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Abstract

The aim of this work is to show that on certain ocasions classic deci-
sion rules used in the context of options (Stochastic Dominance criteria and
Mean-Variance rules) do not provide a selection of one specific option over
the other, therefore, the need of working with other criteria that can help
us in our choice. We place special interest in economic and financial appli-
cations.
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Resumen

El objetivo de este trabajo es mostrar que en ocasiones las reglas clásicas
de decisión sobre inversiones (reglas de Dominancia Estocástica y reglas de
Media-Varianza) no siempre conducen a una selección de una inversión sobre
otra, surgiendo la necesidad de trabajar con otros criterios que ayudan en
dicha elección cuando los clásicos no conducen a ninguna selección concreta.
Se pone principal interés en las aplicaciones de carácter económico-financiero.

Palabras clave: dominancia estocástica, media, varianza.

1. Introducción

The use of Mean-Variance rules (MV) or Stochastic Dominance rules (SD) may
not be as useful as desired, since it might be the case that these criteria do not
lead to selection of an investment over another. For example, suppose that there
are two investments X and Y , with the following characteristics:

E(X) = 20000, σX = 20.2

E(Y ) = 1, σY = 20
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Where E(X) and E(Y ) denote the expectations of X and Y , respectively and
σX and σY their standard deviations. Note that neither is preferred over the other
(X is not preferred over Y , and Y is not preferred over X) using MV criteria, this
is because E(X) > E(Y ) but σX > σY . But there is no doubt that almost
all investment decision-makers would select X . That is, MV rules have not been
capable of choosing one investment over another even though most decision makers
would have selected X .

This problem is not new, for example Baumol (1963) noticed this and suggested
a different approach to selecting investments known as “Expected Gain-Confidence
Limit Criterion” as a replacement for the MV decision rules. Baumol argued that
an investment with a high standard deviation σ will be relatively safe if its expected
value µ is large enough. He proposed the following index of risk: RI = µ − kσ,
where k is a positive constant that represents the level of risk aversion of the
investor. Another measure to evaluate an investment is known as Sharpe ratio,
which measures the profitability of a title independent from the market, that is,
it measures the fluctuation of the investment compared to the market.

Let us now propose the following example in which the SD rules will be applied.
Let X be the asset which provides 1 euro with probability 0.01 and provides the
value 1000000 euros with probability 0.99; and let Y be the asset which provides
2 euros with probability 1. It would not be strange to expect that nearly 100% of
investors would prefer asset X over asset Y , but the SD rules are not conclusive
in this case. For example, assume utility function:

U(x) =

{
x, if x ≤ 1

1, if x > 1

In this case, it is easily verified that, investors who have this utility function
will prefer Y over X . From this, it can be deducted that, these investors who have
an “extreme utility” do not represent the majority of investors.

For the reasons discussed above, it has been necessary to establish alternative
decision rules to help decide in cases where the above rules (SD and MV) do not
allow selection of an investment over another. These rules are known as “Almost
Stochastic Dominance rules” (ASD). With ASD rules it is possible that, given two
assets X and Y , whose distribution functions do not have any preference using SD
rules, but with a “ minor change” in the expression of the distribution functions,
reveal a preference, and it is possible to select one over another. This small change
in the distributions removes extreme preferences (profits), considering the profits
that are more common among investors. The utility function above example is a
case of extreme utility.

The advantages of ASD over SD and MV are:

1. ASD is able to rank investments in cases where SD and MV are inconclusive.

2. ASD remove from the SD efficient set, alternatives which may be worse for
most investors.
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3. ASD shed light on the efficient portfolio selection problem and the horizon
of the investment. It is possible to establish a relationship between the
percentage of equity in the efficient portfolio and the investment horizon.
That is, ASD can help investors in choosing their investment portfolio.

Let us continue with the previous example with assets X and Y described
above. Let F be the distribution function of X defined as:

F (x) =






0, if x < 1

1/100, if 1 ≤ x < 1000000

1, if x ≥ 1000000

and let G be the distribution function of Y defined as:

G(y) =

{
0, if y < 2

1, if y ≥ 2

Their representation is given in the next figure, in that, it is possible to see
how the distributions intersect, also it is representing the area between these two
distributions:

Figure 1: Distributions F and G and area between them.

Although as noted, most investors prefer would F (X) over G (Y ), technically,
and using the definition of FSD1, there is no dominance in that sense, because
the distributions intersect. Previously, this fact was shown noticing that there
are some extreme preferences (profits) which made G preferable (better) to F .

1FSD: First order Stochastic Dominance. It is said that random variable X with distribution F

dominates random variable Y with distribution G in the first order degree stochastic dominance,
if F (x) ≤ G(x) for all x and with at least one point in which the inequality is strict.
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Moreover, in this example, there is no SSD2 or MV (for more information about
SD or MV see Shaked & Shanthikumar (2007), Almaraz (2009), Almaraz (2010)
o Steinbach (2001)). ASD criteria, have come up as an extension of SD criteria
to help in these situations. Intuitively, if the area between the two distributions
which causes the violation of the FSD criterion (area A1 in the example) is very
small relative to the total area between them (area A1 + A2 in the figure), then
there is dominance of one over another for almost all investors (that is, those with
reasonable preference). Hence the name of ASD criteria.

Formally, let S be the range of possible values that both assets can take (or in
general two random variables) and S1 is defined as the range of values in which
the FSD rule is violated:

S1(F,G) = {t : G(t) < F (t)} (1)

where F and G are the distribution functions of the assets (or random variables)
under comparison. ε is defined as the quotient between the area in which FSD
criterion is violated and the total area between F and G, that is:

ε =

∫
S1

(F (t) −G(t))dt
∫
S
|F (t)−G(t)|dt

(2)

Another way to write this:

ε =

∫
S1

(F (t)−G(t))dt
∫
S1

(F (t)−G(t))dt +
∫
S̄1

(G(t) − F (t))dt
=

A1

A1 +A2
(3)

where S̄1 denotes the complementary set of S1 and Ai, i = 1, 2 are the areas
described previously.

For 0 < ε < 0.5, it is said that F dominates G by ε − AFSD. The lower
the value of ε the higher degree of dominance. Almost First degree Stochastic
Dominance criterion (AFSD) is:

Definition 1. Let F and G be two distribution functions with values in the range
of S. It is said that F dominates G by AFSD (for a particular ε, or also ε-AFSD)
and it is denoted F ≥AFSD G, if and only if:

∫

S1

[F (t)−G(t)]dt ≤ ε

∫

S

|F (t)−G(t)|dt (4)

where 0 < ε < 0.5.

And the definition of Almost Second degree Stochastic Dominance criterion
(ASSD) is:

2SSD: Second order Stochastic Dominance. It is said that the random variable X with dis-
tribution F dominates random variable Y with distribution G in the SSD sense if

∫
x

−∞
(G(t) −

F (t)) ≥ 0 for all x and with at least one point in which the inequality is strict.
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Definition 2. Let F and G be two distribution functions with values in the range
of S. It is said that F dominates G by ASSD (for a particular ε, or also ε-ASSD)
and it is denoted F ≥ASSD G, if and only if:

∫

S2

[F (t)−G(t)]dt ≤ ε

∫

S

|F (t)−G(t)|dt (5)

and EF (X) ≥ EG(Y ), where 0 < ε < 0.5 y S2(F,G) = {t ∈ S1(F,G) :
∫ t

inf S
G(x)dx <∫ t

inf S F (x)dx}.

It can be shown that AFSD implies condition EF (X) ≥ EG(Y ), but in (5) this
implication is not true and therefore must appear in the ASSD definition.

The paper is organized as follows: in first Section, the decision problem will be
introduced; in Section 2, principal results in the literature about Almost Stochastic
Dominance will be shown, in Section 3, examples of ASD criteria applications
in the economic context will be explained (laboratory and real examples, which
constitute the main practical contribution of the paper). Finally, in Section 4,
main conclusions of this work will be presented.

2. Main Results

In this section, the most noteworthy results about ASD will be described.

Proposition 1. Let X and Y , be two random variables with distributions F and
G respectively. Then:

1. F dominates G in the AFSD sense, if and only if, there exists a distribution
F̃ such that F̃ ≥FSD G, and it happens that:

∫

S

|F (t)− F̃ (t)|dt ≤ ε

∫

S

|F (t)−G(t)|dt (6)

2. F dominates G in the ASSD sense, if and only if, there exists a distribution
F̃ such that F̃ ≥SSD G, and it happens that:

∫

S

|F (t)− F̃ (t)|dt ≤ ε

∫

S

|F (t)−G(t)|dt (7)

That is, the difference between F and F̃ must be relatively small (0 < ε < 0.5).
Having condition ε < 0.5 ensures that it is impossible than both distributions F
and G to dominate each other according to AFSD, because if F dominates G in
AFSD sense, then EF (X) > EG(Y ) (see proposition 2).

Proof . See Leshno & Levy (2002).
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Proposition 2. Let X and Y be two random variables with distribution functions
F and G, respectively. If F dominates G in the ε-AFSD sense and F and G are
not identical, then EF (X) > EG(Y ). So, it is impossible that F dominates G in
the ε-AFSD sense and that G dominates F in the ε-AFSD sense.

Proof . See Leshno & Levy (2002).

As in the case of SD, there is also a characterization of the ASD criteria by
utility functions. To address this issue, it is necessary to define the following sets:

Definition 3. Let S be the support of the random variables X and Y , the fol-
lowing sets are defined:

• Let U1 be the set of all non-decreasing and differentiable utility functions,
U1 = {u : u′ ≥ 0}.

• Let U2 be the set of all concave and two time differentiable utility functions,
U2 = {u : u′ ≥ 0, u′′ ≤ 0}.

• U∗
1 (ε) = {u ∈ U1 : u′ ≤ inf{u′(x)}[ 1

ε
− 1], ∀x ∈ S}.

• U∗
2 (ε) = {u ∈ U2 : −u′′ ≤ inf{−u′′(x)}[ 1

ε
− 1], ∀x ∈ S}.

Theorem 1. Let X and Y be two random variables with distribution functions F
and G respectively.

1. F dominates G in the ε-AFSD sense, if and only if, for all function u ∈ U∗
1 (ε)

it happens that EF (u) ≥ EG(u).

2. F dominates G in the ε-ASSD sense, if and only if, for all function u ∈ U∗
2 (ε)

it happens that EF (u) ≥ EG(u).

Proof . See Leshno & Levy (2002).

Proposition 3. Let X and Y be two random variables with distribution functions
F and G respectively.

1. F dominates G in the FSD sense, if and only if, for all 0 < ε < 0.5, F
dominates G in the ε-AFSD sense.

2. F dominates G in the SSD sense, if and only if, for all 0 < ε < 0.5, F
dominates G in the ε-ASSD sense.

Proof . The first part of the proposition will be proven.

Let us assume that F dominates G in the FSD sense, then for all t it happens
that S1(F,G) = ∅, in this way, for all 0 < ε < 0.5:

∫

S1

[F (t)−G(t)]dt = 0 ≤ ε

∫

S

|F (t)−G(t)|dt,
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and F dominates G in the ε − AFSD sense. Let us now assume that for all
0 < ε < 0.5, F dominates G in the ε − AFSD sense. If µ(S1) = 0, where µ
denotes the Lebesgue’s measure over R, then as F and G are non-decreasing and
continuous on the right functions, for all t, F (t) ≤ G(t), that is, F dominates G
in the FSD sense. If µ(S1) > 0 and there is no FSD, it will be proven that there
is no AFSD for some ε > 0.

It will be denoted by ε0 =
∫
S1

[F (t) − G(t)]dt > 0. For ε = ε0
2
∫
S
|F (t)−G(t)|dt

,

we have ε0 = 2ε
∫
S
|F (t) − G(t)|dt > ε

∫
S
|F (t) − G(t)|dt. That is, F does not

dominate G for any ε, as intended to prove.

Part 2 is analogous.

3. Financial Applications of Almost Stochastic

Dominance

Many authors argue that as the investment horizon increases, an investment
portfolio with a higher proportion of assets will dominate, or will be preferred
over a portfolio of predominantly government bonds, although this is not in accor-
dance with SD rules, that is, in this case there is some type of dominance, ASD.
Therefore, investors prefer long-term assets over bonds, moreover, as the invest-
ment horizon increases, the set of “almost all” investors becomes the set of “all”
the investors. (See Bernstein (1976), Leshno & Levy (2002) and Bali, Demirtas,
Levy & Wolf (2009)).3

Examples of this fact will be proposed.

Example 1. Let us consider two simple investments: one bond which has an
annual return of 9% with probability 1, and one asset which annual return of −5%
with probability 0.5, and 35% with probability 0.5. The target is defining what
type of investment is more attractive for investors. The fact mentioned above, will
be confirmed, as the horizon of the investment advances, the asset will be more
clearly preferred over bonds.

Let X be the random variable which represents the annual return of the asset
and let Y be the random variable which represents the annual return of the bond.
Let F be the distribution function of X , and G the distribution function of Y .
The return of the asset in the first year is X(1) = 1 + X0, being X0 the initial
capital destined to the investment in assets and for the case of the bonds, this will
be Y (1) = 1 + Y0 with Y0 the initial capital destined to the investment in bonds.
The return after n periods (years, in this case) will be X(n) =

∏n

i=1[1 +X(i)] and
Y (n) =

∏n

i=1[1 + Y (i)] in assets and bonds, respectively.

For this example, it will be assumed, without loss of generality, that X0 =
1 = Y0. The procedure that will be followed is to calculate, for each year n,
the possible returns of the investment in assets and bonds; this will provide a
series of values for random variables with their respective probabilities. After, the

3This will be clarified later.
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associated distributions will be calculated, they will be denoted as F (n) and G(n)

for the assets and bonds, respectively.

For example, for the first year, the returns obtained for the assets are:

1 u.m.

{
1− 0.05 ∗ 1 = 0.95 u.m.

1 + 0.35 ∗ 1 = 1.35 u.m.

where u.m. denotes monetary units, and for the bonds:

1 u.m. −→ 1 + 0.09 ∗ 1 = 1.09 u.m.

In this way:

F (1)(x) =





0, if x < 0.95

0.5, if 0.95 ≤ x < 1.35

1, if x ≥ 1.35

and

G(1)(x) =

{
0, if x < 1.09

1, if x ≥ 1.09

These distributions do not verify the FSD criterion because they intercept, as
shown in the graphic:
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Figure 2: Distributions F (1) and G(1).

For the second year, the returns on the investment in assets are:




0.95 u.m.

{
0.9025 u.m.

1.2825 u.m.

1.35 u.m.

{
1.2825 u.m.

1.8225 u.m.
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and for bonds:
1.09 u.m. −→ 1.1881 u.m.

Then:

F (2)(x) =





0, if x < 0.9025

1/4, if 0.9025 ≤ x < 1.2825

3/4, if 1.2825 ≤ x < 1.8225

1, if x ≥ 1.8225

and

G(2)(x) =

{
0, if x < 1.1881

1, if x ≥ 1.1881

In this case the graphic is:
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Figure 3: Distributions F (2) and G(2).

and so on.

Horizons of 1, 2, . . . , 10, 15 and 20 years will be considered, and it will be as-
sumed that the investment began in the first of these years. For each year, the
value ε will be calculated and it will be proven that this value decreases with the
time, reason for which investors will prefer assets to bonds.
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Figure 4: Distributions F (n) and G(n), with n = 1, . . . , 10, 15 and 20. As observed, the
area of violation of the FSD criterion, namely, the area in which F (n) is above
G(n)-A1 of the ε definition-, decreases to the extent that the horizon of the
investment increases, the value of ε also decreases, that is, as time increases,
investors will prefer assets to bonds.
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Figure 4: Continuation
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Next, ε values will be shown for each horizon of the investment. As shown in
the Table 1, these values decrease with time:

Table 1: ε values for each horizon of the investment.

Number of years ε

1 0.3500

2 0.2576

3 0.2125

4 0.1856

5 0.1406

6 0.1363

7 0.1132

8 0.0972

9 0.0919

10 0.0464

15 0.0414

20 0.0247

Comments at the beginning of this subsection will be explained. As verified,
ASD criteria have been used to establish a strong argument in favor of assets
over bonds. Let us consider an investor who maximizes expected profits in a
period T . Returns are supposed to be independent and identically distributed
(i.i.d.) and the investments are supposed to be constant along through time. It
is well known that, given different investments with i.i.d. returns and a large
enough investment planning horizon, the investment which has higher geometric
mean in returns (per period) almost certainly provides a greater benefit than
those with lower geometric mean. In the long run, the distribution function of
the investment that has a higher geometric mean is almost entirely to the right of
the other distributions that represent alternatives, that is, ε decreases with time,
as discussed throughout this section. However, there is some controversy in the
economic meaning of this fact. Latané (1959), Markowitz (1976) and Leshno &
Levy (2004), argue that the decrease in the value of ε is tied to an increase in the
range of investor preferences (U∗

1 (ε)), that is, they argue that in the long term,
all reasonable preferences (profits) are considered. Levy (2009), highlights this
fact, saying that, really as time goes by ε decreases (it has been shown in example
1), but the set U∗

1 (ε) does not increase. What happens is that as the periods of
the investment increase, the set of all possible values of the random variables also
increase, that is, set S is not a fixed set. Of course, if the set S is fixed, the set
U∗
1 (ε) increases, but the fact is that S is not fixed. If the last example is observed,

set S for the first year is: [0.95, 1.35], for the second year is [0.9025, 1.8225], for
the third year is [0.857375, 2.460375], etc.

In summary, there are two facts as time progresses: first ε decreases and this
causes an increase of set U∗

1 (ε), and on the other hand, S increases, causing that
for a given ε, the set U∗

1 (ε) decreases. The total effect over set U∗
1 (ε) is a mix
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between these two effects and this depends, on the kind of utility functions that
are used.

Definition 4. Given a set S, εu is defined as the higher value of ε for which the
utility function u still belongs to the set U∗

1 (ε), that is:

εu =

[
1 +

sup{u′(x), x ∈ S}

inf{u′(x), x ∈ S}

]−1

(8)

As S increases with time, coefficient sup{u′(x),x∈S}
inf{u′(x),x∈S} increases, and therefore, εu

decreases. Observe that εu shows the higher value of the area alloweb to violate
stochastic dominance criteria, for a given utility u such that u still belongs to the
set U∗

1 (ε). If ε > εu then u 6∈ U∗
1 (ε), otherwise u ∈ U∗

1 (ε). To be part or not of
the set U∗

1 (ε) depends on the speed of decrease of ε and εu, that is, the fact that ε
decreases is not enough to choose in the long term, it also depends on the utility
function.

Let us continue with the last example. Values of εu will be calculated for
different utility functions u.

Example 2. Let us continue with example 1. Utility functions u will be considered
and the associated values of εu, will be calculated.

Table 2: Values of ε and εu for each horizon of the investment.
Number εu εu εu εu

of ε u(x) = − exp−x u(x) = ln(x) u(x) = x
1−α

1−α
u(x) =

(x−0.2)1−α

1−α

years α = 4 α = 2

1 0.3500 0.4013 0.4130 0.1969 0.2984

2 0.2576 0.2849 0.3312 0.0567 0.1579

3 0.2125 0.1676 0.2584 0.0145 0.0780

4 0.1856 0.0754 0.1969 3.6030 ∗ 10−3 0.0373

5 0.1406 0.02389 0.1472 8.8595 ∗ 10−4 0.0176

6 0.1363 4.8769 ∗ 10−3 0.1083 2.1740 ∗ 10−4 8.2874 ∗ 10−3

7 0.1132 5.6743 ∗ 10−4 0.0787 5.3320 ∗ 10−5 3.8923 ∗ 10−3

8 0.0972 3.1390 ∗ 10−5 0.0567 1.3076 ∗ 10−5 1.8269 ∗ 10−3

9 0.0919 6.4004 ∗ 10−7 0.0406 3.2059 ∗ 10−6 8.5653 ∗ 10−4

10 0.0464 3.3717 ∗ 10−9 0.0289 7.8616 ∗ 10−7 4.0100 ∗ 10−4

15 0.0414 1.1114 ∗ 10−39 5.1121 ∗ 10−3 3.2858 ∗ 10−7 8.5647 ∗ 10−6

20 0.0247 3.8185 ∗ 10−176 8.8591 ∗ 10−4 6.1816 ∗ 10−13 1.5380 ∗ 10−7

For each representative column of values of ε and εu, the decrease mentioned
above may be observed. Now, if columns 2 and 3 are compared, it can be shown
that εu decreases faster than ε and for periods of 1 or 2 years, ε < εu, so
u(x) = − exp(−x) ∈ U∗

1 (ε), whereas periods strictly exceeding 2 years u(x) =
− exp(−x) 6∈ U∗

1 (ε). In this case, it is evidenced that the set U∗
1 (ε) does not nec-

essarily increase with time. For this type of utility functions, it is not possible to
reason as the authors previously mentioned. In case of working with log-utilities
the reasoning is analogous, but for horizons of 5 or less than 5 years, and more
than 5 years. In the case of columns 5 and 6, it is verified that ε > εu for the
analized periods, in these cases u(x) 6∈ U∗

1 (ε) for each studied period.
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Example 3. In this case, two financial data series will be considered, in particular
series of Ibex 354 and Nasdaq Composite indexes5 corresponding to years from 1926
to 2008. A similar construction as that in the previous example will be performed.
In this case, ǫ value is 0.3053, concluding that the Nasdaq series dominates Ibex
35 in a AFSD sense. The illustrative graphic is:
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Figure 5: Distributions F (1) and G(1) for Ibex and Nasdaq Composite.

4. Conclusions

There are different rules in the literature for comparing investments, for exam-
ple, Stochastic Dominance rules (SD), Mean-Variance (MV) and Almost Stochastic
Dominance (ASD).

SD rules are useful in different areas of knowledge and they arise in a natural
way from the need to make comparisons between different choices, using more
information available in some situations (distribution functions, density functions,
failure rate, etc.) than the mere comparison of averages or other numerical single
data.

However, in is situations it may be useful to compare certain functional re-
lationships dependent on means, variances or other measures of uncertainty (for
example in the efficient portfolio selection or the scope of the study of the utility).
In these cases, MV rules are used.

But sometimes, the use of SD or MV rules is not conducive to a specific selection
of an investment over another, consequently, other rules (ASD) arise in response

4The official index of the Spanish Continuous Market, which is comprised of the 35 most
liquid stocks traded on the market.

5A market-capitalization weighted index of the more than 3,000 common equities listed on
the Nasdaq stock exchange. The types of securities in the index include American depositary
receipts, common stocks, real estate investment trusts (REITs) and tracking stocks. The index
includes all Nasdaq listed stocks that are not derivatives, preferred shares, funds, exchange-traded
funds (ETFs) or debentures.
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to this need for selection. These rules (ASD) are intended to be an extension of
SD rules in cases where SD does not respond and they are defined in such manner
as to be a useful guide for selection for almost all decision-makers, hence its name.

This paper presents a review of the different classical rules for investment
decisions and the importance of ASD concepts selecting some investments over
others has been highlighted in cases where there was no clear relationship according
to SD and/or MV rules. Likewise, several examples have been proposed, in which
applying ASD rules, it has been able to make a clear selection of some investments
over others. It is important to note the selection made of Nasdaq Composite Index
over the Ibex 35, for an annual series from 1926 to 2008.

[

Recibido: septiembre de 2010 — Aceptado: julio de 2011
]

References

Almaraz, E. (2009), Cuestiones notables de ordenación estocástica en optimación
financiera, Tesis de Doctorado, Universidad Complutense de Madrid, Facul-
tad de Ciencias Matemáticas. Departamento de Estadística e Investigación
Operativa, Madrid.

Almaraz, E. (2010), Reglas de decisión en ambiente de riesgo, Tesis de Master, Uni-
versidad Nacional de Eduación a Distancia, Facultad de Ciencias Matemáti-
cas. Departamento de Estadística e Investigación Operativa, Madrid.

Bali, T., Demirtas, K., Levy, H. & Wolf, A. (2009), ‘Bond versus Stock: Investors’
Age and Risk Taking’, http://ssrn.com/abstract=936648 .

Baumol, W. (1963), ‘An expected gain-confidence limit criterion for portfolio se-
lection’, Management Science 10, 174–182.

Bernstein, P. (1976), ‘The time of your life’, Journal of Portfolio Management
2(4), 4–7.

Latané, H. (1959), ‘Criteria for choice among risky ventures’, Journal of Political
Economy 67(2), 144–155.

Leshno, M. & Levy, H. (2002), ‘Preferred by all and preferred by most decision
makers: almost stochastic dominance’, Management Science 48(8), 1074–
1085.

Leshno, M. & Levy, H. (2004), ‘Stochastic dominance and medical decision ma-
king’, Health Care Management Science 7, 207–2215.

Levy, M. (2009), ‘Almost stochastic dominance and stocks for the long run’, Eu-
ropean Journal of Operational Research 194, 250–257.

Markowitz, H. (1976), ‘Investment for the long run: New evidence for an old rule’,
Journal of Finance 31, 1273–1286.

Revista Colombiana de Estadística 34 (2011) 461–476



476 Elena Almaraz-Luengo

Shaked, M. & Shanthikumar, G. (2007), Stochastic Orders, Springer Series in
Statistics, Springer Series in Statistics.

Steinbach, M. C. (2001), ‘Markowitz revisited: Mean-variance models in financial
portfolio analysis’, SIAM Review 43(1), 31–85.

Revista Colombiana de Estadística 34 (2011) 461–476


	Introducción
	Main Results
	Financial Applications of Almost Stochastic Dominance
	Conclusions

