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Central Limit Theorems for S-Gini and Theil
Inequality Coefficients

Teoremas central del limite para el S-Gini y el coeficiente de Theil
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Resumen

The Hungarian Construction (Komlds et al. 1975) is used for getting
a proof of asymptotic normality of S-Gini coefficient; this method is very
interesting because it can be used to check asymptotic normality of other
income inequality measures as Theil coefficient. Besides, explicit expressions
of asymptotic means and variances are given for S-Gini and Theil estima-
tors. Finally, to illustrate the performance of obtained results, we carry out
a simulation study comparing the asymptotic and Smoothed Bootstrap ap-
proximations.

Palabras clave: S-Gini index, Theil index, Hungarian construction, Kernel
density estimation.

Abstract

Se usa el Proceso Hungaro (Komlos et al. 1975) para derivar la normali-
dad asintotica del S-Gini; Este método es muy interesante ya que puede ser
usado para demostrar la normalidad asintotica de otros coeficientes usados
para medir la desigualdad de ingresos como el de Theil. Se consiguen expre-
siones explicitas para la media y la varianza del S-Gini y del coeficiente de
Theil. Finalmente, se realiza un estudio de simulacién, en el que se compara
el rendimiento de la aproximacion asintotica propuesta y del método Boots-
trap Suavizado.

Key words: indice S-Gini, indice de Theil, proceso hungaro, estimacion ker-
nel para la densidad.
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1. Introduction

The Gini Concentration Index (Gini 1995) has been extensively used in the
study of distribution inequality. If L is the Lorenz function it is defined as:

1
G:1—2/ L(p) dp
0

or, for certain random sample z1,...,zy and, if x(q), ..., x(n) are the sorted sam-
ple:
N o :v(
g-y BT
i=1 sz 1%

In the general case, the variable in study is defined on the real interval (m, M)
with 0 < m < M < oo (we always assume this condition), an equivalent expression
for the Gini index used in Giles (2004) is

JMF@y)(1 - Fly) dy
o]

G:

Replacing the distribution function for its maximum likelihood estimation (FDE),
F,, and if X = [ 2 dF,(z) we have the usual G estimator

IM Fu(y)(1 = Fuly)) dy

Gn = —
X

This index has been very actively investigated for the last three decades. Its
exact sample distribution in the particular case of a skew normal distribution
has been studied by Crocetta & Loperfido (2005) under a more general case of the
L-statistics. In the general case, its asymptotic distribution and the asymptotic
distribution of other families which generalizes the Gini Index (E-Gini) have been
studied by Zitikis (2003) and Martinez-Camblor (2005). The multivariate case has
been studied by Martinez-Camblor (2007).

Donalson & Weymark (1980, 1983) and Yitzhaki (1983) propose the Single
Parameter Gini (S-Gini) define as:

SGu =1~ k(k=1) [ (1= p)**L(p)dp
1

= (M—(k:—l)m—/(F(y)—l—(k—l)(l—F(y))k) dy>, E>1 (1)

for k = 2 we obtain the Gini standard coefficient.

In section 2 we derive the asymptotic normality of @n and using the same
technique, we also get to prove the asymptotic distribution for S-Gini and Theil
Coefficients (Theil 1967).

With a plug-in method, the main results are adapted to be used in practice. We
replace both unknown expected value and variance for theirs respective smoothed
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estimators, those are obtained when we replace the real distribution functions
for the Smoothed Empirical Distribution Function (SEDF) defined by Nadaraya

(1964) as:
Fi)= 13K <t ;’”) (2)

where K (t) = fioo K (s)ds, K is a symmetric density function and h,, is a sequence
of real positive number.

Section 3 is devoted to propose a resample method for @n In this context the
more useful technique is the Smoothed Bootstrap (Hall et al. 1989), we describe
it in this concrete case.

Finally and in order to study the performance of two proposed methods, we
show the obtained results in simulation work.

2. Main Results and Proofs

In this section we prove the main results of this paper. To derive them, we will
be based on theorem 3 of Komlos et al. (1975) which imply that there exists a
probabilisty space (2,0, P) and a Brownian Bridge, WO, such that

logn
vn

where Z,,(x) is an random variable almost surely bounded.

Vin(Fo(z) = F(x)) = WH{F(2)} +

Zn(x), a.s. (almost surely)

A Brownian Bridge is a gaussians process with expected value, E(W°{t}?) =
t(1—t) and E(WO{t}W°{s}) = s(1—t) for s < t (see, for example Billingsley 1968).

Teorema 1. Let (z1,...,x,) a random sample from F, then
vi 8 N 3)
where
G :%/F(u)(l — F(u)) du (4)
g 1 “
v =2 //m (1 -2F(u)+ G)(1 —2F(v) + G)F(v)(1 — F(u)) dvdu +

1 M
F //u (1 -2F(u)+ G)(1—2F(v) + G)F(u)(l - F(v)) dvdu (5)
Demostracion. For each n € N we define

§n =Vn </ Fo(z)(1 = Fy(z)) dz — M /F(:z:)(l — F(z)) d:c)
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from the equality; Fy, () = F(x)+Op(n~'/?), and the Theorem 3 of Komlos et al.
(1975) we have that

_—/F()(l—F()) /xd\/_( w(x) — F(x))

I

—% F(z)(1— F(x)) d:c/:z:dF(x) a':S'/WO{F(a:)}(l—F(:r)) dx

+Op(n~1/?) - /WO{F(JJ)}F(J:) dz
+ O(logn/v/n) — % /F(:v)(l — F(z)) dx/xdWO{F(:E)} + O(logn/v/n)
applying the integration by parts,
&n = /(1 —2F(z) + GYW{F(z)} dz + Op(n~"/?) = £ + Op(n~'/?) a.s.

Now, F is vanish out of (m, M) so, we know that there exists 0 € (m, M) such
that

- /(1 _9F () + GYWO{F(x)} dz = (M —m)(1 — 2F(6) + GYWOLF(8)} (6)

has a normal distribution with mean zero and variance,

B =F (/(1 —2F (x) + G)W{F(z)} d:zc) 21

=F (//(1 —2F(x)+G)(1 —2F(y) + G)WO{F($)}WO{F(y)} d dy>
= [[ (2@ + @)1 - 280) + 6B (W EEP ) dody

and from basic properties of Brownian Bridge we obtain the final expression for
the variance

= //u(l —2F(u) + G)(1 = 2F(v) + G)F(v)(1 — F(u)) dvdu +
M
/ / (1— 2F(u) + G)(1 — 2F(v) + G)F(u)(1 — F(v)) dvdu = (uV)?

On the other hand, X =y + Op(n~'/?), so we have that

an -G a.s. Qn §+ OP n71/2
XV (u+op(n71/2))v o
since € has a N(0, u)) distribution, the proof is completed. O
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This technique can be applied to prove the asymptotic normality of other
similar rates. For instance, if we considere the natural estimator of SGy,

SCi =~ (M — == [ (Fay)+ (k- D= Fu0)") dy)

we will derive the following result,

Teorema 2. Let (x1,...,x,) a random sample from F then

Vi 2250 £ o) (5)
k

where SGy, is defined in (1) and,

S? :% //7: (SGk—1+(k—1)(1—F(x))’“*l) X

(SGk 1+ (k-1(1- F(y))’“*l)F(xm — F(y)) dz dy

+% //yM (SGk —1+(k-1)(1- F(:c))’“‘l) X

(SGk 14 (k-1)(1- F(y))k_l)F(y)(l — F(z)) dzdy (9)

Demostracion. Reasoning like in the previous theorem we have the equality

Vi SGr - 5Gy) =
vn (M— (k — 1)m—/(Fn(y)+(k— 1)(1—Fn(y))k) dy) -

X
*/—X( —(k—1)M — / 1)(1—F(y))’“)dy>

we know that: F},(u) = F(u) 4+ Op(n~'/?), so we can check that,

[ (Bt te =1 = Fatw)")ay
_ / (Fuly) + (k= 1)(1 = Fu(w))" 7 (1= Fulw)) ) dy
= [ (P + (b= D1~ F)' ™ (L= Falw)) dy+ Op (72
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and

NG (M — = 1m = [ (Fay)+ (k- D1 - Fu0)") dy> -

Vs (3= = nm= [ (Fo)+E-10- Fw) ) )

: (M — (k= 1)m)
fxd[\/ﬁ(Ff) ~ Lt /(F(y) + (k=11 = F)") dy

:/ ((k: -1)(1-F(y) -1+ SGk) Vi (Fu(y) — F(y))dy + Op(n~1/?)

Newly, we apply the Hungarian Construction to obtain that a Brownian Bridge,
WO, exists such that we have the equality

Ak :/ (k=D (1 = F@)" " =1+ 5G:) Va(Fuly) - F(y)) dy

:/ ((k: ~)(1-F) -1+ SGk) W F(y)} dy + Op (n~1/?)
=A%+ Op(n1/?)

and from a Brownian Bridge properties and proceeding as in (6) we have that
there exists 6 € (m, M) such that

Ak :/ ((k —D-F)" =1+ SGk) WO{F(y)} dy

—(M —m) (SGk 14 k(k—1)(1 - F(e))’“‘l) WOLF ()}

5o, A* is normal distributed with mean zero and variance
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A’ﬂ - / (SGk 14 (k—1)(1- F(x))’“‘l) x
(SGk 14 (k—1)(1- F(y ))’H) E (WO {F(2) )WL F(y)}) da dy
:// SGy—1+ (k—1)(1 - F(z))*” 1)x
(sak 14 (k—1)(1— F(y))’“‘l) F(z)(1— F(y)) dvdy +
//yM (SGk 1+ (k-1)(1 - F(x))’“*l) x
(SGk 14 (k—1)(1- F(y))’“*l) F(y)(1 - F(z)) dzdy = (uSk)?

the result (8) is immediately deduced applying a similar reasoning to the one used
in (7). O

Theorem 2 is more general than Theorem 1, of course, expressions in (8) and
(9) are generalizations of expressions in (3) and (5) and they are the sames for
k=2.

Following, we will apply the previous method to derive the asymptotic norma-
lity for Theil Coefficient (Theil 1967) defined as:

b o (= (s () () ) )

the usual way to estimate the Theil coefficient is to consider the estimator
= — Z; 10 —
"X &N\ X

Applying the previosly technique we will prove the result

Teorema 3. Let (x1,...,x,) a random sample from F then
T,-T
vn £, N(0,1)
where

L (sa() (7 (2)) - s
I ) or (B
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294
Demostracion. We have that
V(T - T) = % <M10g <%) = /mM <1og <i) + 1> Fo(x) da:)
/M <log (%) + 1) F(z) da:)

m

"X (M log <%) _
I I

we have the equality
_ K
X K

([

m
m

L[ () o

Using one-term Taylor expansion for the logarithmic function in a neighbor-

(10)

hood of one, we have
u p—X p—X 12

Vittog (%) = vitog (14525 ) = A2 4 0n(717)

From the equalities X = p+ Op (n~'/2) and F,(u) = F(u)+ Op(n~'/?) and (10)

we can obtain the equality

= % <1 +log (%)) /M Vii(Ea(x) = P(a)) da

m

we know that frf F(x)dx = M — p so we have that
M
N = / (2 — 7T —log (%)) Vi(Fa(y) = F(y)) dy + Op (n~/?)

m
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and applying the Hungarian Construction we know that a Brownian Bridge, W°,
exists such that

Nn = /M (2 —T —log (%)) W F(z)} dz + Op (n/?)

m

then, from Integral Mean Value Theorem, for § € (m, M) we have the equality

0 [ (27 () wrire

=(M —m) (2 ~7 —log <%>) WHE ()}

and 7 is normal distribution with mean zero and variance

E(n?) = E(// (2 T —log (%))WO{F(Q:)} <2 ~ T log <%))WO{F(y)} do dy)
= // (2 — T —log <%)) (2 — T —log (%))E[WO{F(x)}WO{F(y)}} dx dy
- //: <2— T —log <%)) (2 ~T —log <%>)F(:c)(1 — Fy))dzdy +
//yM <2 — T —log <%)) <2 — T —log <%))F(y)(1 — F(z)) dedy = (uD)?

and finally we have

and the result is completed. O

In practice, previous theorems can not be used because it is impossible to
compute neither the expected value nor variance. In proposition 2.1 of Martinez-
Camblor (2006) is proved that if there exists real values 0 < m < M < oo such that
F(m) =0 and F(M) =1 (this assumption is assumed always in this work); F has
three bounded and continuous derivatives; the kernel function used in (2), K, has
bounded variation; its support is contained in a compact set; and the parameter
h,, satisfies that

log bt

nhd —n 0

then, we have the equality

Sup Fu(t) = F(t)| = op(hn)
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As consequence of this, if we define

1 ~ ~
Gn :?/Fn(u)(l—Fn(u)) du
2_i ' — [ u — E v [ v —~ u UV du
V2 == //m (1 =2F,(u) 4+ Gyn) (1 = 2F,(v) + Gy) F (v)(1 = Fy(u)) dv d

1 M ~ ~ - -
+ = //u (1= 2F,(u) + Gp) (1 = 2F, (v) + G ) Fy (u) (1 — Fy(v)) dv du

T :%/ulog <%) dF, (u)
tn [ ()
(2—7; —10g(
Ny e
Xy X

(2 — 7, —log <:>) Fu(y) (1 — Fy(2)) dz dy

)) Fo(2)(1 = Fy(y)) de dy

x =

RS

then, we will have the convergence G,, =%, G, V2 2%, V? and

Vi GG £ N, ) (11)
and, 7, %%, 7, D? 2%, D? and
il =T £, (12)

n

All these parameters are easily computed. Expressions (11) and (12) can be used to
make confidence intervals and to make inferences from a real data set. Obviously,

it is straightforward to apply the same method to build confidences intervals for
SG.

3. Smoothed Bootstrap

In this section we propose a resample method to compute the mean and va-
riance of the studied estimators. When we are assuming that the distribution is
continuous the more efficient resample technique is the Smooth Bootstrap. This
method is studied, for example, for Hall et al. (1989) or Gonzélez Manteiga et al.
(1994) and if we had a sample of size n this would be its basic procedure:

1. We compute the SEDF, ﬁn, from the data.
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2. We run B bootstrap samples with size n from ﬁn and we compute én for
each one.

3. We approximate the real distribution of @n from the distribution of the
previous B computed.

For that estimators, the consistence of the previous method is proved straightfor-

ward. For example, for GCIL, let (z¥,... 25) be a random sample from F, and
G5 the Gini coefficient of F', we have the convergence

GE—GB C
_n_ - =

\/ﬁ Vo n N(Oa 1)
where pup = [z dF,(z),
Gp = ,MLB ﬁn(u)(l - ﬁn(u))du

V3 = é //1: (1-2F,(u) + Gp) (1 — 2F,(v) + Gp) Fp(v) (1 — F,(u)) dv du

M ~ ~ ~ ~
+ é //u (1 —2F,(u)+Gp)(1 —2F,(v) + G) Fa(u) (1 — F,(v)) dv du

The same process can be applied without wrinkles to Theil and S-Gini coefficients.

4. Simulations

Finally, we describe the performance of both proposed methods in three dif-
ferent distributions and for different sample sizes. In each case we carry out a
thousand Monte Carlo (Metropolis & Ulam 1949) samples and we compute confi-
dence intervals for Gini index using the asymptotic distribution given in (3) and
when we estimate the mean and variance from the Smoothed Bootstrap method.
For this work we have used the software R (R Development Core Team 2006).

In the first situation, we consider a Weibull distribution with parameters three
and two. Its real Gini coeflicient value is 0.2063 and the standard deviation of Gini
estimator (value of the parameter defined in (5)) is V = 0.1490.

In table 1 we can be see as both the Gini coefficient and the standard deviation
are well approximated but a little overestimate and the asymptotic approximation
for intervals works always better than bootstrap percentiles although the coverage
probability is lower than the nominal 1 — « level. On the other hand, for sample
sizes n > 100, the coverage probability of asymptotic intervals are quite similar.

In the second case (table 2), the distribution considered is Logarithmic Normal
with parameters zero and one. The values of the Gini and its deviation V are
0.5205 and 0.4271 respectively.

As in the first case, the approximations for the Gini coefficient and its standard
deviation are quite good; but there is to much intervals that exclude the real value
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TABLA 1: Percentage of miscoverage in tails.

n =50 n = 100 n = 250 n = 500
left right left right  left right left right
95 % 7.50  0.40 570 0.10 4.00 1.00 3.80 1.90
99 % 1.60  0.00 1.00 0.10 1.20 0.10 0.70 0.70
Mean(Vy) 0.1555 0.1525 0.1513 0.1501

95 % (B) 13.30 040 11.20 0.10 7.50 0.50 7.00 1.30
99 % (B) 4.05  0.00 295 0.10 290 010 1.90 0.60
Mean(Vg) 0.1523 0.1526 0.1505 0.1499

of the Gini in the left side when we used the bootstrap method and in the right
side when asymptotic distribution is used. The obtained percentage is near to the
expected one only for n = 500 and we used the asymptotic approximation.

TABLA 2: Percentage of miscoverage in tails.

n = 50 n = 100 n = 250 n = 500

left right left right left right left right

95 % 3.80 8.30 4.60  6.80 4.40  4.70 1.60  4.20

99 % 2.20  3.30 1.60  2.50 1.50  1.00 0.20  1.00
Mean(Vy) 0.3217 0.3512 0.3704 0.4241

95 % (B) 11.80 3.80 16.40 2.80 12,50 1.90 11.30 1.20
99% (B) 4.40  1.60 7.40  1.40 6.80  0.40 6.00 1.30
Mean(Vp) 0.3920 0.3887 0.3953 0.4068

Finally, in the thrird case, we consider the incomes of 5426 Spanish families
in 1998 (this data set are from the European Community Household Panel) and
we suppose that its Smoothed Empirical Distribution Function (SEDF) is the real
distribution function (the Kernel Density Estimation (KDE) and the Smoothed
Empirical Distribution Function (SEDF) appear in figure 1). The mean of families
incomes is 10298.8 euros with a standard deviation of 7298.82. The Gini index is
0.3531 and the standard deviation of its estimator is 0.2682.

In the table 3 we can see that the )V estimations are good but both, asymptotic
and bootstrap approximations, have a too high number of intervals which don’t
contain the real value of the parameter and the convergence is slow.

In general the obtained results are the usual in these kind of studies. We obtain
quite good fitted for not especially big sample sizes and, of course, with smaller
sample sizes than the usual ones in this type of studies.

TaBLA 3: Coverage Probability.

n=50 mn=100 n =250 n=>500

95 % 8.00 7.40 3.60 7.90
99 % 2.10 2.20 2.30 1.80

Mean(Vn) 0.2437  0.2473  0.2479  0.2475
95% (B)  11.40 9.00 9.80 9.70
99% (B) 4.20 3.80 3.40 3.10

Mean(Vg)  0.2566 0.2609 0.2637 0.2680
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Ficura 1: KDE and SEDF for Spanish Incomes.

5. Conclusions

In this paper, we have not only develop a method for proving the asymptotic
normality of Gini, S-Gini and Theil estimators, but we also give speed convergence
bounders.

The same method of proof is easily applicable to other indices; for instance it
is straightforward to obtain the asymptotic normality of the E-Gini (Chakravarty
1988), a family of coefficients defined to each § > 1 as:

([ - L) i)

where L(p) is the Lorenz function.

1/6

On the other hand, we have obtained explicit expressions for asymptotic means
and variances which are easily estimated and resampling plan has been proposed.
Simulations show that asymptotic approximation intervals are always better than
bootstrap intervals although the coverage probability is always lower than the
nominal 1 — « level.
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