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Abstract

In the context of linear models, an optimality criterion is developed for
models that include random effects. Traditional information-based criteria
are premised on all model effects being regarded as fixed. When treatments
and/or nuisance parameters are assumed to be random effects, an appropri-
ate optimality criterion can be developed under the same conditions. This
paper introduces such a criterion, and this criterion also allows for the in-
clusion of fixed and/or random nuisance parameters in the model and for
the presence of a general covariance structure. Also, a general formula is
presented for which all previously published optimality criteria are special
cases.

Key words: Optimal design, Information matrix, Nuisance parameter, Co-
variance structure, Mixed model.

Resumen

En el contexto de modelos lineales, los criterios de optimalidad se cons-
truyen para los modelos que incluyen efectos aleatorios. Tradicionalmente
los criterios basados en la información asumen que todos los efectos en el
modelo se consideran fijos. Cuando los parámetros, tratamientos o molestias
son considerados efectos aleatorios, un criterio adecuado de optimalidad se
puede desarrollar en las mismas condiciones. En este trabajo se introduce ese
criterio, que permite la inclusión en el modelo de parámetros que representan
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molestias fijas o al azar, además de una estructura general de covarianza.
También, se presenta una fórmula general para la cual en todos los casos
publicados anteriormente, los criterios de optimalidad son casos especiales.

Palabras clave: diseño óptimo, matrix informativa, parametros molestos,
estructura de covarianza, modelo mixto.

1. Introducción

There has been considerable interest among statisticians regarding the problem
of design optimization. Researchers would like to choose an experimental design
that maximizes the amount of information that is obtained from a fixed number
of observations. To determine the optimal design among a set of candidates, it
is necessary to define some criteria which allow discrimination between possible
designs. Many well-known optimality criteria exist. Of these, A-optimality and
D-optimality are the most commonly used (Kiefer 1974, Martin 1986). Moreover,
with the advent of more complex analyses and experimental objectives in statistical
research, new criteria which are relevant in these specific situations continue to be
proposed in the literature (Dette & O’Brien 1999, Jacroux 2001).

The word “optimal” has several different interpretations in the context of ex-
perimental design. Usually, a researcher is concerned with finding the most accu-
rate parameter estimates or predictions; thus, the optimal design will provide the
highest quality of information concerning these parameter estimates. For linear
models, information concerning the precision of the parameter estimates is con-
tained in the variance-covariance matrix of parameter estimates. Thus, optimal
designs are those experimental layouts that optimize some function of this matrix.

Many optimality criteria involve functions of the information matrix for given
parameter estimates. Since primary interest often lies in the estimation of treat-
ment effects, the most basic optimality criteria are given under the assumption
that there are no effects other than those due to the intercept and treatment in
the model. This criterion has been extended to allow for fixed nuisance parameters,
such as block effects or covariates, in the model (Atkinson & Donev 1992), and
also to permit the presence of spatial correlation (Martin 1986). These extensions
will be discussed in more detail in section 2

Since various criteria have been proposed, a large segment of design literature
has focused on finding specific designs that are optimal under the various criteria.
Many commonly used experimental designs, e.g., Latin squares, Youden squares,
and even balanced incomplete block designs, have been shown to possess optimal
properties (Kiefer 1958). These are intuitively appealing results since one would
expect a balanced design to be more efficient if all parameters are of equal interest.

Even though these results satisfy the needs of most researchers, the existing
theory does not apply to all models. These results were obtained based on criteria
which operate under the assumption that all model effects are fixed. However,
many well established analyses consist of fitting a linear model with at least some
random effects, and in some cases, even treatment effects are regarded as random
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(Sebolai et al. 2005). Schmelter (2007a) has discussed the optimality of designs
for single-group designs for certain mixed models. He then extends his results for
group-wise designs for linear mixed models 14 Schmelter (2007b).

Consider the case of unreplicated designs, where replicated “check” varieties
are planted in the midst of unreplicated experimental varieties for comparative
purposes. Such experiments are often carried out as the initial stage of a plant
breeding experiment, where the objective is to select the top-performing experi-
mental varieties for further testing. Therefore, it is important for the researcher
to obtain the most accurate ranking of varieties. In the past, researchers have
regarded variety as a fixed effect and based the rankings on least squares esti-
mates of the variety effects. However, a recent simulation study which compared
the efficiency of germplasm screening experiments with varying levels of checks
demonstrated that the use of best linear unbiased predictors (BLUPs) was su-
perior to the use of least squares means for selecting the highest proportion of
true top-ranking genotypes (Sebolai et al. 2005). That is, Sebolai et al. (2005)
demonstrated that a more accurate ranking of variety effects was obtained when
treatment (variety) effects were assumed random as opposed to fixed. All pre-
viously considered optimality criteria are based on treatments being regarded as
fixed effects. Given that a more accurate ranking of variety effects can be obtained
when treatment effects are assumed random as opposed to fixed in an unreplicated
experiment, it follows that an appropriate optimality criterion should be derived
with the premise that treatments are assumed random.

The objective of this paper is to develop such a criterion. Before this criterion
is given, a few well-known optimality criteria which are used in the case where only
fixed treatment effects are in the model will be reviewed. Also, the extensions of
these basic criteria to the case where fixed block effects are included in the model
and can be viewed as nuisance parameters or to the case where observations are
correlated will be discussed. Finally, the authors will extend these concepts to
the case where treatment effects are assumed to be random while still allowing for
nuisance parameters to be fixed and/or random and for correlated observations.
Hereafter, the matrix W represents the design matrix for the parameters of interest
(i.e., treatment effects). Also, γ denotes the vector of fixed treatment effects, and
g denotes the vector of random treatment effects.

2. Review of Some Well-Known Optimality Criteria

2.1. A-Optimality and D-Optimality

Consider the simple case where treatment effects are fixed and there are no
other fixed effects, the means model. The model equation is given as

y = Wγ + e (1)

where y is the vector of observations, W is the design matrix, γ is the vector of
treatment effects, and e is the vector of random errors. Assume e ∼ N

(
0, σ2

)
.

Then the information matrix for the least squares estimates for treatment effects
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is given by W ′W and so V ar(γ̂) = (W ′W )−1σ2. When treatments are of equal
interest, a commonly used criterion is

A-optimality = trace (W ′W )
−1

(2)

Note that minimizing the trace of the inverse of the information matrix is
equivalent to minimizing the average variance of the least squares estimates of
the treatment effects. Another commonly used criterion based on the information
matrix is

D-optimality =
∣∣(W ′W )−1

∣∣ (3)

This is equivalent to minimizing what is known as the generalized variance of
the parameter estimates (Dykstra 1971).

Other information-based criteria exist, such as G-optimality and I-optimality
(which are based on the variance of prediction of the candidate points). However,
A- and D-optimality are more frequently employed to evaluate classical experimen-
tal designs. An advantage of the D-optimality criterion is that optimal designs for
quantitative factors do not depend on the scale of the variables, which in general is
not the case for A-optimality. A solution to the problem of different scales for A-
optimality has been proposed by (Dette 1995). The optimum design for estimating
the maximum point of a quadratic response function with intercept is discussed in
(Müller & Pazman 1998). However, for designs with all qualitative factors, such
as block designs, problems of scale do not arise (Atkinson & Donev 1992) and the
A-optimality criterion is frequently employed; thus, from this point forward, this
paper will focus on A-optimality.

2.2. A-Optimality for Blocking Designs

The A-optimality criterion stated in equation (2) was given under the assump-
tion that there were no effects other than fixed treatment effects in the model.
Now, consider a blocking design in which both treatment and block are fixed ef-
fects. The model equation can be written as

y = Wγ + Xβ + e (4)

where y is a vector of responses, W is the design matrix for treatment effects, X

is the design matrix for block effects, γ is the vector of fixed treatment effects,
β is the vector of fixed block effects, and e is the vector of random error terms.
Assume e ∼ N(0, σ2). Ideally, A-optimal designs will be those that minimize the
trace of the covariance matrix of the least squares estimates of only the treatment
effects; i.e., block effects are viewed as nuisance parameters. Note that equation
(4) can be rewritten as

y = Pα + e

where P = (W X) and α′ = (γ, β)′. Specifically, the information matrix is given

by P ′P =

[
W ′W W ′X

X ′W X ′X

]
. The inverse of this matrix can be partitioned as
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(P ′P )−1 =

[
D11 D12

D21 D22

]
, where V ar(γ̂) = σ2D11. Recall the following result on

the inverse of a partitioned matrix: Let T represent an m×m matrix, U an m×n

matrix, V an n×m matrix, and S an n×n matrix. Suppose that T is nonsingular.

Then

[
S V

U T

]
is nonsingular if and only if the n × n matrix Q = S − V T−1U is

nonsingular, in which case

[
S V

U T

]−1

=

[
Q−1 −Q−1V T−1

−T−1UQ−1 T−1 + T−1UQ−1V T−1

]

(Harville 1997). It then follows that D11 = (W ′W −W ′X(X ′X)−1X ′W )−1. Thus,
an optimal design which regards block effects as nuisance parameters (when both
block and treatment effects are fixed) can be found by minimizing the trace of
D11. That is,

A-optimality = trace
(
W ′W − W ′X(X ′X)−1X ′W

)−1
(5)

2.3. A-optimality in the Presence of Spatial Correlation

The previous criteria have assumed that observations are independent. Re-
alizing that this assumption is often not met, Martin (1986) extended the gen-
eral concept of A-optimality to the case where observations are correlated. Con-
sider once again model equation (1), y = Wγ + e. However, now assume e ∼
N(0, σ2R) where R is a positive definite matrix. The correlation structure is de-
fined through the matrix R, and the correlation may be spatial, temporal, or of
some other structure. Many known positive definite functions exist to describe
spatial correlation (e.g., spherical, Gaussian, and exponential functions) (Journel
& Huijbregts 1978, Cressie 1993). When a specific function (e.g., spherical) is cho-
sen to construct R, it is necessary for design purposes to assume that R is known.
In this case, the information matrix for the least squares estimates for treatment
effects is given by W ′R−1W and so V ar(γ̂) = (W ′R−1W )−1σ2. Thus, a criterion
for minimizing the average variance of the estimated treatment effects when R is
a general positive definite covariance matrix of e is

A-optimality = trace
(
W ′R−1W

)
−1

(6)

2.4. Criterion for Blocking Designs with Correlated Obser-
vations

Equation (6) is the criterion used in the case where treatments are fixed effects
and correlation is present among the observations. It is of interest to extend this
concept to allow for the inclusion of block effects. Consider model equation (4),
y = Wγ +Xβ + e, where we now assume e ∼ N

(
0, σ2R

)
. Given R, a non-singular

symmetric matrix R
1

2 exists so that
(
R

1

2

)
′

R
1

2 = R
1

2 R
1

2 = R (Harville 1997).

Letting f = R−
1

2 e, it follows that E(f) = 0 and so E(ff ′) = V ar(f). Thus, we
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have

V ar(f) = E (ff ′) = E
(
R−

1

2 ee′R−
1

2

)

= R−
1

2 E (ee′)R−
1

2

= R−
1

2 R
1

2 R
1

2 R−
1

2 σ2 = σ2I

which implies that f ∼ N(0, σ2I) (Draper & Smith 1998). If we premultiply

equation (4) by R−
1

2 , we have R−
1

2 y = R−
1

2 Wγ +R−
1

2 Xβ +R−
1

2 e or equivalently
Z = Mγ+Nβ +f . Now, new “W ” and “X” matrices exist that can be substituted
into equation (5) to arrive at an extension of the A-optimality criterion to the case
where all effects are regarded as fixed, block effects are considered to be nuisance
parameters, and observations are correlated. This criterion is given as

A-optimality = trace
(
M ′M − M ′N(N ′N)−1N ′M

)−1

= trace
(
W ′R−

1

2 R−
1

2 W − W ′R−
1

2 R−
1

2 X(X ′R−
1

2 R−
1

2 X)−1

X ′R−
1

2 R−
1

2 W
)
−1

= trace
(
W ′R−1W − W ′R−1X(X ′R−1X)−1X ′R−1W

)−1

(7)

If there are no nuisance parameters, then X = 0 and equation (7) is reduced to
equation (6). Also, if there is no correlation among the observations, then R = Iσ2

and equation (7) is reduced to equation (5).

3. Extensions of the A-Optimality Criterion for Ran-

dom Effects

In the previous section, the concept of A-optimality was extended to allow for
both nuisance parameters and some correlation structure simultaneously; however,
all treatment and block effects in this case were still assumed to be fixed. Here,
a new A-optimality criterion is introduced which is premised on treatments being
assumed random, and this criterion can incorporate fixed and/or random nuisance
parameters.

3.1. Prediction Variance for Designs with Random Effects
and Correlated Observations

The derivation of an A-optimality criterion in the case of random treatments
relies on the theory of mixed models. Consider the following model,

y = Wg + Xβ + e (8)

In this model, X is the design matrix for fixed effects, W is the design matrix for
random effects, β is the vector of fixed effects, g is the vector of random effects, and
e is the vector of random errors. A key assumption is that g and e are distributed
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with E

[
g

e

]
=

[
0

0

]
and V ar

[
g

e

]
=

[
G 0

0 R

]
σ2. If G and R are known, β̂ is the best

linear unbiased estimator (BLUE) of β and ĝ is the best linear unbiased predictor
(BLUP) of g. It can be shown that

V ar

[
β̂ − β

ĝ − g

]
=

[
X ′R−1X X ′R−1W

W ′R−1X W ′R−1W + G−1

]−1

σ2

(Henderson 1975).

More specifically, using the inverse of a partitioned matrix (Harville 1997),
V ar(ĝ − g) = (W ′R−1W + G−1 − W ′R−1X(X ′R−1X)−1X ′R−1W )−1σ2. When
treatments are considered to be random effects, an optimal design is generally
found by minimizing the average prediction variance of the treatment effects.

3.2. Criterion for Blocking Designs with Random Effects and
Correlated Observations

First, consider the case where treatments are random and blocks are fixed
effects. Equation (8) applies to this case, where X is the design matrix for fixed
blocks and W is the design matrix for the random treatment effects. Then an
appropriate optimality criterion is given by

A-optimality =

trace
(
W ′R−1W + G−1 − W ′R−1X(X ′R−1X)−1X ′R−1W

)−1
(9)

If there are no fixed effects in the model (which would be the case if the data
were centered and hence there were no intercept in the model), then X = 0 and
this criterion becomes

A-optimality= trace
(
W ′R−1W + G−1

)−1
(10)

Next, consider the case where both treatments and blocks are random effects
(again, assume the data is centered and there is no fixed intercept in the model).
The corresponding model equation is given by

y = Wg + Zu + e (11)

where W is the design matrix for random treatment effects, Z is the design matrix
for random block effects, g is the vector of random treatment effects, and u is the
vector of random block effects. Assume that g, u, and e are normally distributed

with E




g

u

e



 =




0

0

0



 and V ar




g

u

e



 =




G 0 0

0 D 0

0 0 R



 σ2. If block effects are regarded

as nuisance parameters, then this equation can be written as

y = Wg + ẽ (12)
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where ẽ = Zu + e and V ar(ẽ) = ZDZ ′ + R. Equation (12) has no fixed effects,
and so V ar(g) = G and V ar(ẽ) = ZDZ ′ + R from equation (12) correspond
to V ar(g) = G and V ar(e) = R from equation (10), respectively. Thus, from
equations (10) and (12) we arrive at an A-optimality criterion for blocking designs
with random effects in the presence of spatial correlation. Namely,

A-optimality=trace
(
W ′(ZDZ ′ + R)−1W + G−1

)−1

Using the identity (R + STU)−1 = R−1 − R−1S(T−1 + UR−1S)−1UR−1

(Harville 1997), it is shown that this is equivalent to

A-optimality = trace
(
W ′(R−1 − R−1Z(D−1 + Z ′R−1Z)−1Z ′R−1)

W + G−1
)
−1

= trace
(
W ′R−1W + G−1 − W ′R−1Z(D−1 + Z ′R−1Z)−1

Z ′R−1W
)
−1

(13)

If the treatment effects and the nuisance parameter (block effects) are fixed,
then D−1 = 0 and G−1 = 0. Then equation (13) becomes equation (7).

3.3. Criterion for Designs with Fixed and/or Random
Nuisance Parameters and Correlated Observations

In some cases, a linear model may contain both fixed nuisance parameters
(i.e., covariate effects) and random nuisance parameters (i.e., block effects). The
previous criteria can be extended to develop an appropriate optimality criterion
for this situation. Let treatments be regarded as fixed effects, and consider the
model

y = Wγ + Xβ + Zu + e (14)

where W is the design matrix for treatment effects, γ is the vector of fixed treat-
ment effects, X is the design matrix for all fixed effects other than treatment, β

is the vector of all fixed effects other than treatment, Z is the design matrix for
random block effects, u is the vector of random block effects, and e is the vector

of random error terms. Assume that

[
u

e

]
∼ N

([
0

0

]
,

[
D 0

0 R

])
. If block effects

are a nuisance parameter, then this equation can be rewritten as

y = Wγ + Xβ + ẽ (15)

where ẽ = Zu + e and ẽ ∼ N(0, ZDZ ′ + R). Both the treatment effects and
nuisance parameters are fixed in the presence of correlated observations; thus,
the criterion given in equation (7) applies here with V ar(e) = R replaced by
V ar(ẽ) = ZDZ ′ + R to obtain

A-optimality =trace
[
W ′(ZDZ ′ + R)−1W−

W ′(ZDZ ′ + R)−1X(X ′(ZDZ ′ + R)−1X)−1X ′(ZDZ ′ + R)−1W
]
−1

(16)
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Alternatively, let treatments be regarded as random effects and consider the
equation

y = Wg + Xβ + Zu + e (17)

where g ∼ N(0, G), u ∼ N(0, D), e ∼ N(0, R), and g, u, and e are uncorrelated.
Let X be the design matrix for all fixed effects and Z be the design matrix for
random block effects. If blocks are random, then equation (17) can be rewritten
as

y = Wg + Xβ + ẽ (18)

where ẽ = Zu + e and ẽ ∼ N(0, ZDZ ′ + R). Since treatment effects are random
and the nuisance parameters are fixed in the presence of correlated observations,
the criterion given in equation (9) is applicable if V ar(e) = R is replaced by
V ar(ẽ) = ZDZ ′ + R. Finally, we obtain

A-optimality = trace
{
[W ′(ZDZ ′ + R)−1W + G−1−

W ′(ZDZ ′ + R)−1X(X ′(ZDZ ′ + R)−1X)−1X ′(ZDZ ′ + R)−1W ]−1
}

(19)

Note that if treatments are fixed as opposed to random, equation (19) reduces
to equation (16). Also, if there are no fixed effects other than treatment, then
X = 0 and equation (19) can be shown to reduce to equation (13). To observe
how general this criterion is, note that equation (19) can be reduced back to
equation (2) if treatments are regarded as fixed, there are no fixed or random
nuisance parameters, and observations are uncorrelated.

4. Discussion

The criterion described by equation (19) covers the most general case, and all
other previously published criteria are special cases of this formula. This equation
will reduce to a simpler form based on whether treatments are fixed or random,
whether fixed and/or random nuisance parameters are in the model, and whether
or not observations are correlated. Table 1 presents a summary of the information
matrices that would be used to derive the appropriate optimality criteria in each
special case.

Equations (16) and (19) differ by only the addition of G−1 when treatments
are random. Note that when treatments are regarded as random effects, there
is an increase in the amount of information due to the assumptions which are
made concerning the variability of the treatments; thus, the information matrix is
greater when treatments are considered as random effects.

Also, it should be mentioned that each inverse within the information matrices
listed in Table 2 can be replaced with a generalized inverse. The information
matrix is invariant to the choice of generalized inverse used. However, if the entire
information matrix is singular, one cannot calculate A-optimality by taking the
trace of the generalized inverse of the information matrix. In this case, the A-
optimality criterion is not invariant to the choice of generalized inverse used.
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Finally, when observations are independent, the A-optimality criterion is said
to be intuitively appealing since it both minimizes the average variance of estimates
for treatment effects and the average variance of estimates for treatment differ-
ences (Martin 1986). However, when observations are correlated, A-optimality
minimizes only the variance of the estimates for treatment effects. Thus, if in-
terest lies in treatment comparisons, an appropriate optimality criterion should
minimize the average variance of treatment differences. In this case, c-optimality
is useful. For any estimable contrast c′γ̂ and information matrix M , we have

V ar(c′γ̂) = σ2c′M−c

where the choice of the g-inverse matrix M− is arbitrary. This last expression is
the c-optimality criterion (Silvey 1978, Pazman 1978). This criterion is also useful
when the information matrix is singular since the c-optimality criterion is invariant
to the choice of the generalized inverse.

Although our aim is not to emphasize the many search algorithms available to
help construct an optimal design, the documentation of PROC OPTEX in SAS

provides some enlightenment in this regard (SAS Institute Inc. 2007). A-optimal
designs are harder to search for than D-optimal ones. Perhaps the easiest and
fastest algorithm is the sequential search due to Dykstra (1971), which starts with
no points in the design and adds successive candidate points so that the criterion
is optimized after each point is added. The next fastest algorithm is the simple
exchange method of Mitchell & Miller (1974). This technique tries to improve
an initial design by adding a candidate point and then deleting one of the design
points, stopping when the chosen criterion ceases to improve. The DETMAX algo-
rithm of Mitchell (1974) is a widely used expansion of the simple exchange method
above. Instead of requiring that each addition of a point be followed directly by a
deletion, the algorithm provides for excursions in which the size of the design might
vary between ND + k and ND - k. Here, ND is the specified size of the design and
k is the maximum allowed size for an excursion. The three algorithms discussed
so far add and delete points one at a time. The Fedorov (Fedorov 1972) algorithm
is based on simultaneous switching. The modified Fedorov algorithm of Cook &
Nachtsheim (1980) is another approach to the standard Federov method. Johnson
& Nachtsheim (1983) introduced a generalization of both the simple exchange al-
gorithm and the modified Fedorov search algorithm of Cook & Nachtsheim (1980).
For a detailed review of the preceding search methods, see Nguyen & Miller (1998).

Even though these methods are very useful, the overall objective of this paper is
to provide one equation which is appropriate for any computation of A-optimality.
For example, if one were trying to decide which of four competing designs were
optimal (and no others were available) when there was spatial structure, random
blocking, and a fixed covariate to take into consideration, we would simply calcu-
late the optimality criterion for each of the four scenarios and let those results help
us to decide upon which design to implement. Another way to use the optimality
formula would be to randomize treatment effects within a specific experimental
design and compute the criterion value for each randomization choosing the most
efficient. Marx & Stroup (1992) used this approach to determine the optimal 5×5
Latin Square design under spatial correlation.
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5. Example

(a) Diagonal (b) Knight’s Move

Figure 1: Design layout for two competing Latin Squares.

Two 5 × 5 Latin Squares, a Diagonal design and the Knight’s Move design
(Figure 1), are compared. A spherical spatial structure with no nugget, a range of
5.0, and a sill of 1.0 was assumed. First, a model consisting of only fixed treatment
effects is considered. Second, a model consisting of only random treatment effects
(with a treatment variance of 1.0 and a treatment variance of 10.0) is considered.
Finally, both fixed and random row and column nuisance parameters are added to
the aforementioned models (with various values for the row and column variances).

The designs are compared on the basis of c-optimality. The reasons for using
this criterion as opposed to the traditional A-optimality or D-optimality criterion
are two-fold:

(i) Generally, it is more important to the researcher to minimize the average
variance of treatment differences as opposed to the average variance of treat-
ment effects.

(ii) When fixed rows and columns are included in the model, the information
matrix is singular and the traditional A- or D-optimality criterion cannot be
computed. However, since the choice of the g-inverse matrix M− is arbitrary
in the expression for c-optimality, this criterion can be used.

In this example, there are

[
5

2

]
= 10 pairs of treatment differences. The variance

of each pair-wise treatment difference was found using this c-optimality criterion,
and the average of these variances was calculated for all models under both designs.
The results are listed in Table 1. Note that for random treatment effects, as the
variance component for treatments gets larger, the optimality criterion approaches
that of the criterion for the model with fixed treatments. Similarly, as the variance
components for row and column increase, the optimality criterion approaches that
of the criterion for the model with fixed row and column effects.

6. Conclusions

Even though this paper discussed only extensions to the A-optimality criterion
in detail, the ideas and results presented can be extended to any information-based
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Table 1: Ratio of the c-optimality criteria (which minimize the average variance of
treatment differences) for the Diagonal design relative to the Knight’s Move
design listed for various models (all assume a spherical spatial structure with
nugget = 0, range = 5, and sill = 1).

Treatments Fixed Treatments Random Treatments Random

(σ2
τ

= 10) (σ2
τ

= 1)

No nuisance

parameters 1.4077 1.4035 1.3684

Fixed row and column

effects 1.4559 1.4510 1.4102

Random row and

column effect 1.4533 1.4482 1.4078

(σ2
r

= 10 and σ2
c

= 10)

Random row and

column effect 1.4459 1.4410 1.4014

(σ2
r

= 1 and σ2
c

= 10)

Random row and

column effect 1.4388 1.3945 1.4399

(σ2
r

= 1 and σ2
c

= 1)

optimality criteria without difficulty. Each criterion given was based on the trace
of the information matrix, and this matrix can be used to obtain other criteria
(see Table 2 for the relevant information matrices). The example in the previous
section illustrates this. Another example is the D-optimality criterion. Since D-
optimality is also based on the information matrix, another criterion premised on
random effects which allows for both fixed and/or random nuisance parameters
and spatial correlation is

D-optimality =
∣∣[W ′(ZDZ ′ + R)−1W + G−1−

W ′(ZDZ ′ + R)−1X(X ′(ZDZ ′ + R)−1X)−1X ′(ZDZ ′ + R)−1W ]−1
∣∣

Revista Colombiana de Estadística 32 (2009) 17–31



Optimality Criteria for Models with Random Effects 29

Table 2: Summary of all information matrices.

Trt N-F N-R V Information Matrix

F N N I W ′W

F N N R W ′R−1W

F Y N I W ′W − W ′X(X′X)−1X′W

F Y N R W ′R−1W − W ′R−1X(X′R−1X)−1X′R−1W

R N N I W ′W + G−1

R N N R W ′R−1W + G−1

R Y N I W ′W + G−1
− W ′X(X′X)−1X′W

R Y N R W ′R−1W + G−1
− W ′R−1X(X′R−1X)−1X′R−1W

F N Y I W ′W − W ′Z(Z′Z + D−1)−1Z′W

F N Y R W ′R−1W − W ′R−1Z(Z′R−1Z + D−1)−1Z′R−1W

F Y Y I W ′(ZDZ′ + I)−1W − W ′(ZDZ′ + I)−1

X(X′(ZDZ′ + I)−1X)−1X′(ZDZ′ + I)−1W

F Y Y R W ′(ZDZ′ + R)−1W − W ′(ZDZ′ + R)−1

X(X′(ZDZ′ + R)−1X)−1X′(ZDZ′ + R)−1W

R N Y I W ′W + G−1
− W ′Z(Z′Z + D−1)−1Z′W

R N Y R W ′R−1W + G−1
−

W ′R−1Z(Z′R−1Z + D−1)−1Z′R−1W

R Y Y I W ′(ZDZ′ + I)−1W + G−1
− W ′(ZDZ′ + I)−1

X(X′(ZDZ′ + I)−1X)−1X′(ZDZ′ + I)−1W

R Y Y R W ′(ZDZ′ + R)−1W + G−1
− W ′(ZDZ′ + R)−1

X(X′(ZDZ′ + R)−1X)−1X′(ZDZ′ + R)−1W

Note:

Trt = treatment (F = fixed treatment effects, R = random treatment effects)

N-F = fixed nuisance parameter (N = no, Y = yes)

N-R = random nuisance parameter (N = no, Y= yes)

V = V ar(e) (I = independent observations, R = correlated observations)

ˆ

Recibido: agosto de 2008 — Aceptado: diciembre de 2008
˜

References

Atkinson, A. C. & Donev, A. N. (1992), Optimum Experimental Designs, Oxford
University Press, New York, United States.

Cook, R. D. & Nachtsheim, C. J. (1980), ‘A Comparison of Algorithms for Con-
structing Exact D-optimal Designs’, Technometrics 22(315-324).

Cressie, N. A. C. (1993), Statistics for Spatial Data, John Wiley & Sons, Inc., New
York, United States.

Revista Colombiana de Estadística 32 (2009) 17–31



30 Tisha Hooks, et al.

Dette, H. (1995), ‘Designing of Experiments with Respect to “Standardized” Op-
timality Criteria’, Journal of the Royal Statistical Society 59, 97–110.

Dette, H. & O’Brien, T. (1999), ‘Optimality Criteria for Regression Models Based
on Predicted Variance’, Biometrika 86, 93–106.

Draper, N. R. & Smith, H. (1998), Applied Regression Analysis, John Wiley &
Sons, Inc., New York, United States.

Dykstra, O. J. (1971), ‘The Augmentation of Experimental Data to Maximize
|X ′X |’, Technometrics 13, 682–688.

Fedorov, V. V. (1972), Theory of Optimal Experiments, Academic Press, New
York, United States.

Harville, D. (1997), Matrix Algebra from a Statistician’s Perspective, Springer-
Verlag, New York, United States.

Henderson, C. R. (1975), ‘Best Linear Unbiased Estimation and Prediction Under
a Selection Model’, Biometrics 31, 423–447.

Jacroux, M. (2001), ‘Determination and Construction of A-optimal Designs for
Comparing two Sets of Treatments’, The Indian Journal of Statistics 63, 351–
361.

Johnson, M. E. & Nachtsheim, C. J. (1983), ‘Some Guidelines for Constructing
Exact D-optimal Designs on Convex Design Spaces’, Technometrics 25, 271–
277.

Journel, A. G. & Huijbregts, C. J. (1978), Mining Geostatistics, Academic Press,
New York, United States.

Kiefer, J. (1958), ‘On the Non-randomized Optimality and Randomized Nonop-
timality of Symmetrical Designs’, The Annals of Mathematical Statistics
29, 675–699.

Kiefer, J. (1974), ‘General Equivalence Theory for Optimum Designs (Approxi-
mate Theory)’, Annals of Statistics 2, 849–879.

Martin, R. J. (1986), ‘On the Design of Experiments Under Spatial Correlation’,
Biometrika 73, 247–277.

Marx, D. & Stroup, W. (1992), Designed Experiments in the Presence of Spatial
Correlation, in ‘Proceedings of the 1992 Kansas State University Conference
of Applied Statistics in Agriculture’, pp. 104–124.

Mitchell, T. J. (1974), ‘An Algorithm for the Construction of D-optimal Experi-
mental Designs’, Technometrics 16, 203–210.

Mitchell, T. J. & Miller, F. L. J. (1974), ‘An Algorithm for the Construction
of D-optimal Experimental Designs’, Mathematlcs Division Annual Progress
Report (ORNL-4661) pp. 130–131.

Revista Colombiana de Estadística 32 (2009) 17–31



Optimality Criteria for Models with Random Effects 31

Müller, C. H. & Pazman, A. (1998), ‘Applications of Necessary and Sufficient
Conditions for Maximin Efficient Designs’, Metrika 48, 1–19.

Nguyen, N. K. & Miller, A. J. (1998), ‘A Review of Exchange Algorithms for
Constructing Discrete D-optimal Designs’, Metrika 14, 489–498.

Pazman, A. (1978), ‘Computation of the Optimum Designs under Singular Infor-
mation Matrices’, Annals of Statistics 6, 465–467.

SAS Institute Inc. (2007), SAS OnlineDoc 9.2, Cary, NC: SAS Institute Inc.

Schmelter, T. (2007a), ‘The Optimality of Single-group Designs for Certain Mixed
Models’, Metrika 65, 183–193.

Schmelter, T. (2007b), ‘Considerations on Group-wise Identical Designs for Linear
Mixed Models’, Journal of Statistical Planning and Inference 137, 4003–4010.

Sebolai, B., Pedersen, J. F., Marx, D. B. & Boykin, D. L. (2005), ‘Effect of
Grid Size, Control Plot Density, Control Plot Arrangement, and Assumption
of Random or Fixed Effects on Non-replicated Experiments for Germplasm
Screening’, Crop Science 45, 1978–1984.

Silvey, S. D. (1978), ‘Optimal Design Measures with Singular Information Matri-
ces’, Biometrika 65, 553–559.

Revista Colombiana de Estadística 32 (2009) 17–31


	Introducción
	Review of Some Well-Known Optimality Criteria
	A-Optimality and D-Optimality
	A-Optimality for Blocking Designs
	A-optimality in the Presence of Spatial Correlation
	Criterion for Blocking Designs with Correlated Observations

	Extensions of the A-Optimality Criterion for Random Effects
	Prediction Variance for Designs with Random Effects and Correlated Observations
	Criterion for Blocking Designs with Random Effects and Correlated Observations
	Criterion for Designs with Fixed and/or Random Nuisance Parameters and Correlated Observations

	Discussion
	Example
	Conclusions

