n→NZ

Fn (3)

In equation 3, NZ is the root of the interpolated function Fn. The n-character
entropy values of figure 3 are also interpolated to find HNZ , the entropy value
corresponding to NZ . The redundancy is given by R = HL

Hmax
, where HL is the

source’s entropy rate, and Hmax = log2(AS). Finally, the value of HL is calculated
as HL ≈ HNZ

NZ
. Table 4 summarizes the values of NZ , HNZ , HL, and R. It should

be clear that the previous interpolation process is used to get a finer approximation
to the value of entropy. Just as in thermodynamics a system in equilibrium state
produces maximum entropy, equation 3 captures the symbol distribution that
produces the highest level of entropy (or amount of information) in the text.

3An insightful dissertation on real world and models is presented in Slepian (1976).
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Figure 8: Interpolated curves of conditional entropy (bits/character) for samples 1 and
30.

In Table 4, the weighted average of HL is 1.54 bits/character. Since the
weighted average of the alphabet size in Table 1 is 92.98 characters the average re-
dundancy, R, for the analyzed sample set, comprising nearly 23 million characters,
is:

R = 1− 1.54

log2 92.98
≈ 76.486%

Taking H(X) equal to 1.54 bits/character, for a text of Spanish of 140 charac-
ters, there would exist 2nH(X) ≈ 7.98× 1064 typical sequences. Because the roots
of Fn occur at small values of n and, as it has been observed this method permits
to find the value of entropy in a very short time (analysis for only one shift, for
instance shift=0, is required). As it can be observed in Table 4, in general, a
sample with lower WDR has more redundancy, the opposite also being true. In
general, and as a consequence of Zipf’s, law the greater the size of a sample, the
smaller its WDR. An interesting empirical relation found in this work involving
HL, the length of the text (in characters) L, and the number of different words
(V ) in the text is:

HL ≈
2.192

logV L
(4)

Equation 4 indicates that texts with small word dictionaries (compared to
the length of the text in characters) have smaller HL because there is higher
redundancy. This corroborates the well known fact that larger documents are more
compressible than smaller ones. The compression factor4 using bzip compression
for samples 1 and 30 is 0.25 and 0.33 respectively, which is in total agreement with
sample 1 having more redundancy than sample 30. Equation 4 is a reasonable
approximation considering that in this work L takes into consideration punctuation

4The compression factor is defined in this work as the size after compression over the size
before compression.
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Table 4: Entropy Rate and Redundancy
Sample NZ HNZ HL R(%)

1 13.23 18.47 1.40 78.99
2 11.23 16.91 1.51 77.80
3 10.92 16.67 1.53 76.38
4 10.82 16.53 1.53 76.54
5 10.10 16.36 1.62 76.43
6 10.22 16.28 1.59 75.08
7 11.54 15.91 1.38 78.92
8 10.60 15.95 1.50 76.46
9 9.90 16.05 1.62 74.49
10 9.48 15.93 1.68 74.31
11 10.14 15.61 1.54 76.16
12 9.31 15.73 1.69 73.92
13 9.64 15.64 1.62 74.47
14 9.92 15.46 1.56 75.94
15 9.49 15.50 1.63 74.64
16 9.55 15.36 1.61 75.28
17 9.79 15.30 1.56 75.98
18 9.44 15.37 1.63 74.86
19 9.81 15.23 1.55 75.36
20 9.11 15.19 1.67 74.32
21 9.01 15.14 1.68 73.85
22 9.60 14.90 1.55 75.98
23 9.06 14.96 1.65 74.12
24 8.47 14.99 1.77 71.77
25 8.48 14.94 1.76 72.66
26 8.72 14.89 1.71 72.58
27 8.58 14.93 1.74 72.61
28 8.71 14.53 1.67 73.14
29 9.01 14.40 1.60 74.93
30 8.05 14.10 1.75 72.38

marks. Figure 9 is intended to illustrate that as a sample has a higher WDR, there
is a tendency to the equipartition of the sample space, increasing thus HL.

Figure 9: Illustration of Word Dispersion Ratio over word space: a) Lower WDR. b)
Higher WDR.

The twenty-second version of the Dictionary of the Royal Academy of the
Spanish Language (DRAS) has 88,431 lemmas (entries) with 161,962 definitions
(i.e., meanings for the words according to the context in which they appear). If
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compared to the total number of lemmas of the DRAS, the works analyzed in this
work use a relatively small number of words. For instance, literature’s Nobel Prize
winner Gabriel García Márquez in his masterpiece, Cien Años de Soledad, used
around sixteen thousand different words. Because the vocabulary at the end is
finite, the WDR for larger texts has to be, in general, smaller.

Finally, when concatenating the whole set of thirty samples to form one larger
sample (22.9 million characters) the results were: α = 4.491 letter/word, HL =
1.496 bits/character, and R = 78.92%. The computing time (shift = 0) was thirty
four minutes.

Many other samples of Spanish can be analyzed (for instance, science, sports,
etc.) but Table 4 should give a good indication of what to expect in terms of the
entropy for ordinary samples of written Spanish. However, as Table 4 also shows,
finding an exact value for the entropy of Spanish is an elusive goal. We can only
make estimations of entropy for particular text samples. The usefulness of the
method presented here lies on its ability to provide a direct entropy estimation of
a particular text sample.

4.5. Character Equiprobability Distance

We define the character equiprobability distance of a text sample, naep, as the
value of n such that for any n ≥ naep, all n-length symbols in the sample become
equiprobable for all shifts of n. This means,

H = log2

⌊
(Total number of characters)− shift

n

⌋
for all n ≥ naep. This definition demands symbol equiprobability for all shifts for
every n ≥ naep, in other words, every substring of length n ≥ naep only appears
once, not matter its position in the text.

Table 5 shows the values of naep evaluated from n = 1 to 500 characters and
2naepHL , the number of typical sequences of length naep characters. Plagiarism
detection tools should take into account the value of naep, because for sequences
shorter than naep characters, it is more likely to find similar substrings of text
due to the natural restriction imposed by the statistical structure of the language.
Large values of naep in Table 5 were found to be related to some text reuse such
as, for instance, sample 2 where some partial news are repeated as part of a larger
updated news report. As it is observed, the number of typical sequences is of
considerable size despite the apparently small number of characters involved.

5. Conclusions

The evidence analyzed in this work shows that the joint probability distribution
of Spanish does not change with position in time (origin shift invariance). Due to
this property the method for finding the entropy of a sample of Spanish presented
in this work is simple and computing time efficient. Both, a redundancy of 76.5%
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Table 5: Equiprobable Distance (1 ≤ n ≤ 500)
Sample naep 2naepHL

1 412 4.31E+173
2 452 2.88E+205
3 93 6.82E+042
4 53 2.57E+024
5 356 4.07E+173
6 124 2.24E+059
7 101 9.07E+041
8 76 2.08E+034
9 36 3.60E+017

10 116 4.62E+058
11 39 1.20E+018
12 255 5.36E+129
13 189 1.48E+092
14 84 2.80E+039
15 50 3.42E+024
16 61 3.67E+029
17 118 2.59E+055
18 208 1.15E+102
19 37 1.84E+017
20 43 4.14E+021
21 453 1.25E+229
22 69 1.57E+032
23 43 2.28E+021
24 29 2.83E+015
25 55 1.38E+029
26 38 3.64E+019
27 27 1.39E+014
28 32 1.22E+016
29 50 1.21E+024
30 43 4.49E+022

and a rate entropy of 1.54 bits/character were found for the sample set analyzed.
A value of 2.23 bits/character was found for FW . In general, lower values of
WDR were observed for longer samples leading to higher values of redundancy,
just in accordance with Zipf’s law. Evidence also shows that, for every day texts
of the Spanish language, p(Bi) is not an asymptotically increasing function of n
and the highest moment of uncertainty in a sample occurs for a relatively small
value of n. Considering n-word symbols, Hmax was found at a value of four or
less words. When considering n-character symbols, H max was found at a value
of fourteen or less characters. An averaged value of naep close to 125 characters
can be a good indication of how constrained we are by the statistical structure
of the language. The probability of the r-th most frequent word in Spanish is
approximately 0.08/r. If compared to the constant of English, 0.1/r, it can be
concluded that the total probability of words in Spanish is spread among more
words than in English. There is a clear indication of the relation between a text’s
dictionary size (number of different words) and HL. In general, a text with a
larger dictionary size causes HL to increase. Texts with small word dictionaries
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compared to the length of the text in characters have smaller HL and thus should
be more compressible. Since reverse entropy analysis produced exactly the same
values as forward entropy, for prediction purposes the amount of uncertainty when
predicting a text backwards is, despite being apparently more difficult, the same
as predicting the text forwards. Finally, despite the fact that the basic statistical
properties are similar regardless of the text sample analyzed, since entropy depends
solely on probability distribution, every text of Spanish will exhibit its own value
of entropy, thus making it difficult to talk about the entropy of Spanish.
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Abstract
Statistical methods based on ranked set sampling (RSS) often lead to

marked improvement over analogous methods based on simple random sam-
pling (SRS). Entropy has been influential in the development of measures of
fit of parametric models to the data. This article develops goodness-of-fit
tests of the Laplace distribution based on sample entropy when data are col-
lected according to some RSS-based schemes. For each design, critical values
of the corresponding test statistic are estimated, by means of simulation, for
some sample sizes. A Monte Carlo study on the power of the new tests is
performed for several alternative distributions and sample sizes in order to
compare our proposal with available method in SRS. Simulation results show
that RSS and its variations lead to tests giving higher power than the test
based on SRS.

Key words: Entropy estimation, Goodness-of-fit test, Ranked set sampling.

Resumen
Los métodos estadísticos basados en muestreo de rango ordenado a menudo

son una considerable mejora que el muestreo aleatorio simple. La medida de
entropía ha sido influencial en el desarrollo de medidas de ajuste de mode-
los paramétricos. Este artículo propone pruebas de bondad de ajuste de la
distribución Laplace basada en la entropía muestral cuando se usan estruc-
turas basadas en muestras de rango ordenado. Para cada diseño, los valores
críticos del correspondiente estadístico de prueba son estimados por medio
de simulaciones para diferentes tamaños de muestra. Un estudio de Monte
Carlo de la potencia de los nuevos tests es implementado para diferentes dis-
tribuciones alternas y tamaños de muestra con el fin de comparar el método
propuesto con otros disponibles. La simulación muestra que el muestreo de
rango ordenado y sus variaciones brindan mayor potencia que los métodos
basados en muestreo aleatorio simple.

Palabras clave: entropía, muestreo rango ordenado, prueba de bondad de
ajuste.
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1. Introduction

The ranked set sampling (RSS) was introduced by McIntyre (1952) who built
on the sample mean to obtain a more precise estimator of the population mean.
In this design, the experimenter exploits inexpensive additional information about
the characteristic of interest for ranking randomly drawn sampling units and then
quantifies a selected subset of them. Auxiliary information may be provided by,
for example, visual inspection, concomitant variables, expert opinion, etc., or some
combinations of these methods. This flexibility in the choice of ranking mechanism
is an appealing feature which makes RSS a cost-efficient sampling technique po-
tentially applicable in fields such as agriculture, biology, ecology, forestry, etc. As
an example, consider the following situation mentioned by Takahasi & Wakimoto
(1968). Suppose that the quantity of interest is the height of trees in a orchard.
While the actual measurement is going to be laborious, a simple glance can help
us to rank a handful of trees locating close to each other.

The RSS method can be summarized as follows:

1. Draw k random samples, each of size k, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of the ith
(i = 1, . . . , k) sample and identify the ith smallest unit.

3. Actually measure the k identified units in step 2.

4. Repeat steps 1-3, h times (cycles), if needed, to obtain a ranked set sample
of size n = hk.

The set of n measured observations are said to constitute the ranked set sample
denoted by {X[i]j : i = 1, . . . , k ; j = 1, . . . , h}, where X[i]j is the ith judgement or-
der statistic from the jth cycle. Current literature on RSS reports many statistical
procedures, in both parametric and nonparametric settings, which are superior to
their counterparts in simple random sampling (SRS). For an excellent review of
most previous works on RSS, see the recent book by Chen, Bai & Sinha (2004).
The success of RSS can be traced to the fact that a ranked set sample consists of
independent order statistics and contains more information than a simple random
sample of the same size, whose ordered values are correlated.

A basic version of RSS has been extensively modified to come up with schemes
resulting in more accurate estimators of the population attributes. Multistage
ranked set sampling (MSRSS) introduced by Al-Saleh & Al-Omari (2002) is such
a variation surpassing RSS. The MSRSS scheme can be described as follows:

1. Randomly identify kr+1 units from the population of interest, where r is the
number of stages.

2. Allocate the kr+1 units randomly into kr−1 sets of k2 units each.

3. For each set in step 2, apply 1-2 of RSS procedure explained above, to get a
(judgement) ranked set of size k. This step gives kr−1 (judgement) ranked
sets, each of size k.
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4. Without actual measuring of the ranked sets, apply step 3 on the kr−1 ranked
set to gain kr−2 second stage (judgement) ranked sets, of size k each.

5. Repeat step 3, without any actual measurement, until an rth stage (judge-
ment) ranked set of size k is acquired.

6. Actually measure the k identified units in step 5.

7. Repeat steps 1-6, h times, if needed, to obtain an rth stage ranked set sample
of size n = hk.

Similarly, the rth stage ranked set sample will be denoted by {X(r)
[i]j : i = 1, . . . , k;

j = 1, . . . , h}. It is to be noted that special case of MSRSS with r = 2 is known
as double ranked set sampling (DRSS) (Al-Saleh & Al-Kadiri 2000). Clearly, the
case r = 1 corresponds to RSS.

While testing hypotheses on the parameters of the normal, exponential and
uniform distributions under RSS and its variations have been widely investigated,
little effort has been made for developing a test of fit based on RSS. Stokes & Sager
(1988) characterized a ranked set sample as a sample from a conditional distribu-
tion, conditioning on a multinomial random vector, and applied RSS to the esti-
mation of the cumulative distribution function. They proposed the Kolmogorov-
Smirnov test in RSS setup and derived the null distribution of the test statistic.

Entropy of a distribution was proposed by Shannon (1948) as a measure of
uncertainty in information theory. He found that the entropy of the normal dis-
tribution is maximum among all distributions with fixed variance. Based on this
result, Vasicek (1976) developed a test for normality and, indeed, introduced a
new approach for constructing test of fit. Similar tests have been suggested for
other distributions based on their entropy characterization results. See Dudewicz
& van der Meulen (1981), Gokhale (1983), Grzegorzewski &Wieczorkowski (1999),
Mudholkar & Tian (2002), and Choi & Kim (2006).

The classical Laplace distribution introduced by Laplace in 1774 is one of the
basic symmetric distributions often used for modeling phenomena with heavier
than the normal tails. It has been applied in steam generator inspection, navi-
gation, reliability, generalized linear regression and Bayesian analysis. For more
recent applications refer to Kotz, Kozubowski & Podgórski (2001). In this work,
we deal with the problem of developing a goodness-of-fit test for the Laplace dis-
tribution when the researcher obtains data using RSS and MSRSS. Mahdizadeh
& Arghami (2010) suggested similar procedures for the inverse Gaussian law.

The layout of this article is as follows: In Section 2, entropy estimation is
extended to RSS and MSRSS, goodness-of-fit tests for the Laplace distribution
based on these designs are introduced. Section 3 contains the results of simulation
studies carried out to expose the power properties of the new tests. Section 4
is given to the effect of entropy estimator used in the test statistics on power
properties. Some brief conclusions are provided in Section 5.
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2. Proposed Tests

To put the procedure into perspective, we first review some concepts from
information theory. Suppose that a continuous random variable X has distribution
function FX with density function fX . Shannon’s entropy of fX is given by

H(fX) = −
∫ ∞
−∞

fX(x) log fX(x) dx (1)

It is easy to show that using the quantile function F−1X (u) = inf{x : FX(x) ≥ u},
(1) can be written as

H(fX) =

∫ 1

0

log
( d
du

F−1X (u)
)
du (2)

This entropy representation was used by Vasicek (1976) to define the sample en-
tropy in terms of order statistics as follows: Let X(1), . . . , X(n) be the ordered
values of a random sample of size n from FX . At each sample point (X(i),

i
n ), the

derivative in (2) is estimated by

si(m,n) =
X(i+m) −X(i−m)

2m/n
(3)

where m ∈ {1, . . . , n2 } is a window size to be determined. Vasicek’s entropy esti-
mator is the mean of logarithm of di’s defined in the above, i.e.,

Vm,n(fX) =
1

n

n∑
i=1

log
( n

2m
(X(i+m) −X(i−m))

)
(4)

where X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n−m.
Since the entropy estimator (4) is based on spacings, we would need ordered

values of the ranked set sample to estimate entropy in RSS. Proceeding as in the
SRS case, we first pool the units in all cycles and then form the estimator based
on the ordered pooled sample. The MSRSS analogue of Vm,n(fX) becomes

V (r)
m,n(fX) =

1

n

n∑
i=1

log
( n

2m
(X

(r)
(i+m) −X

(r)
(i−m))

)
(5)

where X(r)
(a) is the ath (a = 1, . . . , n) order statistic of the rth stage ranked set

sample. The reference to subscript k is not made here for conciseness in notation.
From now on, we use V (0)

m,n(fX) to denote the estimator (4). So X(0)
(a) represents

ath order statistic of a simple random sample of size n. In fact, {V (r)
m,n(.)} is a

sequence of entropy estimators indexed by the stage number in MSRSS.
A Monte Carlo experiment was conducted to compare the proposed estimators

of entropy when the underlying distribution is the standard Laplace with mean 0
and variance 2. Generation of random samples is easily done based on a result from
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distribution theory; difference a of two standard exponential random variables has
the standard Laplace distribution. Figure 1 displays simulated biases and root
mean square errors (RMSEs) of V (r)

m,n for r = 0, 1, 2 based on 50,000 samples
with n = 10, 20, 30, and k = 5 in MSRSS design (this setup will be used in the
rest of the paper). An empty circle is used as the plotting symbol, and points
corresponding to SRS, RSS and DRSS are connected by solid, dashed and dotted
lines, respectively. It is seen that given a sample size, MSRSS improves entropy
estimation with respect to SRS. Moreover, the larger stage number r the smaller
absolute value of bias, and RMSE of the corresponding estimator. This property
is helpful in distinguishing between the results of different designs when the types
of connecting lines are not visible because of compactness in Figure 1.
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Figure 1: Bias and RMSE comparison for the entropy estimators Vm,n and E1
m,n for

the standard Laplace distribution with H(f) = 1.6931.

Choi & Kim (2006) presented an entropy characterization of the Laplace dis-
tribution and used the following result (Corollary 2) to establish an entropy based
test of fit for the Laplace distribution.

Corollary 1. (Choi & Kim 2006). Suppose X has a Laplace distribution La(µ,θ)
with density function

fX(x;µ, θ) =
1

2θ
exp(−|x− µ|/θ) µ ∈ R , θ > 0

Then the entropy of fX is given by

H(fX) = log(2θ) + 1
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Corollary 2. (Choi & Kim 2006). Let X be a random variable with density
function fX(x) satisfying the restriction

EfX (|X|) =
∫ ∞
−∞
|x| fX(x) dx ≡ θ

Under this restriction, the distribution of X maximizing Shannon’s entropy is
La(0,θ).

Consider a random sample X1, . . . , Xn from a population with density function
f and suppose it is of interest to test H0 : fX ∈ L = {La(µ, θ) : µ ∈ R, θ >
0} against the general alternative H1 : fX /∈ L. Choi & Kim (2006) proposed
rejecting the null hypothesis if

Tm,n(gY ) = exp
(
Vm,n(gY )

)
/ θ̂ ≤ T ∗m,n,α(gY ) (6)

where

Vm,n(gY ) =
1

n

n∑
i=1

log
( n

2m
(Ỹ(i+m) − Ỹ(i−m))

)
is the estimate of the entropy of Ỹ = X−µ based on Ỹ(i) = X(i)− µ̂ (i = 1, . . . , n)
with µ̂ being the median of Xi’s, θ̂ =

∑n
i=1 |Ỹi|/n, and T ∗m,n,α(gY ) is the 100α

percentile of the null distribution of Tm,n(gY ).
In order to obtain the percentiles of the null distribution, Tm,n(gY ) was calcu-

lated using the estimators V (r)
m,n(gY ) for r = 0, 1, 2 based on 50,000 samples of size

n generated from the La(0,1) distribution. The values were then used to determine
T ∗m,n,0.05(gY ) in different designs and for different sample sizes. To estimate µ and
θ in MSRSS, we simply plug the data into the formulae available in SRS. Tables
of 0.05 critical points for the tests could be requested from the author. They are
not reported here.

To implement the tests, we must first select the window size m associated with
a given sample size. In general, there is no unanimous rule to choose the optimal
m for each n. Previous studies, however, suggest to of use the window size which
leads to the least conservative test. Thus, using the window size giving the largest
critical value is advised to achieve higher power. The optimal window size, denoted
by m∗, for sample sizes 10, 20 and 30 are approximately 3, 3 and 4, respectively.

3. Simulation Study

In this section, we shall use the Monte Carlo approach to evaluate the entropy
tests in terms of power. The distributions considered in the simulation study are
as follows: (A) normal(0,1), (B) t(10), (C) logistic(0,1), (D) uniform(0,1), (E)
Beta(2,2), (F) chi-square(4), (G) lognormal(0,0.5) and (H) Gamma(1.5,1). We
note that (A)-(E) are symmetric and (F)-(H) are asymmetric.

Under each design, 50,000 samples of sizes n = 10, 20, 30 were generated from
each alternative distribution and the power of the tests were estimated by the
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fraction of the samples falling into the corresponding critical region. Figures 2-7
depict the estimated power of the tests in which the same plotting symbol and
connecting lines of Figure 1 are employed.
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Figure 2: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 10.
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Figure 3: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 10.

Revista Colombiana de Estadística 35 (2012) 443–455



450 Mahdi Mahdizadeh

2 4 6 8 10
0.

1
0.

3
0.

5

A

m

po
w

er
2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

B

m

po
w

er
2 4 6 8 10

0.
05

0.
20

0.
35

C

m

po
w

er

2 4 6 8 10
0.

6
0.

8
1.

0

D

m

po
w

er

Figure 4: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 20.
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Figure 5: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 20.
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Figure 6: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 30.
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Figure 7: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 30.
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It is observed that given a sample size, the entropy tests based on RSS and
DRSS are more powerful than that based on SRS regardless of the alternative
distribution. More interestingly, the higher sampling effort the more powerful
resulting test would be. That is DRSS has the best performance among three
considered designs. Remember that a similar trait was reported earlier in the
context of entropy estimation. This is fairly expected because the test statistic in
each design is constructed based on the corresponding entropy estimator. It should
be mentioned that against asymmetric distributions and for each n, maximum
power is gained at optimal m or at one of its neighboring values. This trend,
however, does not hold for symmetric distributions where maximum power occurs
in m ≈ n

2 . Since the best m associated with a sample size varies according to the
alternative, we may use a data histogram to decide on the best window size for
applying the tests.

It is interesting to examine whether a further increase in power is possible
by increasing the number of stages in MSRSS. To this end, testing procedures
under MSRSS with r = 3, 4 were developed. Figure 8 displays the power of
the tests, where alternatives A-H are denoted by integers 1-8 on the X axis, and
points corresponding to r = 2, 3, 4 are connected by solid, dashed and dotted lines,
respectively. Results of DRSS design were included to facilitate comparison. For a
given n, the result are provided only for optimal m, not for all m ∈ {1, . . . , n2 }, to
save space. From Figure 8, we can see as r increases, some improvement in power
happens. Since the differences in results for r = 2 and r = 3, 4 are not marked for
(A)-(C), we may confine ourselves to DRSS against these alternatives.
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Figure 8: Power comparison for the entropy tests of size 0.05 against alternatives A-H
under MSRSS designs.
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4. Effect of Entropy Estimator

As mentioned before, Vasicek’s estimator has been widely used for developing
entropy based test of fit. Many authors have modified this test to come up with
more efficient estimators. In this section, power behavior of the tests employing
such estimators are investigated. To this end, we consider two entropy estimators
proposed by Ebrahimi, Pflughoeft & Soofi (1994).

The first estimator which modifies the denominator of (3) is defined as follows

E1
m,n =

1

n

n∑
i=1

log

(
X(i+m) −X(i−m)

cim/n

)
(7)

where

ci =


1 + i−1

m 1 ≤ i ≤ m,
2 m+ 1 ≤ i ≤ n−m,
1 + n−i

m n−m+ 1 ≤ i ≤ n

The second estimator, obtained by modifying both the numerator and denom-
inator of (3), is given by

E2
m,n =

1

n

n∑
i=1

log

(
Z(i+m) − Z(i−m)

dim/n

)
(8)

where

di =


1 + i+1

m −
i
m2 1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m− 1,

1 + n−i
m+1 n−m ≤ i ≤ n,

the Z(i)’s are

Z(i) =


a+ i−1

m (X(1) − a) 1 ≤ i ≤ m,
X(i) m+ 1 ≤ i ≤ n−m− 1,

b− n−i
m (b−X(n)) n−m ≤ i ≤ n,

and a and b are constants to be determined such that P (a ≤ X ≤ b) ≈ 1. For
example, when F has a bounded support, a and b are lower and upper bound,
respectively (for uniform(0,1) distribution, a = 0 and b = 1); if F is bounded
below (above), then a(b) is lower (upper) support, a = x− ks (b = x+ ks), where

x =
1

n

n∑
i=1

xi, s2 =
1

n− 1

n∑
i=1

(xi − x)2

and k is a suitable number say 3 to 5 (for exponential distribution, a = 0 and
b = x + ks); in the case that F has no bound on its support, a and b may be
chosen as a = x− ks and b = x+ ks.

Simulation results show that both estimators have less bias and less RMSE
than Vasicek’s estimator (uniformly). Since E1

m,n has simpler form, we focus on
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that in the sequel. Simulated biases and RMSEs of E1(r)
m,n (The MSRSS analogue

of E1
m,n) for r = 0, 1, 2 are given in Figure 1, where a filled circle is used as the

plotting symbol, and points corresponding to SRS, RSS and DRSS are connected
by solid, dashed and dotted lines, respectively. Again, it is evident that as r
increases, E1(r)

m,n becomes more efficient. Also, the estimated power of the tests
developed using E1(r)

m,n for r = 0, 1, 2 appear in Figures 2-7 with the same display
conventions used for bias and RMSE of the corresponding entropy estimator. In
each design, tests based on the new estimator is more powerful than those based
on the original estimator for all sample sizes and alternatives.

5. Conclusion

The aim of this paper was to develop goodness-of-fit tests for the Laplace
distribution under RSS and MSRSS designs. Motivated by the entropy based
test of fit in SRS, we employed the sample entropy based on aforesaid designs
to construct the corresponding tests of fit. An extensive simulation study was
conducted to provide insight into the finite sample power behavior of the proposed
tests. The results indicate that using (multistage) ranked set samples in entropy
based test of fit for the Laplace distribution result in higher power as compared
with simple random samples. We have developed analogous tests for the uniform,
normal, exponential, Weibull and some other distributions using improved entropy
estimators whose results will be reported in future articles. Tables of critical points
and power of the tests in different designs along with the corresponding computer
codes are available on request from the author.
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Abstract

We investigate, via simulation study, the performance of the EM algo-
rithm for maximum likelihood estimation in finite mixtures of skew-normal
distributions with component specific parameters. The study takes into ac-
count the initialization method, the number of iterations needed to attain a
fixed stopping rule and the ability of some classical model choice criteria to
estimate the correct number of mixture components. The results show that
the algorithm produces quite reasonable estimates when using the method
of moments to obtain the starting points and that, combining them with the
AIC, BIC, ICL or EDC criteria, represents a good alternative to estimate the
number of components of the mixture. Exceptions occur in the estimation
of the skewness parameters, notably when the sample size is relatively small,
and in some classical problematic cases, as when the mixture components
are poorly separated.

Key words: EM algorithm, Mixture of distributions, Skewed distributions.

Resumen

El presente artículo muestra un estudio de simulación que evalúa el de-
sempeño del algoritmo EM utilizado para determinar estimaciones por máx-
ima verosimilitud de los parámetros de la mezcla finita de distribuciones nor-
males asimétricas. Diferentes métodos de inicialización, así como el número
de interacciones necesarias para establecer una regla de parada especificada
y algunos criterios de selección del modelo para permitir estimar el número
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apropiado de componentes de la mezcla han sido considerados. Los resul-
tados indican que el algoritmo genera estimaciones razonables cuando los
valores iniciales son obtenidos mediante el método de momentos, que junto
con los criterios AIC, BIC, ICL o EDC constituyen una eficaz alternativa en
la estimación del número de componentes de la mezcla. Resultados insatis-
factorios se verificaron al estimar los parámetros de simetría, principalmente
seleccionando un tamaño pequeño para la muestra, y en los casos conoci-
damente problemáticos en los cuales los componentes de la mezcla están
suficientemente separados.

Palabras clave: algoritmo EM, distribuciones asimétricas, mezcla de dis-
tribuciones.

1. Introduction

Finite mixtures have been widely used as a powerful tool to model heteroge-
neous data and to approximate complicated probability densities, presenting mul-
timodality, skewness and heavy tails. These models have been applied in several
areas like genetics, image processing, medicine and economics. For comprehensive
surveys, see McLachlan & Peel (2000) and Frühwirth-Schnatter (2006).

Maximum likelihood estimation in finite mixtures is a research area with several
challenging aspects. There are nontrivial issues, such as lack of identifiability and
saddle regions surrounding the possible local maxima of the likelihood. Another
problem is that the likelihood is possibly unbounded, which happens when the
components are normal densities.

There is a lot of literature involving mixtures of normal distributions, some
references can be found in the above-mentioned books. In this work we consider
mixtures of skew-normal (SN) distributions, as defined by Azzalini (1985). This
distribution is an extension of the normal distribution that accommodates asym-
metry.

The standard algorithm for maximum likelihood estimation in finite mixtures
is the Expectation Maximization (EM) of Dempster, Laird & Rubin (1977), see
also McLachlan & Krishnan (2008) and Ho, Pyne & Lin (2012). It is well known
that it has slow convergence and that its performance is strongly dependent on
the stopping rule and starting points. For normal mixtures, several authors have
computationally investigated the performance of the EM algorithm by taking into
account initial values (Karlis & Xekalaki (2003); Biernacki, Celeux & Govaert
(2003)), asymptotic properties (Nityasuddhi & Böhning 2003) and comparisons of
the standard EM with other algorithms (Dias & Wedel 2004).

Although there are some purposes to overcome the unboundedness problem in
the normal mixture case, involving constrained optimization and alternative algo-
rithms (see Hathaway (1985), Ingrassia (2004), and Yao (2010)), it is interesting to
investigate the performance of the (unrestricted) EM algorithm in the presence of
skewness in the component distributions, since algorithms of this kind have been
presented in recent works as Lin, Lee & Hsieh (2007), Lin, Lee & Yen (2007), Lin
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(2009), Lin (2010) and Lin & Lin (2010). Here, we employ the algorithm presented
in Basso, Lachos, Cabral & Ghosh (2010).

The goal of this work is to study the performance of the estimates produced
by the EM algorithm, taking into account the method of moments and a random
initialization method to obtain initial values, the number of iterations needed to
attain a fixed stopping rule and the ability of some classical model choice criteria
(AIC, BIC, ICL and EDC) to estimate the correct number of mixture components.
We also investigated the density estimation issue by analyzing the estimates of the
log-likelihood function at the true values of the parameters. The work is restricted
to the univariate case.

The rest of the paper is organized as follows. In Sections 2 and 3, for the sake
of completeness, we give a brief sketch of the skew-normal mixture model and of
estimation via the EM algorithm, respectively. In Section 4, the simulation study
about the initialization methods, the number of iterations and density estimation
are presented. The study concerning model choice criteria is presented in Section
5. Finally, in Section 6 the conclusions of our study are draw and additional
comments are given.

2. The Finite Mixture of SN Distributions Model

2.1. The Skew-Normal (SN) Distribution

The skew-normal distribution, introduced by (Azzalini 1985), is given by the
density

SN(y|µ, σ2, λ) = 2N(y|µ, σ2)Φ

(
λ
y − µ
σ

)
where N(·|µ, σ2) denotes the univariate normal density with mean µ ∈ R and
variance σ2 > 0 and Φ(·) is the distribution function of the standard normal
distribution. In this definition, µ, λ ∈ R and σ2 are parameters regulating location,
skewness and scale, respectively. For a random variable Y with this distribution,
we use the notation Y ∼ SN(µ, σ2, λ).

To simulate realizations of Y and to implement the EM-type algorithm a con-
venient stochastic representation is given by

Y = µ+ σδT + σ(1− δ2)1/2T1 (1)

where δ = λ/
√

1 + λ2, T = |T0|, T0 and T1 are independent standard normal
random variables and | · | denotes absolute value. (for proof see Henze (1986)). To
reduce computational difficulties related to the implementation of the algorithms
used for estimation, we use the parametrization

Γ = (1− δ2)σ2 and ∆ = σδ

which was first suggested by Bayes & Branco (2007). Note that (λ, σ2) → (∆,Γ)
is a one to one mapping. To recover λ and σ2, we use

λ = ∆/
√

Γ and σ2 = ∆2 + Γ
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Then, it follows easily from (1) that

Y |T = t ∼ N(µ+ ∆t,Γ) and T ∼ HN(0, 1) (2)

where HN(0, 1) denotes the half-normal distribution with parameters 0 and 1.

The expectation, variance and skewness coefficient of Y ∼ SN(µ, σ2, λ) are
respectively given by

E(Y ) = µ+ σ∆
√

2/π, V ar[Y ] = σ2

(
1− 2

π
δ2
)
, γ(Y ) =

κδ3

(1− 2
π δ

2)3/2
(3)

where κ = 4−π
2 ( 2

π )3/2 (see Azzalini (2005, Lemma 2)).

2.2. Finite Mixture of SN Distributions

The finite mixture of SN distributions model, hereafter FM-SN model, is de-
fined by considering a random sample y = (y1, . . . , yn)> from a mixture of SN
densities given by

g(yj |Θ) =

k∑
i=1

piSN(yj |θi), j = 1, . . . , n (4)

where pi ≥ 0, i = 1, . . . , k are the mixing probabilities,
∑k
i=1 pi = 1, θi =

(µi, σ
2
i , λi)

> is the specific vector of parameters for the component i and Θ =
((p1, . . . , pk)>, θ>1 , . . . , θ

>
k )> is the vector with all parameters.

For each j consider a latent classification random variable Zj taking values in
{1, . . . , k}, such that

yj |Zj = i ∼ SN(θi), P (Zj = i) = pi, i = 1, . . . , k; j = 1, . . . , n.

Then it is straightforward to prove, integrating out Zj , that yj has density (4). If
we combine this result with (2), we have the following stochastic representation
for the FM-SN model

yj |Tj = tj , Zj = i ∼ N(µi + ∆itj ,Γi),

Tj ∼ HN(0, 1),

P (Zj = i) = pi, i = 1, . . . , k; j = 1, . . . , n

where

Γi = (1− δ2i )σ2
i , ∆i = σiδi, δi = λi/

√
1 + λ2i , i = 1, . . . , k (5)

More details can be found in Basso et al. (2010) and references herein.
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3. Estimation

3.1. An EM-type Algorithm

In this section we present an EM-type algorithm for estimation of the param-
eters of a FM-SN distribution. This algorithm was presented before in Basso
et al. (2010) and we emphasize that, in order to do this, the representation (5)
is crucial. The estimates are obtained using a faster extension of EM called the
Expectation-Conditional Maximization (ECM) algorithm (Meng & Rubin 1993).
When applying it to the FM-SN model, we obtain a simple set of closed form ex-
pressions to update a current estimate of the vector Θ, as we will see below. It is
important to emphasize that this procedure differs from the algorithm presented
by Lin, Lee & Yen (2007), because in the former case the updating equations
for the component skewness parameter have a closed form. In what follows we
consider the parametrization (5), and still use Θ to denote the vector with all
parameters.

Let Θ̂(m) = ((p̂
(m)
1 , . . . , p̂

(m)
k )>, (θ̂

(m)
1 )>, . . . , (θ̂

(m)
k )>)> be the current estimate

(at the mth iteration of the algorithm) of Θ, where θ̂(m)
i = (µ̂

(m)
i , ∆̂

(m)
i , Γ̂

(m)
i )>.

The E-step of the algorithm is to evaluate the expected value of the complete data
function, known as the Q−function and defined as

Q(Θ|Θ̂(m)) = E[`c(Θ)|y, Θ̂(m)]

where `c(Θ) is the complete-data log-likelihood function, given by

`c(Θ) = c+

n∑
j=1

k∑
i=1

zij

(
log pi −

1

2
log Γi −

1

2Γi
(yj − µi −∆itj)

2

)

where zij is the indicator function of the set (Zj = i) and c is a constant that
is independent of Θ. The M-step consists in maximizing the Q-function over Θ.
As the M-step turns out to be analytically intractable, we use, alternatively, the
ECM algorithm, which is an extension that essentially replaces it with a sequence
of conditional maximization (CM) steps. The following scheme is used to obtain
an updated value Θ̂(m+1). We can find more details about the conditional expecta-
tions involved in the computation of the Q-function and the related maximization
steps in Basso et al. (2010). Here, φ denotes the standard normal density and we
employ the following notations

ẑij = E[Zij |yj ; Θ̂], ŝ1ij = E[ZijTj |yj ; Θ̂] and ŝ2ij = E[ZijT
2
j |yj ; Θ̂]
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E-step: Given a current estimate Θ̂(m), compute ẑij , ŝ1ij and ŝ2ij , for j =
1, . . . , n and i = 1, . . . , k, where:

ẑ
(m)
ij =

p̂
(m)
i SN(yj |θ̂(m)

i )∑k
i=1 p̂

(m)
i SN(yj |θ̂(m)

i )
(6)

ŝ
(m)
1ij = ẑ

(m)
ij

µ̂(m)
Tij

+

φ

(
µ̂(m)

Tij
/σ̂(m)

Ti

)
Φ

(
µ̂
(m)
Tij

/σ̂
(m)
Ti

) σ̂(m)
Ti



ŝ
(m)
2ij = ẑ

(m)
ij

(µ̂(m)
Tij

)2 + (σ̂(m)
Ti

)2 +

φ

(
µ̂(m)

Tij
/σ̂(m)

Ti

)
Φ

(
µ̂
(m)
Tij

/σ̂
(m)
Ti

) µ̂(m)
Tij

σ̂(m)
Ti


µ̂(m)

Tij
=

∆̂
(m)
i

Γ̂
(m)
i + (∆̂

(m)
i )2

(yj − µ̂(m)
i ),

σ̂(m)
Ti

=

(
Γ̂
(m)
i

Γ̂
(m)
i + (∆̂

(m)
i )2

)1/2

CM-steps: Update Θ̂(m) by maximizing Q(Θ|Θ̂(m)) over Θ, which leads to
the following closed form expressions:

p̂
(m+1)
i = n−1

n∑
j=1

ẑ
(m)
ij

µ̂i
(m+1) =

∑n
j=1(yj ẑ

(m)
ij − ∆̂

(m)
i ŝ

(m)
1ij )∑n

j=1 ẑ
(m)
ij

Γ̂
(m+1)
i =

∑n
j=1(ẑ

(m)
ij (yj − µ̂(m+1)

i )2 − 2(yj − µ̂(m+1)
i )∆̂

(m)
i ŝ

(m)
1ij + (∆̂

(m)
i )2ŝ

(m)
2ij )∑n

j=1 ẑ
(m)
ij

∆̂
(m+1)
i =

∑n
j=1(yj − µ̂(m+1)

i )ŝ
(m)
1ij∑n

j=1 ŝ
(m)
2ij

The algorithm iterates between the E and CM steps until a suitable convergence
rule is satisfied and several rules are proposed in the literature (see e.g., McLachlan
& Krishnan (2008)). In this work our rule is to stop the process at stage m when
|`(Θ̂(m+1))/`(Θ̂(m))− 1| is small enough.

3.2. Some Problems with Estimation in Finite Mixtures

It is well known that the likelihood of normal mixtures can be unbounded
(see e.g., Frühwirth-Schnatter 2006, Chapter 6) and it is not difficult to verify
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that the FM-SN models also have this feature. One way to circumvent the un-
boundedness problem is the constrained optimization of the likelihood, imposing
conditions on the component variances in order to obtain global maximization
(see e.g., Hathaway 1985, Ingrassia 2004, Ingrassia & Rocci 2007, Greselin &
Ingrassia 2010). Thus, following Nityasuddhi & Böhning (2003), we investigate
only the performance of the EM algorithm when considered component specific
parameters (that is, unrestricted) of the mixture and we mention the estimates
produced by the algorithm of section 3.1 as “EM estimates”, that is, some sort of
solution of the score equation, instead of “maximum likelihood estimates”.

Another nontrivial issue is the lack of identifiability. Strictly speaking, finite
mixtures are always non-identifiable because an arbitrary permutation of the labels
of the component parameters lead to the same finite mixture distribution. In
the finite mixture context, a more flexible concept of identifiability is used (see,
Titterington, Smith & Makov 1985, Chapter 3 for details). The normal mixture
model identifiability was first verified by Yakowitz & Spragins (1968), but it is
interesting to note that subsequent discussions in the related literature concerning
mixtures of Student-t distributions (see e.g., Peel & McLachlan 2000, Shoham
2002, Shoham, Fellows & Normann 2003, Lin, Lee & Ni 2004) do not present
a formal proof of its identifiability. It is important to mention that the non-
identifiability problem is not a major one if we are interested only in the likelihood
values, which are robust to label switching. This is the case, for example, when
density estimation is the main goal.

4. A Simulation Study of Initial Values

4.1. Description of the Experiment

It is well known that the performance of the EM algorithm is strongly depen-
dent on the choice of the criterion of convergence and starting points. In this
work we do not consider the stopping rule issue, we adopt a fixed rule to stop the
process at stage m when ∣∣∣∣∣`(Θ̂(m+1))

`(Θ̂(m))
− 1

∣∣∣∣∣ < 10−6

because we believe that this tolerance for the change in `(Θ̂) is quite reasonable in
the applications where the primary interest is on the sequence of the log-likelihood
values rather than the sequence of parameter estimates (McLachlan & Peel 2000,
Section 2.11).

In the mixture context, the choice of starting values for the EM algorithm is
crucial because, as noted by Dias & Wedel (2004), there are various saddle regions
surrounding the possible local maximum of the likelihood function, and the EM
algorithm can be trapped in some of these subsets of the parameter space.

In this work, we make a simulation study in order to compare some methods
to obtain starting points for the algorithm proposed in section 3.1, where an inter-
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esting question is to investigate the performance of the EM algorithm with respect
to the skewness parameter estimation for each component density in the FM-SN
model. We consider the following methods to obtain initial values:

The Random Values Method (RVM): we first divide the generated random
sample into k sub-samples employing the k-means method. The initialization of
k-means algorithm is random, being recommended to adopt many different choices
and we employ five random initializations (see Hastie, Tibshirani & Friedman 2009,
Section 14.3). Let ϕi be the sub-sample i. Consider the following points artificially
generated from uniform distributions over the specified intervals

ξ̂
(0)
i ∼ U(min {ϕi},max {ϕi})

ω̂
(0)
i ∼ U(0, var{ϕi}) , (7)

γ̂
(0)
i ∼ sgn(sc{ϕi})× |U(−0.9953, 0.9953)|

where min {ϕi}, max {ϕi}, var{ϕi} and sc{ϕi} denote, respectively, the mini-
mum, the maximum, the sample variance and the sample skewness coefficient of
ϕi, i = 1, .., k, also | · | denotes absolute value. These quantities are taken as
rough estimates for the mean, variance and skewness coefficient associated to sub-
population i, respectively. The suggested form for γ̂(0)i is due to the fact that
the range for the skewness coefficient in SN models is (−0.9953, 0.9953) and to
maintain the sign of the sample skewness coefficient.

The starting points for the specific component locations, scale and skewness
parameters are given respectively by

µ̂
(0)
i = ξ̂

(0)
i −

√
2/πδ

(λ̂
(0)
i )
σ̂
(0)
i

σ̂
(0)
i =

√√√√ ω̂
(0)
i

1− 2
π δ

2

(λ̂
(0)
i )

(8)

λ̂
(0)
i = ±

√√√√ π(γ̂
(0)
i )2/3

21/3(4− π)2/3 − (π − 2)(γ̂
(0)
i )2/3

where δ
(λ̂

(0)
i )

= λ̂
(0)
i /

√
1 + (λ̂

(0)
i )2, i = 1, .., k and the sign of λ̂(0)i is the same of

γ̂
(0)
i . They are obtained by replacing E(Y ), V ar(Y ) and γ(Y ) in (3) with their

respective estimators in (7) and solving the resulting equations in µi, σi and λi.
The initial values for the weights pi are obtained as

(p̂
(0)
1 , . . . , p̂

(0)
k ) ∼ Dirichlet(1, . . . , 1)

a Dirichlet distribution with all parameters equal to 1, namely, a uniform distri-
bution over the unit simplex

{
(p1, . . . , pk); pi ≥ 0,

∑k
i=1 pi = 1

}
.

Method of Moments (MM): the initial values are obtained using equations (8),
but replacing ξ̂(0)i , ω̂(0)

i and γ̂(0)i with the mean, variance and skewness coefficient
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of sub-sample i, i = 1, ..k, with the k sub-samples obtained by the k-means method
with five random initializations . Let n be the sample size and ni be the size of
sub-sample i. The initial values for the weights are given by

p̂
(0)
i =

ni
n
, i = 1, .., k.

We generated samples from the FM-SN model with k = 2 and k = 3 compo-
nents, with sizes fixed as n = 500; 1000; 5000 and 1,0000. In addition, we consider
different degree of heterogeneity of the components, for k = 2 the “moderately
separated” (2MS), “well separated” (2WS) and “poorly separated” (2PS) cases
and for k = 3 the “two poorly separated and one well separated” (3PWS) and
the “three well separated” (3WWS) cases. These degrees of heterogeneity were
obtained informally, based on the location parameter values and the reason to
consider them as an factor to our study is that the convergence of the EM algo-
rithm is typically affected when the components overlap largely (see Park & Ozeki
(2009) and the references herein). In Table 1 the parameters values used in the
study are presented and the figures 1 and 2 show some histograms exemplifying
these degrees of heterogeneity.

Table 1: Parameters values for FM-SN models
Case p1 µ1 σ2

1 λ1 p2 µ2 σ2
2 λ2 p3 µ3 σ2

3 λ3
2MS 0.6 5 9 6 0.4 20 16 −4

2WS 0.6 5 9 6 0.4 40 16 −4

2PS 0.6 5 9 6 0.4 15 16 −4

3PWS 0.4 5 9 6 0.3 20 16 −4 0.3 28 16 4
3WWS 0.4 5 9 6 0.3 30 16 −4 0.3 38 16 4

 (a)

 simulated observations

Fr
eq

ue
nc

y

5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

35
0

(b)  

simulated observations

Fr
eq

ue
nc

y

10 20 30 40

0
20

0
40

0
60

0

(c) 

 simulated observations 

Fr
eq

ue
nc

y

0 5 10 15

0
10

0
20

0
30

0

Figure 1: Histograms of FM-SN data: (a) 2MS, (b) 2WS and (c) 2PS.
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Figure 2: Histograms of FM-SN data: (a) 3PWS and (b) 3WWS.

For each combination of parameters and sample size, samples from the FM-
SN model were artificially generated and we obtained estimates of the parameters
using the algorithm presented in section 3.1 initialized by each method proposed.
This procedure was repeated 5,000 times and we computed the bias and mean
squared error (MSE) over all samples, which for µi are defined as

bias =
1

5, 000

5,000∑
j=1

µ̂
(j)
i − µi and MSE =

1

5, 000

5,000∑
j=1

(µ̂
(j)
i − µi)

2,

respectively, where µ̂(j)
i is the estimate of µi when the data is sample j. Definitions

for the other parameters are obtained by analogy. All the computations were made
using the R system (R Development Core Team 2009) and the implementation of
the EM algorithm was computed by employing the R package mixsmsn (Cabral,
Lachos & Prates 2012), available on CRAN.

As a note about implementation, an expected consequence of the non-identifia-
bility cited in section 3.2 is the permutation of the component labels when using
the k-means method to perform an initial clustering of the data. This label-
witching problem seriously affects the determination of the MSE and consequently
the evaluation of the consistency of the estimates (on this issue see e.g Stephens
2000). To overcome this problem we adopted an order restriction on the initial
values of the location parameters and estimates for all parameters were sorted
according to their true values before computing the bias and MSE. We emphasize
that we employ this order restriction order to ensure the determination of the
MSE, impartially, to compare the initialization methods.
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4.2. Bias and Mean Squared Error (MSE)

Tables 2 and 3 present, respectively, bias and MSE of the estimates in the 2MS
case. From these tables, we can see that, with both methods, the convergence of
the estimates is evidenced, as we can conclude observing the decreasing values of
bias and MSE when the sample size increases. They also show that the estimates of
the weights pi and of the location parameters µi have lower bias and MSE. On the
other side, investigating the MSE values, we can note a different pattern of (slower)
convergence to zero for the skewness parameters estimates. It is possibly due to
well known inferential problems related to the skewness parameter (DiCiccio &
Monti 2004), suggesting the use of larger samples in order to attain the consistency
property.

When we analyze the initialization methods performances, we can see that the
MM showed better performance than the RVM, for all sample sizes and parameters.
When using the RVM, in general, the absolute value of the bias and MSE of the
estimates of σ2

i and λi are very large compared with that obtained using the
MM. In general, according to our criteria, we can conclude that the MM method
presented a satisfactory performance in all situations.

Table 2: Bias of the estimates - two moderately separated (2MS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.14309 −0.39956 −0.45779 1.30675 1.32753 −1.10056 0.01927 −0.01927
MM −0.01842 −0.02842 0.39275 −0.12159 1.05604 −0.37835 0.00159 0.00159

1000 RVM 0.10815 −0.33814 −0.26339 1.09304 0.61695 −0.60402 0.01599 −0.01599
MM −0.02194 −0.01214 0.39285 −0.25737 0.58058 −0.10558 0.00212 −0.00212

5000 RVM 0.10776 −0.26897 −0.21237 0.68574 0.27081 −0.10679 0.01412 −0.01412
MM −0.02641 −0.01109 0.35592 −0.45453 0.44153 0.04753 0.00283 0.00283

10000 RVM 0.09904 −0.28784 −0.19722 0.67306 0.29762 0.04354 0.01451 −0.01451
MM −0.02783 −0.01026 0.35406 −0.44957 0.42318 0.05692 0.00275 0.00275

Table 3: MSE of the estimates - two moderately separated (2MS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.69489 2.62335 5.70944 74.43050 55.24861 108.27990 0.00797 0.00797

MM 0.01509 0.09895 1.81950 13.41757 8.11938 5.48844 0.00071 0.00071

1000 RVM 0.49336 2.34634 4.40063 64.12685 13.10896 44.12675 0.00651 0.00651

MM 0.00732 0.03158 0.99780 6.14854 1.94043 0.72317 0.00035 0.00035

5000 RVM 0.51481 1.91370 2.94570 44.01847 12.20841 7.70399 0.00544 0.00544

MM 0.00203 0.00611 0.30162 1.24062 0.45855 0.11495 7.41e-05 7.41e-05
10000 RVM 0.48098 2.14718 3.13302 38.22046 10.01400 4.01044 0.00564 0.00564

MM 0.00141 0.00598 0.22876 0.71719 0.30481 0.06338 3.97e-05 3.97e-05

The bias and MSE of the estimates for the 2WS case are presented in tables
4 and 5, respectively. As in the 2MS case, their values decrease when the sample
size increases. Comparing the initialization methods, we can see again the poor
performance of RVM, notably when estimating σ2

i and λi. The performance of
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Table 4: Bias of the estimates - two well separated (2WS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.12911 −0.43583 −0.29445 7.32555 1.49636 −0.96377 0.01053 −0.01053
MM −0.01943 −0.00087 0.12457 0.09558 0.78816 −0.51038 −0.00013 0.00013

1000 RVM 0.11189 −0.39592 −0.24494 6.83576 1.06715 −0.42096 0.00938 −0.00938
MM −0.01896 0.00764 0.11564 0.09444 0.50192 −0.2533 0.00031 0.00031

5000 RVM 0.20668 −0.61846 −0.33728 8.68389 0.57418 −0.26060 0.01440 −0.01440
MM −0.01863 0.00770 0.10208 0.09145 0.29384 −0.09125 3.87e-05 −3.87e-05

10000 RVM 0.24109 −0.64407 −0.33492 8.68057 0.37535 −0.15859 0.01457 −0.01457
MM −0.01791 0.00615 0.10220 0.08006 −0.27967 −0.07295 −8.37e-05 8.37e-05

Table 5: MSE of the estimates - two well separated (2WS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.95939 6.72054 2.57082 2314.91800 204.77300 121.73630 0.00466 0.00466

MM 0.01411 0.08918 0.86552 5.30267 4.67931 6.21511 0.00047 0.00047

1000 RVM 0.86198 6.26880 2.01054 2385.87300 157.64460 38.02320 0.00411 0.00411

MM 0.00705 0.05053 0.45151 2.58499 1.64592 0.88093 0.00024 0.00024

5000 RVM 1.62846 10.58635 2.33173 2366.03700 80.19515 32.81540 0.00577 0.00577

MM 0.00164 0.03406 0.62874 0.11866 0.30607 0.16967 4.79e-05 4.79e-05
10000 RVM 2.18692 10.97898 2.35874 2324.93000 31.51082 26.92428 0.00587 0.00587

MM 0.00099 0.03115 0.07153 0.37187 0.18739 0.10765 2.36e-05 2.36e-05

Table 6: Bias of the estimates - two poorly separated (2PS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.54135 −3.05044 −6.45635 −4.92197 0.54115 3.93878 0.10598 −0.10598
MM 0.67462 −2.97859 −6.68560 −5.96459 3.41267 4.80134 0.09124 −0.09124

1000 RVM 0.47419 −3.24148 −6.49341 −5.12707 −0.84129 3.81489 0.09821 −0.09821
MM 0.67263 −2.76804 −6.44084 −5.94106 −1.59226 4.52825 0.09288 −0.09288

5000 RVM 0.11827 −3.38188 −6.31995 −4.61048 −0.32021 4.27876 0.10485 −0.10485
MM 0.43959 −2.63605 −6.54154 −5.28364 −1.61009 4.58531 0.10837 −0.10837

10000 RVM −0.01664 −3.32212 −6.26154 −4.56424 0.04022 4.33918 0.10793 −0.10793
MM 0.34272 −2.58084 −6.36467 −5.15910 −0.35239 4.26839 0.11364 −0.11364

Table 7: MSE of the estimates - two poorly separated (2PS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 1.53553 12.77114 44.60716 61.74994 196.12690 48.65583 0.02622 0.02622

MM 1.56413 10.28718 46.61793 49.10880 343.77230 30.24965 0.01746 0.01746

1000 RVM 1.67311 14.41824 44.47786 63.53965 56.47113 51.72255 0.02561 0.02561

MM 1.39797 8.39757 42.72479 49.20213 25.63282 30.17503 0.01755 0.01755

5000 RVM 1.91642 16.52284 42.21555 60.68243 84.34230 37.77900 0.02987 0.02987

MM 0.72188 7.45145 43.16745 35.72524 17.52604 25.12349 0.01734 0.01734

10000 RVM 2.18807 16.37261 41.17759 57.61406 117.18120 37.92872 0.02981 0.02981

MM 0.48657 7.39552 41.31111 32.51687 19.04316 19.12946 0.01783 0.01783
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Table 8: Bias of the estimates - two poorly separated and one well separated (3PWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 3.86197 −2.22030 0.34248 0.02341 0.01208 −0.03549
MM −0.02634 −0.07339 0.00338 0.49861 −1.95137 1.98042

1000 RVM 0.13962 −0.32733 0.06264 −0.43484 −1.79386 4.25781

MM −0.02324 −0.04743 −0.01057 0.35349 −1.50284 1.19124

5000 RVM 0.09945 −0.27154 0.06481 −0.25861 −1.36352 3.16178

MM −0.02336 −0.04234 −0.01724 0.43048 −0.91359 0.40114

10000 RVM 0.08625 −0.25897 0.04110 −0.23192 −1.23694 3.24305

MM −0.02290 −0.04478 −0.01054 0.42927 −0.74921 0.32357

Table 9: Bias of the estimates - two poorly separated and one well separated (3PWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 3.86197 −2.22029 0.34248 0.02341 −0.03549 0.01208

MM 2.78183 −1.00171 0.37213 0.00378 −0.01641 0.01263

1000 RVM 1.46755 −0.59057 0.17228 0.01745 −0.02687 0.00941

MM 0.92051 −0.11912 0.22981 0.00218 −0.01139 0.00917

5000 RVM 0.66370 −0.05447 0.02601 0.01554 −0.01996 0.00441

MM 0.57731 0.10412 0.13295 0.00285 −0.00614 0.00328

10000 RVM 0.53239 0.12565 0.01455 0.01376 −0.01651 0.00274

MM 0.53269 0.10807 0.11858 0.00261 −0.00474 0.00212

Table 10: MSE of the estimates - two poorly separated and one well separated (3PWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 0.73592 4.19665 1.33364 7.66927 13.88521 443.83960

MM 0.02326 0.11884 0.10291 2.91056 9.62248 16.26670

1000 RVM 0.63416 3.13945 1.31999 5.46298 9.99991 335.50440

MM 0.01062 0.12819 0.04066 1.56864 5.58594 6.68605

5000 RVM 0.46937 2.92722 1.35910 4.07581 5.74955 360.56410

MM 0.00305 0.08728 0.00844 0.68559 1.76444 5.77978

10000 RVM 0.38973 2.83554 1.24776 3.41887 5.16622 349.93790

MM 0.00204 0.07621 0.00434 0.54306 1.11403 3.81096

Table 11: MSE of the estimates - two poorly separated and one well separated (3PWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 401.77671 659.16871 15.66503 0.00691 0.00077 0.00633

MM 89.47438 57.35417 2.67579 0.00068 0.00043 0.00056

1000 RVM 74.62215 95.01346 8.04131 0.00553 0.00053 0.00506

MM 3.92305 1.23581 0.88842 0.00033 0.00022 0.00027

5000 RVM 19.78691 120.88661 1.57637 0.00433 0.00021 0.00427

MM 0.73751 0.30914 0.18520 7.20e-05 3.75e-05 6.93e-05
10000 RVM 18.46118 7.03221 1.60081 0.00417 0.00031 0.00363

MM 0.50922 0.24319 0.09469 4.23e-05 1.82e-05 4.10e-05
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Table 12: Bias of the estimates - three well separated (3WWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 0.24221 −0.48999 0.07992 −0.70713 −1.98125 11.24986

MM −0.02717 −0.02233 0.00361 0.19686 −1.50136 1.60453

1000 RVM 0.24327 −0.49722 0.04203 −0.63272 −1.46754 9.55012

MM −0.02742 −0.01908 −0.01276 0.10826 −0.97860 1.18908

5000 RVM 0.33293 −0.67092 0.01975 −0.65223 −1.02971 10.20861

MM −0.02265 −0.01872 −0.01604 0.11568 −0.39018 0.58417

10000 RVM 0.33457 −0.80115 −0.07909 −0.63707 −0.90179 8.87343

MM −0.02328 −0.01509 −0.01704 0.10738 −0.28876 0.43182

Table 13: Bias of the estimates - three well separated (3WWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 3.63818 −0.59785 0.16417 0.02216 0.01369 −0.03586
MM 1.98187 −0.83366 0.31660 −0.00014 0.01385 −0.01371

1000 RVM 1.68173 −0.44696 0.07427 0.02026 0.00987 −0.03014
MM 0.83325 −0.29503 0.25427 9.95e-05 0.00977 −0.00987

5000 RVM 0.85209 −0.16743 0.11006 0.02449 0.00285 −0.02735
MM 0.38848 −0.08961 0.12745 −1.00e-05 0.00435 −0.00434

10000 RVM 0.45846 0.06753 0.13875 0.02299 0.00213 −0.02512
MM 0.34917 −0.04635 0.10236 −1.45-e05 0.00308 −0.00306

Table 14: MSE of the estimates - three well separated (3WWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 1.92196 9.35109 2.52362 6.19796 10.97185 1848.86500

MM 0.02247 0.17468 0.09472 1.43362 6.87787 8.26021

1000 RVM 2.02266 10.57483 2.68414 5.17628 9.12883 1517.61500

MM 0.01091 0.14971 0.04303 0.79533 3.51761 3.92717

5000 RVM 2.93899 12.82373 3.23907 5.17035 8.56857 1510.38300

MM 0.00249 0.14126 0.00836 0.21648 0.89455 0.81992

10000 RVM 3.08463 14.30240 2.85946 4.53532 9.51754 1383.25000

MM 0.00156 0.13665 0.00412 0.17027 0.79811 0.42657

Table 15: MSE of the estimates - three well separated (3WWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 361.45080 31.09128 9.18895 0.00727 0.00102 0.00712

MM 34.37280 18.59549 2.08116 0.00047 0.00042 0.00041

1000 RVM 132.29800 28.30730 3.20316 0.00656 0.00089 0.00632

MM 3.81642 0.92243 1.51732 0.00024 0.00022 0.00021

5000 RVM 41.27475 23.97153 1.03027 0.00845 0.00111 0.00684

MM 0.50781 0.30959 0.18493 4.86e05 4.15e-05 4.15e-05
10000 RVM 22.70630 10.52715 1.66676 0.00754 0.00091 0.00647

MM 0.30177 0.29030 0.08916 2.41e-05 2.11e-05 2.07e-05
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MM is satisfactory and we can say that, in general, the conclusions made for the
2MS case are still valid here.

We present the results for the 2PS case in tables 6 and 7. Bias and MSE
are larger than in the 2MS and 2WS cases (for all sample sizes) with both me-
thods. Also, the consistency of the estimates seems to be unsatisfactory, clearly
not attained in the σ2

i and λi cases. According to the related literature, such
drawbacks of the algorithm are expected when the population presents a remarka-
ble homogeneity. An exception is made when the initial values are closer to the
true parameter values see, for example, McLachlan & Peel (2000) and the above-
mentioned work of Park & Ozeki (2009).

For the 3PWS case the results for the bias are shown in tables 8 and 9 and
for the MSE in tables 10 and 11. It seems that consistency is achieved for p̂i, µ̂i
and σ̂2

i , using MM. However, this is not the behavior for λ̂i. This instability is
common to all initialization methods, according to the MSE criterion. Using the
RVM method we obtained, as before, larger values of bias and MSE. These results
are similar to that obtained for the FM-SN model with two components

Finally, for the 3PWW case, the bias of the estimates is presented in tables 12
and 13 and the EQM are shown in tables 14 and 15. Concerning the estimates p̂i
and µ̂i, very satisfactory results are obtained, with small values of bias and MSE
when using the MM. The values of MSE of σ̂2

i exhibit a decreasing behavior when
the sample size increases. On the other side, although we are in the well separated
case, the values of bias and MSE of λ̂i are larger, notably when using RVM as the
initialization method.

Concluding this section, we can say that, as a general rule, the MM can be
seen as a good alternative for real applications. If this condition is maintained, our
study suggests that the consistency property holds for all EM estimates (it may
be slower for the scale parameter!), except for the skewness parameter, indicating
that a sample size larger than 5,000 is necessary to achieve consistency in the case
of this parameter. The study also suggests that the degree of heterogeneity of the
population has a remarkable influence on the quality of the estimates.

Table 16: Means and standard deviations (×10−4) of dr.
Cases

Method n
2MS 2WS 2PS

RVM 500 1.43 (2.55) 2.51 (7.31) 2.23 (1.31)

1000 1.05 (2.21) 2.24 (6.48) 0.84 (0.69)

5000 0.75 (2.24) 2.01 (8.67) 1.02 (0.75)

10000 0.67 (2.35) 2.14 (8.86) 0.67 (0.69)

MM 500 0.90 (0.66) 1.32 (0.95) 2.20 (1.21)

1000 0.62 (0.48) 1.23 (0.80) 0.76 (0.57)

5000 0.33 (0.24) 0.34 (0.26) 0.79 (0.46)

10000 0.22 (0.16) 0.42 (0.26) 0.44 (0.33)
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4.3. Density Estimation Analysis

In this section we consider the density estimation issue, that is, the point
estimation of the parameter `(Θ), the log-likelihood evaluated at the true value of
the parameter. We considered FM-SN models with two components and restricted
ourselves to the cases 2MS, 2WS and 2PS, with sample sizes n =500; 1,000; 5,000
and 10,000. For each combination of parameters and sample size, 5000 samples
were generated and the following measure was considered to compare the methods
of initialization

dr(M) =

∣∣∣∣∣`(Θ)− `(M)(Θ̂)

`(Θ)

∣∣∣∣∣× 100

where `(M)(Θ̂) is the log-likelihood evaluated at the EM estimate Θ̂, which was
obtained using the initialization method M . According to this criterion, an ini-
tialization method M is better than M ′ if dr(M) < dr(M

′). Table 16 presents the
means and standard deviations of dr.

For 2MS case, we can see that these values decrease when the sample size
increases with both methods and that the MM presented the lowest mean value
and standard deviation for all sample sizes. For the 2WS case, we do not observe
a monotone behavior for dr, the mean values and the standard errors are larger
than that presented in the 2MS case, with poor performance of RVM. In this 2PS
case, although we also do not observe a monotone behavior for dr, we can see that
the MM presented a better performance than the TVM.

The main message is that the MM method seems to be suitable when we are
interested in the estimation of the likelihood values, with some caution when the
population is highly homogeneous.

4.4. Number of Iterations

It is well known that one of the major drawbacks of the EM algorithm is
the slow convergence. The problem becomes more serious when there is a bad
choice of the starting values (McLachlan & Krishnan 2008). Consequently, an
important issue is the investigation of the number of iterations necessary for the
convergence of the algorithm. As in subsection 4.3, here we consider only the 2MS,
2WS and 2PS cases, with the same sample sizes and number of replications. For
each generated sample, we observed the number of iterations and the means and
standard deviations of this quantity were computed. The simulations results are
reported in Table 17.

Results suggest that in the three cases, using MM, the mean number of itera-
tions decreases as the sample size increases, but the same is not true when RVM
is adopted as the initialization method. For the 2PS case, as expected, we have
a poor behavior possibly due to the population homogeneity, as we commented
before. An interesting fact is that, in the 2PS case, the RVM has a smaller mean
number of iterations.
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Table 17: Means and standard deviations of number of iterations.
Cases

Method n
2MS 2WS 2PS

RVM 500 306.14 (387.70) 129.81 (117.01) 337.82 (289.01)

1,000 283.57 (289.32) 126.87 (130.61) 319.70 (242.08)

5,000 280.28 (260.36) 128.29 (213.99) 336.85 (206.38)

10,000 286.31 (271.83) 131.33 (190.77) 353.61 (211.99)

MM 500 147.53 (72.79) 126.62 (26.80) 457.97 (167.28)

1,000 129.37 (33.34) 119.70 (15.39) 429.42 (119.77)

5,000 116.35 (11.57) 113.91 (5.90) 372.14 (71.89)

10,000 115.10 (8.37) 113.29 (4.23) 352.33 (97.54)

5. A Simulation Study of Model Choice

There is a key issue with the use of finite mixtures to estimate the number of
components in order to obtain a suitable fit. One possible approach is to use some
criteria function and compute

k̂ = arg min
k
{C(Θ̂(k)), k ∈ {kmin, . . . , kmax}}

where C(Θ̂(k)) is the criterion function evaluated at the EM estimate Θ̂(k), ob-
tained by modeling the data using the FM-SN model with k components, and
kmin and kmax are fixed positive integers (for other approaches see McLachlan &
Peel 2000).

Our main purpose in this section is to investigate the ability of some classical
criteria to estimate the correct number of mixture components. We consider the
Akaike Information Criterion (AIC) (Akaike 1974), the Bayesian Information Cri-
terion (BIC) (Schwarz 1978), the Efficient Determination Criterion (EDC) (Bai,
Krishnaiah & Zhao 1989) and the Integrated Completed Likelihood Criterion (ICL)
(Biernacki, Celeux & Govaert 2000). The AIC, BIC and EDC criteria have the
form

−2 `(Θ̂) + dk cn

where `(·) is the actual log-likelihood, dk is the number of free parameters that
have to be estimated under the model with k components and the penalty term
cn is a convenient sequence of positive numbers. We have cn = 2 for AIC and
cn = log(n) for BIC. For the EDC criterion, cn is chosen so that it satisfies the
conditions

lim(cn/n) = 0 and lim
n→∞

(cn/(log log n)) =∞

Here we compare the following alternatives

cn = 0.2
√
n, cn = 0.2 log (n), cn = 0.2n/ log (n), and cn = 0.5

√
n

The ICL is defined as
−2 `∗(Θ̂) + dk log(n),
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where `∗(·) is the integrated log-likelihood of the sample and the indicator latent
variables, given by

`∗(Θ̂) =

k∑
i=1

∑
j∈Ci

log(p̂iSN(yj |θ̂i))

where Ci is a set of indexes defined as: j belongs to Ci if, and only if, the obser-
vation yj is allocated to component i by the following clustering process: after the
FM-SN model with k components was fitted using the EM algorithm we obtain
the estimate of the posterior probability that an observation yi belongs to the jth
component of the mixture, ẑij (see equation (6)). If q = arg maxj{ẑij} we allocate
yi to the component q.

In this study we simulated samples of the FM-SN model with k = 3, p1 = p2 =
p3 = 1/3, µ1 = 5, µ2 = 20, µ3 = 28, σ2

1 = 9, σ2
2 = 16, σ2

3 = 16, λ1 = 6, λ2 = −4
and λ3 = 4, and considered the sample sizes n = 200, 300, 500,1000, 5000. Figure
3 shows a typical sample of size 1000 following this specified set up.
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Figure 3: Histogram of a FM-SN sample with k = 3 and n = 1, 000.

For each generated sample (with fixed number of 3 components) we fitted the
FM-SN model with k = 2, k = 3 and k = 4, using the EM algorithm initialized
by the method of moments. For each fitted model the criteria AIC, BIC, ICL
and EDC were computed. We repeated this procedure 500 times and obtained the
percentage of times some given criterion chooses the correct number of components.
The results are reported in Table 18

We can see that BIC and ICL have a better performance than AIC for all
sample sizes. Except for AIC, the rates presented an increasing behavior when
the sample size increases. This possible drawback of AIC may be due to the fact
that its definition does not take into account the sample size in its penalty term.
Results for BIC and ICL were similar, while EDC showed some dependence on
the term cn. In general, we can say that BIC and ICL have equivalent abilities
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Table 18: Percentage of times that the criteria chosen the correct model.
EDC/ cn

n AIC BIC ICL
0.2 log (n) 0.2

√
n 0.2n/ log (n) 0.5

√
n

200 94.2 99.2 99.2 77.8 98.4 99.4 99.4

300 94.0 98.8 98.8 78.2 98.4 98.8 98.8

500 95.8 99.8 99.8 86.4 99.8 99.8 99.8

1000 96.2 100.0 100.0 88.5 100.0 100.0 100.0

5000 95.6 100.0 100.0 92.8 100.0 100.0 100.0

to choose the correct number of components and that, depending on the choice of
cn, ICL can not be as good as AIC or better than ICL and BIC.

6. Final Remarks

In this work we presented a simulation study in order to investigate the perfor-
mance of the EM algorithm for maximum likelihood estimation in finite mixtures
of skew-normal distributions with component specific parameters. The results
show that the algorithm produces quite reasonable estimates, in the sense of con-
sistency and the total number of iterations, when using the method of moments
to obtain the starting points. The study also suggested that the random initia-
lization method used is not a reasonable procedure. When the EM estimates were
used to compute some model choice criteria (AIC, BIC, ICL and EDC), the results
suggest that the EDC, with the penalization term appropriate, provides a good
alternative to estimate the number of components of the mixture. On the other
side, these patterns do not hold when the mixture components are poorly sepa-
rated, notably for the skewness parameters estimates which, in addition, showed
a performance strongly dependent on large samples. Possible extensions of this
work include the multivariate case and a wider family of skewed distributions, like
the class of skew-normal independent distributions (see Cabral et al. (2012)).

[
Recibido: agosto de 2011 — Aceptado: octubre de 2012

]
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1. Introduction

The use of Vector Autoregression with exogenous variables (VAR-X) and struc-
tural VAR-X models in econometrics is not new, yet textbooks and articles that
use them often fail to provide the reader a concise (and moreover useful) descrip-
tion of how to implement these models (Lütkepohl (2005) constitutes an exception
of this statement). The use of Bayesian techniques in the estimation of VAR-X
models is also largely neglected from the literature, as is the construction of the
historical decomposition of the endogenous variables. This document builds upon
the Structural Vector Autoregression (S-VAR) and Bayesian Vector Autoregres-
sion (B-VAR) literature and its purpose is to present a review of some of the basic
features that accompany the implementation of a structural VAR-X model.

Section 2 presents the notation and general setup to be followed throughout
the document. Section 3 discusses the identification of structural shocks in a VAR-
X, with both long run restrictions, as in Blanchard & Quah (1989), and impact
restrictions, as in Sims (1980, 1986). Section 4 considers the estimation of the
parameters by classical and Bayesian methods. In Section 5, four of the possi-
ble applications of the model are presented, namely the construction of impulse
response functions to structural shocks, multiplier analysis of the exogenous vari-
ables, forecast error variance decomposition and historical decomposition of the
endogenous variables. Section 6 exemplifies some of the concepts developed in
the document using Galí’s (1999) structural VAR augmented with oil prices as an
exogenous variable. Finally Section 7 concludes.

2. General Setup

In all sections the case of a structural VAR-X whose reduced form is a VAR-
X(p, q) will be considered. It is assumed that the system has n endogenous vari-
ables (yt) and m exogenous variables (xt). The variables in yt and xt may be in
levels or in first differences, this depends on the characteristics of the data, the
purpose of the study, and the identification strategy, in all cases no co-integration
is assumed. The reduced form of the structural model includes the first p lags
of the endogenous variables, the contemporaneous values and first q lags of the
exogenous variables and a constant vector.1 Under this specification it is assumed
that the model is stable and presents white-noise Gaussian residuals (et), i.e.
et

iid∼ N (0,Σ), moreover, xt is assumed to be uncorrelated with et for all leads
and lags.

The reduced form VAR-X(p, q) can be represented as in equation (1) or equa-
tion (2), where v is a n-vector, Bi are n × n matrices, with i ∈ {1, . . . , p}, and
Θj are n × m matrices, with j ∈ {1, . . . , q}. In equation (2) one has B (L) =
B1L+ · · ·+ BpL

p and Θ (L) = Θ0 + · · ·+ ΘqL
q, both matrices of polynomials in

1The lag structure of the exogenous variables may be relaxed allowing different lags for each
variable. This complicates the estimation and is not done here for simplicity. Also, the constant
vector or intercept may be omitted according to the characteristics of the series used.
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the lag operator L.

yt = v + B1yt−1 + · · ·+ Bpyt−p + Θ0xt + · · ·+ Θqxt−q + et (1)
yt = v + B (L) yt + Θ (L) xt + et (2)

Defining Ψ (L) = Ψ0 + Ψ1L + . . . = [I−B (L)]
−1 with Ψ0 = I as an infinite

polynomial on the lag operator L, one has the VMA-X representation of the model,
equation (3).2

yt = Ψ (1) v + Ψ (L) Θ (L) xt + Ψ (L) et (3)

Finally, there is a structural VAR-X model associated with the equations above,
most of the applications are obtained from it, for example those covered in Section
5. Instead of the residuals (e), which can be correlated among them, the structural
model contains structural disturbances with economic interpretation (ε), this is
what makes it useful for policy analysis. It will be convenient to represent the
model by its Vector Moving Average (VMA-X) form, equation (4),

yt = µ+ C (L) εt + Λ (L) xt (4)

where the endogenous variables are expressed as a function of a constant n-vector
(µ), and the current and past values of the structural shocks (ε) and the exogenous
variables. It is assumed that ε is a vector of white noise Gaussian disturbances
with identity covariance matrix, i.e. εt

iid∼ N (0, I). Both C (L) and Λ (L) are
infinite polynomials in the lag operator L, each matrix of C (L) (C0,C1, . . .) is of
size n× n, and each matrix of Λ (L) (Λ0,Λ1, . . .) is of size n×m.

3. Identification of Structural Shocks in a VAR-X

The identification of structural shocks is understood here as a procedure which
enables the econometrician to obtain the parameters of a structural VAR-X from
the estimated parameters of the reduced form of the model. As will be clear from
the exposition below, the identification in presence of exogenous variables is no
different from what is usually done in the S-VAR literature. Equating (3) and (4)
one has:

µ+ Λ (L) xt + C (L) εt = Ψ (1) v + Ψ (L) Θ (L) xt + Ψ (L) et

then the following equalities can be inferred:

µ = Ψ (1) v (5)
Λ (L) = Ψ (L) Θ (L) (6)

C (L) εt = Ψ (L) et (7)

2The models stability condition implies that Ψ (1) =

[
I −

p∑
i=1

Bi

]−1

exists and is finite.
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Since the parameters in v, B (L) and Θ (L) can be estimated from the reduced
form VAR-X representation, the values of µ and Λ (L) are also known.3 Only the
parameters in C (L) are left to be identified, the identification depends on the type
of restrictions to be imposed. From equations (5), (6) and (7) is clear that the
inclusion of exogenous variables in the model has no effect in the identification of
the structural shocks. Equation (7) also holds for a structural VAR model.

The identification restrictions to be imposed over C (L) may take several forms.
Since there is nothing different in the identification between the case presented here
and the S-VAR literature, we cover only two types of identification procedures,
namely: impact and long run restrictions that allow the use of the Cholesky de-
composition. It is also possible that the economic theory points at restrictions
that make impossible a representation in which the Cholesky decomposition can
be used, or that the number of restrictions exceeds what is needed for exact iden-
tification. Both cases complicate the estimation of the model, and the second
one (over-identification) makes possible to carry out tests over the restrictions im-
posed. For a more comprehensive treatment of these problems we refer to Amisano
& Giannini (1997).

There is another identification strategy that will not be covered in this docu-
ment, identification by sign restrictions over some of the impulse response func-
tions. This kind of identification allows to avoid some puzzles that commonly arise
in the VAR literature. References to this can be found in Uhlig (2005), Mountford
& Uhlig (2009), Canova & De Nicolo (2002), Canova & Pappa (2007) and preced-
ing working papers of those articles originally presented in the late 1990’s. More
recently, the work of Moon, Schorfheide, Granziera & Lee (2011) presents how to
conduct inference over impulse response functions with sign restrictions, both by
classical and Bayesian methods.

3.1. Identification by Impact Restrictions

In Sims (1980, 1986) the identification by impact restrictions is proposed, the
idea behind is that equation (7) is equating two polynomials in the lag operator
L, for them to be equal it must be the case that:

CiL
iεt = ΨiL

iet

Ciεt = Ψiet (8)

Equation (8) holds for all i, in particular it holds for i = 0. Recalling that
Ψ0 = I, the following result is obtained:

C0εt = et (9)

then, by taking the variance on both sides one gets:

C0C
′

0 = Σ (10)
3Lütkepohl (2005) presents methods for obtaining the matrices in Ψ (L) and the product

Ψ (L)Θ (L) recursively in Sections 2.1.2 and 10.6, respectively. Ψ (1) is easily computed by
taking the inverse on I − B1 − . . .− Bp.
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Algorithm 1 Identification by Impact Restrictions

1. Estimate the reduced form of the VAR-X.

2. Calculate the VMA-X representation of the model (matrices Ψi) and the
covariance matrix of the reduced form disturbances e (matrix Σ).

3. From the Cholesky decomposition of Σ calculate matrix C0.

C0 = chol (Σ)

4. For i = 1, . . . , R, with R given, calculate the matrices Ci as:

Ci = ΨiC0

Identification is completed since all matrices of the structural VMA-X are known.

Since Σ is a symmetric, positive definite matrix it is not possible to infer in
a unique form the parameters of C0 from equation (10), restrictions over the pa-
rameters of C0 have to be imposed. Because C0 measures the impact effect of the
structural shocks over the endogenous variables, those restrictions are called here
impact restrictions. Following Sims (1980), the restrictions to be imposed ensure
that C0 is a triangular matrix, this allows to use the Cholesky decomposition of
Σ to obtain the non-zero elements of C0. This amount of restrictions account
n× (n− 1)/2 and make the model just identifiable.

In econometrics the use of the Cholesky decomposition with identifying impact
restrictions is also reffered to as recursive identification. This is because the pro-
cedure implies a recursive effect of the shocks over the variables, thus making the
order in which the variables appear in the model matter for the interpretation of
the results. Since the matrix C0 is restricted to be triangular, e.g. lower trian-
gular, the first variable can only be affected at impact by the first shock (ε first
element), whereas the second variable can be affected at impact by both the first
and second shocks. This is better illustrated in Christiano, Eichenbaum & Evans
(1999) where the recursive identification is applied to determine the effects of a
monetary policy shock.

Once C0 is known, equations (8) and (9) can be used to calculate Ci for all i:

Ci = ΨiC0 (11)

Identification by impact restrictions is summarized in Algorithm 1.

3.2. Identification by Long Run Restrictions

Another way to identify the matrices of the structural VMA-X is to impose re-
strictions on the long run impact of the shocks over the endogenous variables. This
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method is proposed in Blanchard & Quah (1989). For the model under considera-

tion, if the variables in yt are in differences, the matrix C (1) =
∞∑
i=0

Ci measures the

long run impact of the structural shocks over the levels of the variables.4 Matrix
C (1) is obtained by evaluating equation (7) in L = 1. As in the case of impact
restrictions, the variance of each side of the equation is taken, the result is:

C (1) C
′
(1) = Ψ (1) ΣΨ

′
(1) (12)

Again, since Ψ (1) ΣΨ
′
(1) is a symmetric, positive definite matrix it is not

possible to infer the parameters of C (1) from equation (12), restrictions over
the parameters of C (1) have to be imposed. It is conveniently assumed that
those restrictions make C (1) a triangular matrix, as before, this allows to use the
Cholesky decomposition to calculate the non-zero elements of C (1). Again, this
amount of restrictions account n× (n−1)/2 and make the model just identifiable.
It is important to note that the ordering of the variables matters as before. If, for
example, C (1) is lower triangular, the first shock will be the only one that can
have long run effects over the first variable, whereas the second variable can be
affected by both the first and second shock in the long run.

Finally, it is possible to use C (1) to calculate the parameters in the C0 matrix,
with it, the matrices Ci for i > 0 are obtained as in the identification by impact
restrictions. Combining (10) with (7) evaluated in L = 1 the following expression
for C0 is derived:

C0 = [Ψ (1)]
−1

C (1) (13)

Identification by long run restrictions is summarized in Algorithm 2.

4. Estimation

The estimation of the parameters of the VAR-X can be carried out by classical
or Bayesian methods, as will become clear it is convenient to write the model in a
more compact form. Following Zellner (1996) and Bauwens, Lubrano & Richard
(2000), equation (1), for a sample of T observations, plus a fixed presample, can
be written as:

Y = ZΓ + E (14)

where Y =



y
′

1
...

y
′

t
...

y
′

T


, Z =



1 y
′

0 . . . y
′

1−p x
′

1 . . . x
′

1−q
...
1 y

′

t−1 . . . y
′

t−p x
′

t . . . x
′

t−q
...
1 y

′

T−1 . . . y
′

T−p x
′

T . . . x
′

T−q


, E =



e
′

1
...
e
′

t
...

e
′

T


and Γ =

[
v B1 . . . Bp Θo . . . Θq

]′
.

4Of course, not all the variables of yt must be in differences, but the only meaningful re-
strictions are those imposed over variables that enter the model in that way. We restrict our
attention to a case in which there are no variables in levels in yt.
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Algorithm 2 Identification by Long Run Restrictions

1. Estimate the reduced form of the VAR-X.

2. Calculate the VMA-X representation of the model (matrices Ψi) and the
covariance matrix of the reduced form disturbances e (matrix Σ).

3. From the Cholesky decomposition of Ψ (1) ΣΨ
′
(1) calculate matrix C (1).

C (1) = chol
(
Ψ (1) ΣΨ

′
(1)
)

4. With the matrices of long run effects of the reduced form, Ψ (1), and struc-
tural shocks, C (1), calculate the matrix of contemporaneous effects of the
structural shocks, C0.

C0 = [Ψ (1)]
−1

C (1)

5. For i = 1, . . . , R, with R sufficiently large, calculate the matrices Ci as:

Ci = ΨiC0

Identification is completed since all matrices of the structural VMA-X are known.

For convenience we define the auxiliary variable k = (1 + np+m (q + 1)) as
the total number of regressors. The matrices sizes are as follow: Y is a T × n
matrix, Z a T × k matrix, E a T × n matrix and Γ a k × n matrix.

Equation (14) is useful because it allows to represent the VAR-X model as a
multivariate linear regression model, with it the likelihood function is derived. The
parameters can be obtained by maximizing that function or by means of Bayes
theorem.

4.1. The Likelihood Function

From equation (14) one derives the likelihood function for the error terms.
Since et ∼ N (0,Σ), one has: E ∼ MN (0,Σ⊗ I), a matricvariate normal distri-
bution with I the identity matrix with dimension T ×T . The following box defines
the probability density function for the matricvariate normal distribution.
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The Matricvariate Normal Distribution. The probability density function
of a (p× q) matrix X that follows a matricvariate normal distribution with mean
Mp×q and covariance matrix Qq×q ⊗Pp×p (X ∼ MN (M,Q⊗P)) is:

MNpdf ∝ |Q⊗P|−1/2
exp

(
−1/2 [vec (X−M)]

′
(Q⊗P)

−1
[vec (X−M)]

)
(15)

Following Bauwens et al. (2000), the vec operator can be replaced by a trace
operator (tr):

MNpdf ∝ |Q|
−p/2 |P|−q/2

exp
(
−1/2tr

(
Q−1 (X−M)

′
P−1 (X−M)

))
(16)

Both representations of the matricvariate normal pdf are useful when dealing with
the compact representation of the VAR-X model. Note that the equations above
are only proportional to the actual probability density function. The missing
constant term has no effects in the estimation procedure.

Using the definition in the preceding box and applying it to E ∼ MN (O,Σ⊗ I)
one gets the likelihood function of the VAR-X model, conditioned to the path of
the exogenous variables:

L ∝ |Σ|−T/2
exp

(
−1/2tr

(
Σ−1E

′
E
))

From (14) one has E = Y − ZΓ, replacing:

L ∝ |Σ|−T/2
exp

(
−1/2tr

(
Σ−1 (Y − ZΓ)

′
(Y − ZΓ)

))
Finally, after tedious algebraic manipulation, one gets to the following expression:

L ∝
[
|Σ|−(T−k)/2

exp
(
−1/2tr

(
Σ−1S

))]
[
|Σ|−k/2

exp

(
−1/2tr

(
Σ−1

(
Γ− Γ̂

)′
Z
′
Z
(
Γ− Γ̂

)))]

where Γ̂ =
(
Z
′
Z
)−1

Z
′
Y and S =

(
Y − ZΓ̂

)′ (
Y − ZΓ̂

)
. It is being assumed

overall that matrix Z
′
Z is invertible, a condition common to the VAR and OLS

models (see Lütkepohl (2005) section 3.2).
One last thing is noted, the second factor of the right hand side of the last

expression is proportional to the pdf of a matricvariate normal distribution for Γ,
and the first factor to the pdf of an inverse Wishart distribution for Σ (see the
box below). This allows an exact characterization of the likelihood function as:

L = iWpdf (S, T − k − n− 1)MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
(17)

where iWpdf (S, T − k − n− 1) stands for the pdf of an inverse Wishart distribu-
tion with parameters S and T − k − n− 1.
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The parameters of the VAR-X, Γ and Σ, can be estimated by maximizing
equation (17). It can be shown that the result of the likelihood maximization
gives:

Γml = Γ̂ Σml = S

Sometimes because practical considerations or non-invertibility of Z
′
Z, when no

restrictions are imposed, equation by equation estimation can be implemented (see
Lütkepohl (2005) section 5.4.4).

The Inverse Wishart Distribution
If the variable X (a square, positive definite matrix of size q) is distributed
iW (S, s), with parameter S (also a square, positive definite matrix of size q),
and s degrees of freedom, then its probability density function

(
iWpdf

)
is given

by:

iWpdf (S, s) =
|S|

s
2

2
vq
2 Γq

(
s
2

) |X|−(s+q+1)
2 exp

(
−1/2tr

(
X−1S

))
(18)

where Γq (x) = π
q(q−1)

4

q∏
j=1

Γ
(
x+ 1−j

2

)
is the multivariate Gamma function. It

is useful to have an expression for the mean and mode of the inverse Wishart
distribution, these are given by:

Mean (X) =
S

s− q − 1
Mode (X) =

S

s+ q + 1

4.2. Bayesian Estimation

If the estimation is carried out by Bayesian methods the problem is to elect an
adequate prior distribution and, by means of Bayes theorem, obtain the posterior
density function of the parameters. The use of Bayesian methods is encouraged
because they allow inference to be done conditional to the sample, and in par-
ticular the sample size, giving a better sense of the uncertainty associated with
the parameters values; it also facilitate to compute moments not only for the pa-
rameters but for their functions as is the case of the impulse responses, forecast
error variance decomposition and others; it is also particularly useful to obtain a
measure of skewness in this functions, specially for the policy implications of the
results. As mentioned in Koop (1992), the use of Bayesian methods gives an exact
finite sample density for both the parameters and their functions.

The election of the prior is a sensitive issue and will not be discussed in this doc-
ument, we shall restrict our attention to the case of the Jeffreys non-informative
prior (Jeffreys 1961) which is widely used in Bayesian studies of vector auto-
regressors. There are usually two reasons for its use. The first one is that in-
formation about the reduced form parameters of the VAR-X model is scarce and
difficult to translate into an adequate prior distribution. The second is that it
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might be the case that the econometrician does not want to include new infor-
mation to the estimation but only wishes to use Bayesian methods for inference
purposes. Besides the two reasons already mentioned, the use of the Jeffreys non-
informative prior constitute a computational advantage because it allows a closed
form representation of the posterior density function, thus allowing to make draws
for the parameters by direct methods or by the Gibbs sampling algorithm (Geman
& Geman 1984).5

For a discussion of other usual prior distributions for VAR models we refer to
Kadiyala & Karlsson (1997) and, more recently, to Kociecki (2010) for the con-
struction of feasible prior distributions over impulse response in a structural VAR
context. When the model is used for forecast purposes the so called Minnesota
prior is of particular interest, this prior is due to Litterman (1986), and is gen-
eralized in Kadiyala & Karlsson (1997) for allowing symmetry of the prior across
equations. This generalization is recommended and is of easy implementation in
the Bayesian estimation of the model. It should be mentioned that the Minnesota
prior is of little interest in the structural VAR-X context, principally because the
model is conditioned to the path of the exogenous variables, adding difficulties to
the forecasting process.

In general the Jeffreys Prior for the linear regression parameters correspond to
a constant for the parameters in Γ and for the covariance matrix a function of the
form: |Σ|

−(n+1)
2 , where n represents the size of the covariance matrix. The prior

distribution to be used is then:

P (Γ,Σ) = C |Σ|
−(n+1)

2 (19)

where C is the integrating constant of the distribution. Its actual value will be of
no interest.

The posterior is obtained from Bayes theorem as:

π (Γ,Σ | Y,Z) =
L (Y,Z | Γ,Σ)P (Γ,Σ)

m (Y)
(20)

where π (Γ,Σ | Y,Z) is the posterior distribution of the parameters given the data,
L (Y,Z | Γ,Σ) is the likelihood function, P (Γ,Σ) is the prior distribution of the
parameters and m (Y) the marginal density of the model. The value and use of
the marginal density is discussed in Section 4.2.1.

Combining equations (17), (19) and (20) one gets an exact representation of
the posterior function as the product of the pdf of an inverse Wishart distribution
and the pdf of a matricvariate normal distribution:

π (Γ,Σ | Y,Z) = iWpdf (S, T − k)MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
(21)

Equation (21) implies that Σ follows an inverse Wishart distribution with
parameters S and T − k, and that the distribution of Γ given Σ is matricvariate

5For an introduction to the use of the Gibbs sampling algorithm we refer to Casella & George
(1992).
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Algorithm 3 Bayesian Estimation

1. Select the specification for the reduced form VAR-X, that is to chose values
of p (endogenous variables lags) and q (exogenous variables lags) such that
the residuals of the VAR-X (e) have white noise properties. With this the
following variables are obtained: T, p, q, k, where:

k = 1 + np+m (q + 1)

2. Calculate the values of Γ̂, S with the data (Y,Z) as:

Γ̂ =
(
Z
′
Z
)−1

Z
′
Y S =

(
Y − ZΓ̂

)′ (
Y − ZΓ̂

)
3. Generate a draw for matrix Σ from an inverse Wishart distribution with

parameter S and T − k degrees of freedom.

Σ ∼ iWpdf (S, T − k)

4. Generate a draw for matrix Γ from a matricvariate normal distribution with
mean Γ̂ and covariance matrix Σ⊗

(
Z
′
Z
)−1

.

Γ|Σ ∼ MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
5. Repeat steps 2-3 as many times as desired, save the values of each draw.

The draws generated can be used to compute moments of the parameters. For
every draw the corresponding structural parameters, impulse responses functions,
etc. can be computed, then, their moments and statistics can also be computed.
The algorithms for generating draws for the inverse Wishart and matricvariate
normal distributions are presented in Bauwens et al. (2000), Appendix B.

normal with mean Γ̂ and covariance matrix Σ ⊗
(
Z
′
Z
)−1

. The following two
equations formalize the former statement:

Σ | Y,Z ∼ iWpdf (S, T − k) Γ | Σ,Y,Z ∼ MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
Although further work can be done to obtain the unconditional distribution of

Γ it is not necessary to do so. Because equation (21) is an exact representation
of the parameters distribution function, it can be used to generate draws of them,
moreover it can be used to compute any moment or statistic of interest, this can
be done by means of the Gibbs sampling algorithm.
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4.2.1. Marginal Densities and Lag Structure

The marginal density (m (Y)) can be easily obtained under the Jeffreys prior
and can be used afterward for purposes of model comparison. The marginal density
gives the probability that the data is generated by a particular model, eliminating
the uncertainty due to the parameters values. Because of this m (Y) is often
used for model comparison by means of the Bayes factor (BF): the ratio between
the marginal densities of two different models that explain the same set of data
(BF12 = m(Y |M1)/m(Y|M2)). If the Bayes factor is bigger than one then the first
model (M1) would be preferred.

From Bayes theorem (equation 20) the marginal density of the data, given the
model, is:

m (Y) =
L (Y,Z|Γ,Σ)P (Γ,Σ)

π (Γ,Σ|Y,Z)
(22)

its value is obtained by replacing for the actual forms of the likelihood, prior and
posterior functions (equations 17, 19 and 21 respectively):

m (Y) =
Γn
(
T−k

2

)
Γn
(
T−k−n−1

2

) |S|−n−1
2 2

n(n+1)
2 C (23)

Although the exact value of the marginal density for a given model cannot be
known without the constant C, this is no crucial for model comparison if the only
difference between the models is in their lag structure. In that case the constant
C is the same for both models, and the difference between the marginal density of
one specification or another arises only in the first two factors of the right hand

side of equation (23)
[

Γn(T−k
2 )

Γn(T−k−n−1
2 )

|S|
−n−1

2

]
. When computing the Bayes factor

for any pair of models the result will be given by those factors alone.

The Bayes factor between a model,M1, with k1 regressors and residual covari-
ance matrix S1, and another model,M2, with k2 regressors and residual covariance
matrix S2, can be reduced to:

BF12 =

Γn(T−k1
2 )

Γn(T−k1−n−1
2 )

|S1|
−n−1

2

Γn(T−k2
2 )

Γn(T−k2−n−1
2 )

|S2|
−n−1

2

(24)

5. Applications

There are several applications for the structural VAR-X, all of them useful for
policy analysis. In this Section four of those applications are covered, they all use
the structural VMA-X representation of the model (equation 4).
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5.1. Impulse Response Functions (IRF), Multiplier
Analysis (MA), and Forecast Error Variance
Decomposition (FEVD)

Impulse response functions (IRF) and multiplier analysis (MA) can be con-
structed from the matrices in C (L) and Λ (L). The IRF shows the endogenous
variables response to a unitary change in a structural shock, in an analogous way
the MA shows the response to a change in an exogenous variable. The construc-
tion is simple and is based on the interpretations of the elements of the matrices
in C (L) and Λ (L).

For the construction of the IRF consider matrix Ch. The elements of this
matrix measure the effect of the structural shocks over the endogenous variables
h periods ahead, thus cijh (i-throw, j-th column) measures the response of the i-th
variable to a unitary change in the j-th shock h periods ahead. The IRF for the
i-th variable to a change in j-th shock is constructed by collecting elements cijh for
h = 0, 1, . . . ,H, with H the IRF horizon.

Matrices Ch are obtained from the reduced form parameters according to the
type of identification (Section 3). For a more detailed discussion on the construc-
tion and properties of the IRF we refer to Lütkepohl (2005), Section 2.3.2.

The MA is obtained similarly from matrices Λh, which are also a function of
the reduced form parameters.6 The interpretation is the same as before.

A number of methods for inference over the IRF and MA are available. If
the estimation is carried out by classical methods intervals for the IRF and MA
can be computed by means of their asymptotic distributions or by bootstrapping
methods.7 Nevertheless, because the OLS estimators are biased, as proved in
Nicholls & Pope (1988), the intervals that arise from both asymptotic theory and
usual bootstrapping methods are also biased. As pointed out by Kilian (1998)
this makes necessary to conduct the inference over IRF, and in this case over
MA, correcting the bias and allowing for skewness in the intervals. Skewness is
common in the small sample distributions of the IRF and MA and arises from
the non-linearity of the function that maps the reduced form parameters to the
IRF or MA. A double bootstrapping method that effectively corrects the bias and
accounts for the skewness in the intervals is proposed in Kilian (1998).

In the context of Bayesian estimation, it is noted that, applying Algorithm 1 or
2 for each draw of the reduced form parameters (Algorithm 3), the distribution for
each cijh and λijh is obtained. With the distribution function inference can be done
over the point estimate of the IRF and MA. For instance, standard deviations in
each horizon can be computed, as well as asymmetry measures and credible sets
(or intervals), the Bayesian analogue to a classical confidence interval.

In the following we shall restrict our attention to credible sets with mini-
mum size (length), these are named Highest Posterior Density regions (HPD
from now on). An (1− α) % HPD for the parameter θ is defined as the set I =

6See Lütkepohl (2005), Section 10.6.
7The asymptotic distribution of the IRF and FEVD for a VAR is presented in Lütkepohl

(1990). A widely used non-parametric bootstrapping method is developed in Runkle (1987).

Revista Colombiana de Estadística 35 (2012) 479–508



492 Sergio Ocampo & Norberto Rodríguez

{θ ∈ Θ : π (θ/Y) ≥ k(α)}, where k(α) is the largest constant satisfying P (I|y) =∫
θ
π (θ/Y) dθ ≥ 1−α.8 From the definition just given is clear that HPD regions are

of minimum size and that each value of θ ∈ I has a higher density (probability)
than any value of θ outside the HPD. The second property makes possible direct
probability statements about the likelihood of θ falling in I, i.e., “The probability
that θ lies in I given the observed data Y is at least (1−α)%”, this contrast with
the interpretation of the classical confidence intervals. An HPD region can be
disjoint if the posterior density function (π (θ/Y)) is multimodal. If the posterior
is symmetric, all HPD regions will be symmetric about posterior mode (mean).

Koop (1992) presents a detailed revision of how to apply Bayesian inference
to the IRF in a structural VAR context, his results can be easily adapted to the
structural VAR-X model. Another reference on the inference over IRF is Sims &
Zha (1999). Here we present, in Algorithm 4, the method of Chen & Shao (1998)
for computing HPD regions from the output of the Gibbs sampler.9

It is important to note that Bayesian methods are by nature conditioned to
the sample size and, because of that, avoid the problems of asymptotic theory in
explaining the finite sample properties of the parameters functions, this includes
the skewness of the IRF and MA distribution functions. Then, if the intervals
are computed with the HPD, as in Chen & Shao (1998), they would be taking
into account the asymmetry in the same way as Kilian’s method. This is not the
case for intervals computed using only standard deviations although, with them,
skewness can be addressed as in Koop (1992), although bootstrap methods can be
used to calculate approximate measures of this and others moments, for instance,
skewness and kurtosis, Bayesian methods are preferable since exact measures can
be calculated.

Another application of the structural VAR-X model is the forecast error vari-
ance decomposition (FEVD), this is no different to the one usually presented in the
structural VAR model. FEVD consists in decomposing the variance of the forecast
error of each endogenous variable h periods ahead, as with the IRF, the matrices
of C (L) are used for its construction. Note that, since the model is conditioned to
the path of the exogenous variables, all of the forecast error variance is explained
by the structural shocks. Is because of this that the FEVD has no changes when
applied in the structural VAR-X model. We refer to Lütkepohl (2005), Section
2.3.3, for the details of the construction of the FEVD. Again, if Bayesian methods
are used for the estimation of the VAR-X parameters, the density function of the
FEVD can be obtained and several features of it can be explored, Koop (1992)
also presents how to apply Bayesian inference in this respect.

8Integration can be replaced by summation if θ is discrete.
9The method presented is only valid if the distribution of the parameters of interest is uni-

modal. For a more general treatment of the highest posterior density regions, including multi-
modal distributions, we refer to the work of Hyndman (1996).
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Algorithm 4 Highest Posterior Density Regions
As in Chen & Shao (1998), let

{
θ(i), i = 1 , . . . , N

}
be an ergodic sample of

π (θ/Y), the posterior density function of parameter θ. π (θ/Y) is assumed to be
unimodal. The (1− α) % HPD is computed as follows:

1. Sort the values of θ(i). Define θ(j) as the j − th larger draw of the sample,
so that:

θ(1) = min
i∈{1,...,N}

{
θ(i)
}

θ(N) = max
i∈{1,...,N}

{
θ(i)
}

2. Define N = b(1− α)Nc the integer part of (1− α)N . The HPD will contain
N values of θ.

3. Define I(j) =
(
θ(j) , θ(j+N)

)
an interval in the domain of the parameter θ,

for jε
{

1, . . . , N −N
}
. Note that although I(j) contains always N draws of

θ, its size may vary.

4. The HPD is obtained as the interval I(j) with minimum size. HPD (α) =
I(j?), with j? such that:

θ(j?+N) − θ(j?) = min
j∈{1,...,N−N}

(
θ(j+N) − θ(j)

)

5.2. Historical Decomposition of the Endogenous Variables
(HD)

The historical decomposition (HD) consists in explaining the observed values
of the endogenous variables in terms of the structural shocks and the path of the
exogenous variables. This kind of exercise is present in the DSGE literature (for
example, in Smets & Wouters (2007)) but mostly absent in the structural VAR
literature. There are nonotheless various exceptions, an early example is the work
of Burbidge & Harrison (1985) on the role of money in the great depression, there
is also the textbook by Canova (2007), and the paper of King & Morley (2007),
where the historical decomposition of a structural VAR is used for computing a
measure of the natural rate of unemployment for the US.

Unlike the applications already presented, the historical decomposition allows
to make a statement over what has actually happened to the series in the sample
period, in terms of the recovered values for the structural shocks and the observed
paths of the exogenous variables. It allows to have all shocks and exogenous
variables acting simultaneously, thus making possible the comparison over the
relative effects of them over the endogenous variables, this means that the HD
is particularly useful when addressing the relative importance of the shocks over
some set of variables. The possibility of explaining the history of the endogenous
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variables instead of what would happen if some hypothetical shock arrives in the
absence of any other disturbance is at least appealing.

Here we describe a method for computing the HD in a structural VAR and
structural VAR-X context. The first case is covered in more detail and the second
presented as an extension of the basic ideas.

5.2.1. Historical Decomposition for a Structural VAR Model

In a structural VAR context is clear, from the structural VMA representation
of the model, that variations of the endogenous variables can only be explained
by variations in the structural shocks. The HD uses the structural VMA repre-
sentation in order to compute what the path of each endogenous variable would
have been conditioned to the presence of only one of the structural shocks. It is
important to note that the interpretation of the HD in a stable VAR model is
simpler than the interpretation in a VAR-X. This is because in the former there
is no need for a reference value that indicates when a shock is influencing the
path of the variables. In that case, the reference value is naturally zero, and it
is understood that deviations of the shocks below that value are interpreted as
negative shocks and deviations above as positive shocks. As we shall see, when
dealing with exogenous variables a reference value must be set, and its election is
not necessarily “natural”.

Before the HD is computed it is necessary to recover the structural shocks
from the estimation of the reduced form VAR. Define Ê = [ê1 . . . êt . . . êT ]

′
as the

matrix of all fitted residuals from the VAR model (equation (14) in the absence
of exogenous variables). Recalling equation (9), the matrix C0 can be used to
recover the structural shocks from matrix Ê as in the following expression:

Ê = Ê
(
C
′

0

)−1

(25)

Because zero is the reference value for the structural shocks the matrix Ê =
[ε̂1 . . . ε̂t . . . ε̂T ]

′
can be used directly for the HD.

The HD is an in-sample exercise, thus is conditioned to the initial values of
the series. It will be useful to define the structural infinite VMA representation of
the VAR model, as well as the structural VMA representation conditional on the
initial values of the endogenous variables, equations (26) and (27) respectively.

yt = µ+ C (L) εt (26)

yt =

t−1∑
i=0

Ciεt−i + Kt (27)

Note that in equation (26) the endogenous variables depend on an infinite
number of past structural shocks. In equation (27) the effect of all shocks that are
realized previous to the sample is captured by the initial values of the endogenous
variables. The variable Kt is a function of those initial values and of the parameters

Revista Colombiana de Estadística 35 (2012) 479–508



An Introductory Review of a Structural VAR-X Estimation and Applications 495

of the reduced form model, Kt = ft
(
y0 , . . . , y−(p−1)

)
. It measures the effect of

the initial values over the period t realization of the endogenous variables, thus
the effect of all shocks that occurred before the sample. It is clear that if the VAR
is stable Kt −→ µ for t sufficiently large, this is because the shocks that are too
far in the past have no effect in the current value of the variables. Kt will be refer
to as the reference value of the historical decomposition.

Starting from the structural VMA representation, the objective is now to de-
compose the deviations of yt from Kt into the effects of the current and past values
of the structural shocks (εi for i from 1 to t). The decomposition is made over the

auxiliary variable ỹt = yt −Kt =
t−1∑
i=0

Ciεt−i. The information needed to compute

ỹt is contained in the first t matrices Ci and the first t rows of matrix Ê .
The historical decomposition of the i-th variable of ỹt into the j-th shock is

given by:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i (28)

Note that it must hold that the sum over j is equal to the actual value of the

i-th element of ỹt, ỹit =
n∑
j=1

ỹ
(i,j)
t . For t sufficiently large, when Kt is close to µ,

ỹ
(i,j)
t can be interpreted as the deviation of the i-th endogenous variable from its
mean caused by the recovered sequence for the j-th structural shock.

Finally, the endogenous variables can be decomposed as well. The historical
decomposition for the i-th endogenous variable into the j-th shock is given by:

y
(i,j)
t = Ki

t + ỹ
(i,j)
t = Ki

t +

t−1∑
i=0

ciji ε̂
j
t−i (29)

the new variable y(i,j)
t is interpreted as what the i-th endogenous variable would

have been if only realizations of the j-th shock had occurred. The value of Kt can
be obtained as a residual of the historical decomposition, since yt is known and
ỹt can be computed from the sum of the HD or from the definition.

The HD of the endogenous variables (y
(i,j)
t ) can be also used to compute what

transformations of the variables would have been conditioned to the presence of
only one shock. For instance, if the i-th variable enters the model in quarterly
differences, the HD for the annual differences or the level of the series can be com-
puted by applying to y(i,j)

t the same transformation used over yit, in this example,
a cumulative sum. Algorithm 5 summarizes the steps carried out for the historical
decomposition.

5.2.2. Historical Decomposition for a Structural VAR-X Model

The structure already described applies also for a VAR-X model. The main dif-
ference is that now it is necessary to determine a reference value for the exogenous
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Algorithm 5 Historical Decomposition for a Structural VAR Model

1. Estimate the parameters of the reduced form VAR.

a) Save a matrix with all fitted residuals
(
Ê = [ê1 . . . êt . . . êT ]

′)
.

b) Compute matrices Ci according to the identifying restrictions (Algo-
rithm 1 or 2).

2. Compute the structural shocks
(
Ê = [ε̂1 . . . ε̂t . . . ε̂T ]

′)
with matrix C0 and

the fitted residuals of the reduced form VAR:

Ê = Ê
(
C
′

0

)−1

3. Compute the historical decomposition of the endogenous variables relative
to Kt:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i

4. Recover the values of Kt with the observed values of yt and the auxiliary
variable ỹt:

Kt = yt − ỹt

5. Compute the historical decomposition of the endogenous variables:

y
(i,j)
t = Ki

t + ỹ
(i,j)
t

Steps 3 and 5 are repeated for t = 1, 2, . . . , T , i = 1, . . . , n and j = 1, . . . , n. Step
4 is repeated for t = 1, 2, . . . , T .

variables.10 It shall be understood that realizations of the exogenous variables dif-
ferent to this value are what explain the fluctuations of the endogenous variables.
We shall refer to xt as the reference value for the exogenous variables in t.

As before, it is necessary to present the structural VMA-X representation con-
ditional to the initial values of the endogenous variables (equation 30), with Kt

defined as above. It is also necessary to express the exogenous variables as devia-
tions of the reference value, for this we define an auxiliary variable x̃t = xt − xt.
Note that equation (30) can be written in terms of the new variable x̃t as in

equation (31). In the latter, the new variable K̃t =
t−1∑
i=0

Λix̄t−i + Kt has a role

10The reference value for the exogenous variables need not be a constant. It can be given by
a linear trend, by the sample mean of the series,or by the initial value. When the exogenous
variables enter the model in their differences, it may seem natural to think in zero as a natural
reference value, identifying fluctuations of the exogenous variables in an analogous way to whats
done with the structural shocks.
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analogous to that of Kt in the VAR context. K̃t properties depend on those of x̄t
and, therefore, it can not be guaranteed that it converges to any value.

yt =

t−1∑
i=0

Ciεt−i +

t−1∑
i=0

Λixt−i + Kt (30)

yt =

t−1∑
i=0

Ciεt−i +

t−1∑
i=0

Λix̃t−i + K̃t (31)

The historical decomposition is now computed using matrices Ci, the recovered
matrix of structural shocks Ê , matrices Λi and the auxiliary variables x̃i, for i from
1 to T . Matrix Ê is still computed as in equation (25). The new reference value
for the historical decomposition is K̃t, and the decomposition is done to explain
the deviations of the endogenous variables with respect to it as a function of
the structural shocks and deviations of the exogenous variables from their own
reference value, x̄t. For notational simplicity, variable x̃t is redefined: ỹt = yt −

K̃t =
t−1∑
i=0

Ciεt−i +
t−1∑
i=0

Λix̃t−i. The decomposition of the i-th variable of ỹt into

the j-th shock is still given by equation (28), and the decomposition into the k-th
exogenous variable is given by:

ỹ
(i,k)
t =

t−1∑
i=0

λiki x̃
k
t−i (32)

Variable ỹ(i,k)
t , for k from 1 to m, is interpreted as what the variable ỹit would

have been if, in the absence of shocks, only the k-th exogenous variable is allowed
to deviate from its reference value. As in the VAR model, the following equation

holds: ỹit =
n∑
j=1

ỹ
(i,j)
t +

m∑
k=1

ỹ
(i,k)
t . The variable K̃t is recovered in the same way

used before to recover Kt.
The historical decomposition of the endogenous variables can be computed by

using the recovered values for K̃t . The decomposition of the i-th variable into
the effects of the j-th shock is still given by equation (29), if Ki

t is replaced by K̃i
t .

The decomposition of the i-th variable into the deviations of the k-th exogenous
variable from its reference value is obtained from the following expression:

y
(i,k)
t = Ki

t + ỹ
(i,k)
t (33)

Variable y(i,k)
t has the same interpretation as ỹ(i,k)

t but applied to the value of
the endogenous variable, and not to the deviation from the reference value.

Although the interpretation and use of the HD in exogenous variables may seem
strange and impractical, it is actually of great utility when the reference value for
the exogenous variables is chosen correctly. The following example describes a
case in which the interpretation of the HD in exogenous variables is more easily
understood. Consider the case in which the exogenous variables are introduced
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Algorithm 6 Historical Decomposition for a Structural VAR-X Model

1. Estimate the parameters of the reduced form VAR-X.

a) Save a matrix with all fitted residuals
(
Ê = [ê1 . . . êt . . . êT ]

′)
.

b) Compute matrices Ci and Λi according to the identifying restrictions
(Algorithm 1 or 2).

2. Compute the structural shocks
(
Ê = [ε̂1 . . . ε̂t . . . ε̂T ]

′)
with matrix C0 and

the fitted residuals of the reduced form VAR-X:

Ê = Ê
(
C
′

0

)−1

3. Compute the historical decomposition of the endogenous variables relative
to K̃t:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i ỹ

(i,k)
t =

t−1∑
i=0

λiki x̃
k
t−i

4. Recover the values of K̃t with the observed values of yt and the auxiliary
variable ỹt:

K̃t = yt − ỹt

5. Compute the historical decomposition of the endogenous variables:

y
(i,j)
t = K̃i

t + ỹ
(i,j)
t y

(i,k)
t = K̃i

t + ỹ
(i,k)
t

Steps 3 and 5 are repeated for t = 1, 2, . . . , T , i = 1, . . . , n , j = 1, . . . , n and
k = 1, . . . ,m. Step 4 is repeated for t = 1, 2, . . . , T .

in the model in their first differences. The person performing the study may be
asking himself the effects of the shocks and the changes in the exogenous variables
over the endogenous variables. In this context, the criteria or reference value for
the exogenous variables arises naturally as a base scenario of no change in the
exogenous variables and no shocks. Under the described situation one has, for all
t, xt = 0 and K̃t = Kt. This also allows to interpret both y

(i,k)
t and ỹ

(i,k)
t as

what would have happened to the i-th endogenous variable if it were only for the
changes of the k-th exogenous variable.

Algorithm 6 summarizes the steps carried out for the historical decomposition
in a structural VAR-X setup.
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6. An Example

In this Section some of the concepts presented in the document are exemplified
by an application of Galí’s (1999) structural VAR, augmented with oil prices as
an exogenous variable. The exercise has illustrative purposes only and does not
mean to make any assessment on the economics involved.

The Section is organized as follows: first a description of the model to be
used is made, then the lag structure of the reduced form VAR-X is chosen and
the estimation described. Finally, impulse response functions, multiplier analysis
and the historical decomposition are presented for one of the model’s endogenous
variables.

6.1. The Model and the Data

The model used in this application is original from Galí (1999) and is a bi-
variate system of labor productivity and a labor measure.11 The labor productiv-
ity is defined as the ratio between gross domestic product (GDP) and labor. The
identification of the shocks is obtained by imposing long run restrictions a la Blan-
chard & Quah (1989). Two shocks are identified, a technology (productivity) shock
and a non-technology shock, the former is assumed to be the only shock that can
have long run effects on the labor productivity. As pointed out in Galí (1999) this
assumption is standard in neoclassical growth, RBC and New-Keynesian models
among others.

The model is augmented with oil prices as an exogenous variable with the
only purpose of turning it into a structural VAR-X model, so that it can be used
to illustrate some of the concepts of the document. As mentioned in Section 3
the presence of an exogenous variable does not change the identification of the
structural shocks.

All variables are included in the model in their first differences, this is done
partially as a condition for the long run identification (labor productivity) and
partially because of the unit root behavior of the observed series. It should be
clear that, in the notation of the document, n = 2 (the number of endogenous
variables) and m = 1 (the number of exogenous variables).

Noting by zt the labor productivity, lt the labor measure and pot the oil price,
the reduced form representation of the model is given by equation (1) with yt =[

∆zt ∆lt
]′

and xt = ∆pot :

yt = v + B1yt−1 + . . .+ Bpyt−p + Θ0xt + . . .+ Θqxt−q + et

In the last equation vector v is of size 2 × 1, matrices Bi are of size 2 × 2 for
i = 1 : p and all Θj are 2× 1 vectors. The structural VMA-X form of the model
is given (as in equation (4)) by:

11Galí uses total hours worked in the non-farm sector as labor measure in the main exercise
but also points at the number of employees as another possible labor measure, here we take the
second option and use non-farm employees.
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yt = µ+ C (L) εt + Λ (L)xt

with µ a 2× 1 vector, each matrix of C (L) is of size 2× 2, and the “coefficients”
of Λ (L) are 2× 1 vectors. εt =

[
εTt εNTt

]
is the vector of structural shocks.

The identification assumption implies that C (1) is a lower triangular matrix,
this allows us to use algorithm 2 for the identification of the shocks and the matrices
in C (L). Equations (5), (6) and (7) still hold.

The data set used to estimate the model consists in quarterly GDP, non-farm
employees and oil price series for the US economy that range from 1948Q4 to
1999Q1. The quarterly GDP is obtained from the Bureau of Economic Analysis,
and the non-farm employees and oil price from the FRED database of the Federal
Reserve Bank of St. Louis. GDP and non-farm employees are seasonally adjusted.
GDP is measured in billions of chained 2005 dollars, non-farm employees in thou-
sands of people and oil prices as the quarterly average of the WTI price in dollars
per barrel.

6.2. Lag Structure and Estimation

Choosing the lag structure of the model consists in finding values for p and q so
that the estimated reduced form model satisfies some conditions. In this case we
shall choose values for p and q so that the residuals (et) are not auto-correlated.12
The tests indicate that four lags of the endogenous variables are necessary for
obtaining non-auto-correlated residuals (p = 4), this result is independent of the
lags of the exogenous variable. The change of the oil prices can be included only
contemporary (q = 0) or with up to six lags (q = 6).

Since any number of lags of the exogenous variables makes the residuals satisfy
the desired condition, the marginal density of the different models (under the
Jeffreys prior) is used to determined the value of q. Each possible model only
differs in the lags of exogenous variable, there are seven models indexed asMi (Y)
with i = 0 . . . 6. The marginal density for each model is computed as in equation
(23):

Mi (Y) =
Γn
(
T−ki

2

)
Γn
(
T−ki−n−1

2

) |Si|−n−1
2 2

n(n+1)
2 C

A presample is taken so that all models have the same effective T , since all
have the same number of endogenous variables (n = 2), the only difference between
the marginal density of two models is in ki (the total number of regressors) and
Si (the estimated covariance of the residuals). Recalling from Section 4: ki =

(1 + np+m (qi + 1)) and Si =
(
Y − ZiΓ̂i

)′ (
Y − ZiΓ̂i

)
.

Table 1 presents the results of the marginal densities, it is clear that the
marginal density does not increase monotonically in the exogenous lag and that

12The auto-correlation of the residual is tested whit Portmanteau tests at a 5% significance
level. See Lütkepohl (2005), Section 4.4.3.
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M4 (Y) (q = 4) is preferred to the other models. Then, the VAR-X model is es-
timated with four lags in both the endogenous and the exogenous variables, and
the contemporary value of the change in the oil price.

Table 1: Marginal Densities.
M0 (Y) M1 (Y) M2 (Y) M3 (Y) M4 (Y) M5 (Y) M6 (Y)

6.1379 6.1268 6.1664 6.1817 6.2414 6.1733 6.1115

The values presented are proportional to the marginal densities of the models by a factor

of 1013C.

The estimation is carried out by Bayesian methods under the Jeffreys prior as
in Section 4.2. Algorithm 3 is applied to obtain 10,000 draws of the reduced form
parameters, for every draw Algorithm 2 is applied, along with the identification
restriction over the technology shock, to obtain the parameters of the structural
VMA-X representation of the model.

6.3. Impulse Response Functions and Multiplier Analysis

From the output of the Bayesian estimation of the model the impulse response
function and multipliers are computed. Note that the distributions of the IRF and
the multipliers are available since the estimation allows to obtain both for each
draw of the reduced form parameters. This makes possible to compute highest
posterior density regions (HPD) as mentioned in Section 5.1. For doing so we
presented, in Algorithm 4, the steps to be carried out in the case in which the
distribution of the IRF and the multipliers in every period is unimodal. Here we
present only the response of labor to a technology shock and a change in oil price
as the posterior mean of the responses generated for each of the 10,000 draws of
the parameters, the responses are presented along with HPD regions at 68% and
90% probability.

Before presenting the HPD for the IRF and the multipliers, it is necessary
to check if the distribution of the responses in every period are unimodal. Al-
though no sufficient, a preliminary test of the mentioned condition is to check the
histograms of the IRF and the multipliers before computing the HPD. Figure 1
presents the histograms for the response of labor to a technology shock (Figure
1(a)) and to a change in oil price (Figure 1(b)) at impact, the histograms for up
to 20 periods ahead are also checked, but not presented. In all cases Algorithm 4
can be used.

The results are presented in Figure 2 and point to a decrease of labor in response
to both a positive technology shock and an increase in oil prices, although the
decrease is only significant for the response to a technology shock. The response
of labor to an increase in the oil price is never significant at 90% probability and
only significant at 68% probability after period 5.
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(a) IRF: Labor to tech shock at impact
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(b) MA: Labor to oil price at impact

Histograms of the response of labor to a technology shock and a change in the oil price at impact. The
histograms are obtained from 10000 draws of the parameters of the structural VAR-X model, and are
computed with 100 bins.

Figure 1: Histograms.
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(b) MA: Labor to oil price at impact

Response of labor to a unitary technology shock and a unit change in the oil price. The point estimate
(dark line) corresponds to the posterior mean of the distribution of the IRF and the multipliers of
labor, the distributions are obtained from 10000 draws of the parameters of the structural VAR-X
model. HPD regions at 68% and 90% probability are presented as dark and light areas correspondingly.

Figure 2: Impuse Response Functions and Multiples Analysis.

6.4. Historical Decomposition

Finally, the historical decomposition of labor into the two structural shocks
and the changes in the oil price is computed. As mentioned in Section 5.2 it is
necessary to fix a reference value for the exogenous variable. Since the oil price
enters the model in its first difference, the reference value will be set to zero
(∀t xt = 0). This means that all changes in the oil price are understood by the
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model as innovations to that variable.13 In this exercise all computations are
carried out with the posterior mean of the parameters. Since the Jeffreys prior
was used in the estimation, the posterior mean of the parameters equals their
maximum likelihood values.

Applying Algorithm 6, steps 1 to 3, the historical decomposition for the first
difference of labor (relative to K̃t) is obtained, this is presented in Figure 3. Yet,
the results are unsatisfactory, principally because the quarterly difference of labor
lacks a clear interpretation, its scale is not the one commonly used and might be
too volatile for allowing an easy understanding of the effects of the shocks.14
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Figure 3: Historical Decomposition - Labor in first difference

An alternative to the direct historical decomposition is to use the conditioned
series (step 5 of Algorithm 6) to compute the historical decomposition of the an-
nual differences of the series, this is done by summing up the quarterly differences
conditioned to each shock and the exogenous variable. The advantage of this
transformation is that it allows for an easier interpretation of the historical de-
composition, since the series is now less volatile and its level is more familiar for the
researcher (this is the case of the annual inflation rate or the annual GDP growth
rate). The result is presented in Figure 4, it is clear that labor dynamics have been
governed mostly by non-technology shocks in the period under consideration, with
technology shocks and changes in the oil price having a minor effect.

It is worth to note that decomposing the first difference of the series (as in
Figures 3 and 4) has another advantage. The decomposition is made relative to
K̃t with xt = 0, hence K̃t = Kt and K̃t −→ µ, this means, for Figure 3, that the
decomposition is made relative to the sample average of the quarterly growth rate
of the series, in that case if the black solid line is, for example, 0.1 at some point
it can be read directly as the growth rate of labor being 10% above its sample

13Another possibility is to use the sample mean of the change in the oil price as a reference
value, in this case the innovations are changes of the oil price different to that mean.

14In fact the series used is not too volatile, but there are other economically relevant series
whose first difference is just too volatile for allowing any assessment on the results, the monthly
inflation rate is usually an example of this.
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average. Since Figure 4 is also presenting differences it can be shown that the new
K̃t converges to the sample mean of the annual growth rate of the series, making
interpretation of the decomposition easier to read.
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Figure 4: Historical Decomposition - Labor in annual differences

Another alternative is to accumulate the growth rates (conditioned to each
shock and the exogenous variable) starting from the observed value of the series
in the first period, this generates the historical decomposition of the level of the
variable. The results of this exercise are presented in Figure 5.

There are several points to be made about the historical decomposition in
levels, the first one is that, since K̃t is also being accumulated from some initial
value, the decomposition is not made relative to a constant but relative to a line,
this line corresponds to the linear tendency of the series. Figure 5(a) plots the
actual path of labor along with paths conditioned to each shock and the exogenous
variable and the “Reference” line, which is the accumulation of K̃t. Interpretation
of Figure 5(a) is difficult because the effect of each shock and the exogenous variable
is obtained as the difference between its conditioned path and the “Reference” line,
because all are moving in each period identifying that effect becomes a challenging
task.

The second point arises from the interpretation of Figure 5(b), which presents
the decomposition of the level of labor relative to the “Reference” line, this is similar
to what was presented in Figures 3 and 4. The interpretation is nevertheless more
complicated. In the former Figures the decomposition was made relative to a
constant, but the decomposition in levels is made relative to a line, whose value
is changing in each period, this makes the reading of the level of the bars and the
line more difficult. If the line is in 3 it means that the observed series is 3 units
above its linear tendency.

Another characteristic of decomposition in level must be mentioned, although
it is not clear from Figure 5(b), the accumulated effects of the shocks over any
series in the first and last period are, by construction, equal to zero. This means
that the bars associated with the structural shocks are not present in both the
first and last period of the sample, and that the value of the observed variable
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has to be explained entirely by the exogenous variables, moreover, it means that
the accumulated effect of the shocks has to be dis-accumulated when the sample
is getting to its end. This occurs because the accumulated effect of the shocks
has to be zero at the beginning of the sample, since the effect of the shocks before
that point is summarized in the initial value of the series, and because the mean
of the shocks over the sample is zero (one of the properties of the estimation), this

implies that
T∑
t=1

εit = 0. When the conditioned difference series is accumulated, the

effect of the shock is accumulated so that it also sums to zero. This last problem
is not present in the historical decomposition in differences (or annual differences)
and makes the results of the decomposition in levels to be unreliable.
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Figure 5: Historical Decomposition - Labor in level

7. Final Remarks

This paper presents a review of VAR-X topics with emphasis in Bayesian es-
timation, and different applications of the model, covering impulse response func-
tions, multiplier analysis, forecast error variance decomposition and historical de-
composition calculations. The treatment and discussion of the latter constitutes
a novelty in the literature, since it has been largely ignored (with few exceptions)
despite its usefulness in the context of multivariate time series analysis. A short
exercise in presented using much of the technique reviewed.

Bayesian methods are presented with detail and shown as an easy to implement
option for overcoming the usual small sample restrictions faced by frequentist
methods. These methods are off course recommended to scholars when using the
VAR or the VAR-X model.

Finally, this document is intended as an introductory review to the VAR-
X model, and does not exhausts all the literature available about it. A couple
of examples of further topics in the literature are the VAR model with mixed
frequencies, like Rodriguez & Puggioni (2010) or Chiu, Eraker, Foerster, Kim &
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Seoane (2011) (and the references therein), and the recently proposed Copula-
VAR-X as in Bianchi, Carta, Fantazzini, Giuli & Maggi (2010), who use flexible
multivariate distributions, different from the normal distribution, allowing a rich
dependence structure and more flexible marginal distributions for better fit of
empirical data, specially leptokurtosis.
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Abstract

Using a predictive estimation procedure, an attempt has been made to de-
velop some estimators for the finite population variance in the presence of an
auxiliary variable. Analytical and simulation studies have been undertaken
for understanding the performance of the suggested estimators compared to
some existing ones.

Key words: Auxiliary variable, Bias, Efficiency, Prediction approach.

Resumen

Mediante el uso de un procedimiento de estimación predictivo, se desar-
rollan algunos estimadores de la varianza poblacional en la presencia de una
variable auxiliar. Estudios analíticos y de simulación son implementados
para entender el desempeño de los estimadores sugeridos en comparación
con otros ya existentes.

Palabras clave: variable auxiliar, sesgo, eficiencia, enfoque de predicción.

1. Introduction

Let U = {1, 2, . . . , i . . . , N} be a finite population, and y and x denote the
study variable and the auxiliary variable taking values yi and xi respectively on
the ith unit (i = 1, 2, . . . , N). Let Y =

∑N
i=1 yi/N and X =

∑N
i=1 xi/N be the

population means, S2
y =

∑N
i=1(yi−Y )2/(N −1) and S2

x =
∑N
i=1(xi−X)2/(N −1)

be the population variances of y and x respectively. Assume that a sample s of n
units is drawn from U according to simple random sampling without replacement

aLecturer. E-mail: rkn2010@gmail.com
bProfessor. E-mail: lnsahoostatuu@rediffmail.com
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(SRSWOR) in order to estimate the unknown parameter S2
y . Let y =

∑
i∈s yi/n

and x =
∑
i∈s xi/n be the sample means, s2y =

∑
i∈s(yi − y)2/(n − 1) and s2x =∑

i∈s(xi − x)2/(n− 1) the sample variances.
In certain situations, estimation of population variance S2

y has received consid-
erable attention from survey statisticians. For example, in manufacturing indus-
tries and pharmaceutical laboratories, sometimes the researchers are interested in
the variation of their products. Although, the literature describes a great vari-
ety of techniques for using auxiliary information by means of ratio, and product
and regression methods for estimating population mean, variance estimation us-
ing auxiliary information has received scarce attention. This is perhaps due to the
belief that the gain in efficiency we could obtain by involving an auxiliary variable
may not be too much relevant to motivate the use of more complex estimators.
However, some efforts in this direction are due to Das & Tripathi (1978), Isaki
(1983), Prasad & Singh (1990)(1992), Singh & Kataria (1990), Srivastava & Jhajj
(1980)(1995), Singh & Singh (2001), Ahmed, Walid & Ahmed (2003), Giiancarlo
& Chiara (2004), Jhajj, Sharma & Grover (2005), Kadilar & Cingi (2006)(2007)
and Grover (2007). Two notable estimators that are very much popular in the
literature are due to Isaki (1983) defined by

ν1 = s2yS
2
x/s

2
x

and
ν2 = s2y + b∗(S2

x − s2x)

where b∗ is an estimate of the regression coefficient of s2y on s2x defined by b∗ =
s2y(λ̂−1)

s2x(β̂2(x)−1)
, such that λ̂ = m22/m20m02 and β̂2(x) = m40/m

2
20 with mrs =∑

i∈s(xi − x)r(yi − y)s/n [cf., Garcia & Cebrain (1996), and Kadilar & Cingi
(2006)].

During the years that followed, much emphasis has been given on the prediction
of population mean or total [cf., Srivastava (1983)]. But, little interest has been
shown towards the prediction of the population variance. Under this approach,
the survey data at hand i.e., the sample observations are treated as fixed and
unassailable. Uncertainty is then attached only to the unobserved values which
need to be predicted. Bolfarine & Zacks (1992) indicated various techniques for
predicting population variance. Biradar & Singh (1998), using classical estimation
theory, provided some predictive estimators for S2

y . In this paper, using auxiliary
variable x, we develop some more estimators under the prediction approach of
Basu (1971) with regards to a finite population setup.

2. Prediction Criterion

Let us decompose U into two mutually exclusive domains s and r of n and
N − n units respectively, where r = U − s denotes the collection of units in U
which are not included in s. Then, under the usual prediction criterion given in
Bolfarine & Zacks (1992), it is possible to express

(N − 1)S2
y = (n− 1)s2y + (N − n− 1)S2

y(r) + (1− f)n(y − Y r)2, (1)
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where f = n/N , and Y r =
∑
i∈s yi/(N−n) and S2

y(r) =
∑
i∈r(yi−Y r)2/(N−n−1)

are respectively the mean and variance of y-values belonging to r.
Notice that the first component on the right hand side of (1) is known while the

second and third components are unknown. Hence, the prediction of (N − 1)S2
y

is possible when S2
y(r) and Y r are simultaneously predicted by some means from

the sample data. Using Vr and Mr as their respective predictors, a predictor of
S2
y can be provided by the equation:

(N − 1)Ŝ2
y = (n− 1)s2y + (N − n− 1)Vr + (1− f)n(y −Mr)

2 (2)

Most of the predictions are based either on distributional forms or an assumed
model [cf., Royall (1988), Bolfarine & Zacks (1992)]. However, Sampford (1978)
argued that the consideration of a model free prediction can generate a new, esti-
mator possessing some desirable properties. Basu (1971) also encouraged the use
of tools of the classical estimation theory to find out suitable predictors for Y .
Biradar & Singh (1998) formulated some estimators of S2

y from (2) by considering
suitable choices of the predictors Vr and Mr in terms of the auxiliary variable x
under the tools of classical estimation theory. Defining Xr =

∑
i∈r xi/(N − n)

and S2
x(r) =

∑
i∈r(xi −Xr)

2/(N − n− 1), we report below their estimators along
with the corresponding selections of Vr and Mr:

ν3 =

(
N − 2

N − 1

)
s2y

when Vr = s2y and Mr = y,

ν4 =
s2y
s2x
S2
x +

nN(x−X)2

(N − n)(N − 1)

(
y2

x2
−
s2y
s2x

)

when Vr = s2yS
2
x(r)/s

2
x and Mr = yXr/x, and

ν5 =
s2y
s2x
S2
x +

nN(x−X)2

(N − n)(N − 1)

(
b2yx −

s2y
s2x

)

when Vr = s2yS
2
x(r)/s

2
x and Mr = y + byx(Xr − x), where byx = syx/s

2
x.

Biradar & Singh (1998) also identified Isaki’s (1983) estimator ν1 as a special
case of (2) for Vr = s2yS

2
x(r)/s

2
x and Mr = y+ sy(Xr − x)/sx. This shows that the

estimator possesses a predictive character.

3. Some New Predictive Estimators of S2
y

In the following discussions, we introduce some alternative approaches in order
to develop a few more predictive estimators of S2

y .
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1. Consider the following alternative but equivalent representation of S2
y :

(N − 1)S2
y = (n− 1)s2y + (N − n)[σ2

y(r) + f(y − Y r)2] (3)

where σ2
y(r) =

∑
i∈r(yi − Y r)2/(N − n). Denoting V ∗r as a predictor of σ2

y(r)

and Mr, as the predictor of Y r, the following alternative predictive equation
can be considered:

(N − 1)S2
y = (n− 1)s2y + (N − n)[V ∗r + f(y −Mr)

2] (4)

Then, for V ∗r =
(
n−1
n

)
s2y and Mr = y in (4) we get an estimator of S2

y

defined by

ν6 =

(
n− 1

n

)(
N

N − 1

)
s2y

2. Biradar & Singh (1998) developed the estimator ν5 from (2) with Vr =
s2yS

2
x(r)/s

2
x and Mr = y + byx(Xr − x). See that in such an attempt Vr has

been assumed a ratio version of the variance estimator while the connected
mean estimator is a regression estimator. Hence as a matter of curiosity,
we may also think in the light of Isaki (1983) to use a regression version of
the variance estimator i.e., Vr = s2y + b∗(S2

x(r) − s
2
x) along with the mean

estimator Mr = y + byx(Xr − x) in the predictive equation (2) to predict
S2
y . This operation, after a considerable simplification, leads to produce the

following estimator:

ν7 =
N − 2

N − 1

[
s2y + b∗

(
N − 1

N − 2
S2
x − s2x

)]

3. Srivastava (1983) considered the predictive equation:

Ŷ = fy + (1− f)Mr (5)

where Mr is the implied predictor of Y r, for predicting Y and shown that
when Mr = yXr/x, Ŷ = yR = yX/x, the classical ratio estimator of Y , and
whenMr = y+byx(Xr−x), Ŷ = yL = y+byx(X−x), the classical regression
estimator of Y . Thus, both the ratio and regression estimators (yR and yL)
of the mean possess a predictive character, the origin of which actually lies
in predicting yi’s, i ∈ r, by yi = yxi/x and yi = y + byx(xi − x) in that
order. In view of this, we designate these two estimators as basic estimators
of the population mean. Notice that the predictive estimators ν1, ν4, ν5 and
ν7 suggested so far have been obtained by using either Vr = s2yS

2
x(r)/s

2
x or

Vr = s2y + b∗(S2
x(r) − s

2
x) as the case may be. This means that the unknown

quantity S2
y(r) is estimated as a whole with the same principle as that applied

to estimate Y r. But, such a choice of Vr seems to be arbitrary by nature.
Rather, we feel that it is more appropriate if the variance is established by
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predicting individual yi’s, i ∈ r, for which we need to express S2
y in the

following form:

(N − 1)S2
y = (n− 1)s2y +

∑
i∈r

y2i − (N − n)Y
2

r + (1− f)n(y − Y r)2 (6)

A number of new estimators can be easily generated from this equation on the
basis how

∑
i∈r y

2
i is predicted. But, for simplicity, here we consider the prediction

of yi, i ∈ r, either by yi = yxi/x = y + y(xi − x)/x or by yi = y + byx(xi − x) and
prediction of Y r by yXr/x.

Then, accordingly after a considerable simplification, we obtain the following
two new estimators:

ν8 =

(
n− 1

N − 1

)[
s2y +

(
y

x

)2(
N − 1

n− 1
S2
x − s2x

)]

ν9 =

(
n− 1

N − 1

)[
s2y + b2yx

(
N − 1

n− 1
S2
x − s2x

)]

4. Performance of the Proposed Estimators

Out of the nine estimators considered or proposed in the preceding sections,
the estimators ν3 and ν6 were achieved without using any auxiliary information
whereas others were achieved through the use of information on the auxiliary
variable x. A desirable goal here is to study the performance of the proposed
estimators ν6 to ν9 compared to ν1 to ν5 at least in respect of bias and mean square
error (MSE) i.e., efficiency, where bias and MSE of an estimator νi of S2

y are defined
respectively by B(νi) = E(νi) − S2

y and M(νi) = E(νi − S2
y)2(i = 1, 2, . . . , 9).

But, we see that some of the estimators are so complex that it is not possible to
derive exact expressions for their bias and MSE. Biradar & Singh (1998) presented
asymptotic expressions for these performance measures for the estimators ν1 to ν5.
On the other hand, Nayak (2009) derived these expressions in favor of ν1 to ν9.
But, the sufficient conditions for superiority of one estimator over other derived
by the authors using asymptotic expressions are so complicated that it is not
conducive to compare different estimators meaningfully. However, to facilitate
our comparison, these expressions are considered under the following widely used
linear regression model:

yi = βxi + ei, i = 1, 2, . . . , N (7)

where β(> 0) is the model parameter and ei is the error component such that
E(ei/xi) = 0, E(e2i /xi) = δxg(δ > 0, 0 ≤ g ≤ 1), and E(eiej/xi, xj) = 0 for i 6= j.
Further, we also assume that E(e4i /xi) = ξxg and E(e3i /xi) = E(e3i ej/xi, xj) =
E(eie

3
j/xi, xj) = 0, (i 6= j). It may be pointed out here that the asymptotic

expressions for bias and MSE of different estimators under this assumed model
are derived through the Taylor linearization method.
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4.1. Comparison of Bias

After some algebraic manipulations (suppressed to save space), we get the
following model-based results in respect of the bias of different estimators up to
O(n−1)

B(ν1) = CδE(xg) (8)
B(ν2) = 0 (9)

B(ν3) = − 1

N − 1
[β2S2

x + δE(xg)] (10)

B(ν4) = −(B − C)δE(xg) (11)
B(ν5) = −(K − C)δE(xg) (12)

B(ν6) = −N − n
N − 1

[β2S2
x + δE(xg)] (13)

B(ν7) = − 1

N − 1

(
n− 2

n− 1

)
δE(xg) (14)

B(ν8) = −(N − n)BδE(xg) (15)

B(ν9) = −
(
N − n
N − 1

)(
n− 2

n− 1

)
δE(xg) (16)

where B =
1

N − 1

(
1− C2

x

n

)
, C = 1

n (β2(x)−2) and K =

(
n

n− 1

)(
1

N − 1

)
, such

that Cx and β2(x) are respectively the coefficient of variation and β2- coefficient of
the auxiliary variable x.

In the light of the expressions (8) to (16), we state the following comments on
the bias of the estimators:

(i) The regression estimator ν2 is model-unbiased, ν1 is positively biased and
the rest seven estimators are negatively biased.

(ii) |B(ν3)| < |B(ν6)|. This indicates that the bias of ν6 is always greater than
that of ν3.

(iii) |B(ν8)| < |B(ν7)|i.e., ν8 is less biased than ν7.

(iv) |B(ν7)| < |B(ν9)|i.e., ν7 is less biased than ν9.

(v) |B(ν9)| ≶ |B(ν8)| according as C2
x ≶

n

n− 1
.

(vi) |B(ν4)| < |B(ν7)|, when |B − C| < 1

N − 1

(
n− 2

n− 1

)
.

(vii) |B(ν5)| < |B(ν7)|, when |K − C| < 1

N − 1

(
n− 2

n− 1

)
.

(viii) |B(ν7)| < |B(ν1)|, when C > K and n > 2.
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In view of (iii) and (iv), although we can conclude that ν8 is less biased than ν7
and ν9, we fail to obtain a clear-cut idea on the magnitude of bias of ν8 compared
to ν1,ν4 and ν5. Because, comparison of (15) with (8) or (11) or (12) does not lead
to any meaningful conditions.

4.2. Comparison of Efficiency

We present below model-based asymptotic expressions of the MSEs of different
estimators up to O(n−1) together with the exact expression for the variance of the
traditional unbiased estimator s2y.

V (s2y) = V (ν2) + Cβ4S4
x (17)

M(ν1) = M(ν2) + Cδ2E2(xg) (18)

M(ν2) = ξ(xg) + 4β2S2
x

δE(xg)

n− 1
− n− 3

n(n− 1)
δ2E2(xg) (19)

M(ν3) =

(
N − 2

N − 1

)2

V (s2y) ∼= V (s2y) (20)

M(ν4) = M(ν2) + Cδ2E2(xg) +
2

N − 1
δ2E2(xg) (21)

M(ν5) = M(ν2) + Cδ2E2(xg) +
2

N − 1

(
n

n− 1

)
δ2E2(xg) (22)

M(ν6) =

(
n− 1

n

)2(
N

N − 1

)2

V (s2y) ∼=
{

1− 2

(
1

n
+

1

N − 1

)}
V (s2y) (23)

M(ν7) = M(ν2) (24)

M(ν8) = M(ν2)− 4

(
N − n
N − 1

)2

β2S2
x

δE(xg)

n− 1
+ (25)

2

(
N − n
N − 1

)2
C2
x

n
(2β2S2

x − 1)δE(xg)

M(ν9) = M(ν2) + 2

(
1− 2

N − n
N − 1

)
δ2
E2(xg)

n− 1
+

(
N − n
N − 1

)2

δ2E2(xg). (26)

From these expressions, as ν2 appears to be more efficient than s2y, ν1, ν3, ν4
and ν5, we present the following results concerning efficiencies of the suggested
estimators:

(ix) M(ν6) < M(ν3) < V (s2y). This indicates that ν6 is more efficient than both
s2y and ν3.

(x) M(ν7) = M(ν2) i.e., ν7 and ν2 are equally efficient even though they are
configurationally different.

(xi) ν8 is more efficient than ν2 when β2S2
x < 1

2 which is very often satisfied
in practice. This means that there is a scope to improve upon the Isaki’s
regression estimator ν2 through ν8.
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(xii) The estimator ν9 is less efficient than ν2 when n <
N + 1

2
.

(xiii) M(ν8) < M(ν2) = M(ν7) < M(ν9), when n <
N + 1

2
and β2S2

x <
1
2 . This

shows that ν8 is preferred to ν2, ν7 and ν9 when the stated conditions are
satisfied. The first condition is not a serious one. The second condition is
easily satisfied for characters being measured in smaller magnitudes. We
can also reduce the mean square error by considering transformations on the
auxiliary variable and making the second condition more feasible.

4.3. Some Remarks

From the previous model-based comparisons, we see that the proposed estima-
tor ν8 turns out to be more efficient than others. But no meaningful conclusion
could be drawn in favor of the four proposed estimators νi, i = 6, 7, 8, 9 in re-
spect of bias. This negative finding may be discouraging but not very decisive as
our comparisons are based on the asymptotic expressions derived through Tay-
lor linearization. However, as a counterpart to these analytical comparisons, we
do carry out a simulation study in the next section with an objective to exam-
ine the overall performance of the different variance estimators. The performance
measures of an estimator νi taken into consideration in this study are (i) Abso-
lute Relative Bias (ARB) = |B(νi)|/S2

y , and (ii) Percentage Relative Efficiency
(PRE) = 100× V (s2y)/M(νi), (i = 1, 2, . . . , 9)

5. Description of the Simulation Study

Our simulation study involves repeated draws of simple random (without re-
placement) samples from 20 natural populations described in Table 1. 2,000 inde-
pendent samples, for n = 6, 8 and 10, were selected from a population and for each
sample several estimators were calculated. Then, considering 2,000 such combina-
tions, simulated values of the performance measures were calculated and displayed
in Tables 2 and 3. To save space, the numerical values of the performance mea-
sures for n = 8 and 10 are not shown, but the results based on these values are
only reported. Major findings of the study are discussed in subsections 5.1 and
5.2.

5.1. Results Based on the ARB

The numerical values on the ARB reveal that there is no definite pattern in the
performances of different estimators. The estimator ν1 possesses the least ARB
in 7 populations for n = 6 and in 6 populations for n = 8 and 10. ν8 is found to
have least ARB in 8, 10 and 11 populations for n = 6, 8 and 10 respectively. This
clearly indicates that the overall performance of ν8 improves with the increase in
sample size. Searching for an estimator as the third choice is difficult owing to
very erratic results in favor of the estimators (except ν1 and ν8).
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Table 1: Description of the populations.
Pop Source N y x

1 Cochran (1977) p. 152 49 no of inhabi-
tants in 1930

no. of inhabi-
tants in 1920

2 Sukhatme & Sukhatme (1977) p. 185 34 area under
wheat in 1937

area under
wheat in1936

3 Sukhatme & Sukhatme (1977) p. 185 34 area under
wheat in 1937

area under
wheat in1931

4 Sampford (1962) p. 61 35 acreage under
oats in 1957

acreage of
crops and grass
in 1947

5 Wetherill (1981) p. 104 32 yield of
petroleum
sprit

petroleum frac-
tion end point

6 Murthy (1967) p. 398 43 no of absentees no of workers
7 Murthy (1967) p. 399 34 area under

wheat in 1964
cultivated area
in 1961

8 Murthy (1967) p. 399 34 area under
wheat in 1964

area under
wheat in 1963

9 Steel & Torrie (1960) p. 282 30 leaf burn in
secs.

percentage of
potassium

10 Shukla (1966) 50 fiber yield height of plant
11 Shukla (1966) 50 fiber yield base diameter
12 Murthy (1967) p. 178 108 area under win-

ter paddy
geographical
area

13 Dobson (1990) p. 83 30 cholesterol age in years
14 Dobson (1990) p. 83 30 cholesterol body mass
15 Yates (1960) p. 159 25 measured vol-

ume of timber
eye estimated
volume of
timber

16 Yates (1960) p. 159 43 no. of absen-
tees

total no. of
persons

17 Panse & Sukhatme (1985) p. 118 25 progeny mean parental plant
value

18 Panse & Sukhatme (1985) p. 118 25 progeny mean parental plot
mean

19 Dobson (1990) p. 69 20 total calories
from carbohy-
drate

calories as pro-
tein

20 Horvitz & Thompson (1952) 20 actual no. of
households

eye estimated
number of
households

5.2. Results Based on the PRE

Results on the PRE of the competing estimators show that the estimator ν8 is
decidedly more efficient than the rest of the estimators in all populations for n = 6
and in 18 populations (except populations 1 and 17) for n = 8 and 10. Also the
efficiency gain due to this estimator is noticeably high. The estimator ν9 is found
to be the second best estimator being more efficient than others (except ν8 ) in 12
populations for n = 6 and in 10 populations for n = 8 and 10.
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Further, it is observed that both ν3 and ν6 i.e., the estimators exploiting no
auxiliary information, perform satisfactorily with ν6 being better than ν3 in all
populations. It may also be noted here that for n = 6, ν8 is the only estimator
using auxiliary variable x that is better than s2y in all populations. However, this
situation slightly changes with the increase in the sample size as it is worse than
s2y in one population for n = 8 and in two populations for n = 10. The estimators
ν1 ,ν2, ν4 and ν5 do not fare well in most of the cases.

Table 2: ARB of the estimators for n = 6.
Pop No ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9

1 10.24 12.23 4.10 10.24 10.29 9.55 12.27 1.85 13.75
2 18.81 18.45 8.20 18.63 18.69 18.72 18.33 5.68 15.13
3 1.19 4.53 8.20 2.03 1.39 18.72 4.84 36.58 13.16
4 57.23 18.51 39.30 49.81 50.48 46.35 18.35 13.50 13.99
5 24.85 26.94 26.39 32.36 27.66 34.57 27.62 79.72 44.42
6 31.04 45.37 44.37 41.58 41.73 51.83 45.88 33.46 64.22
7 0.57 4.13 7.01 1.57 0.36 17.76 4.46 39.28 13.35
8 1.19 0.56 7.01 0.92 1.14 17.76 1.49 0.35 1.47
9 32.96 13.67 22.47 24.87 30.23 30.78 16.04 81.23 70.68
10 19.36 24.10 35.40 20.17 19.76 43.93 24.67 78.83 49.51
11 62.42 3.47 35.40 57.74 58.13 43.93 4.08 73.58 30.10
12 25.10 11.15 51.06 23.71 22.81 58.44 11.19 8.64 15.69
13 61.77 14.72 35.31 62.93 60.25 42.24 13.68 7.95 10.23
14 27.91 34.55 35.31 28.71 28.75 42.24 36.14 72.76 72.55
15 7.04 3.13 3.08 3.73 10.98 12.21 4.61 2.02 31.25
16 43.05 46.28 44.62 44.10 54.08 51.59 46.77 67.22 63.75
17 33.62 29.05 19.07 25.71 36.39 26.70 30.55 46.47 57.58
18 40.92 18.98 19.07 21.61 21.92 26.70 11.23 8.13 51.70
19 33.30 5.06 25.42 24.22 27.79 30.95 2.80 4.32 26.57
20 0.74 2.34 16.31 1.27 1.34 22.51 2.97 15.91 11.19

6. Conclusions

Our model-assisted analytical and simulated studies lead to an overall con-
clusion that the estimator ν8 is preferable to others on the ground of efficiency.
Although the analytical comparison fails to conclude which estimator is decidedly
better than others on the ground of bias, the simulation study gives an indication
that on this ground ν8 is the better performer than other estimators. In view
of these findings, if computational difficulty is not a matter of great concern, the
variance estimator ν8 may be considered as the most suitable estimator. Of course,
these findings are only indicative and are no able to reveal essential features of the
comparable estimators in a straightforward manner. Further investigations in this
direction may be made for arriving at the conclusions.
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Table 3: PRE of the estimators for n = 6.
Pop No ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9

1 285 223 104 226 283 138 228 395 246
2 419 444 106 427 416 135 444 531 403
3 270 261 106 281 271 135 262 425 301
4 21 68 106 29 28 135 68 313 68
5 122 127 106 154 129 135 129 646 176
6 191 197 104 196 195 137 201 816 368
7 410 370 106 437 414 135 372 804 440
8 958 908 106 985 960 136 911 1037 989
9 16 78 107 17 17 135 82 206 202
10 61 83 104 63 67 138 84 400 194
11 11 45 104 12 12 138 45 663 45
12 15 65 108 17 16 141 65 398 66
13 13 19 107 14 13 135 19 475 206
14 72 104 107 74 73 135 109 665 435
15 146 146 109 153 152 133 149 196 139
16 211 211 105 218 215 138 215 478 393
17 208 169 109 226 239 133 179 615 406
18 6 52 108 11 10 133 54 190 70
19 9 27 111 12 11 130 27 841 23
20 121 124 111 130 122 131 126 817 155
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cas deben ser visualmente claras y debe ser posible modificar su tamaño. Cuando
el art́ıculo sea aceptado para su publicación, los autores deben poner la versión
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3http://www.statindex.org/CIS/homepage/keywords.html
4http://tug.ctan.org/tex-archive/macros/latex/contrib/harvard



Revista Colombiana de Estad́ıstica
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Maŕın, Margarita Véase Zárate, Héctor Manuel
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Serna-Cortés, Manuel Véase Alonso-Cifuentes, Julio César
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