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Abstract

Most of the real applications in survey sampling involve not one, but

several characteristics of study. In this paper, a unified framework of joint

estimation of the parameters of interest is presented under various sampling

designs. The applications of the results of this research entails a significant

gain in computational efficiency.
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Resumen

La mayoría de las aplicaciones en encuestas por muestreo involucran

múltiples variables de estudio. En este artículo se presenta un marco de refe-

rencia para la estimación conjunta de los parámetros de interés en algunos

diseños de muestreo. La aplicación de los resultados encontrados garantizan

una ganancia significativa en la eficiencia computacional.

Palabras clave: diseño de encuestas complejas, estimación de parámetros.

1. Introduction

The purpose of sample surveys is to gather information about a certain finite
population by estimating parameters such as means, totals, or ratios. However,
most surveys do not include just one but several study variables. Sampling books
seem to discard the fact that a survey is seldom interested in the estimation of
one single parameter and most of the theory developed by sampling researchers
is focused on the search of both, design and estimator, that perform well and
gain in efficiency under the single parameter case. Several advantages have been
developed in this field. However, all of them are motivated by the assumption
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that the survey methodologist is interested in one single parameter. As Holmberg
(2002a) claims, «a typical business survey has several study variables and several
target parameters... with multiple target parameters, and multiple requirements
on precision, the practising statistician must then select a compromise design.»

A survey could be divided in two stages: The design stage and the estima-
tion stage. The work of Holmberg during the past decade was related to find a
sampling design that yields unequal first order inclusion probabilities, and that
is optimal in the sense that significant improvements on the overall precision are
possible. This paper is focused on the next step after planning the survey, the
estimation stage, presenting a methodological unified framework in the estima-
tion of each parameter of interest by means of the matricial approach; lets say, a
generalized system of multiparameter survey estimation. Practical applications of
the matricial approach may result in a significant gain in computational efficiency
and a better comprehension of the theory of multivariate estimation in finite pop-
ulations. It is supposed that survey methodologists know the structural behavior
of the population and they are able to choose a design that performs well with
respect to overall characteristics of interest such as Holmberg suggests.

The structure of the paper is as follows: The second section provides some basic
definitions and introduces the foundations of multiparameter estimation by means
of the Horvitz-Thompson estimator. The third section is related to the estimation
under the most common element sampling designs. The fourth section is related
to the use of auxiliary estimation. The last section deals with a numerical example
of the design and estimation applied in realistic multipurpose survey context. In
that section, with the help of the R1 sampling package (Tillé & Matei 2008),
it is shown in detail how to produce estimations for a multiparameter survey
avoiding computational loops that makes the estimation stage more difficult and
slow. Proofs of the results are not shown by simplicity of the lecture. However, the
reader familiarized with matrix algebra and the basic principles of survey sampling
will find no problem with this.

This paper gives a comprehensive approach of joint estimation in survey sam-
pling. Although the results of this paper are simple, it offers a powerful way of
estimation in multipurpose surveys.

2. Estimating Several Parameters

Let U = {1, . . . , k, . . . , N} be a finite population of N elements2. A probability
sample s is drawn from U according to a sampling design p(·) that yields the first
order inclusion probability of the unit k, πk, defined as

πk = Pr(k ∈ s) =
∑

s3k

p(s) (1)

1
R is a statistical software that is very efficient in matricial computation. (R Development

Core Team 2008)
2The population size is often not known
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and the second order inclusion probability of the units k and l, defined as

πkl = Pr(k, l ∈ s) =
∑

s3k,l

p(s) (2)

Suppose that the survey involves the study of Q characteristics of interest.
Associated with the kth unit (k ∈ U) there is a vector of Q characteristics of
interest, yk = (yk1, . . . , ykQ) whose values are unknown for the entire population.
In this way, the following matrix

YU =




y11 y12 . . . y1Q

...
...

. . .
...

yk1 yk2 . . . ykQ

...
...

. . .
...

yN1 yN2 . . . yNQ




=
[
y1 y2 . . . yQ

]
(3)

will be called the matrix of interest. Note that the element ykq refers to the value of
the qth characteristic of interest in the kth element, with k ∈ U and q = 1, . . . , Q.
In the design based context, yq is not considered a random vector, because its
components are considered fixed but unknown. Hence, the values of each charac-
teristic of interest are not necessarily continuous such as income, expenditure or
weight, but also could be indicators of the membership of a population subgroup
such as domains, strata or post-strata. Then, YU could be a mixed-valued matrix.

The objective is to estimate the Q components of the vector of totals defined
by

t = (t1, t2, . . . , tQ)′ = Y′

U1N (4)

where 1N = (1, 1, . . . , 1)′N×1 and tq =
∑

k∈U ykq. When the sample of size n is
drawn, ykq is observed (k ∈ s)and it is possible to define the following matrix

Ys =




y11 y12 . . . y1Q

...
...

. . .
...

yk1 yk2 . . . ykQ

...
...

. . .
...

yn1 yn2 . . . ynQ




(5)

When s = U , YU = Ys. In this way, the matrix of inclusion probabilities in
the sample is defined by

Π = diag(π1, π2, . . . , πn) (6)

and the Horvitz-Thompson estimator of t is defined as

t̂π =
(
t̂1π, t̂2π, . . . , t̂Qπ

)′
= Y′

sΠ
−11n (7)
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with 1N = (1, 1, . . . , 1)′n×1 and t̂qπ =
∑

k∈s ykq/πk being the Horvitz-Thompson
estimator of tq. It is easy to show that t̂π is an unbiased estimator of t, and its
covariance matrix is given by

V
(
t̂π

)
= E

(
t̂π − t

)(
t̂π − t

)′
(8)

Note that, if N ≥ q, V
(
t̂π

)
is a positive defined symmetric matrix whose qq′

element is ∑

k∈U

∑

l∈U

∆kl
ykq

πk

ylq′

πl
(9)

with ∆kl = πkl − πkπl and if s 6= U , then it is impossible to calculate the value of
the previous expression. However, if n ≥ q, it could be estimated unbiasedly by a

positive definite matrix V̂
(
t̂π

)
whose qq′ element is

∑

k∈s

∑

l∈s

∆kl

πkl

ykq

πk

ylq′

πl
(10)

In some cases, the requirement of the survey is the estimation of the vector of
population means given by

y =
1

N
t (11)

Then, an unbiased estimator of ȳ is

yπ =
1

N
t̂π (12)

whose covariance matrix is estimated unbiasedly by 1
N2 V̂

(
t̂π

)
. If the population

size is unknown, it can be estimated unbiasedly by using the principles of the
Horvitz-Thompson estimator, such that

N̂π = 1′

nΠ−11n (13)

Note that computational efficiency could be higher with the incorporation of
the matrix approach because the estimation of several parameters is obtained by
performing a matrix algebraic operation.

3. Some Sampling Designs

In this section, some examples of the estimation of several parameters, under
the most used sampling designs, are given.

Example 1. Under Bernoulli sampling design, t is estimated unbiasedly by

t̂π =
1

π
Y′

s1n (14)
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and its covariance matrix is estimated unbiasedly by

V̂
(
t̂π

)
=

1

π

(
1

π
− 1

)
YsY

′

s (15)

Example 2. Simple random sampling without replacement (SI) design is not the
most utilized of the sampling designs, but it is useful in the last stages of a complex
survey. Under this design t is estimated unbiasedly by

t̂π =
N

n
Y′

s1n (16)

And its covariance matrix is estimated unbiasedly by

V̂
(
t̂π

)
=

N2

n

(
1 − n

N

)
Sy (17)

with Sy, being the covariance matrix of the characteristics of interest in the sample.
On the other hand, y is estimated unbiasedly by

yπ =
1

N
t̂π =

1

n
Y′

s1n (18)

Its covariance matrix is estimated unbiasedly by the following expression

V̂
(
yπ

)
=

1

N2
V̂
(
t̂π

)
(19)

3.1. Estimation for Domains

If the requirements of the survey are related to the estimation of the size of
a domain or the total of the characteristics of interest in such domain, the next
methodological construction is required.

Let us suppose that the population is divided in D domains, such that U =
U1, . . . , Ud, . . . , UD. Then, the indicator matrix of domain membership is defined
by

Z =




z11 . . . z1d . . . z1D

...
. . .

...
. . .

...
zk1 . . . zkd . . . zkD

...
. . .

...
. . .

...
zn1 . . . znd . . . znD




(20)

where the element

zkd =

{
1 if k ∈ Ud, and

0 otherwise
(21)

The vector of absolute domain sizes is given by

Nd = (N1, N2, . . . , ND)′ (22)
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where
Nd =

∑

k∈U

zkd (23)

Nd is estimated by means of the Horvitz-Thompson estimator as follows

N̂d =
(
N̂1, N̂2, . . . , N̂D

)′
= Z′Π−11n (24)

and its variance is estimated unbiasedly by V̂
(
N̂d

)
, defined similarly as in (8)

Totals of the characteristics of interest overall domains are commonly required
parameters in real applications. The total of the qth variable overall D domains
is given by

tdq = (t1q , t2q, . . . , tDq)
′

and could be estimated by the following expression

t̂dqπ =
(
t̂1qπ , t̂2qπ , . . . , t̂Dqπ

)′
= (yq1D � Z)′Π−11n (25)

Where yq denotes the qth column of the matrix Ys, 1D = (1, . . . , 1)′D×1 and
� denotes the Hadamard matrix product.

Example 3. Under SI design, the Horvitz-Thompson estimator for the absolute
domain sizes and the total of the qth characteristic of study overall D domains
are, respectively, given by

N̂d = (N/n)Z′1n (26)

t̂dqπ = (N/n)(yq1D � Z)1n (27)

3.2. Stratified Estimation

For stratified sampling designs, the finite population U is divided into H mu-
tually exclusive strata: denoted by U1, . . . , Uh . . . , UH . Note that, before data
collection, the membership of each element is known over the strata. This way,
in each stratum a random sample is drawn. Although, it is straightforward to
produce estimates by using the principles of the Horvitz-Thompson estimator, it
is required to sort the population such that the matrix Ys is partitioned into H
blocks, as follows

Ys =




Y1

...
Yh

...
YH




(28)

where Yh is a matrix that contains the values of each characteristic of interest
for the elements that belong to the hth stratum, with h = 1, . . . , H. Note that
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Ys ∈ R
Hn×Q and Yh ∈ R

nh×Q, where given n = (n1, . . . , nH)′, then n = n′1H =
n1 + · · · + nH .

As usual, the objective is to estimate the Q components of the vector of totals
in the hth stratum given by

th =
(
t1h, t2h, . . . , tQh

)′
= Y′

h1Nh
(29)

where Nh is the size of the hth stratum. The population total can be written as

t =
(
t1, t2, . . . , tQ

)′
=

H∑

h=1

th (30)

where th is estimated unbiasedly by the following expression

t̂hπ =
(
t̂1hπ, t̂2hπ, . . . , t̂Qhπ

)′
= Y′

h1nh
(31)

where nh is the size of the sample in the hth stratum. Of course, independence
over sampling design is assumed at each stratum. This way, the estimator of the
population total is given by

t̂π =
(
t̂1π, t̂2π, . . . , t̂Qπ

)′
=

H∑

h=1

t̂h (32)

and its variance can be written as

VST

(
t̂π

)
=

H∑

h=1

Vh

(
t̂π

)
(33)

which is estimated unbiasedly by

V̂ST

(
t̂π

)
=

H∑

h=1

V̂h

(
t̂π

)
(34)

Example 4. Under the stratified sampling with SI within each strata (STSI)
design, the π estimator of the population total is

t̂π =
H∑

h=1

Nh

nh
Y′

h1nh
(35)

and its covariance matrix is estimated unbiasedly by

V̂STSI

(
t̂π

)
=

H∑

h=1

N2
h

nh

(
1 − nh

Nh

)
Syh (36)

with Syh, the sample covariance matrix of the study variables in the hth stratum.
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4. The use of Auxiliary Information

Let us suppose that associated with the kth unit (k ∈ U) there is a vector of
P auxiliary variables, xk. The values of the vector xk = (xk1, . . . , xkP ) are known
for the entire population. Hence, the following matrix

XU =




x11 x12 . . . x1P

...
...

. . .
...

xk1 xk2 . . . xkP

...
...

. . .
...

xN1 xN2 . . . xNP




=
[
x1 x2 . . . xP

]
(37)

will be called the matrix of auxiliary information.

4.1. Some Remarks

It is possible to assume that an explicit linear relationship exists between each
of the characteristics of interest and the auxiliary information given by a super-
population model ξq, q = 1, . . . , Q, such that

Yq

(N×1)
= X

(N×P )
βq

(P×1)

+ εq

(N×1)

The model ξq has the following features:

Eξq
(εq) = 0

Vξq
(εq) = Σq

(38)

Σq establishes the variance structure of the vector εq. The previous relationships
can also be described by a joint superpopulation model ξ such that

Y
(N×Q)

= X
(N×P )

β
(P×Q)

+ ε
(N×Q)

Note that this approach suggests that Y, X and ε are random matrices (Gupta
& Nagar 2000) defined in the superpopulation model ξ, of which YU and XU

are supposed to be the outcomes. More precisely, the model ξ has the following
features:

Eξ(ε) = 0
(N×Q)

Vξ(vecε) = Σ
(NQ×NQ)

= diag
(
Σ1, Σ2, . . . , ΣQ

) (39)

Note that the subindex ξ refers to the expectation under the assumed working
model. In practical situations, it is often common to take Σq = σ2

q diag(c1q, . . . , cNq),
where ckq = fq(xk1, . . . , xkP ) and fq is a real-valued function.
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The problem of estimating β is considered briefly. Let D(X) be a translation-
invariant measure of dispersion such that D(X + K) = D(X), with K a matrix
of constants. Then the estimation of B will be the matrix that minimizes the
measure of dispersion. Particularly, D(·) could be given by the multivariate total
variance defined as

trace(Y − Xβ)′(Y − Xβ) (40)

By using the least squares method, (40) is minimized by the following choice

B =
(
B1,B2, . . . ,BQ

)
(41)

where
Bq =

(
X′

UΣ−1
q XU

)−1(
X′

UΣ−1
q YU

)
(42)

4.2. Classical Information

In real applications, just one sample is drawn from a finite population and it
is not possible to compute B. Then, it must be estimated with the information
available in the sample. It can be shown that an asymptotically unbiased estimator
of B is given by

B̂ =
(
B̂1, B̂2, . . . , B̂Q

)
(43)

where
B̂q = (X′

sA
−1
q Xs)

−1(X′

sA
−1
q Ys) (44)

q = 1, . . . , Q, Xs is defined similarly to (5) and

Aq = Π1/2ΣqΠ
1/2 (45)

Hence, the multiple generalized regression estimator of the population total is
defined by

t̂Mgreg = t̂yπ + B̂′

(
tx − t̂xπ

)
(46)

with, t̂yπ, t̂xπ the Horvitz-Thompson estimators of ty and tx, respectively. Note
that B̂q could also be written as

B̂q = (X′

sDλXs)
−1XsDλYs

=

(∑

k∈s

xkλq
kx

′

k

)−1(∑

k∈s

xkλq
ky

′

k

)
(47)

where Dλ = diag(λq
1, . . . , λ

q
n) and λq

k some real-valued function of the probabilities
of inclusion and the auxiliary information. Note that the model ξ serves as a vehicle
for finding an appropriate general regression estimator. Once the estimator is
found, the model is no longer of use. The properties of the multiple generalized
regression estimator (expectation and variance) are still derived from a design
based perspective.
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4.2.1. Some Particular Cases

All of the following cases are enounced under a general assumption. Then, sev-
eral special cases of the multiple generalized regression estimator are distinguished,
depending on the choice of the values of λk.

• If P = 1, xk = xk, and λq
k = (πkxk)−1, we have the ratio estimator for each

characteristic of interest,

• If P = 2, xk = (1, xk)′, and λq
k = (πk)−1, we have the classical simple

regression estimator,

• If P = M(number of post-strata), xk = δk = (0, . . . 0, 1, 0, . . . , 0)′, and λq
k =

(πk)−1, where δk represents M dummy variables (each dummy represents a
post-stratum membership), we have the post-stratified estimator.

The multiple generalized regression estimator can be written in a simplified
form given by

t̂Mgreg = (W′ � Y′

s)1n (48)

where

W =




w1
1 w2

1 . . . wQ
1

...
...

. . .
...

w1
k w2

k . . . wQ
k

...
...

. . .
...

w1
n w2

n . . . wQ
n




[
w1 w2 . . . wQ

]
(49)

Note that wq =
(
wq

1, . . . , w
q
k, . . . , wq

n

)′
is a vector of weights such that

wq
k =

1

πk


1 + λq

kx
′

k

(∑

k∈s

xkλq
kx

′

k

)−1

(tx − t̂xπ)


 (50)

These weights are often called the calibration weights and they reproduce the
vector of totals tx when they are applied to the auxiliary information. Then, W

is called the calibration matrix. It is not difficult to show that
∑

k∈s

wq
kxk = X′

sw
q = tx (51)

for all q = 1, . . . , Q. It is very interesting to see that tx is calibrated under different
choices of wq ’s. On the other hand, note that

wq = Π−11n + AqXs (X′

sAqXs)
−1
(
tx − t̂xπ

)
(52)

In the post-stratified estimation, a generalized inverse must be used; however,
the multiple generalized regression estimator is invariant to the choice of the in-
verse.
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4.3. Joint Auxiliary Information

The least squares method is not the only way to obtain a multiple regression
estimator. In this subsection, it is supposed that a joint information matrix could
be constructed by means of

V =




y11 y12 . . . y1Q x11 x12 . . . x1P

y21 y22 . . . y2Q x21 x22 . . . x2P

...
...

. . .
...

...
...

. . .
...

yn1 yn2 . . . ynQ xn1 xn2 . . . xnP


 (53)

The estimator of the vector of totals of both, characteristics of interest and
auxiliary information, is given by t̂vπ, defined as

t̂vπ = V′Π−11n (54)

Then, let us suppose that t̂vπ has a multivariate normal distribution with mean

E
(
t̂vπ

)
= tv =

(
t′Yπ, t′Xπ

)′

and covariance matrix given by

V
(
t̂vπ

)
=


 V

(
t̂yπ

)
C
(
t̂yπ, t̂xπ

)

C
(
t̂yπ, t̂xπ

)
V
(
t̂xπ

)



where V
(
t̂yπ

)
is a symmetric matrix such that the jth element of its diagonal is

given by the variance of t̂yjπ

V
(
t̂yjπ

)
=
∑∑

U

∆kl
yjk

πk

yjl

πl

and the off-diagonal element ij is given by the covariance of t̂yiπ and t̂yjπ,

C
(
t̂yiπ, t̂yjπ

)
=
∑∑

U

∆kl
yik

πk

yjl

πl

V
(
t̂xπ

)
is similarly defined, and C

(
t̂yπ, t̂xπ

)
, not necessarily symmetric, is such

that the element ij is given by the covariance of t̂yiπ and t̂xjπ

C
(
t̂yi

π, t̂xj
π
)

=
∑∑

U

∆kl
yik

πk

xjl

πl

According to the multivariate inference for normal populations, the conditional
distribution of t̂Yπ given t̂Xπ follows a multivariate normal distribution with a
conditional mean given by

E
(
t̂yπ | t̂xπ

)
= tyπ + C

(
t̂yπ, t̂xπ

)(
V
(
t̂xπ

))−1(
tx − t̂xπ

)
(55)
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and a conditional variance given by

V
(
t̂yπ | t̂xπ

)
= V

(
t̂yπ

)
− C

(
t̂yπ, t̂xπ

)(
V
(
t̂xπ

))−1

C
(
t̂xπ, t̂yπ

)
(56)

Note that 55 and (56) are unbiasedly estimated by

t̂y = t̂yπ + Ĉ
(
t̂yπ, t̂xπ

)(
V̂
(
t̂xπ

))−1(
tx − t̂xπ

)

= t̂yπ + B̂
(
tx − t̂xπ

) (57)

and,

V̂
(
t̂y

)
= V

(
t̂Yπ

)
− C

(
t̂Yπ , t̂Xπ

)(
V
(
t̂Xπ

))−1

C
(
t̂Xπ , t̂Yπ

)
(58)

respectively. Note that (58) looks like the multiple regression estimator. However,
its slope, B̂, is different. While the slope of the latter is given by the use of
the least squares method, the slope of the first corresponds to a set of multiple
regressions of X over Y. This estimator of the total should be called a multiple
optimal regression estimator and has been studied by Cassady & Valiant (1993)
in a model based context for the estimation of a total of a single characteristic of
interest.

5. A Numerical Example

In this section, an example of the multiparameter approach is considered. In the
design stage, an optimal sampling design must be chosen and the Holmberg’s ap-
proach (Holmberg 2002b) is used. In the estimation stage the matricial approach,
proposed in the preceding sections, is used. Both, the design and estimation stages
are implemented using the statistical software R. Specifically the package sampling
is used in selecting the sample and estimating several parameters in domains of
interest.

For this purpose, a realistic population is used (the population of Swedish
municipalities MU281 available in appendix B in Särndal et al. (1992)). This
way, it is possible to plan a multiparameter survey, where auxiliary variables and
domains are supplied, and where it is feasible to have some kind of beliefs about
the validity of the relationships between the study variables and the auxiliary
variables. The main issue of this section is not focused on planning a perfect
sampling design, but on illustrating the performance (design and estimation) of a
multiparameter survey.

The study variables are:

y1 = P85 (1985 population)
y2 = RMT85 (Revenues from the 1985 municipal taxation)
y3 = REV84 (Real state values according to 1984 assessment)

The auxiliary variables are:
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x1 = P75 (1975 population)
x2 = S82 (Total number of seats in the municipal council in 1982)

For domain estimation the following variable is used: z=REG (Geographic
region indicator)

The following code could be used to specify the previous features of the survey.

> library(sampling)

> data(MU284)

> MU281 <- MU284[MU284$RMT85$<=3000,]

> attach(MU281)

> Y1 <- P85

> Y2 <- RMT85

> Y3 <- REV84

> X1 <- P75

> X2 <- S82

> Z <- REG

In order to have some kind of idea about the resulting estimations, it is useful
to know the totals of the study variables and the auxiliary variables. So, the
following code could be used to obtain such totals.

> Ty <- c(sum(Y1),sum(Y2),sum(Y3))

> Tx <- c(N,sum(X1),sum(X2))

> Ty

[1] 7033 53151 757246

> Tx

[1] 281 6818 13257

5.1. Design Stage under Holmberg’s Approach

Let us suppose that the importance of the three study variables is the same.
A brief summary of the Holmberg’s approach is as follows:

1. For each of the study variables, the survey statistician must propose an op-
timal sampling design, pq(·), such that the expected sample size is Ep(ns) =
nq. Of course, note that all of the Q designs may differ; but even more,
the sample sizes may not be necessarily the same. In the traditional way,
the statistician should choose a compromise design that works well for all
parameters to be estimated.

In the MU281 example, the population size is N = 281, and let us suppose
that the statistician assumes to take a sample size of 100 units for all of the
three sampling designs. This specifications in R are as simple as follows

> N <- 281; n <- 100
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2. The design Pq(·) induces a vector of size N of inclusion probabilities for every
unit in the population. The inclusion probabilities must take the following
form (Holmberg 2002b, eq. 6)

πqk = nq
σqk∑

k∈s σqk

with σqk size measures (usually, but not necessarily, linked to a regression
model). Optimality is obtained if πqk ∝ σqk. Note that if the optimal
sampling design for the qth study variable is SI, then σqk = 1 for all k ∈ U .
On the other hand, by choosing σ2

qk = σ2
qx

γq

qk, where σ2
q is a constant and

xqk is the value of the kth unit for some auxiliary variable, then the optimal

sampling design is a probability proportional to size (πPS) with πqk ∝ x
γq/2
qk .

Let us suppose that the statistician is confident that the best optimal sam-
pling designs, for the study variables of the MU281 population, are: For y1,
a πPS design with π1k ∝ x0.7

1k . For y2, a πps design with π2k ∝ x1k. For y3,
a SI design with π3k = 100/281. The R code is as follows

> sigy1 <- sqrt(X1^(1.4))

> sigy2 <- sqrt(X1^(2))

> sigy3 <- rep(1,N)

> pik1 <- n*sigy1/(sum(sigy1))

> pik2 <- n*sigy2/(sum(sigy2))

> pik3 <- n*sigy3/(sum(sigy3))

3. Based on the criterion of minimum anticipated overall relative efficiency loss
(ANOREL), the optimal sample size for the multiparameter case is given by

n∗ ≥
(∑

k∈U

√
aqk

)2

(1 + c)Q +
∑

k∈U aqk

where

aqk =

Q∑

q=1

σ2
qk

∑
k∈U

(
1

πqk
− 1
)

σ2
qk

and c is the maximum error allowed based on the ANOREL criterion. Note
that in practice, σ2

qk is unattainable and it must be written as a function
of an auxiliary variable. Holmberg (2002b) claims that subject knowledge,
guesses, or previous survey estimates can be used as planning values for this
quantity.

In the MU281 example, the optimal sample size based on the ANOREL
criterion under the multiparameter case is n∗ = 108. The R code is as
follows
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> a1 <- sigy1^2/(sum(((1/pik1)-1)*sigy1^2))

> a2 <- sigy2^2/(sum(((1/pik2)-1)*sigy2^2))

> a3 <- sigy3^2/(sum(((1/pik3)-1)*sigy3^2))

> aqk <- a1+a2+a3

> n.st <- ((sum(sqrt(aqk)))^2)/((1+0.03)*3+(sum(aqk)))

> n.st <- as.integer(n.st)

[1] 108

4. Once the sample size is computed, a new vector of optimal inclusion prob-
abilities for all of the study variables is created. This vector is induced by
a general sampling design, which minimizes the anticipated overall relative
efficiency loss, and it is given by

π(opt)k =
n∗√aqk∑
k∈U

√
aqk

(59)

In the MU281 example, the optimal vector of inclusion probabilities is given
by the following code

> pikopt <- n.st*sqrt(aqk)/sum(sqrt(aqk))

> sum(pikopt) == n.st

[1] TRUE

5. In most cases, the resulting π(opt)k is a vector of unequal inclusion probabil-
ities. In this situation a πps selection scheme must be performed in order to
select the sample.

In the MU281 example, let us suppose that the statistician recommends an
order sampling (unequal probabilities, without replacement and fixed sample
size) to be performed. The function UPopips of the sampling package selects
a sample with the previous features and after the sample has been drawn,
the function getdata extracts the observed data.

> sam <- UPopips(pikopt,"exponential")

> getdata(MU281,sam)

LABEL P85 P75 RMT85 CS82 SS82 S82 ME84 REV84 REG CL

74 17 18 113 8 20 49 784 1733 3 13

184 12 11 82 6 25 41 646 935 6 33

...

5.2. Estimation Stage under Multiparameter Approach

Once the sample is selected, the statistician is faced with the estimation of
several parameters of interest. It is possible to write a code of estimation for
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every single study variable (the traditional way) or it is possible to write a simple
matricial code using the proposed approach in this paper. Even though it is not
the issue here, the gain in computational efficiency is not negligible. Besides, if
the design stage is planned in a multiparameter context, then the estimation stage
should be carried out in the same way.

In the MU281 example, with the new optimal inclusion probabilities, π(opt)k,
the HT estimator of the total of study variables, ty, the total of auxiliary variables,
tx, and population size, N , given by (7) and (13), is computed by means of the
following code:

> Ys <- cbind(Y1,Y2,Y3)[sam,]

> Xs <- cbind(1,X1,X2)[sam,]

> PI <- diag(pikopt[sam])

> ones <- rep(1,n.st)

> TyHT <- t(Ys)%*%solve(PI)%*%ones

> TxHT <- t(Xs)%*%solve(PI)%*%ones

> NHT <- t(ones)%*%solve(PI)%*%ones

The result of the previous computation is a vector of estimated totals; in par-
ticular, the HT estimation of the total of study variables is given by

> TyHT

[,1]

Y1 6603.514

Y2 49078.942

Y3 719565.860

If a domain is involved in the estimation stage, the matricial approach gives
a simple and comprehensive method of estimation. In the MU281 example, the
domain of interest corresponds to the REG variable which has 8 categories or ge-
ographic regions. Then, a discriminated estimation for all of the three study
variables is needed for each domain. By using the disjunctive function of the
sampling package, it is possible to create the indicator matrix of domain mem-
bership given by (20) and to obtain the corresponding estimates of (24) and (25).

> Z <- disjunctive(Z)[sam,]

> NdHT <- t(Z)%*%solve(PI)%*%ones

> Ty1d <- t(Ys[,1]*Z)%*%solve(PI)%*%ones

> Ty2d <- t(Ys[,2]*Z)%*%solve(PI)%*%ones

> Ty3d <- t(Ys[,3]*Z)%*%solve(PI)%*%ones

It is feasible to summarize the estimations by means of a simple data frame,
as follows:

> TydHT <- data.frame(NdHT,Ty1d,Ty2d,Ty3d)
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> TydHT

NdHT Ty1d Ty2d Ty3d

1 24.17 1045.85 8711.74 109849.38

2 51.50 895.17 6707.68 90645.23

3 29.86 594.90 4449.43 60348.27

4 49.13 1072.34 7235.20 104268.22

5 64.01 1394.64 9930.63 142899.69

6 40.50 730.81 5521.88 78599.09

7 6.44 207.89 1560.50 22637.41

8 51.79 661.88 4961.85 110318.56

If the statistician suspects that a model-assisted approach can be used, then
a relationship between the study variables and the auxiliary information must
be established by means of a working model. In the MU281 example, there are
three models, ξq (q=1,2,3), involved in a general superpopulation model ξ. The
relationships are as follows

Yq = βq0 + βq1X1 + βq2X2 + εi q = 1, 2, 3 (60)

Note that Eξi
(εi) = 0 and the structure of variance of the preceding models is

induced by step two of the design stage and it is given by

Σ1 = σ2
1 diag(x11, x12, . . . , x1N )1.4

Σ2 = σ2
2 diag(x11, x12, . . . , x1N )2

Σ3 = σ2
3IN×N

Then, the general model takes the following form




Y11 Y21 Y31

Y12 Y22 Y32

...
...

...
Y1N Y2N Y3N


 =




1 X11 X21

1 X12 X22

...
...

...
1 X1N X2N






β10 β20 β30

β11 β21 β31

β12 β22 β32


+




ε11 ε21 ε31

ε12 ε22 ε32

...
...

...
ε1N ε2N ε3N




In this way, the estimation of the finite population matrix of regression coeffi-
cients, involving the variance structure of each model, given by (43) is computed
by means of the following code

> A1 <- diag(pikopt[sam]*Xs[,2]^(1.4))

> B1 <- (solve(t(Xs)%*%A1%*%Xs))%*%(t(Xs)%*%A1%*%Ys[,1])

> A2 <- diag(pikopt[sam]*Xs[,2]^(2))

> B2 <- (solve(t(Xs)%*%A2%*%Xs))%*%(t(Xs)%*%A2%*%Ys[,2])

> A3 <- diag(pikopt[sam])

> B3 <- (solve(t(Xs)%*%A3%*%Xs))%*%(t(Xs)%*%A3%*%Ys[,3])
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> B <- matrix(c(B1,B2,B3),ncol=3,nrow=3)

> B

[,1] [,2] [,3]

[1,] -1.20582067 -25.5012341 868.01938

[2,] 1.05356147 8.3134903 104.90848

[3,] 0.01756820 0.4836855 -15.78483

The next step is to implement the multiple generalized regression estimator
given by (46). The computational code requires just a line and it is given by

> TyMgreg <- TyHT+t(B)%*%(Tx - TxHT )

> TyMgreg

[,1]

Y1 7079.411

Y2 53028.236

Y3 750689.737

The multiple generalized regression estimator can take different forms. Among
others, it could be written in the simplified form given by (48). However, it is
necessary to compute the calibration matrix given by (49). In R, it can be done
as follows

> w1 <- solve(PI)%*%ones + (A1%*%Xs)%*%(solve(t(Xs)%*%A1%*%Xs))%*%(Tx - TxHT)

> w2 <- solve(PI)%*%ones + (A2%*%Xs)%*%(solve(t(Xs)%*%A2%*%Xs))%*%(Tx - TxHT)

> w3 <- solve(PI)%*%ones + (A3%*%Xs)%*%(solve(t(Xs)%*%A3%*%Xs))%*%(Tx - TxHT)

> W <- cbind(w1,w2,w3)

> TyMgreg <- t(W*Ys)%*%ones

> TyMgreg

[,1]

Y1 7079.411

Y2 53028.236

Y3 750689.737

The calibration principle given by (51) can be verified easily for each column of
the calibration matrix. Particularly for the second column this principle remains.

> t(w2)%*%Xs

X1 X2

[1,] 281 6818 13257

This section has shown how to perform a multiparameter survey by using the
Holmberg’s approach, in the design stage, and the matricial approach, in the
estimation stage, as proposed in this paper.

6. Conclusions

When planning a survey, the traditional way focuses the sampling design on
a single study variable, which is insufficient for the practising survey statistician,
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having to deal with several parameters of interest. In this paper, a potentially
useful approach in the estimation stage is presented by means of the matricial
perspective. The author stresses that more attention should be paid to the joint
estimation of the parameters of interest in multipurpose surveys. This way, sig-
nificant advantages will be achieved, in practical and theoretical aspects, through
a comprehensive approach of joint estimation in survey sampling that offers a
powerful way of estimation in multipurpose surveys.

Apart from the computational advantages, this approach should be used in
order to introduce advanced topics in survey sampling such as the generalized
weight share method proposed by Lavallée & Caron (2001).

Further work should be focused on the interpretation and use of covariances
among the estimators of the parameters of interest as a vehicle for improving the
planning, execution and estimation in business surveys.

[
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