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Abstract

In this article, we introduce a mixture inverse Gaussian (MIG) model
based on the Student-t distribution and apply it to bacterium-based protein
production for food industry. This model is mainly useful to describe data
that follow positively skewed distributions and accommodate atypical obser-
vations in a better way than its classical version. Specifically, we present
a characterization of the MIG-t distribution. In addition, we carry out a
hazard analysis of this distribution centered mainly on its hazard rate. Fur-
thermore, we discuss the maximum likelihood method, which produces–in
this case–robust parameter estimates. Moreover, to evaluate the potential
influence of atypical observations, we produce a diagnostic analysis for the
model. Finally, we apply the obtained results to novel bacterium-based pro-
tein production data and statistically compare two types of protein producers
using the likelihood ratio test based on the MIG-t model as an alternative
methodology to the procedures available until now. This fact is very im-
portant, since the evaluation of protein production using both constructions
allows practitioners to choose the most productive one before the bacterial
culture is scaled to an industrial level.
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Resumen

En este artículo, introducimos un modelo Gaussiano inverso (MIG) mez-
clado basado en la distribución t-Student y lo aplicamos a la producción de
proteínas basada en bacterias para la industria de alimentos. Este modelo es
especialmente útil para describir datos que siguen una distribución con sesgo
positivo ya que permite acomodar observaciones atípicas de mejor forma que
su versión clásica. Específicamente, presentamos una caracterización de la
distribución MIG-t y realizamos un análisis de confiabilidad de esta dis-
tribución centrado principalmente en la tasa de fallas. También, discutimos
el método de verosimilitud máxima, el cual proporciona en este caso estima-
ciones robustas de los parámetros del modelo. Con el fin de evaluar la influ-
encia potencial de observaciones atípicas, proponemos un análisis de diag-
nóstico para la distribución. Finalmente, aplicamos los resultados obtenidos
al análisis de datos nuevos de producción de proteína basada en bacterias
utilizada en la industria de alimentos y comparamos estadísticamente dos
tipos de bacterias productoras usando la prueba de razón de verosimilitudes
basada en el modelo MIG-t como una metodología alternativa a los proce-
dimientos disponibles a la fecha. Este punto es muy importante, ya que la
evaluación de producción de proteínas usando dos construcciones distintas
permite a los investigadores escoger el tipo más productivo antes de proceder
al cultivo industrial a gran escala.

Palabras clave: distribuciones de largo sesgado, lenguaje de computación
R, métodos de verosimilitud, mezcla de distribuciones.

1. Introduction

The normal distribution has been a reference model in statistics for over one
hundred years. Its attractive properties are well-known and widely used in sta-
tistical theory and practice. However, inference upon normality is vulnerable to
atypical data, which are found in several fields. Specifically, the parameter esti-
mators of the normal model obtained with the maximum likelihood (ML) method
are sensitive to atypical observations. Lange, Little & Taylor (1989) proposed to
use the Student-t distribution for solving this problem of sensitivity, since it has
greater kurtosis than the normal distribution. Thus, such atypical cases could
be accommodated in a better way by using the t model than the normal model.
Moreover, as it can be seen in Figure 1, the degree of kurtosis of the t model is
flexible and then it can appropriately model different quantities and magnitudes
of atypical data. For these reasons, the t model has been used as an alternative to
the normal model to obtain qualitatively robust estimates, which is a first concept
of robustness. See Lucas (1997) and Montgomery, Peck & Vining (2001, pp. 381-
413). Specifically, robustness studies the sensitivity of the results of a statistical
analysis to deviations in the assumptions that validate this analysis.

A random variable (r.v.) X following the t distribution with ν degrees of
freedom, denoted by X ∼ t(ν), has probability density function (p.d.f.) and
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Figure 1: Coefficients of kurtosis of the normal and t distributions.

cumulative distribution function (c.d.f.) respectively given by

φt(x) =
Γ( ν+1

2 )
√

ν π Γ( ν
2 )

[
1 + x2

ν

]− ν+1
2

and Φt(x) = 1
2

[
1 + Ir

(
1
2 , 1

2 ν
)]

, x ∈ R, ν > 0

where Ir(a, b) = [
∫ x

0 ta−1[1 − t]b−1 dt]/[
∫ 1

0 ta−1[1 − t]b−1 dt] is the beta incomplete
function ratio, with r = x2/[x2 + ν]. See Johnson, Kotz & Balakrishnan (1994,
pp. 364). Special cases of the t distribution are the Cauchy distribution, when
ν = 1, and the normal distribution, when ν → ∞. The normal and t models are
symmetric distributions in the seto of real numbers. However, many phenomena
present data whose distributions are asymmetrical, such as occurs frequently in
biotechnology and industry data.

A very popular, positively skewed, asymmetric probability model is the inverse
Gaussian (IG) distribution, which is also known as the first passage time distri-
bution of the Brownian motion with positive drift. See Schrodinger (1915), Wald
(1947) and Tweedie (1957). The inverse Gaussian (IG) and normal distributions
are very similar, although these distributions describe different types of data. In
fact, Folks (2007) provided a table that contains 42 analogies between these two
distributions. The IG distribution has been widely studied. Several books devoted
to this distribution have appeared within the last 30 years. See Jorgensen (1982),
Chhikara & Folks (1989), Seshadri (1993, 1999) and Johnson et al. (1994, pp. 259-
297). Specifically, the IG model is characterized by the mean (µ) and scale (λ)
parameters, denoted by T ∼ IG(µ, λ). An r.v. T with IG distribution has p.d.f.
and c.d.f. respectively given by

fT (t) = φ (at)
√

λ√
t3

and FT (t) = Φ (at) + exp
(

2λ
µ

)
Φ (−bt) , t > 0, µ > 0, λ > 0

where φ(·) and Φ(·) denotes the N(0,1) p.d.f. and c.d.f. respectively, and

at(µ, λ) =
√

λ[t−µ]

µ
√

t
and bt(µ, λ) =

√
λ[t+µ]

µ
√

t
(1)

According to (1) and for simplicity, we sometimes use the notations at(µ, λ) =
at and bt(µ, λ) = bt along the paper. However, when we need to emphasize the
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dependence of the functions at and bt on µ and λ, we use the notations at(µ, λ)
and bt(µ, λ). Some properties of the IG distribution are c T ∼ IG(c µ, c λ), with
c > 0, and to be a member of the exponential family.

Length-biased distributions are particular cases of the weighted distributions
and have interesting properties; see Gupta & Kirmani (1990), Patil (2002) and
Leiva, Sanhueza & Angulo (2009). The length-biased inverse Gaussian (LBIG)
distribution was presented by Gupta & Akman (1995). However, this result was
previously postulated by Jorgensen, Seshadri & Whitmore (1991), although with
a distinct denomination, since this was called the distribution of the complemen-
tary reciprocal of the IG distribution. Specifically, if T ∼ IG(µ, λ), then the
r.v. L = µ2/T has a LBIG distribution. In this case, the p.d.f. is given by
fL(l) = φ (al)

√
λ/[µ

√
l], for l > 0, µ > 0 and λ > 0.

Mixture distributions provide powerful and popular tools for generating flexible
distributions with attractive statistical and probabilistic properties. See McLach-
lan & Peel (2000). Specifically, if 0 < p < 1 is a mixing parameter and fX1(x)
and fX2(x) are the densities of the variates X1 and X2, respectively, then the
p.d.f. of the r.v. X expressed by the mixture between X1 and X2 is fX(x) =
[1 − p] fX1(x) + pfX2(x), for x > 0. Thus, an r.v. M with mixture inverse Gaus-
sian (MIG) distribution obtained from the mixture of the IG and LBIG models
has p.d.f. given by

fM (m) = φ (am)
√

λ√
m3

[
1 − p + p m

µ

]
, m > 0, µ > 0, λ > 0, 0 < p < 1 (2)

This is denoted by M ∼ MIG(µ, λ, p). For more details about the MIG dis-
tribution and some extensions, see Gupta & Akman (1995), Balakrishnan, Leiva,
Sanhueza & Cabrera (2009) and Kotz, Leiva & Sanhueza (2010). We note from
(2) that the MIG model is related to the normal model. Thus, by using this re-
lationship, we can define a MIG distribution based on the t model, which we call
the MIG-t distribution and should be highly flexible admitting different degrees
of kurtosis and asymmetry. In addition, this distribution has parameter estimates
that are often non-sensitive to atypical data. Therefore, the MIG-t model can be
considered in place of the classic MIG model to produce robust estimation such as
occurs with the t and normal models. See Lange et al. (1989). This methodology
avoids the use of robust estimation procedures in their classical way, such as San-
hueza, Sen & Leiva (2009) and Leiva, Sanhueza, Sen & Araneda (2010) proposed,
by the utilization of the t model in the construction of the MIG distribution.

The IG, LBIG, MIG distributions have been applied in diverse areas, such as
actuarial science, agricultural, biotechnology, business and industry, demography,
earth sciences, economy and finance, engineering sciences, internet, linguistics,
medical sciences, and social and behavior sciences. For more details about these
applications, see Chhikara & Folks (1989, pp. 159-184) and Seshadri (1999, pp.
167-316). As mentioned, applications of the IG model in biotechnology and in-
dustry have been considered. In this study, we propose a new application to these
two fields, which considers bacterium-based protein production for food industry.
In general, bacteria are used for the production of proteins with industrial pur-
poses. Simoes-Barbosa, Abreu, Silva-Neto, Gruss & Langella (2004) and Le-Loir,
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Nouaille, Commissaire, Bretigny, Gruss & Langella (2001) investigated the poten-
tial of a lactic acid bacteria called Lactococcus lactis, which is a microorganism
primarily used in the dairy food industry to produce and secret proteins. Such
bacteria can also be used for industrial processes such as meat, wine and dairy.
Then, to characterize and compare protein production in different strains and con-
structions is important by using appropriate statistical distributions and tests. We
should explored this aspect because the evaluation of protein production by em-
ploying several constructions allows practitioners to choose the most productive
one before the bacterial culture is scaled to an industrial level.

The aims of this paper are: (i) to introduce the MIG-t distribution as a model
that can fit data with high kurtosis, such as it could occur in biotechnology and
industry, (ii) to carry out a hazard analysis for this distribution centered mainly on
the hazard rate (h.r.) and (iii) to apply the obtained results to protein production
data of Lactococcus lactis.

The rest of this article is organized as follows. In Section 2, we provide a
probabilistic characterization of the MIG-t distribution and carry out an analysis
of its h.r. In Section 3, we estimate the parameters of the MIG-t distribution
and make inference about them by using the ML method. Also, in this section,
we produce a diagnostic analysis for this distribution to evaluate the potential
influence of atypical observations. In Section 4, we apply the obtained results
to novel bacterium-based protein production data. In addition, in this section,
we statistically compare two types of proteins using the MIG-t distribution by the
likelihood ratio (LR) test as an alternative methodology to the classical techniques
proposed so far. Finally, in Section 5, we drawn some conclusions.

2. The MIG-t Distribution

In this section, we present and characterize the MIG-t probabilistic model.

2.1. The Probabilistic Model

An r.v. T follows the MIG-t distribution with parameters µ > 0, λ > 0,
0 < p < 1 and ν > 0 if and only if its p.d.f. is given by

fT (t) =
Γ( ν+1

2 )
√

λ
√

ν π Γ( ν
2 )

√
t3

[
1 +

a2
t

ν

]− ν+1
2

[
1 − p + p t

µ

]
, t > 0

The notation T ∼ MIG-t(µ, λ, p, ν) is used in this case. The following theorem
presents some properties of this model.

Theorem 1. Let T ∼ MIG-t(µ, λ, p, ν). Then,

(i) c T ∼ MIG-t(c µ, c λ, p, ν), with c > 0, i.e., the MIG-t distribution belongs to
the scale family.

(ii) 1/T ∼ MIG-t(1/µ, λ/µ2, 1− p, ν), i.e., the MIG-t distribution belongs to the
family closed under reciprocation.

(iii) The c.d.f. of T is FT (t) = Φt(at) + [1 − 2p]
∫ ∞

bt
φt

(√
u2 − 4 λ/µ

)
du.
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(iv) U = λ
µ

[
T
µ

+ µ
T
− 2

]
∼ F(1, ν), i.e., U follows a Fisher distribution with 1

and ν degrees of freedom.

The following theorems present the mode, denoted by tm, and the moments of
the studied distribution.

Theorem 2. Let T ∼ MIG-t(µ, λ, p, ν). Then, the mode of T is given by the
solution to

− ν + 1

[ν + a2
tm

]
=

µ2tm
λ[t2m − µ2]

[3(1 − p)µ + p tm]

[(1 − p)µ + p tm]
.

Theorem 3. Let T ∼ MIG-t(µ, λ, p, ν). Then, the first four non-central moments
of T are given by

(i) E[T ] = µ + p µ2

λ
ν

[ν−2] ;

(ii) E[T 2] = µ2 + [1 + 2p] µ3

λ
ν

[ν−2] + p µ3

λ2
3ν2

[ν−2][ν−4] ;

(iii) E[T 3] = µ3 + 3[1 + p] µ4

λ
ν

[ν−2] + [1 + 4p] µ4

λ2
3ν2

[ν−2][ν−4] + p µ4

λ3
15ν3

[ν−2][ν−4][ν−6] ;

(iv) E[T 4] = µ4+2[3+2p]µ5

λ
ν

[ν−2] +5[1+2p]µ5

λ2
3ν2

[ν−2][ν−4] +[1+6p]µ5

λ3
15ν3

[ν−2][ν−4][ν−6]

+ pµ5

λ4
105ν4

[ν−2][ν−4][ν−6][ν−8]

Note 1. Observe that if T ∼ MIG-t(µ, λ, p, ν) and p = 0, 0.5 and 1, then we have
the IG, Birnbaum-Saunders (BS) and LBIG distributions obtained from the t(ν)
model, respectively. In addition, as mentioned, recall that the standard normal
model is obtained as a limiting distribution of the t(ν) model when ν → ∞.
Thus, the mentioned particular cases correspond to the classical IG, BS and LBIG
distributions when ν → ∞ and p = 0, 0.5 and 1, respectively.

2.2. Hazard Analysis and Order Statistics

A hazard is a dangerous event that could conduct to an emergency or disaster.
Thus, a hazard is a potential and not an actual possibility, i.e., it can be statis-
tically evaluated, for example, by a useful descriptor known as the hazard rate.
This rate for an r.v. T > 0 with p.d.f. fT (·) and c.d.f. FT (·), is given by

hT (t) = lim
△t→0

P(t < T < ∆t|T > t)

∆t
=

fT (t)

ST (t)
= −d log(ST (t))

dt
, t > 0, (3)

with 0 < ST (t) < 1, where ST (t) = P(T ≥ t) = 1 − FT (t) =
∫ ∞

t
fT (u) du, for

t > 0, is the survival function. In addition, another useful descriptor is the mean
residual, which is given by µ(x) = E[T |T > x] = x + [

∫ ∞
x

ST (t) dt]/ST (x), for
x > 0 and ST (x) > 0, with µ(x) = µ = E[T ], when x = 0. For more details about
these descriptors, see Johnson, Kotz & Balakrishnan (1995, pp. 640-650), Marshall
& Olkin (2007) and Saunders (2007). Note from (3) and below this equation that
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all of these functions can be expressed by means of the h.r. Therefore, we carry
out a hazard analysis based on this rate.

A h.r. function hT (t) can be increasing, decreasing or constant in t. In par-
ticular, if hT (t) = λ > 0, for all t > 0, then we have that the r.v. T follows
an exponential distribution with parameter λ. However, there are distributional
families with non-monotone h.r. In this case, an important value for hazard anal-
ysis is the change point of the h.r. of T . Within the class of distributions with a
non-monotone h.r., we can identify concave or convex hazard rates, i.e., ∩-shaped
or ∪-shaped h.r., respectively. Particularly, for the ∩-shaped case, we also have
two cases, when the h.r. is initially increasing until its change point and then
(i) it decreases to zero, as in the case of the lognormal distribution, or (ii) it de-
creases until that becomes stabilized in a positive constant, as in the case of the
IG and BS distributions. For this reason, when we study distributional families
with non-monotone h.r., change point and limit behavior analyses are necessary.

The following theorems provide the MIG-t h.r., its change point, denoted by
tc, and its limiting behavior.

Theorem 4. Let T ∼ MIG-t(µ, λ, p, ν). Then, the h.r. of T is given by

hT (t) =
√

λφt(at)√
t3

[
Φt(−at)+(2p−1)J(bt)

]
[
1 − p + p t

µ

]
, t > 0

where J(bt) =
∫ ∞

bt
φt(

√
u2 − 4λ/µ)du.

Theorem 5. Let T ∼ MIG-t(µ, λ, p, ν). Then, the change point of the h.r. of T
is obtained as the solution to

Φt(−atc
) + [2p− 1]J(btc

) =

√
λ√
t3

φt(atc )
[
1−p+ p tc

µ

]

ν+1

2[ν+a2
tc

]

λ[t2c−µ2]

µ2t2c
+ 3µ[1−p]+p tc

2tc [µ(1−p)+p tc]

.

Theorem 6. Let hT (t) be the h.r. of T ∼ MIG-t(µ, λ, p, ν), with ν known. Then,

lim
t→∞

hT (t) = 0.

Order statistics are useful in several statistical procedures. Thus, if T1, . . . , Tn

are i.i.d. variates, associated order statistics are denoted by T(1), . . . , T(j), . . . , T(n),
where T(1), T(n) and T(j) denote the minimum, maximum and jth order statistic
of the variates T1, . . . , Tn, respectively. For more details about order statistics, see
Arnold, Balakrishnan & Nagaraja (1992).

The following theorem provides the p.d.f. of order statistics for the MIG-t
distribution.

Theorem 7. Let T1, . . . , Tn be i.i.d. variates, where Ti ∼ MIG-t(µ, λ, p, ν), for
i = 1, . . . , n. Then, for the indicated order statistic, its p.d.f. is given by

(i) fT(1)
(t) = n φt(at)

√
λ√
t3

[
1 − p + p t

µ

] [
Φt(−at) + (2p − 1)J(bt)

]n−1
, t > 0

(ii) fT(n)
(t) = n φt(at)

√
λ√
t3

[
1 − p + p t

µ

] [
Φt(at) + (1 − 2p)J(bt)

]n−1
, t > 0
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(iii) fT(j)
(t) = n! φt(at)

(j−1)!(n−j)!

√
λ√
t3

[
1 − p + p t

µ

] [
Φt(at) + (1 − 2p)J(bt)

]j−1

× [Φt(−at) + (2p − 1)J(bt)]
n−j , t > 0

3. Inference and Diagnostics in the MIG-t Model

In this section, we present estimation, inference and diagnostics useful to esti-
mate the mean protein production and detect the potential influence of atypical
data. In problems with this type of data, generally one has enough amount of
them to apply asymptotic results. Inference in small samples is not direct, which
presents a challenge for a further study.

3.1. ML Estimation, Information Matrix and Inference

Before we find the ML estimators of the MIG-t model parameters, to discuss
how one should handle the parameter ν of this model is important. The question
is whether ν should be estimated. Several authors treated this topic for the t
distribution and models associated with it. See Lange et al. (1989), Lucas (1997),
Leiva, Riquelme, Balakrishnan & Sanhueza (2008) and references therein. These
authors noticed problems of unbounded and local maximum in the likelihood func-
tion, in addition to lack of robustness, when ν is estimated. For this reason, to fix
ν is better and assume that it is a known value or, otherwise, acquire information
for it from the data. Thus, once the optimum value of ν is found, the parameters
µ, λ and p of the MIG-t distribution are estimated as described next.

3.1.1. ML Estimation

The log-likelihood function for θ = (µ, λ, p)⊤, based on a random sample
T1, . . . , Tn, where Ti ∼ MIG-t(µ, λ, p, ν), for i = 1, . . . , n, is expressed as ℓ(θ) =∑n

i=1 ℓi(θ), where

ℓi(θ) ∝ n

2
log(λ) − [ν + 1]

2
log

(
ν + a2

ti

)
+ log

(
µ[1 − p] + p ti

)
− log(µ) (4)

The score vector of first derivatives of the log-likelihood function is given by

ℓ̇(θ) =
∂ℓ(θ)

∂θ
= (ℓ̇θ1), with θ1 = µ, λ, or p (5)

where

ℓ̇µ =
λ[ν + 1]

µ3

n∑

i=1

{
ti − µ

ν + a2
ti

}
+

n∑

i=1

{
1 − p

µ[1 − p] + pti

}
− n

µ
,

ℓ̇λ =
n

2λ
− [ν + 1]

2λ

n∑

i=1

{
a2

ti

ν + a2
ti

}
and ℓ̇p =

n∑

i=1

{
ti − µ

µ[1 − p] + p ti

}
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The ML estimates of the parameters µ, λ and p are solutions to the equations
ℓ̇µ = 0, ℓ̇λ = 0 and ℓ̇p = 0. However, these equations do not provide analytical
solutions, so that an iterative numerical method is necessary to find the roots. As
starting values for this iterative method, we propose considering the ML estimates
of µ, λ and p of the MIG distribution. See Seshadri (1999, pp. 145).

To select the value of ν, we propose looking for the value that maximizes the
likelihood function for ν ∈ [1, 100] using an optimal search of ν by means of the
following algorithm:

(A1) For ν = 1 to ν = 100 by 1:

(A1.1) Estimate the parameters µ, λ and p of the MIG-t model considering
the ML estimates of µ, λ and p of the MIG distribution starting values
for the numerical iterative procedure;

(A1.2) Compute the corresponding likelihood function;

(A2) Choose the value of ν that maximizes this likelihood function and then
consider the ML estimates of µ, λ and p the result.

Note 2. Based on the invariance property of the ML estimators, we can estimate
different functions of the parameter θ. For example, the mean protein production
can be estimated by using the mean of MIG-t distribution given in Theorem 3 (i).

3.1.2. Information Matrix

The observed information matrix is obtained as J (θ) = −ℓ̈. Here, ℓ̈ is the
Hessian matrix of second derivatives of the log-likelihood function given by

ℓ̈(θ) =
∂2ℓ(θ)

∂θ ∂θ
⊤ = (ℓ̈θ1 θ2), with θ1, θ2 = µ, λ, or p (6)

where

ℓ̈µµ = −3λ[ν + 1]

µ4

n∑

i=1

{
ti − µ

ν + a2
ti

}
− λ[ν + 1]

µ3

n∑

i=1

{
1

ν + a2
ti

}

−2
√

λ3(ν + 1)

µ5

n∑

i=1

{
[ti − µ]ati

√
ti

[ν + a2
ti
]2

}
−

n∑

i=1

{
1 − p

µ[1 − p] + p ti

}2

ℓ̈µλ =
[ν + 1]

µ3

n∑

i=1

{
ti − µ

ν + a2
ti

}
− [ν + 1]

µ3

n∑

i=1

{
[ti − µ]a2

ti

[ν + a2
ti
]2

}
, ℓ̈λp = 0

ℓ̈µp = −
n∑

i=1

{
ti

[µ[1 − p] + p ti]2

}
, ℓ̈pp = −

n∑

i=1

{
ti − µ

µ[1 − p] + p ti

}2

ℓ̈λλ = − n

2λ2
− ν[ν + 1]

2λ2

n∑

i=1

{
a2

ti

[ν + a2
ti

]2

}
+

[ν + 1]

2λ2

n∑

i=1

{
a2

ti

ν + a2
ti

}
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3.1.3. Inference

Inference for θ can be based on the asymptotic behavior of the ML estimator

θ̂ = (µ̂, λ̂, p̂)⊤ given by
√

n [θ̂−θ]
d→ N3(0,Σθ̂ ), where “

d→” means convergence in

distribution. Here, θ̂ is the ML estimator of θ and Σθ̂ is the variance-covariance

matrix of θ̂, which can be obtained from the expected information matrix, namely
I(θ) = E[J (θ)] = −E[ ℓ̈], as Σθ̂ = I(θ)−1. Thus, the standard errors of the ML
estimators can be computed by using the square roots of the diagonal elements of
I(θ)−1. Their estimated standard errors can be obtained by evaluating θ at its

ML estimate θ̂.

Note 3. Instead of the expected information matrix, its observed version could
be used to approximate the standard errors of the ML estimators. These errors
can be computed by using the square roots of the diagonal elements of J −1(θ).
Once again, their estimated standard errors can be obtained by evaluating θ at
its ML estimate θ̂. For more details about the use of the observed information
matrix instead of its expected value, see Efron & Hinkley (1978).

A confidence region for θ may be constructed by using the asymptotic normal
distribution of θ̂ above mentioned. Thus, an approximate (1−α)100% confidence

region for θ, with 0 < α < 1, is given by R = {θ ∈ R
3: (θ̂ − θ)⊤Σ

−1

θ̂
(θ̂ − θ) ≤

χ2
1−α(3)}, where χ2

1−α(3) denotes the (1−α)th quantile of the χ2 distribution with
three degrees of freedom.

3.2. Influence Diagnostics

Case deletion is a common way to assess the effect of an observation on the
estimation procedure. This is a global influence analysis, since the effect of a case
is evaluated by dropping it from the data set. Alternatively, local influence is based
more on geometric differentiation than the elimination of observations. In this last
case, a differential comparison of estimators is used before and after perturbing
the data or the model. We implement the local influence method for evaluating
possible atypical cases in the protein production data. As in Cook (1986), we use
the likelihood displacement to evaluate the local influence. Next, we present global
and local influence techniques that may be useful for detecting atypical protein
production data and studying the suitability of the MIG-t model to such data.

3.2.1. Global Influence

Cook’s distance is an interesting diagnostics technique of the global influence
method. See Cook & Weisberg (1982). A generalization of this distance is ex-

pressed as Di = [(θ̂ − θ̂(i))⊤Σ̂
−1

θ̂ (θ̂− θ̂(i))]/k, for i = 1, . . . , n, where k is the num-

ber of parameters and Σ̂θ̂ is an estimator of the covariance matrix of θ̂, which,

as mentioned, can be approximated by −ℓ̈−1 evaluated at θ̂, such that Di =
[(θ̂ − θ̂(i))⊤(−ℓ̈)(θ̂ − θ̂(i))]/k. If we use an approximation of first order, we obtain

θ̂ − θ̂(i) ≈ [ℓ̈(i) ]−1ℓ̇(i) , with ℓ̇(i) being the score vector and ℓ̈(i) the Hessian matrix
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without considering the ith case. Thus, Di ≈ [(ℓ̇(i))
⊤(ℓ̈(i))

−1(−ℓ̈)−1(ℓ̈(i))
−1ℓ̇(i)]/k,

where a high value for Di indicates a high impact case on the ML estimator of
θ. For the MIG-t model, in Di, k = 3 and ℓ̇(i) and ℓ̈(i) are analogously defined as
those given in (5) and (6), respectively.

3.2.2. Local Influence

From (4), we can note that the contributions ℓi(θ) are equally weighted. A
perturbed log-likelihood function can be defined by ℓ(θ | ω) =

∑n

i=1 ωiℓi(θ),
with ω = (ω1, . . . , ωn)⊤ being the vector of weights of the contributions from
each case to the likelihood function and ω0 = 1n = (1, . . . , 1)⊤ being the non-
perturbed point, that is, ℓ(θ | ω0) = ℓ(θ). This scheme of perturbation is useful
for evaluating whether the contribution of cases representing to protein production
data with different weights influence the ML estimator of θ. Specifically, let θ̂ω

be the ML estimator of θ obtained from the perturbed likelihood function. The
influence of the perturbation ω on the ML estimator may be checked by means
of the likelihood displacement given by LD(ω) = 2[ℓ(θ̂) − ℓ(θ̂ω)]. Cook (1986)
postulated studying the local behavior of LD(ω) around ω0 employing the normal
curvature Cl of LD(ω) at ω0 and in the direction of some unitary vector l. He
showed that Cl = 2 | l⊤∆⊤ ℓ̈−1

∆l |, with ‖l‖ = 1, where ℓ̈ is as defined in (6)
and ∆ is a 3×n perturbation matrix expressed as ∆ = [∆1(θ), . . . ,∆n(θ)], both

evaluated at θ = θ̂ and ω0. For the MIG-t distribution, the elements of ∆ are

∆i(θ) = (∆i(µ), ∆i(λ), ∆i(p))⊤ =

(
∂2ℓ(µ | ω)

∂µ∂ωi

,
∂2ℓ(λ | ω)

∂λ∂ωi

,
∂2ℓ(p | ω)

∂p ∂ωi

)⊤

for i = 1, . . . , n, where

∆i(µ) =
λ [ν + 1] [ti − µ]

µ3 [ν + a2
ti
]

+
1 − p

µ[1 − p] + p ti
− 1

µ

∆i(λ) =
1

2λ
− [ν + 1] a2

ti

2λ [ν + a2
ti
]

and ∆i(p) =
ti − µ

µ[1 − p] + p ti

Let lmax be the direction of the maximum normal curvature, which corre-
sponds to the perturbation that reaches the greatest local change in θ̂. The most
influential cases in the protein production data may be identified by their large
components of the vector lmax. In addition, lmax is the eigenvector associated with
the largest eigenvalue of B = ∆

⊤ℓ̈−1
∆. Another interesting direction is l = ein,

which is the ith unitary vector of R
n. In this case, the normal curvature is given

by Ci = 2|bii|, with bii being the ith diagonal element of B. Thus, Ci can be
useful to detect the total local influence of the ith case of protein production using
as benchmark Ci > 2 C, where C = 1

n

∑n

i=1 Ci, for indicating whether such a case
is potentially influential.
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4. Application to Real Data

In this section, for illustrative purposes, we apply some of the obtained results
for the MIG-t distribution to novel data corresponding to the production of a se-
creted protein by Lactococcus lactis, where initially just one data set is analyzed
as follows. First, an implementation in R code of the MIG-t model is discussed.
Second, the problem upon analysis is described. Third, the data set is provided.
Fourth, an exploratory data analysis (EDA) of this set is produced. Fifth, the pa-
rameters of the MIG-t distribution are estimated by using the ML method. Later,
we carry out a brief diagnostic analysis in order to establish the potential influence
of some protein production data. Then, goodness-of-fit is presented for studying
the suitability of the MIG-t distribution to such data. Finally, we compare the
production between two different constructions, one of them corresponding to the
analyzed data set. The constructions are bacterial strains genetically engineered
to produce and secret a protein of interest. In this concluding analysis, by using
the invariance property of the ML estimators of the parameters of the MIG-t dis-
tribution, we estimate the mean of two populations (constructions) and conducted
a statistical comparison between these mean values by using the LR test.

4.1. Implementation in R Code

R language is an open-source software package for statistical computing and
graphics that can be obtained from http://www.R-project.org; see R Develop-
ment Core Team (2009). Several R packages for analyzing data from different dis-
tributions are available and can be downloaded from http://CRAN.R-project.org.
We have developed an R code to analyze data from the MIG-t model. This code
contains diverse indicators of the MIG-t distribution and allows us to compute ML
estimates of its parameters.

4.2. The Problem upon Analysis

Lactococcus lactis is a lactic acid microorganism corresponding to a well-charac-
terized gram-positive bacterium that can be used for food industry. This microor-
ganism can be genetically modified to allow the production of proteins and secre-
tion of proteins into the culture media. These proteins can be purified and used
for several purposes in food industry. Depending on the success of the genetic
construction, the yield protein will vary among constructs. For this reason, once
genetic constructions are finished, Lactococcus lactis is reproduced by experiments
in vitro at a laboratory before produce it at an industrial scale. At this stage,
protein production is measured to study its feasibility and stability, and compare
production levels among different constructs. Once the production of proteins from
this bacterium has reached a level with a small variation among essays, i.e., it has
been stabilized, then such proteins can be produced at big scale in a fermenter
where cultures of several liters are produced. Lactococcus lactis may yield many
types of proteins (see Simoes-Barbosa et al. 2004), although this bacterium does
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not secret an important amount of proteins. Therefore, genetical constructs allow-
ing the production and secretion of proteins of industrial interest in this bacterium
have been a major research point. All secreted proteins carry a signal peptide that
directs them to the extracellular culture media. Best results have been obtained
when a native peptide (belonging to Lactococcus lactis) is used even when the
produced protein does not belong to this bacterium. See Le-Loir et al. (2001).
Specifically, the authors postulated a model for protein secretion based on Lacto-
coccus lactis using the staphylococcal nuclease (NucB), a non native protein, and
replacing the signal peptide by a native signal peptide (from USp45). The protein
production is higher using the Lactococcus lactis signal peptides than other pep-
tides, particularly for Usp45 with classical tests for which protein production data
do not meet the assumptions. The question that arises here is whether this level of
production is transferable to other signal peptides from secreted proteins as YvjB
and how this could be addressed with an adequate distribution and an appropriate
test for the data. In the application that we make in this study, we analyze data on
protein production from secreted NucB possessing the YvjB signal peptide (called
“Group 2”) and the native signal peptide (called “Group 1”). After analyzing the
first data set by the MIG-t distribution, we statistically compare both groups by
using this distribution, which may be useful for modeling this kind of protein pro-
duction data as an alternative procedure to the traditional ones. As mentioned,
this fact is very important to determinate the most productive construction before
the bacterial culture is scaled to an industrial level.

4.3. The Data Set

As mentioned, the data set corresponds to protein production data (expressed
in ng/ml) from Lactococcus lactis, which are: 165, 123, 123, 128, 129, 135, 156,
165, 169, 178, 178, 198, 206, 207, 208, 213, 115, 119, 225, 236, 236, 156, 287, 189,
295, 296, 302, 324, 356, 389, and that we simply call lactis.

4.4. Exploratory Data Analysis

Table 1 presents a descriptive summary of lactis, while Figure 3 (left) shows
the histogram and boxplot of these data. An EDA of lactis based on Table 1
and Figure 3 shows a positively skewed distribution with an atypical data. We
propose the MIG-t model for describing these data.

Table 1: Descriptive statistics for lactis (in ng/ml)

Median Mean SD CV CS CK Range Min. Max. n

193.5 206.867 74.796 36.156% 0.741 2.542 274 115 389 30

4.5. Estimation and Model Checking

To estimate the parameters µ, λ, p and ν of the MIG-t distribution, we use the
ML method described in Subsection 3.1.1. As mentioned there, we suggest to fix ν
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and assume that it is a known value or, otherwise, get information for it from the
data. Thus, to estimate µ, λ and p of the MIG-tν model, we fix integer values for ν
from 1 to 100 by 1, choosing the value of ν that maximizes the likelihood function.
The command mleMIGt() has been implemented in the software R to carry out
the procedure described in Subsection 3.1.1. The instruction mleMIGt(lactis)

automatically chooses the value of ν that maximizes the likelihood function and
computes the ML estimates of µ, λ and p of the MIG-t model according to (A1)-
(A2). The function optim is used to solve the corresponding iterative numerical
procedure, which is available in the software R.

Note 4. The function optim employs the L-BFGS-B method developed by Byrd,
Lu, Nocedal & Zhu (1995) to carry out the corresponding numerical optimization.
This method allows having a “box constraint” and so each variable of the opti-
mization procedure can have a lower or upper bound. The L-BFGS-B method uses
a limited-memory modification of the quasi-Newton method.

Based on lactis, the obtained results for these estimates are µ̂ = 204.109,
λ̂ = 1692.646 and p̂ = 0.090, with −ℓ(θ̂) = 168.523 being the negative value of the
log-likelihood function evaluated at these estimates.

Next, we detect the effect of potentially influential observations on the ML
estimates for lactis. These observations are chosen by using the local influence
method described in Subsection 3.2.2 by means of the total local influence in-
dex plot (Figure 2). From this figure (left), we can note a potential influence of
the cases #29 and #30 on the ML estimates of the classical MIG distribution.
However, as expected, this potential influence is less pronounced for the MIG-t
distribution (see Figure 2, right).
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Figure 2: Total local influence index plot for the MIG (left) and MIG-t (right) models.

Note 5. Since the purpose of this article is to illustrate the use of the MIG-t
model in the context of protein production data and not to conduct an influence
analysis, the information provided by the model checking is sufficient for us. In
future studies, a more deeper analysis should be carried out on these atypical cases.
Also, comparison of the obtained results in this application with other distributions
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usually employed in hazard analysis, as well as the analysis of lifetime data by this
model, will be addressed in future studies.

Once the MIG-t model parameters have been estimated and the influence anal-
ysis conducted, a natural question that arises is how good the fit of the model to
lactis is. For this purpose, we can calculate the Kolmogorov-Smirnov (KS) dis-
tance between the empirical c.d.f. Fn(·), and the MIG-t c.d.f., FT (·), given by

KSDi = |Fn(t) − FT (t)|, i = 1, . . . , n

To compute this distance, we replace the parameters in the MIG-t c.d.f. by
their respective ML estimates. Once all the n KS distances are calculated, we de-
termine the maximum value of such distances and then compare it to the (1−α)th
quantile of the KS distribution to evaluate the suitability of the MIG-t model to
lactis. The p-value of the KS test is 0.910, which strongly supports the hypoth-
esis that the MIG-t distribution fit lactis in a very good way. To visually verify
this fact, we use the invariance property of the ML estimators for determining the
MIG-t p.d.f. and c.d.f., which are shown in Figure 3 on the histogram and em-
pirical c.d.f. of the data, respectively. These graphs show the excellent agreement
between the MIG-t model and lactis. Other goodness-of-fit tests, such as the
Anderson-Darling test or those for normality as the Lillieford and Shapiro-Wilk
test adapted to lactis could be also applied, but we consider the information
provided by the KS test concluding.
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Figure 3: Histogram and boxplot with estimated MIG-t p.d.f. (left) and empirical c.d.f.
versus estimated MIG-t c.d.f. (right) for lactis.

4.6. A Comparative Analysis

Once the MIG-t distribution has been chosen for fitting lactis, we can esti-
mate the mean of this distribution. To do this, we use the ML estimates of µ, λ
and p, the optimum value for ν, the invariance property of these estimators and
Theorem 3(i). We estimate the mean E[T ] = µ + [p µ2 ν]/[λ (ν − 2)] to detect

Revista Colombiana de Estadística 34 (2011) 177–195



192 Antonio Sanhueza, Víctor Leiva & Liliana López-Kleine

the protein production based on the MIG-t distribution using lactis, which is

Ê[T ] = 206.370 ng/ml.

As mentioned, for practitioners, to compare two constructs is important. Let
us to denote these constructs as distributions F and G. On the basis of two
independent samples Ti1, . . . , Tini

, for i = 1, 2, each one randomly extracted from
its respective population, we assume that Tij ∼ MIG-t(µi, λ, p, ν), for i = 1, 2.
We want to test H0: E[T1] = E[T2] against H1: E[T1] 6= E[T2], where E[Ti] is the
mean of the ith population. For testing H0 against H1, we use the LR test, whose
statistic is given by

LR =

n1∏

j=1

[
1 + 1

ν
a2

t1j
(µ̂, λ̂)

1 + 1
ν
a2

t1j
(µ̂1, λ̂)

]− ν+1
2 n2∏

j=1

[
1 + 1

ν
a2

t2j
(µ̂, λ̂)

1 + 1
ν
a2

t2j
(µ̂1, λ̂)

]− ν+1
2

(7)

By using the LR statistic defined in (7), we compare the protein production
from Lactococcus lactis based on the MIG-t distribution for two groups: NucB
(Group 1) and PSYvjB (Group 2), which estimated mean values are Ê[T1] =

206.370 ng/ml and Ê[T2] = 262.167 ng/ml. The p-value for the LR test is < 0.001,
which provides enough evidence for rejecting the hypothesis of equality of means,
so that PSYvjB statistically produces a greater amount of proteins than NucB.
Therefore, we recommend it as microorganism for producing proteins at big scale
in the dairy food industry. The found results agree with those obtained in previous
studies, where the native peptide allows providing higher amounts of protein.

5. Concluding Remarks

In this article, we have derived a mixture inverse Gaussian model based on the
Student-t distribution and applied it to bacterium-based protein production for
food industry. This model is very flexible in kurtosis and skewness, and has a kur-
tosis levels greater than that of its usual version. The mixture inverse Gaussian-t
model is mainly useful to describe data that follow positively skewed distributions
and accommodate atypical observations in a better way than its usual version.
We have provided several statistical, hazard, probabilistic and computational as-
pects of the mixture inverse Gaussian-t distribution. Specifically, for this distri-
bution, we have carried out a hazard analysis based on the hazard rate, discussed
maximum likelihood estimation and evaluated the potential influence of atypical
observations by a diagnostic analysis. Thus, we have introduced a statistical dis-
tribution that can be useful for modeling different types of data and, particularly,
those of protein production from a lactic acid bacterium called Lactococcus lac-
tis, which is a microorganism used primarily in dairy food industry. In problems
of bacterium-based protein production, generally one has enough amount of data
to apply asymptotic results. Inference in small samples for the mixture inverse
Gaussian-t model is not direct so that this presents a challenge for a future study.
We have applied the obtained results to novel bacterium-based protein production
data and statistically compared two types of protein producers using the proposed

Revista Colombiana de Estadística 34 (2011) 177–195



An Inverse Gaussian Model with an Application to Protein Production 193

distribution by the likelihood ratio test as an alternative methodology to the pro-
cedures available so far. This application showed the utility of the mixture inverse
Gaussian-t distribution.
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