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Abstract

In this article, we study several properties such as marginal and condi-
tional distributions, joint moments, and mixture representation of the bivari-
ate generalization of the Kummer-Beta distribution. To show the behavior of
the density function, we give some graphs of the density for different values
of the parameters. Finally, we derive the exact and approximate distribu-
tion of the product of two random variables which are distributed jointly as
bivariate Kummer-Beta. The exact distribution of the product is derived as
an infinite series involving Gauss hypergeometric function, whereas the beta
distribution has been used as an approximate distribution. Further, to show
the closeness of the approximation, we have compared the exact distribution
and the approximate distribution by using several graphs. An application of
the results derived in this article is provided to visibility data from Colombia.

Key words: Beta distribution, Bivariate distribution, Dirichlet distribution,
Hypergeometric function, Moments, Transformation.

Resumen

En este articulo, definimos la funcién de densidad de la generalizaciéon bi-
variada de la distribucion Kummer-Beta. Estudiamos algunas de sus propie-
dades y casos particulares, asi como las distribuciones marginales y condi-
cionales. Para ilustrar el comportamiento de la funciéon de densidad, mostra-
mos algunos gréaficos para diferentes valores de los parametros. Finalmente,
encontramos la distribucion del producto de dos variables cuya distribucion
conjunta es Kummer-Beta bivariada y utilizamos la distribucién beta como
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una aproximacién. Ademés, con el fin de comparar la distribucién exacta
y la aproximada de este producto, mostramos algunos graficos. Se presenta
una aplicacién a datos climéticos sobre niebla y neblina de Colombia.

Palabras clave: distribucion Beta, distribucién bivariada, distribucion Dirich-
let, funcién hipergeométrica, momentos, transformacion.

1. Introduction

The beta random variable is often used for representing processes with natural
lower and upper limits. For example, refer to Hahn & Shapiro (1967). Indeed,
due to a rich variety of its density shapes, the beta distribution plays a vital role
in statistical modeling. The beta distribution arises from a transformation of the
F distribution and is typically used to model the distribution of order statistics.
The beta distribution is useful for modeling random probabilities and proportions,
particularly in the context of Bayesian analysis. Varying within (0, 1) the standard
beta is usually taken as the prior distribution for the proportion p and forms
a conjugate family within the beta prior-Bernoulli sampling scheme. A natural
univariate extension of the beta distribution is the Kummer-Beta distribution
defined by the density function (Gupta, Cardeno & Nagar 2001, Nagar & Gupta
2002, Ng & Kotz 1995),

T(a+c) 22711 —z) Lexp (—Az)

I'(a)I'(c) 1Fi(a;a+¢;—N) (1)

where a > 0,¢ > 0,0 <2z <1, —00o < A < oo and 1 F} is the confluent hypergeo-
metric function defined by the integral (Luke 1969),

1Fi(a;e;2) = I(e) ] /0 t*7 1 — )7 L exp(2t) dt,

(@) (c—a
Re(c) > Re(a) >0

(2)

The Kummer-Beta distribution can be seen as bimodal extension of the Beta
distribution (on a finite interval) and thus can help to describe real world phe-
nomena possessing bimodal characteristics and varying within two finite bounds.
The Kummer-Beta distribution is used in common value auctions where posterior
distribution of “value of a single good” is Kummer-Beta (Gordy 1998). Recently,
Nagar & Zarrazola (2005) derived distributions of product and ratio of two inde-
pendent random variables when at least one of them is Kummer-Beta.

The random variables X and Y are said to have a bivariate Kummer-Beta
distribution, denoted by (X,Y) ~ K B(a,b; ¢; A), if their joint density is given by

FleysabieN) = Clabic ey (1 -z =) Texp[-A@ +3)]  (3)
where x >0,y >0, 2+y<1,a>0,b>0,c>0, —0o <\ < oo and

I'la+b+c)

Cla,bse; \) = T(a)D(B)(c)

{1Fi(a+ba+b+c;—N)}" (4)
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For A = 0, the density (@) slides to a Dirichlet density with parameters a, b and
c. In Bayesian analysis, the Dirichlet distribution is used as a conjugate prior dis-
tribution for the parameters of a multinomial distribution. However, the Dirichlet
family is not sufficiently rich in scope to represent many important distributional
assumptions, because the Dirichlet distribution has few number of parameters. We
provide a generalization of the Dirichlet distribution with added number of param-
eters. Several other bivariate generalizations of Beta distribution are available in
Mardia (1970), Barry, Castillo & Sarabia (1999), Kotz, Balakrishnan & Johnson
(2000), Balakrishnan & Lai (2009), Hutchinson & Lai (1991), Nadarajah & Kotz
(2005), and Gupta & Wong (1985).

The matrix variate generalization of Beta and Dirichlet distributions have been
defined and studied extensively. For example, see Gupta & Nagar (2000).

It can also be observed that bivariate generalization of the Kummer-Beta dis-
tribution defined by the density (B)), belongs to the Liouville family of distributions
proposed by Marshall & Olkin (1979) and Sivazlian (1981), (also see Gupta & Song
(1996), Gupta & Richards (2001) and Song & Gupta (1997)).

In this article we study several properties such as marginal and conditional dis-
tributions, joint moments, correlation, and mixture representation of the bivariate
Kummer-Beta distribution defined by the density ([B). We also derive the exact
and approximate distribution of the product XY where (X,Y) ~ KB(a,b;c; \).
Finally, an application of the results derived in this article is provided to visibility
data about fog and mist from Colombia.

2. Properties

In this section we study several properties of the bivariate Kummer-Beta dis-
tribution defined in Section 1.

Using the Kummers relation,
1Fi(a; ¢ —2) = exp(—=2)1Fi(c — a;¢; 2) (5)
the density given in @) can be rewritten as

Cla, b c; A) exp(=N)z" 1y (1 -2 — ) exp[A(1 — 2 — y)] (6)

Expanding exp[A(1 — 2 — y)] in power series and rearranging certain factors,
the joint density of X and Y can also be expressed as

. =T +b+ol(c+j) N 2= Tgh=1 (1 — g — )
{1Fi(ca+b+c N} jzz:ol“(a—i—b—l—c—i—j)l“(c)j_! Bla,bc+ )
where

_ T@r@re)
B(a, B,7) = O ey
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Thus the bivariate Kummer-Beta distribution is an infinite mixture of Dirichlet
distributions.

In Bayesian probability theory, if the posterior distributions are in the same
family as the prior probability distribution, the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior. In case of multi-
nomial distribution, the usual conjugate prior is the Dirichlet distribution. If

P(r,s, flr,y) = (th;f)wrys(l —z—y)!

and
p(x,y) = Cla,b;; \a* 1y~ (1= 2 — )" exp[-A(z + y)]
where z > 0, y > 0, and x + y < 1, then

p(xy | rs f) =Clatrb+sict fi))

a+r—1, b+s—1 (1 —x

X T Y )Cﬂul

-y exp[—A(z + y)]

Thus, the bivariate family of distributions considered in this article is the con-
jugate prior for the multinomial distribution.

A distribution is said to be negatively likelihood ratio dependent if the density
f(z,y) satisfies

f(xr,y1) f(z2,92) < flo1,y2) f (22, 91)

for all ;1 > 3 and y1 > y2 (see Lehmann (1966)). In the case of bivariate
generalization of the Kummer-Beta distribution the above inequality reduces to

(I—a1—y)(I -2 —y2) < (I —21 —y2)(1 — 22 — y1)
which clearly holds. Hence, the bivariate distribution defined by the density (3] is
negatively likelihood ratio dependent.
If (X,Y) ~ KB(a,b;c;\), then Ng & Kotz (1995) have shown that Y/(X +
Y) and X + Y are mutually independent, Y/(X +Y) ~ B(b,a) and X +Y ~

KB(a + b;c; \). Here we give a different proof of this result based on angular
transformation.

Theorem 1. Let (X,Y) ~ KB(a,b;c;)\) and define X = R%cos?© and Y =

R?sin®@©. Then, R? and © are independent, R? ~ KB(a+ b;c; \) and sin? @ ~
B(b,a).

Proof. Using the transformation X = R%cos?’© and Y = R%sin?© with the
Jacobian J(x,y — 12,0) = 2r?cosfsin@, in the joint density of X and Y, we
obtain the joint density of R and © as

C(a,b;c; \) (r2)“+b(1 — 3 L exp(—Ar?)(cos 0)% ! (sin 9)2b_1, (7)

where 0 < 72 < 1 and 0 < 6 < 7/2. From (@), it is clear that R? and © are
independent. Now, transforming S = R? and U = sin?© with the Jacobian
J(r?,0 = s,u) = J(r? = 5)J(0 — u) = (4s) " [u(l — u)]~/2, above we get the
desired result. O
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We derive marginal and conditional distributions as follows.

Theorem 2. If (X,Y) ~ KB(a,b;c;\), then the marginal density of X is given
by

Ci(a,b;; A) exp(=Az)z* (1 —2)" T R (b + ;A1 —xz))  (8)
where 0 < x < 1 and

Tla+b+c)

Ci(a,b;c; \) = () (b +c)

{(iFi(a+bja+b+e—-N)}"

Proof. To find the marginal pdf of X, we integrate (B]) with respect to y to get
1—z
C(a,b; c; \) exp(—Az)z® ! / exp(=A\y)y’ L (1 — 2 — y)c_l dy
0
Substituting z = y/(1 — ) with dy = (1 — x) dz above, one obtains
1
C(a,b;c; Nzt exp(—Az)(1 — x)bJrC*l/ exp[—A(1 —z)z]2"" 1 (1 — 2) " dz (9)
0

Now, the desired result is obtained by using (2)). [l

Using the above theorem, the conditional density function of X given Y = y,
0 <y < 1, is obtained as

T(a+c) exp(=Az)z? (1 — 2 —y)° !
I(a)(c) (1 —y)*tehiFi(aia+ ¢ =A1—y))’

O<z<l—y

Graphs 1-6 of the density function for several values of a, b, ¢ and A correspond-
ing to six rows of Table [Il depicted in Figure [l show a wide range of densities.
For example, large values of a, b, ¢ give a density similar to a bivariate normal
density, whereas for small values of a, b, ¢ the density is close to a uniform density.

TABLE 1: Density functions for different values of a, b, ¢ and A.

Graph a b ¢ A
1 2 1 15 =50
2 2 2 50 =50
3 5 3 20 =50
4 2 1 20 =05
5 5 3 9.0 0.5
6 3 2 15 3.0
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FiGure 1: Density functions for different values of the parameters.

Further, using (@), the joint (r, s)-th moment is obtained as

1 l—x
E(X"Y?®) = C(a, b; c; /\)/ / exp[—Az + )]zt (1 — 2 — ) dyde
o Jo
)

B C(a,b;c; A

 Cla+rb+rc))

_Tla+nrL0+s)I(d) 1 Fi(a+b+r+sd+r+s—N)

- T(a)T(O)(d+7+s) 1F1(a+b;d; —\)
whered =a+b+c, a+r >0 and b+ s > 0. Now, substituting appropriately, we
obtain

glFl(a—i-b—l—l;d—i-l;—/\)

B(X) = d 1Fi(a+b;d; —\)

biFi(a+b+1;d+1;-))
E(Y)=-
( ) d 1F1(a+b;d;—/\)
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ala+1) 1Fi(a+b+2;d+2;-N)

E(X?) =
(%) d(d+1) 1Fi(a+b;d;—N)
B(Y?) — bb+1) 1Fi(a+b+2;d+2;—))
Cd(d+1) 1Fi(a+b;d;=N)
b F b+2;d+2;—
E(XY): a 1 1(CL+ +2;d+2; A)

d(d+1) 1Fi(a+b;d; —X)

abla+1)(b+1) 1F(a+b+4;d+4;-N)
d(d+1)(d+2)(d+3) 1Fi(a+byd;—)N)

B(X?Y?) =

Var(X) = a+11Fia+b+2d+2-)) a fiFi(atb+1;d+1;-\)°
Cd|d+1 1Fi(a+b;d; =) d 1Fi(a+b;d; —N)
Var(¥) Cb[b+1aFi(a+b+2d+2-)) b fiFi(atb+1ld+1-N)°
Cdld+1 1Fi(a+b;d; —N) d 1Fi(a+b;d; =)
and
Cov(X,Y) ab[1Fi(a+b+2d+2,-)) 1 [1F(a+b+lid+1;-)1)°
d | (d+1)1Fi(a+bdi—A) d 1Fi(a+b;d; =)

Notice that E(XY), E(X?), E(Y?), E(X) and E(Y) involve 1 F} («; i1; —\) which
can be computed using Mathematica by providing values of a, y and A. Table
provides correlations between X and Y for different values of a,b, ¢ and A. All the
tabulated values of correlation are negative because X and Y satisfy x+y < 1. As
can be seen, the choices of a,b small and ¢, \ large yield correlations close to zero,
whereas large values of a or b and small values of ¢ or A give small correlations.
Further, for fixed values of a,b and ¢, the correlation decreases as the value of A
increases. Likewise, for fixed values of a,b and A, the correlation decreases as ¢
increases.

3. Entropies

In this section, exact forms of Renyi and Shannon entropies are determined for
the bivariate Kummer-Beta distribution defined in this article.

Let (X, B, P) be a probability space. Consider a pdf f associated with P, dom-
inated by o—finite measure p on X'. Denote by Hsy(f) the well-known Shannon
entropy introduced in Shannon (1948). It is define by

Hen(f) = - /X F(@)log f(z) du (10)
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TABLE 2: Correlation for values of a, b, ¢ and A.
a b ¢ A= -5.000 —2.000 —1.000 —0.500 0.000 0.500 1.000 2.000 5.000

3.0 2.0 0.5 —0.936 —0.888 —0.862 —0.846 —0.828 —0.808 —0.785 —0.731 —0.494
1.0 2.0 1.0 —0.848 —0.717 —0.653 —0.616 —0.577 —0.536 —0.493 —0.406 —0.172
3.0 2.0 1.5 —0.819 —0.716 —0.670 —0.644 —0.617 —0.589 —0.559 —0.497 —0.304
5.0 3.0 2.0 —-0.799 —-0.723 —-0.690 —0.673 —0.655 —0.635 —0.616 —0.573 —0.433
0.5 1.0 1.5 —0.736 —0.499 —-0.406 —0.360 —0.316 —0.275 —0.237 —0.171 —0.055
1.0 2.0 2.0 —0.712 —0.543 —0.477 —-0.442 —0.408 —0.374 —0.341 —0.279 —0.135
0.5 1.0 2.0 —0.654 —0.414 —-0.332 —-0.294 —0.258 —0.225 —0.195 —0.144 —0.054
1.0 2.0 3.0 —0.598 —0.429 —0.371 —0.343 —0.316 —0.290 —0.265 —0.219 —0.118
2.0 4.0 5.0 —0.535 —0.428 —0.391 —-0.374 —0.356 —0.339 —0.322 —0.290 —0.204
2.0 2.0 5.0 —0.494 -0.365 —0.324 —-0.305 —-0.286 -—0.267 —0.250 —0.218 -—0.141
1.0 0.5 5.0 —-0.322 —-0.185 -0.151 -0.136 —0.123 —0.111 —0.100 —0.082 —0.046

One of the main extensions of the Shannon entropy was defined by Rényi
(1961). This generalized entropy measure is given by

log G(n)

- (forn >0and n#1) (11)

HR(T]a f) =

where
Gn) = [ 1

The additional parameter 7 is used to describe complex behavior in probability
models and the associated process under study. Rényi entropy is monotonically
decreasing in 7, while Shannon entropy (I0) is obtained from () for n 1 1.
For details see Nadarajah & Zografos (2005), Zografos and Nadarajah (2005) and
Zografos (1999).

First, we give the following lemma useful in deriving these entropies.

Lemma 1. Let g(a,b,c, \) = lim, 1 h(n), where

d
h(n) = d—anl(n(a—l—b—Q)+2;n(a+b+c—3)+3;—)\77) (12)

Then,

D(a+b+j)T(a+b+c) (=N
1I‘a+b (a+b+c+j) 4!
+(@+b+c—3)Yla+b+c)—(a+b—2)Y(a+D)

—(a+b+c—3)w(a+b+c+j)}

g(a,b,c, \)

[j+(a+b—2)¢(a+b+j)

(13)

where Y(a) =T"(a)/T(«) is the digamma function.
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Proof. Expanding 1 F} in series form, we write

d (o]
:d_z_(:)

where

_I'pla+b-2)+2+jnla+b+c—3)+3] ;
Agln) = Tin(a+b—2)+ 2]0[nla+b+c—3)+3+7]

Now, differentiating the logarithm of A;(n) w.r.t. to 7, one obtains

LA, = Aj(ﬁ)%+(0J+b—2)1/1(77(a+b—2)+2—|—j)
+a+b+c—3)(ma+b+c—3)+3)
—(a+b—2)¢(n(a+b—2)+2)
—(a+b+c—3)(nla+b+c—23)+3+7) (15)

Finally, substituting (I3 in (I4) and taking n — 1, one obtains the desired
O

result.

Theorem 3. For the bivariate Kummer-Beta distribution defined by the pdf (3),
the Rényi and the Shannon entropies are given by

Hiln.f) = 1= |nlogClabiciA) + logTlaa 1) + 1
+logDn(b—1) + 1] +log'n(c — 1) + 1]
—logT'n(a+b+c—3)+ 3

+logi1Fi(n(a+b—2)+2;n(a+b+c—3)+3;—= )| (16)

and

Hsu(f) = —logCla,b;¢;A) = [(a = 1)ip(a) + (b= 1) (b) + (¢ = 1)¢(c)

_ _ _ g(al’b7c’A)
(a+b+c—3)(a+b+ c) Tt batbron) (17)

respectively, where ¥(a) =T"(a)/T(«) is the digamma function and g(a,b,c, \) is

given by (I3).
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Proof. For n > 0 and n # 1, using the joint density of X and Y given by (@), we

have
1 11—z
Gn) = / / Py, b e \) da dy
0 0

1 11—z
= [C(a, b; c; /\)]77 / / xn(afl)yn(bfl)
0 0

(11— — )" Vexp[-nA(z + y)] dz dy
[C(a, bse; N)]"
Cna—1)+1,nb-1)+1L;n(c—1)+1;))
I(a+b+c)Tnla—1)+1Cnb-—1)+1Tn(c—1)+1]
I (a)T(b)I(c)T'n(a + b+ ¢ — 3) + 3]
X1F1(17(a+b—2)+2;n(a+b+c—3)+3;—)\n)
{1F1(a+b;a+b+c;—/\)}" ’

where the last line has been obtained by using @l). Now, taking logarithm of G(n)

and using (1)) we get ([IG). The Shannon entropy is obtained from (I6]) by taking
1 T 1 and using L’Hopital’s rule. O

4. Exact and Approximate Distribution of the
Product

If (X,Y) ~ KB(a,b;c; \), then Ng & Kotz (1995) have shown that X/(X +Y)
and X 4+Y are mutually independent, X/(X +Y) ~ B(a,b) and X +Y ~ KB(a+
b;c; A). In this section we derive the density of XY when (X,Y) ~ KB(a,b;c; \).
The distribution of XY, where X and Y are independent random variables, X ~
KB(a1,b1,\1) and Y ~ KB(ag,b2, \2) has been derived in Nagar & Zarrazola
(2005). In order to derive the density of the product we essentially need the integral
representation of the Gauss hypergeometric function given by Luke (1969),

1
oFi(a,b;e;z) = 7/ 7 1 =) (1 — zt) P e,
—a) Jo
Re(c) > Re(a) > 0, |arg(l — 2)| < 7. (18)
Theorem 4. If (X,Y) ~ KB(a,b;c; \), then the pdf of W = XY is given by

VrC(a,b;c; N) exp(—A) wb™1(1 — 4w)e—1/2
2a+c—b—1 (1 + m) b+c—a

i T(c+1) ( 1 —4w )Z
— T(c+1/2+4)20 \ 1+ 1 —4w
2¢/1 — 4w )

1
XoFy (c+i,c+b—a+i;2c+ 2i; ,0<w< - (19
o5 ( Sl (19)

4
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Proof . Making the transformation W = XY with the Jacobian J(z,y — x,w) =
=1 in @), we obtain the joint density of X and W as

b—1(_ .2 el
C(a,b;c; \) exp(—)\)w ( xb:;iva w) exp{
T

x

AN=z%+z— w)}

where p < z < ¢ with

1—-+v1—-4w 1++v1—-4w

2 ) q - 2 3

and 0 < w < 1/4. Now, expanding exp [)\(—x2 +z— w)/:v] in power series and
integrating x in the above expression, we obtain the marginal density of W as

Cla, b \) exp(_)\)wb—l/q [(x = p)g — )" exp (A(:v - pi(q - w)) e

b+c—a
P X

o0

3 (q o p)2i+2071)\i 1 thrifl(l o t)chifl dt
= C(a,b;c; \) exp(=N)w’™! P —— —
; grtremeil Jo 1t (1-p/)"tet

where we have used the substitution ¢ = (¢ — z)/(¢ — p). Now, evaluating the
above integral using (I8) and simplifying the resulting expression, we get the
desired result. (|

In the rest of this section, we derive the approximate distribution of the product
XY. It is clear from Theorem M that the random variable 4W = 4XY has
support on (0,1). We, therefore, are motivated to use the Beta distribution of two
parameters as an approximation to the exact distribution. Equating the first and
the second moments of 4W, with those of the Beta distribution with parameters
« and f, it is easy to see that

o= (20)

and

[E(W) — 4E(W?)][1 — 4B(W)]

= iR — B

The moments E(W) and E(W?2) are available in Section[2] and can be computed
numerically for given values of a, b, c and A\. To demonstrate the closeness of the
approximation we, in Figure 2] graphically compare the exact and approximated
pdf of 4W. First, for different values of the parameters (a, b, ¢, \) we compute the
corresponding estimates for («, (), using (20) and (2I). These estimates are given
in Table Bl and corresponding graphics are given in Figure 2 showing comparison
between exact and approximate densities. The exact pdf corresponds to the solid
curve and approximate pdf corresponds to the broken curve. It is evident that the
approximate density is quite close to the exact density.
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TABLE 3: Estimated values of o and £.
Figure «a b c A « B
1 3.0 1.0 0.5 05 0.9567 1.0527

2 3.0 1.0 3.0 0.5 0.9514 3.7098
3 3.0 3.0 10 05 26239 1.5259
4 0.5 05 1.0 1.0 0.2646 1.8184
5 3.0 3.0 1.0 1.0 2.5250 1.5410
6 3.0 3.0 05 3.0 22502 1.0365
2.5 8
5 5 7
g 2 g6
f1s ts
£0.5 g2
w w 1
i
(1) (2)
2 0
5 1.75 E
g 15 g °®
£1.25 £
$0.75 s 4
‘“; 0.5 é o
0.25 &
0 02 04 06 08 1
(3) (4) aw
2 2.5
5 1.75 =
g 15 g
£1.25 £
£0.75 2
‘“; 0.5 éo.
@ 0.25 @
0 02 04 06 08 1
(5) aw (6)

FIGURE 2: Graphics of the exact density function (solid curve) and the approximate
(broken curve).

5. Application

In this section, we consider the data of fog and mist collect from five Colombian
airports and present an application of the model given by (B).

Fog or mist is a collection of water droplets or ice crystals suspended in the
air at or near the Earth’s surface. The only difference between mist and fog is
visibility. The phenomenon is called fog if the visibility is one kilometer or less;
otherwise it is known as mist.
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We consider data available at the website of IDEAM (Institute Hydrology,
Meteorology and Environmental Studies, Colombia) collected from the following
5 major Colombian airports regarding the fog and mist:

e Ernesto Cortissoz Airport (Barranquilla)
e El Dorado Airport (Bogota)

e Alfonso Bonilla Aragon Airport (Cali)

e Rafael Nunez Airport (Cartagena)

e José Marfa Cordova Airport (Medellin)

The data comprises average number of days each month in which mist or fog
appeared during the period from 1975 to 1991. We consider the following variables:

X: the proportion of days with mist (the phenomenon weather provides a
visibility of more than 1 km)

Y': proportion of days with fog (the phenomenon weather provides a visibility
of 1 km or less)

In addition the following variables are of interest:
X +Y: proportion of days with the weather phenomenon (mist or fog)

X/(X +Y): proportion of days with visibility greater than 1 km with respect
to the total proportion of days exhibiting the phenomenon (mist or fog)

Y/(X +Y): proportion of days with visibility less than 1 km with respect to
the total proportion of days exhibiting the phenomenon (mist or fog)

Table [ gives the estimates of a, b, ¢ and A\, which were obtained using the
maximum likelihood method, and by implementing Fisher scoring method (Kotz
et al. (2000), p. 504). Table Bl gives estimated values of the moments E[X /(X +
V)], E[Y/(X +Y)] and E(X 4+ Y) for five airports.

TABLE 4: Estimated values of a, b, ¢ and A.

Airport a b c A
Barranquilla ~ 0.620 0.266 153.00 —176.0
Bogota 8.290 3.370 3.82 12.3
Cali 0.303 0.088 70.80 —944
Cartagena 0.206 0.091 396.00 —407.0
Medellin 12.300 6.580 3.41 18.5

6. Conclusions of the Application

As conclusions, we can say that the proportion of days with visibility less than 1
km with respect to the total number of days presenting the phenomenon is similar
for Barranquilla, Bogota and Cartagena airports. This ratio is a little lower for
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TABLE 5: Estimated values of the moments.

Airport EX/(X+Y) EY/(X+Y) EX+Y)
Barranquilla 0.700 0.300 0.129
Bogota 0.711 0.289 0.572
Cali 0.775 0.225 0.221
Cartagena 0.695 0.305 0.023
Medellin 0.651 0.349 0.675

the Cali and Medellin airports, the value of this ratio is higher. For example, we
can say that the airport at Barranquilla has 30% of total days (with phenomenon)
with fog. For Medellin, this percentage corresponds to 34.9% and for Cali to
22.5%. The proportion of days with phenomenon (mist or fog) is higher for the
Medellin airport followed by the Bogota airport. Cartagena airport presents the
lower proportion.

[Recibido: agosto de 2010 — Aceptado: agosto de 2011]
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