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Resumen

In this paper a Chernoff type theorem for the L; distance between kernel
estimators from two independent and identically distributed random sam-
ples is developed. The harmonic mean is used to correct the distance for
inequal sample sizes case. Moreover, the proved result is used to compute
the Bahadur slope of a test based on L; distance and to compare it with the
classical nonparametric Mann-Whitney test by using the Bahadur relative
efficiency.
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Abstract

En este trabajo se desarrolla un teorema de tipo Chernoff para la distan-
cia L1 entre estimadores ntcleo procedentes de muestras aleatorias indepen-
dientes e idénticamente distribuidas. Se usa la media armoénica para corregir
esta distancia en el caso de muestras de distintos tamanos. Ademas, se usa
el resultado demostrado para el célculo de la pendiente de Bahadur de un
test para la comparacion de densidades basado en la distancia L y se com-
para con el clasico test de Mann-Whitney a partir de la eficiencia relativa de
Bahadur.
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1. Introduction

Let X = {z1,...,2,} be an independent random sample from a random va-
riable X which is absolutely continuous with probability density function f. The
kernel density estimator (KDE) of f introduced by Rosenblatt (1956) and Parzen
(1962) is defined for each ¢t € R as

1 - Xr; —
fn(th)_WZK< 3 t)

where K is a kernel function which is often chosen to be a continuous symmetric
density with finite variance, and {h, }nen is a sequence of positive real numbers.

The kernel estimator and its properties have been widely studied by several
authors. Silverman (1978) proved its uniform consistence and Konakov (1978)
derived the asymptotic distribution for the L..-norm. Devroye & Wagner (1979)
proved the Li convergence between the kernel density estimator and its target,
and Devroye & Gyorfi (1985) carry out a widely study about the kernel density
estimators from the L; approach. Berlinet et al. (1995) proved the asymptotic
normality for the L;i-norm for the histogram density estimator, Horvath (1991)
demonstrated the asymptotic normality of the L, norm between the kernel density
estimator and the underlying density function, Martinez-Camblor & Corral (2008)
proved the same result under weaker assumptions. Large deviation approaches
were also considered. Louani (1998, 2000, 2005) studied Chernoff type theorems
for the L; distance using for goodness of fit test. Cao & Lugosi (2005) studied the
propierties of several goodness of fit tests based on the kernel density estimate.
Osmoukhina (2001) applied these techniques in a symmetry test and Beirlant et al.
(2001) studied the large deviations of divergence measures.

Let X = {z1,...,2n,} and Y = {y1,...,Yn,} be two independent random
samples from a random variable with density function f. The L; distance between
two estimators f,, and f,, of f is defined by

Do fus) = M foor — Faallis = / s (X 1) = fun (Y1) d

The main objective of this paper is to obtain a Chernoff type theorem for the
L, distance, D(fp,, fn,), between two kernel density estimators when both are
computed from samples which are taken from the same population. That is, our
purpose is to investigate the expression

P{/|fn1<X,t> — fua(Yot)] dt > A} (1)

where ) is close to zero.

We are interested in this result because it can be applied in two sample pro-
blems and let us to compare different tests by using the Bahadur relative slope
(BRS). In Section 2 and, in a similar way than Louani (2000), we prove the large
deviation theorem. In Section 3 we consider several alternative hypothesis and,
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from the previous results, the kernel density estimator based test with the clas-
sical nonparametric one of Mann-Whitney are compared in the Bahadur relative
efficiency (BRE) sense.

2. Results and Proofs

In order to prove the main result, we will consider the following assumptions:

(C1) X ={x1,...,zn, } and Y = {y1,...,yn, } are independent random samples
from a continuous random variable.

(C2) lim, n1/ns = 1, where n — oo means that ny — oo and ny — co.
(C3) The used kernel function, K, is a continuous, symmetric density function.
(C4) lim,,, h,, =0, lim,, h,, =0, lim,,, n1h,, = oo and lim,,, noh,, = co

Nota 1. In practice, the used bandwith, h,,, is chosen to minimize certain error
criterion (for example, the mean integrated squared error; MISE). Since the kernel
function is a symmetric and differentiable density function having finite variance,
these conditions are satisfied for most commonly used kernel functions like Gaus-
sian, Epanechnikov, Triangular, among others. As consequence, the assumptions
(C3) and (C4) are mild conditions.

Lema 1. Let X = {x1,...,2,} and Y = {y1,...,yn} be two independent random
samples from a random variable with density function f. For each interval B € B
(Borel o-field) we define

1 T; — t 1 Yi — t . .
ZB,n,i:/( K( )— K( ))dththlgzgn
B hnl hnl hn2 hn2

Then, under conditions (C1) (C2) and (C4), we have that

(1)

Lol (wiy) € (B x B")
1/2 if (zi,y:) € (O BxB)U(éxaB)
i Zpni = —1/2 if (@) € (B x 8B) U@B x B)
)€ (B

B)

-1 Zf (:Ezu Yi
0 otherwise

where B and OB denote the interior and the boundary of B, respectively,
and B = BUOJB.

(2) Forall A >0, limytlogP{L1>" Zpni>A} =infruso {—M+q(t)}
where a = [ f(t)dt and qa(t) = log(a? + (1 — a)? + 2a(1 — a) cosh(t))
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Demostracion. For 1 < i <n, we have that
1 i—t 1 i —t
(529 85
n B hnl h’ﬂ1 h77,2 h’ﬂz
1 i — 1t 1 i — T
Ifm K<x )dt—h’m K(y )dt
" JB hnl hnl "2 JB hn2 hn2
Taking z; =t + hp,u and y; = t + hp,v we have that
1 i—t 1 i —t
e (20 () )
" JB hnl hnl hnz hnz

lim [ Ip, (u)K(u)du—1lim [ Ip, (v)K(v)dv =
R "2 JR

ni

/[hmIB (u )]K(u)du—/[hmIB (v)] K (v)dv
R R

ni n2

where B, = {u/x; — uhy,, € B} and B, = {v/y; — vhy, € B}.
By taking into account that

R if x; € é
RT if z; = sup(B)
R~ if z; = (nf(B)
0] if x; € Ec

lim B,, =
mn1

the result (1) is easily concluded.

Therefore, from the first part of this Lemma, for 1 < i < n there exists
Zp;s=1mZp
n

random sample from the same random variable, Zp, whose moment generating
function is given by

9z (t / / 25 f () f (y)dady
Z‘/B/Cetf(:v dwdy/c/ y)dzdy
+ [ [ r@sedsay+ [ [ s ey

=a® 4 (1 — a)? + 2a(1 — a) cosh(t)

with a = [ f(t)dt.

Applying the Cramér-Chernoff Theorem (Van der Vaart 1998) the proof is
completed. [l

Observacion 1. This result can be immediately extended to the case in which B
is a countable union of intervals.
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From the above result we can derive a Chernoff type theorem. This result lets
us to compare the test based on the Li-norm of the kernel density estimator with
different tests by using their respective Bahadur relative slope (BRS).

Teorema 1. If conditions (C1), (C2), (C3) and (C4) are fulfilled and X\ is a

nonnegative constant close to zero, then

2
Hmnl+whgp{ L&AXJ}—&AK&M#>A}:—%{1+MU)w&
2

n

Demostracién. To prove this theorem we will assume that n; = no = n. Now,
we define the function,

-2 (1 20 +20)\? + 2,/ 31 = 2a)? + 166%(a — 1)?
Qa(N) = —3 arccosh ( S D07 =) )
+ log <(1 _ a)2 Ta? (1—-2a+2a*))*+ 2?1,\_2(;2)_ 2a)? + 16a%(a — 1)2>

It is easy to check that Q. (\) = inf;5¢ {—%t + qq (t)}, and by using its Taylor
expansion with A in a neighborhood of zero, we have that

WD Qu(N) = Quja(N) = 2 (14 o(1)

a€(0,1)

On the other hand, by using the Scheffé Theorem

/B (o (1) = fun (V1) dt‘

/ o (X) = foy (Vo) dt = 2 sup

BeB

Moreover, for every B € B

P{2/B (fr (X, t) — fr, (Y, 1)) dt > )\} =

— K — K dt > =
P (e () e () -3
from the properties of Q,()\), the previous Lemma 1 and by taking a = fB f)dt,
we conclude that

in 2oz P {2 [ (£, (X.0) = fra ()t > A} = Qa3

Now, taken an arbitrary By € B such that a = 1/2,

A 44N 1 44 N
Q1/2(\) = —§arccosh <4_—)\2) + log (5 (1 + 4_—)\2>)
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and applying the Taylor expansion of Q1 /5()\) we get,

11m1nf—10g( {/|fn _fa(V,0)dt > A})

—hmlnf ~ log (P{sup /(fn(X,t) —fn(Y,t))dt’ > %})

BeB

1 ©)
> lim inf — log (7’ {
n n

[ o= pnomal>3})

)\2
> =2 (14 0(1))

To prove the upper bound, we know that for 6 > 0 and any density function
K we can find a kernel L in the form

L=> oI,

j=1

/|K—L|<5

where N only depends on 6, «;’s are nonnegative finite constants and R;’s are
disjoint open finite intervals.

satisfying (C3) and such that

Hence, if we define

we have the inequality
/ X, 0) — FulYi 1) dt < 25+ / La(X.1) — Lo(Y, 1) dt

Following the proof of Theorem 3.1 (Devroye 1987) we obtain that for e > 0
and, if A, (X, .) and A, (Y, .) are the empirical probability measures associated to
the samples X and Y, respectively,

/|ant fVdt < e+ S [An(X, B) — A (Y, B)|

BeA,,;
where II,.; is a partition of (—r,r), into intervals of length h, /Il for some { > 0,
and A, =11, U {(—00, =) U (r,00)} is a partition of R. As consequence

73{/|fn(X,t)—fn(Y,t)|dt>>\}SP > [An(X,B) = Ay (Y. B)| > A—e

BeA,,;
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If Q. is the set of all posible sets given by unions of elements of the partition
A, using a similar argument as in the Scheffé Theorem, we have

1
73{/|fn(X,t) — fa(Y 1) dt > A} < P{Bgil [An (X, B) = An(Y, B)| > 5(A —e)}
< > PLIAWX,B) = An(Y, B)| > %()\—e)}
BES,
< Z exp{nQp(5y(A —€)}

< Car(S,.) exp {—"(AT_E)Q(l + 0(1))}

As the cardinality of Sy, Car(S.), is at most 2(2+2rl/hn) if we choose [ such
that log(Car(S,1)) = o(n) and taking into account that the previous inequality is
true for every e, it is straightforward to deduce that

h;rlnsup%bg (73 {/ |fn(X,t) — fu (Y, t)| dt > A}) < —%2(1 +o(1)) (3)

Hence, from (2) and (3) the proof is completed when n; = ny. Under condition
(C2) this result can be generalized for any n; and ns as follows:

Let be

where m = min{ny,n2} and M = méx{ni,n2}. By comparing D,, n, and Dy, n,
we obtain the following inequalities:

M — M —
2 < Duyny < Do +2—2

m m

Dy — 2

Under condition (C2) we have that, for all € > 0, there exists n' such that for
each m > n' where 2(M — m)/m < e. Therefore, for all ny,ny > n', we obtain
that

ni + ng , N1+ N2
logP{Dnyn, >} =1
27117’1,2 8 { e } €Lr>110 27117’1,2

log P {Dnymy > A+ €}

M—m

1
log P {Dmym +2 > A+ e} < p- logP{Dpm > A} (4)

On the other hand,

ni + no
2711712

1 M-
10g P { Dy oy > A} > - log P {Dmm —o M )\}

m

M—m

1
— —logP{Dm_’m > A+2

1
>
i }_ MlogP{Dm_,m > A+e€}
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then

ni + neo
27117’1,2

1
logP{Dpyn, > A} > i log P {Dpm,m > A} (5)

Taking into account inequalities (4) and (5), the proof is straightforward. O

Observacion 2. A weaker upper bound can be derived, easily, from the triangular
inequality and the result of Louani (2000). Directly,

n2

P{/|fn(X,t) — fu(Y,t)| dt > )\} < 273{/|fn(X,t) — f(t)|dt > g} < e

3. Bahadur Relative Efficiency

In order to show the application of the previous result, we use it to calculate the
Bahadur slope (BS) of a test, based on the D,, ,, distance, to determine whether
or not two continuous random variables have the same distribution. On the other
hand, we study its Bahadur relative efficiency (BRE) with respect to the classical
nonparametric Mann-Whitney test.

Let X = {z1,...,2n,} and Y = {y1,...,Yn,} be two independent random
samples from two continuous distributions F; and F, with densities f; and fo,
respectively. From the above result one can compute the Bahadur slope (Bahadur
& Zabell 1979) for a test based on L1 (fy,, fn,) statistic and an arbitrary alternative
hypothesis.

From Devroye (1983) we obtain,

J15 =t 2 [15- 22

so the Bahadur slope of L1 (fy,, fn,) is

B, = ([ 16 - f2|)2 (1 +0(1)

Under the same conditions, it follows from the asymptotic distribution of the
statistic that the Bahadur slope of the Mann-Whitney (M) test is

BSuy, = % ((1 - 2/F1f2)2 +(1— 2/F2f1)2)>

Hence, the Bahadur relative efficiency between the test based on L; and the
Mann-Whitney one is

2(f1fi— fl)”
3 ((1 — 2[F1f2)2 + (1 - 2IF2f1)2))

BREL, /vy = (6)
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MD 1 MD 2

w w
o o 2
o o
,,,,,,,,,,,,,,,,,,,,,, P
0 0
T T T T T T T T T T T T T T
3 2 -1 o0 1 2 3 3 2 -1 o0 1 2 3
a a
MD 3 MD 4
4 4

BRE
BRE

Fiaura 1: Bahadur relative efficiency (BRE) between test based on Li(fn,, fn,) and
the Mann-Whitney one for the four different models.

In order to get some particular illustration of the relative efficiency for both
considered tests, we have computed (6) in four different situations (see Figure 1).
A sample is drawn from the standard normal density ¢¢,1(¢) and the other one,
f2(t), follows one of the following densities,

MD 1. fao(t) = @a,1(t)
MD 2. fa(t) = a3(t)
MD 3. fa(t) = x3(at)
MD 4. fo(t) = xj(at)

here, ¢, »(t) is the normal density function with mean p and standard deviation
o, X3 (t) is the density function of a x? distribution with k degrees of freedom and
a takes values within (—3,3).

Figure 1 reveals that the My test is more efficient (in the Bahadur sense)
than the L test whenever the difference among the densities is mainly in location
and large while the L; test is more efficient when the main difference is in the
shape and neither function uniform dominates to the other. These conclusions are
strongly consistent with the obtained ones in other studies, which consider two
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sample tests based on kernel density estimator as Cao & Van Keilegom (2006) or
Martinez-Camblor (2008).
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