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Abstract

We investigate, via simulation study, the performance of the EM algo-
rithm for maximum likelihood estimation in finite mixtures of skew-normal
distributions with component specific parameters. The study takes into ac-
count the initialization method, the number of iterations needed to attain a
fixed stopping rule and the ability of some classical model choice criteria to
estimate the correct number of mixture components. The results show that
the algorithm produces quite reasonable estimates when using the method
of moments to obtain the starting points and that, combining them with the
AIC, BIC, ICL or EDC criteria, represents a good alternative to estimate the
number of components of the mixture. Exceptions occur in the estimation
of the skewness parameters, notably when the sample size is relatively small,
and in some classical problematic cases, as when the mixture components
are poorly separated.
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Resumen

El presente artículo muestra un estudio de simulación que evalúa el de-
sempeño del algoritmo EM utilizado para determinar estimaciones por máx-
ima verosimilitud de los parámetros de la mezcla finita de distribuciones nor-
males asimétricas. Diferentes métodos de inicialización, así como el número
de interacciones necesarias para establecer una regla de parada especificada
y algunos criterios de selección del modelo para permitir estimar el número
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apropiado de componentes de la mezcla han sido considerados. Los resul-
tados indican que el algoritmo genera estimaciones razonables cuando los
valores iniciales son obtenidos mediante el método de momentos, que junto
con los criterios AIC, BIC, ICL o EDC constituyen una eficaz alternativa en
la estimación del número de componentes de la mezcla. Resultados insatis-
factorios se verificaron al estimar los parámetros de simetría, principalmente
seleccionando un tamaño pequeño para la muestra, y en los casos conoci-
damente problemáticos en los cuales los componentes de la mezcla están
suficientemente separados.

Palabras clave: algoritmo EM, distribuciones asimétricas, mezcla de dis-
tribuciones.

1. Introduction

Finite mixtures have been widely used as a powerful tool to model heteroge-
neous data and to approximate complicated probability densities, presenting mul-
timodality, skewness and heavy tails. These models have been applied in several
areas like genetics, image processing, medicine and economics. For comprehensive
surveys, see McLachlan & Peel (2000) and Frühwirth-Schnatter (2006).

Maximum likelihood estimation in finite mixtures is a research area with several
challenging aspects. There are nontrivial issues, such as lack of identifiability and
saddle regions surrounding the possible local maxima of the likelihood. Another
problem is that the likelihood is possibly unbounded, which happens when the
components are normal densities.

There is a lot of literature involving mixtures of normal distributions, some
references can be found in the above-mentioned books. In this work we consider
mixtures of skew-normal (SN) distributions, as defined by Azzalini (1985). This
distribution is an extension of the normal distribution that accommodates asym-
metry.

The standard algorithm for maximum likelihood estimation in finite mixtures
is the Expectation Maximization (EM) of Dempster, Laird & Rubin (1977), see
also McLachlan & Krishnan (2008) and Ho, Pyne & Lin (2012). It is well known
that it has slow convergence and that its performance is strongly dependent on
the stopping rule and starting points. For normal mixtures, several authors have
computationally investigated the performance of the EM algorithm by taking into
account initial values (Karlis & Xekalaki (2003); Biernacki, Celeux & Govaert
(2003)), asymptotic properties (Nityasuddhi & Böhning 2003) and comparisons of
the standard EM with other algorithms (Dias & Wedel 2004).

Although there are some purposes to overcome the unboundedness problem in
the normal mixture case, involving constrained optimization and alternative algo-
rithms (see Hathaway (1985), Ingrassia (2004), and Yao (2010)), it is interesting to
investigate the performance of the (unrestricted) EM algorithm in the presence of
skewness in the component distributions, since algorithms of this kind have been
presented in recent works as Lin, Lee & Hsieh (2007), Lin, Lee & Yen (2007), Lin

Revista Colombiana de Estadística 35 (2012) 457–478



EM Initialization Methods and Model Choice Criteria for Mixtures of Skew-Normal 459

(2009), Lin (2010) and Lin & Lin (2010). Here, we employ the algorithm presented
in Basso, Lachos, Cabral & Ghosh (2010).

The goal of this work is to study the performance of the estimates produced
by the EM algorithm, taking into account the method of moments and a random
initialization method to obtain initial values, the number of iterations needed to
attain a fixed stopping rule and the ability of some classical model choice criteria
(AIC, BIC, ICL and EDC) to estimate the correct number of mixture components.
We also investigated the density estimation issue by analyzing the estimates of the
log-likelihood function at the true values of the parameters. The work is restricted
to the univariate case.

The rest of the paper is organized as follows. In Sections 2 and 3, for the sake
of completeness, we give a brief sketch of the skew-normal mixture model and of
estimation via the EM algorithm, respectively. In Section 4, the simulation study
about the initialization methods, the number of iterations and density estimation
are presented. The study concerning model choice criteria is presented in Section
5. Finally, in Section 6 the conclusions of our study are draw and additional
comments are given.

2. The Finite Mixture of SN Distributions Model

2.1. The Skew-Normal (SN) Distribution

The skew-normal distribution, introduced by (Azzalini 1985), is given by the
density

SN(y|µ, σ2, λ) = 2N(y|µ, σ2)Φ

(
λ
y − µ
σ

)
where N(·|µ, σ2) denotes the univariate normal density with mean µ ∈ R and
variance σ2 > 0 and Φ(·) is the distribution function of the standard normal
distribution. In this definition, µ, λ ∈ R and σ2 are parameters regulating location,
skewness and scale, respectively. For a random variable Y with this distribution,
we use the notation Y ∼ SN(µ, σ2, λ).

To simulate realizations of Y and to implement the EM-type algorithm a con-
venient stochastic representation is given by

Y = µ+ σδT + σ(1− δ2)1/2T1 (1)

where δ = λ/
√

1 + λ2, T = |T0|, T0 and T1 are independent standard normal
random variables and | · | denotes absolute value. (for proof see Henze (1986)). To
reduce computational difficulties related to the implementation of the algorithms
used for estimation, we use the parametrization

Γ = (1− δ2)σ2 and ∆ = σδ

which was first suggested by Bayes & Branco (2007). Note that (λ, σ2) → (∆,Γ)
is a one to one mapping. To recover λ and σ2, we use

λ = ∆/
√

Γ and σ2 = ∆2 + Γ
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Then, it follows easily from (1) that

Y |T = t ∼ N(µ+ ∆t,Γ) and T ∼ HN(0, 1) (2)

where HN(0, 1) denotes the half-normal distribution with parameters 0 and 1.

The expectation, variance and skewness coefficient of Y ∼ SN(µ, σ2, λ) are
respectively given by

E(Y ) = µ+ σ∆
√

2/π, V ar[Y ] = σ2

(
1− 2

π
δ2
)
, γ(Y ) =

κδ3

(1− 2
π δ

2)3/2
(3)

where κ = 4−π
2 ( 2

π )3/2 (see Azzalini (2005, Lemma 2)).

2.2. Finite Mixture of SN Distributions

The finite mixture of SN distributions model, hereafter FM-SN model, is de-
fined by considering a random sample y = (y1, . . . , yn)> from a mixture of SN
densities given by

g(yj |Θ) =

k∑
i=1

piSN(yj |θi), j = 1, . . . , n (4)

where pi ≥ 0, i = 1, . . . , k are the mixing probabilities,
∑k
i=1 pi = 1, θi =

(µi, σ
2
i , λi)

> is the specific vector of parameters for the component i and Θ =
((p1, . . . , pk)>, θ>1 , . . . , θ

>
k )> is the vector with all parameters.

For each j consider a latent classification random variable Zj taking values in
{1, . . . , k}, such that

yj |Zj = i ∼ SN(θi), P (Zj = i) = pi, i = 1, . . . , k; j = 1, . . . , n.

Then it is straightforward to prove, integrating out Zj , that yj has density (4). If
we combine this result with (2), we have the following stochastic representation
for the FM-SN model

yj |Tj = tj , Zj = i ∼ N(µi + ∆itj ,Γi),

Tj ∼ HN(0, 1),

P (Zj = i) = pi, i = 1, . . . , k; j = 1, . . . , n

where

Γi = (1− δ2i )σ2
i , ∆i = σiδi, δi = λi/

√
1 + λ2i , i = 1, . . . , k (5)

More details can be found in Basso et al. (2010) and references herein.
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3. Estimation

3.1. An EM-type Algorithm

In this section we present an EM-type algorithm for estimation of the param-
eters of a FM-SN distribution. This algorithm was presented before in Basso
et al. (2010) and we emphasize that, in order to do this, the representation (5)
is crucial. The estimates are obtained using a faster extension of EM called the
Expectation-Conditional Maximization (ECM) algorithm (Meng & Rubin 1993).
When applying it to the FM-SN model, we obtain a simple set of closed form ex-
pressions to update a current estimate of the vector Θ, as we will see below. It is
important to emphasize that this procedure differs from the algorithm presented
by Lin, Lee & Yen (2007), because in the former case the updating equations
for the component skewness parameter have a closed form. In what follows we
consider the parametrization (5), and still use Θ to denote the vector with all
parameters.

Let Θ̂(m) = ((p̂
(m)
1 , . . . , p̂

(m)
k )>, (θ̂

(m)
1 )>, . . . , (θ̂

(m)
k )>)> be the current estimate

(at the mth iteration of the algorithm) of Θ, where θ̂(m)
i = (µ̂

(m)
i , ∆̂

(m)
i , Γ̂

(m)
i )>.

The E-step of the algorithm is to evaluate the expected value of the complete data
function, known as the Q−function and defined as

Q(Θ|Θ̂(m)) = E[`c(Θ)|y, Θ̂(m)]

where `c(Θ) is the complete-data log-likelihood function, given by

`c(Θ) = c+

n∑
j=1

k∑
i=1

zij

(
log pi −

1

2
log Γi −

1

2Γi
(yj − µi −∆itj)

2

)

where zij is the indicator function of the set (Zj = i) and c is a constant that
is independent of Θ. The M-step consists in maximizing the Q-function over Θ.
As the M-step turns out to be analytically intractable, we use, alternatively, the
ECM algorithm, which is an extension that essentially replaces it with a sequence
of conditional maximization (CM) steps. The following scheme is used to obtain
an updated value Θ̂(m+1). We can find more details about the conditional expecta-
tions involved in the computation of the Q-function and the related maximization
steps in Basso et al. (2010). Here, φ denotes the standard normal density and we
employ the following notations

ẑij = E[Zij |yj ; Θ̂], ŝ1ij = E[ZijTj |yj ; Θ̂] and ŝ2ij = E[ZijT
2
j |yj ; Θ̂]
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E-step: Given a current estimate Θ̂(m), compute ẑij , ŝ1ij and ŝ2ij , for j =
1, . . . , n and i = 1, . . . , k, where:

ẑ
(m)
ij =

p̂
(m)
i SN(yj |θ̂(m)

i )∑k
i=1 p̂

(m)
i SN(yj |θ̂(m)

i )
(6)

ŝ
(m)
1ij = ẑ

(m)
ij

µ̂(m)
Tij

+

φ

(
µ̂(m)

Tij
/σ̂(m)

Ti

)
Φ

(
µ̂
(m)
Tij

/σ̂
(m)
Ti

) σ̂(m)
Ti



ŝ
(m)
2ij = ẑ

(m)
ij

(µ̂(m)
Tij

)2 + (σ̂(m)
Ti

)2 +

φ

(
µ̂(m)

Tij
/σ̂(m)

Ti

)
Φ

(
µ̂
(m)
Tij

/σ̂
(m)
Ti

) µ̂(m)
Tij

σ̂(m)
Ti


µ̂(m)

Tij
=

∆̂
(m)
i

Γ̂
(m)
i + (∆̂

(m)
i )2

(yj − µ̂(m)
i ),

σ̂(m)
Ti

=

(
Γ̂
(m)
i

Γ̂
(m)
i + (∆̂

(m)
i )2

)1/2

CM-steps: Update Θ̂(m) by maximizing Q(Θ|Θ̂(m)) over Θ, which leads to
the following closed form expressions:

p̂
(m+1)
i = n−1

n∑
j=1

ẑ
(m)
ij

µ̂i
(m+1) =

∑n
j=1(yj ẑ

(m)
ij − ∆̂

(m)
i ŝ

(m)
1ij )∑n

j=1 ẑ
(m)
ij

Γ̂
(m+1)
i =

∑n
j=1(ẑ

(m)
ij (yj − µ̂(m+1)

i )2 − 2(yj − µ̂(m+1)
i )∆̂

(m)
i ŝ

(m)
1ij + (∆̂

(m)
i )2ŝ

(m)
2ij )∑n

j=1 ẑ
(m)
ij

∆̂
(m+1)
i =

∑n
j=1(yj − µ̂(m+1)

i )ŝ
(m)
1ij∑n

j=1 ŝ
(m)
2ij

The algorithm iterates between the E and CM steps until a suitable convergence
rule is satisfied and several rules are proposed in the literature (see e.g., McLachlan
& Krishnan (2008)). In this work our rule is to stop the process at stage m when
|`(Θ̂(m+1))/`(Θ̂(m))− 1| is small enough.

3.2. Some Problems with Estimation in Finite Mixtures

It is well known that the likelihood of normal mixtures can be unbounded
(see e.g., Frühwirth-Schnatter 2006, Chapter 6) and it is not difficult to verify
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that the FM-SN models also have this feature. One way to circumvent the un-
boundedness problem is the constrained optimization of the likelihood, imposing
conditions on the component variances in order to obtain global maximization
(see e.g., Hathaway 1985, Ingrassia 2004, Ingrassia & Rocci 2007, Greselin &
Ingrassia 2010). Thus, following Nityasuddhi & Böhning (2003), we investigate
only the performance of the EM algorithm when considered component specific
parameters (that is, unrestricted) of the mixture and we mention the estimates
produced by the algorithm of section 3.1 as “EM estimates”, that is, some sort of
solution of the score equation, instead of “maximum likelihood estimates”.

Another nontrivial issue is the lack of identifiability. Strictly speaking, finite
mixtures are always non-identifiable because an arbitrary permutation of the labels
of the component parameters lead to the same finite mixture distribution. In
the finite mixture context, a more flexible concept of identifiability is used (see,
Titterington, Smith & Makov 1985, Chapter 3 for details). The normal mixture
model identifiability was first verified by Yakowitz & Spragins (1968), but it is
interesting to note that subsequent discussions in the related literature concerning
mixtures of Student-t distributions (see e.g., Peel & McLachlan 2000, Shoham
2002, Shoham, Fellows & Normann 2003, Lin, Lee & Ni 2004) do not present
a formal proof of its identifiability. It is important to mention that the non-
identifiability problem is not a major one if we are interested only in the likelihood
values, which are robust to label switching. This is the case, for example, when
density estimation is the main goal.

4. A Simulation Study of Initial Values

4.1. Description of the Experiment

It is well known that the performance of the EM algorithm is strongly depen-
dent on the choice of the criterion of convergence and starting points. In this
work we do not consider the stopping rule issue, we adopt a fixed rule to stop the
process at stage m when ∣∣∣∣∣`(Θ̂(m+1))

`(Θ̂(m))
− 1

∣∣∣∣∣ < 10−6

because we believe that this tolerance for the change in `(Θ̂) is quite reasonable in
the applications where the primary interest is on the sequence of the log-likelihood
values rather than the sequence of parameter estimates (McLachlan & Peel 2000,
Section 2.11).

In the mixture context, the choice of starting values for the EM algorithm is
crucial because, as noted by Dias & Wedel (2004), there are various saddle regions
surrounding the possible local maximum of the likelihood function, and the EM
algorithm can be trapped in some of these subsets of the parameter space.

In this work, we make a simulation study in order to compare some methods
to obtain starting points for the algorithm proposed in section 3.1, where an inter-
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esting question is to investigate the performance of the EM algorithm with respect
to the skewness parameter estimation for each component density in the FM-SN
model. We consider the following methods to obtain initial values:

The Random Values Method (RVM): we first divide the generated random
sample into k sub-samples employing the k-means method. The initialization of
k-means algorithm is random, being recommended to adopt many different choices
and we employ five random initializations (see Hastie, Tibshirani & Friedman 2009,
Section 14.3). Let ϕi be the sub-sample i. Consider the following points artificially
generated from uniform distributions over the specified intervals

ξ̂
(0)
i ∼ U(min {ϕi},max {ϕi})

ω̂
(0)
i ∼ U(0, var{ϕi}) , (7)

γ̂
(0)
i ∼ sgn(sc{ϕi})× |U(−0.9953, 0.9953)|

where min {ϕi}, max {ϕi}, var{ϕi} and sc{ϕi} denote, respectively, the mini-
mum, the maximum, the sample variance and the sample skewness coefficient of
ϕi, i = 1, .., k, also | · | denotes absolute value. These quantities are taken as
rough estimates for the mean, variance and skewness coefficient associated to sub-
population i, respectively. The suggested form for γ̂(0)i is due to the fact that
the range for the skewness coefficient in SN models is (−0.9953, 0.9953) and to
maintain the sign of the sample skewness coefficient.

The starting points for the specific component locations, scale and skewness
parameters are given respectively by

µ̂
(0)
i = ξ̂

(0)
i −

√
2/πδ

(λ̂
(0)
i )
σ̂
(0)
i

σ̂
(0)
i =

√√√√ ω̂
(0)
i

1− 2
π δ

2

(λ̂
(0)
i )

(8)

λ̂
(0)
i = ±

√√√√ π(γ̂
(0)
i )2/3

21/3(4− π)2/3 − (π − 2)(γ̂
(0)
i )2/3

where δ
(λ̂

(0)
i )

= λ̂
(0)
i /

√
1 + (λ̂

(0)
i )2, i = 1, .., k and the sign of λ̂(0)i is the same of

γ̂
(0)
i . They are obtained by replacing E(Y ), V ar(Y ) and γ(Y ) in (3) with their

respective estimators in (7) and solving the resulting equations in µi, σi and λi.
The initial values for the weights pi are obtained as

(p̂
(0)
1 , . . . , p̂

(0)
k ) ∼ Dirichlet(1, . . . , 1)

a Dirichlet distribution with all parameters equal to 1, namely, a uniform distri-
bution over the unit simplex

{
(p1, . . . , pk); pi ≥ 0,

∑k
i=1 pi = 1

}
.

Method of Moments (MM): the initial values are obtained using equations (8),
but replacing ξ̂(0)i , ω̂(0)

i and γ̂(0)i with the mean, variance and skewness coefficient
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of sub-sample i, i = 1, ..k, with the k sub-samples obtained by the k-means method
with five random initializations . Let n be the sample size and ni be the size of
sub-sample i. The initial values for the weights are given by

p̂
(0)
i =

ni
n
, i = 1, .., k.

We generated samples from the FM-SN model with k = 2 and k = 3 compo-
nents, with sizes fixed as n = 500; 1000; 5000 and 1,0000. In addition, we consider
different degree of heterogeneity of the components, for k = 2 the “moderately
separated” (2MS), “well separated” (2WS) and “poorly separated” (2PS) cases
and for k = 3 the “two poorly separated and one well separated” (3PWS) and
the “three well separated” (3WWS) cases. These degrees of heterogeneity were
obtained informally, based on the location parameter values and the reason to
consider them as an factor to our study is that the convergence of the EM algo-
rithm is typically affected when the components overlap largely (see Park & Ozeki
(2009) and the references herein). In Table 1 the parameters values used in the
study are presented and the figures 1 and 2 show some histograms exemplifying
these degrees of heterogeneity.

Table 1: Parameters values for FM-SN models
Case p1 µ1 σ2

1 λ1 p2 µ2 σ2
2 λ2 p3 µ3 σ2

3 λ3
2MS 0.6 5 9 6 0.4 20 16 −4

2WS 0.6 5 9 6 0.4 40 16 −4

2PS 0.6 5 9 6 0.4 15 16 −4

3PWS 0.4 5 9 6 0.3 20 16 −4 0.3 28 16 4
3WWS 0.4 5 9 6 0.3 30 16 −4 0.3 38 16 4
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Figure 1: Histograms of FM-SN data: (a) 2MS, (b) 2WS and (c) 2PS.
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Figure 2: Histograms of FM-SN data: (a) 3PWS and (b) 3WWS.

For each combination of parameters and sample size, samples from the FM-
SN model were artificially generated and we obtained estimates of the parameters
using the algorithm presented in section 3.1 initialized by each method proposed.
This procedure was repeated 5,000 times and we computed the bias and mean
squared error (MSE) over all samples, which for µi are defined as

bias =
1

5, 000

5,000∑
j=1

µ̂
(j)
i − µi and MSE =

1

5, 000

5,000∑
j=1

(µ̂
(j)
i − µi)

2,

respectively, where µ̂(j)
i is the estimate of µi when the data is sample j. Definitions

for the other parameters are obtained by analogy. All the computations were made
using the R system (R Development Core Team 2009) and the implementation of
the EM algorithm was computed by employing the R package mixsmsn (Cabral,
Lachos & Prates 2012), available on CRAN.

As a note about implementation, an expected consequence of the non-identifia-
bility cited in section 3.2 is the permutation of the component labels when using
the k-means method to perform an initial clustering of the data. This label-
witching problem seriously affects the determination of the MSE and consequently
the evaluation of the consistency of the estimates (on this issue see e.g Stephens
2000). To overcome this problem we adopted an order restriction on the initial
values of the location parameters and estimates for all parameters were sorted
according to their true values before computing the bias and MSE. We emphasize
that we employ this order restriction order to ensure the determination of the
MSE, impartially, to compare the initialization methods.
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4.2. Bias and Mean Squared Error (MSE)

Tables 2 and 3 present, respectively, bias and MSE of the estimates in the 2MS
case. From these tables, we can see that, with both methods, the convergence of
the estimates is evidenced, as we can conclude observing the decreasing values of
bias and MSE when the sample size increases. They also show that the estimates of
the weights pi and of the location parameters µi have lower bias and MSE. On the
other side, investigating the MSE values, we can note a different pattern of (slower)
convergence to zero for the skewness parameters estimates. It is possibly due to
well known inferential problems related to the skewness parameter (DiCiccio &
Monti 2004), suggesting the use of larger samples in order to attain the consistency
property.

When we analyze the initialization methods performances, we can see that the
MM showed better performance than the RVM, for all sample sizes and parameters.
When using the RVM, in general, the absolute value of the bias and MSE of the
estimates of σ2

i and λi are very large compared with that obtained using the
MM. In general, according to our criteria, we can conclude that the MM method
presented a satisfactory performance in all situations.

Table 2: Bias of the estimates - two moderately separated (2MS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.14309 −0.39956 −0.45779 1.30675 1.32753 −1.10056 0.01927 −0.01927
MM −0.01842 −0.02842 0.39275 −0.12159 1.05604 −0.37835 0.00159 0.00159

1000 RVM 0.10815 −0.33814 −0.26339 1.09304 0.61695 −0.60402 0.01599 −0.01599
MM −0.02194 −0.01214 0.39285 −0.25737 0.58058 −0.10558 0.00212 −0.00212

5000 RVM 0.10776 −0.26897 −0.21237 0.68574 0.27081 −0.10679 0.01412 −0.01412
MM −0.02641 −0.01109 0.35592 −0.45453 0.44153 0.04753 0.00283 0.00283

10000 RVM 0.09904 −0.28784 −0.19722 0.67306 0.29762 0.04354 0.01451 −0.01451
MM −0.02783 −0.01026 0.35406 −0.44957 0.42318 0.05692 0.00275 0.00275

Table 3: MSE of the estimates - two moderately separated (2MS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.69489 2.62335 5.70944 74.43050 55.24861 108.27990 0.00797 0.00797

MM 0.01509 0.09895 1.81950 13.41757 8.11938 5.48844 0.00071 0.00071

1000 RVM 0.49336 2.34634 4.40063 64.12685 13.10896 44.12675 0.00651 0.00651

MM 0.00732 0.03158 0.99780 6.14854 1.94043 0.72317 0.00035 0.00035

5000 RVM 0.51481 1.91370 2.94570 44.01847 12.20841 7.70399 0.00544 0.00544

MM 0.00203 0.00611 0.30162 1.24062 0.45855 0.11495 7.41e-05 7.41e-05
10000 RVM 0.48098 2.14718 3.13302 38.22046 10.01400 4.01044 0.00564 0.00564

MM 0.00141 0.00598 0.22876 0.71719 0.30481 0.06338 3.97e-05 3.97e-05

The bias and MSE of the estimates for the 2WS case are presented in tables
4 and 5, respectively. As in the 2MS case, their values decrease when the sample
size increases. Comparing the initialization methods, we can see again the poor
performance of RVM, notably when estimating σ2

i and λi. The performance of
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Table 4: Bias of the estimates - two well separated (2WS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.12911 −0.43583 −0.29445 7.32555 1.49636 −0.96377 0.01053 −0.01053
MM −0.01943 −0.00087 0.12457 0.09558 0.78816 −0.51038 −0.00013 0.00013

1000 RVM 0.11189 −0.39592 −0.24494 6.83576 1.06715 −0.42096 0.00938 −0.00938
MM −0.01896 0.00764 0.11564 0.09444 0.50192 −0.2533 0.00031 0.00031

5000 RVM 0.20668 −0.61846 −0.33728 8.68389 0.57418 −0.26060 0.01440 −0.01440
MM −0.01863 0.00770 0.10208 0.09145 0.29384 −0.09125 3.87e-05 −3.87e-05

10000 RVM 0.24109 −0.64407 −0.33492 8.68057 0.37535 −0.15859 0.01457 −0.01457
MM −0.01791 0.00615 0.10220 0.08006 −0.27967 −0.07295 −8.37e-05 8.37e-05

Table 5: MSE of the estimates - two well separated (2WS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.95939 6.72054 2.57082 2314.91800 204.77300 121.73630 0.00466 0.00466

MM 0.01411 0.08918 0.86552 5.30267 4.67931 6.21511 0.00047 0.00047

1000 RVM 0.86198 6.26880 2.01054 2385.87300 157.64460 38.02320 0.00411 0.00411

MM 0.00705 0.05053 0.45151 2.58499 1.64592 0.88093 0.00024 0.00024

5000 RVM 1.62846 10.58635 2.33173 2366.03700 80.19515 32.81540 0.00577 0.00577

MM 0.00164 0.03406 0.62874 0.11866 0.30607 0.16967 4.79e-05 4.79e-05
10000 RVM 2.18692 10.97898 2.35874 2324.93000 31.51082 26.92428 0.00587 0.00587

MM 0.00099 0.03115 0.07153 0.37187 0.18739 0.10765 2.36e-05 2.36e-05

Table 6: Bias of the estimates - two poorly separated (2PS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 0.54135 −3.05044 −6.45635 −4.92197 0.54115 3.93878 0.10598 −0.10598
MM 0.67462 −2.97859 −6.68560 −5.96459 3.41267 4.80134 0.09124 −0.09124

1000 RVM 0.47419 −3.24148 −6.49341 −5.12707 −0.84129 3.81489 0.09821 −0.09821
MM 0.67263 −2.76804 −6.44084 −5.94106 −1.59226 4.52825 0.09288 −0.09288

5000 RVM 0.11827 −3.38188 −6.31995 −4.61048 −0.32021 4.27876 0.10485 −0.10485
MM 0.43959 −2.63605 −6.54154 −5.28364 −1.61009 4.58531 0.10837 −0.10837

10000 RVM −0.01664 −3.32212 −6.26154 −4.56424 0.04022 4.33918 0.10793 −0.10793
MM 0.34272 −2.58084 −6.36467 −5.15910 −0.35239 4.26839 0.11364 −0.11364

Table 7: MSE of the estimates - two poorly separated (2PS).
n Method µ̂1 µ̂2 σ̂2

1 σ̂2
2 λ̂1 λ̂2 p̂1 p̂2

500 RVM 1.53553 12.77114 44.60716 61.74994 196.12690 48.65583 0.02622 0.02622

MM 1.56413 10.28718 46.61793 49.10880 343.77230 30.24965 0.01746 0.01746

1000 RVM 1.67311 14.41824 44.47786 63.53965 56.47113 51.72255 0.02561 0.02561

MM 1.39797 8.39757 42.72479 49.20213 25.63282 30.17503 0.01755 0.01755

5000 RVM 1.91642 16.52284 42.21555 60.68243 84.34230 37.77900 0.02987 0.02987

MM 0.72188 7.45145 43.16745 35.72524 17.52604 25.12349 0.01734 0.01734

10000 RVM 2.18807 16.37261 41.17759 57.61406 117.18120 37.92872 0.02981 0.02981

MM 0.48657 7.39552 41.31111 32.51687 19.04316 19.12946 0.01783 0.01783
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Table 8: Bias of the estimates - two poorly separated and one well separated (3PWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 3.86197 −2.22030 0.34248 0.02341 0.01208 −0.03549
MM −0.02634 −0.07339 0.00338 0.49861 −1.95137 1.98042

1000 RVM 0.13962 −0.32733 0.06264 −0.43484 −1.79386 4.25781

MM −0.02324 −0.04743 −0.01057 0.35349 −1.50284 1.19124

5000 RVM 0.09945 −0.27154 0.06481 −0.25861 −1.36352 3.16178

MM −0.02336 −0.04234 −0.01724 0.43048 −0.91359 0.40114

10000 RVM 0.08625 −0.25897 0.04110 −0.23192 −1.23694 3.24305

MM −0.02290 −0.04478 −0.01054 0.42927 −0.74921 0.32357

Table 9: Bias of the estimates - two poorly separated and one well separated (3PWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 3.86197 −2.22029 0.34248 0.02341 −0.03549 0.01208

MM 2.78183 −1.00171 0.37213 0.00378 −0.01641 0.01263

1000 RVM 1.46755 −0.59057 0.17228 0.01745 −0.02687 0.00941

MM 0.92051 −0.11912 0.22981 0.00218 −0.01139 0.00917

5000 RVM 0.66370 −0.05447 0.02601 0.01554 −0.01996 0.00441

MM 0.57731 0.10412 0.13295 0.00285 −0.00614 0.00328

10000 RVM 0.53239 0.12565 0.01455 0.01376 −0.01651 0.00274

MM 0.53269 0.10807 0.11858 0.00261 −0.00474 0.00212

Table 10: MSE of the estimates - two poorly separated and one well separated (3PWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 0.73592 4.19665 1.33364 7.66927 13.88521 443.83960

MM 0.02326 0.11884 0.10291 2.91056 9.62248 16.26670

1000 RVM 0.63416 3.13945 1.31999 5.46298 9.99991 335.50440

MM 0.01062 0.12819 0.04066 1.56864 5.58594 6.68605

5000 RVM 0.46937 2.92722 1.35910 4.07581 5.74955 360.56410

MM 0.00305 0.08728 0.00844 0.68559 1.76444 5.77978

10000 RVM 0.38973 2.83554 1.24776 3.41887 5.16622 349.93790

MM 0.00204 0.07621 0.00434 0.54306 1.11403 3.81096

Table 11: MSE of the estimates - two poorly separated and one well separated (3PWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 401.77671 659.16871 15.66503 0.00691 0.00077 0.00633

MM 89.47438 57.35417 2.67579 0.00068 0.00043 0.00056

1000 RVM 74.62215 95.01346 8.04131 0.00553 0.00053 0.00506

MM 3.92305 1.23581 0.88842 0.00033 0.00022 0.00027

5000 RVM 19.78691 120.88661 1.57637 0.00433 0.00021 0.00427

MM 0.73751 0.30914 0.18520 7.20e-05 3.75e-05 6.93e-05
10000 RVM 18.46118 7.03221 1.60081 0.00417 0.00031 0.00363

MM 0.50922 0.24319 0.09469 4.23e-05 1.82e-05 4.10e-05
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Table 12: Bias of the estimates - three well separated (3WWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 0.24221 −0.48999 0.07992 −0.70713 −1.98125 11.24986

MM −0.02717 −0.02233 0.00361 0.19686 −1.50136 1.60453

1000 RVM 0.24327 −0.49722 0.04203 −0.63272 −1.46754 9.55012

MM −0.02742 −0.01908 −0.01276 0.10826 −0.97860 1.18908

5000 RVM 0.33293 −0.67092 0.01975 −0.65223 −1.02971 10.20861

MM −0.02265 −0.01872 −0.01604 0.11568 −0.39018 0.58417

10000 RVM 0.33457 −0.80115 −0.07909 −0.63707 −0.90179 8.87343

MM −0.02328 −0.01509 −0.01704 0.10738 −0.28876 0.43182

Table 13: Bias of the estimates - three well separated (3WWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 3.63818 −0.59785 0.16417 0.02216 0.01369 −0.03586
MM 1.98187 −0.83366 0.31660 −0.00014 0.01385 −0.01371

1000 RVM 1.68173 −0.44696 0.07427 0.02026 0.00987 −0.03014
MM 0.83325 −0.29503 0.25427 9.95e-05 0.00977 −0.00987

5000 RVM 0.85209 −0.16743 0.11006 0.02449 0.00285 −0.02735
MM 0.38848 −0.08961 0.12745 −1.00e-05 0.00435 −0.00434

10000 RVM 0.45846 0.06753 0.13875 0.02299 0.00213 −0.02512
MM 0.34917 −0.04635 0.10236 −1.45-e05 0.00308 −0.00306

Table 14: MSE of the estimates - three well separated (3WWS).
n Method µ̂1 µ̂2 µ̂3 σ̂2

1 σ̂2
2 σ̂2

3

500 RVM 1.92196 9.35109 2.52362 6.19796 10.97185 1848.86500

MM 0.02247 0.17468 0.09472 1.43362 6.87787 8.26021

1000 RVM 2.02266 10.57483 2.68414 5.17628 9.12883 1517.61500

MM 0.01091 0.14971 0.04303 0.79533 3.51761 3.92717

5000 RVM 2.93899 12.82373 3.23907 5.17035 8.56857 1510.38300

MM 0.00249 0.14126 0.00836 0.21648 0.89455 0.81992

10000 RVM 3.08463 14.30240 2.85946 4.53532 9.51754 1383.25000

MM 0.00156 0.13665 0.00412 0.17027 0.79811 0.42657

Table 15: MSE of the estimates - three well separated (3WWS).
n Method λ̂1 λ̂2 λ̂3 p̂1 p̂2 p̂3

500 RVM 361.45080 31.09128 9.18895 0.00727 0.00102 0.00712

MM 34.37280 18.59549 2.08116 0.00047 0.00042 0.00041

1000 RVM 132.29800 28.30730 3.20316 0.00656 0.00089 0.00632

MM 3.81642 0.92243 1.51732 0.00024 0.00022 0.00021

5000 RVM 41.27475 23.97153 1.03027 0.00845 0.00111 0.00684

MM 0.50781 0.30959 0.18493 4.86e05 4.15e-05 4.15e-05
10000 RVM 22.70630 10.52715 1.66676 0.00754 0.00091 0.00647

MM 0.30177 0.29030 0.08916 2.41e-05 2.11e-05 2.07e-05
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MM is satisfactory and we can say that, in general, the conclusions made for the
2MS case are still valid here.

We present the results for the 2PS case in tables 6 and 7. Bias and MSE
are larger than in the 2MS and 2WS cases (for all sample sizes) with both me-
thods. Also, the consistency of the estimates seems to be unsatisfactory, clearly
not attained in the σ2

i and λi cases. According to the related literature, such
drawbacks of the algorithm are expected when the population presents a remarka-
ble homogeneity. An exception is made when the initial values are closer to the
true parameter values see, for example, McLachlan & Peel (2000) and the above-
mentioned work of Park & Ozeki (2009).

For the 3PWS case the results for the bias are shown in tables 8 and 9 and
for the MSE in tables 10 and 11. It seems that consistency is achieved for p̂i, µ̂i
and σ̂2

i , using MM. However, this is not the behavior for λ̂i. This instability is
common to all initialization methods, according to the MSE criterion. Using the
RVM method we obtained, as before, larger values of bias and MSE. These results
are similar to that obtained for the FM-SN model with two components

Finally, for the 3PWW case, the bias of the estimates is presented in tables 12
and 13 and the EQM are shown in tables 14 and 15. Concerning the estimates p̂i
and µ̂i, very satisfactory results are obtained, with small values of bias and MSE
when using the MM. The values of MSE of σ̂2

i exhibit a decreasing behavior when
the sample size increases. On the other side, although we are in the well separated
case, the values of bias and MSE of λ̂i are larger, notably when using RVM as the
initialization method.

Concluding this section, we can say that, as a general rule, the MM can be
seen as a good alternative for real applications. If this condition is maintained, our
study suggests that the consistency property holds for all EM estimates (it may
be slower for the scale parameter!), except for the skewness parameter, indicating
that a sample size larger than 5,000 is necessary to achieve consistency in the case
of this parameter. The study also suggests that the degree of heterogeneity of the
population has a remarkable influence on the quality of the estimates.

Table 16: Means and standard deviations (×10−4) of dr.
Cases

Method n
2MS 2WS 2PS

RVM 500 1.43 (2.55) 2.51 (7.31) 2.23 (1.31)

1000 1.05 (2.21) 2.24 (6.48) 0.84 (0.69)

5000 0.75 (2.24) 2.01 (8.67) 1.02 (0.75)

10000 0.67 (2.35) 2.14 (8.86) 0.67 (0.69)

MM 500 0.90 (0.66) 1.32 (0.95) 2.20 (1.21)

1000 0.62 (0.48) 1.23 (0.80) 0.76 (0.57)

5000 0.33 (0.24) 0.34 (0.26) 0.79 (0.46)

10000 0.22 (0.16) 0.42 (0.26) 0.44 (0.33)
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4.3. Density Estimation Analysis

In this section we consider the density estimation issue, that is, the point
estimation of the parameter `(Θ), the log-likelihood evaluated at the true value of
the parameter. We considered FM-SN models with two components and restricted
ourselves to the cases 2MS, 2WS and 2PS, with sample sizes n =500; 1,000; 5,000
and 10,000. For each combination of parameters and sample size, 5000 samples
were generated and the following measure was considered to compare the methods
of initialization

dr(M) =

∣∣∣∣∣`(Θ)− `(M)(Θ̂)

`(Θ)

∣∣∣∣∣× 100

where `(M)(Θ̂) is the log-likelihood evaluated at the EM estimate Θ̂, which was
obtained using the initialization method M . According to this criterion, an ini-
tialization method M is better than M ′ if dr(M) < dr(M

′). Table 16 presents the
means and standard deviations of dr.

For 2MS case, we can see that these values decrease when the sample size
increases with both methods and that the MM presented the lowest mean value
and standard deviation for all sample sizes. For the 2WS case, we do not observe
a monotone behavior for dr, the mean values and the standard errors are larger
than that presented in the 2MS case, with poor performance of RVM. In this 2PS
case, although we also do not observe a monotone behavior for dr, we can see that
the MM presented a better performance than the TVM.

The main message is that the MM method seems to be suitable when we are
interested in the estimation of the likelihood values, with some caution when the
population is highly homogeneous.

4.4. Number of Iterations

It is well known that one of the major drawbacks of the EM algorithm is
the slow convergence. The problem becomes more serious when there is a bad
choice of the starting values (McLachlan & Krishnan 2008). Consequently, an
important issue is the investigation of the number of iterations necessary for the
convergence of the algorithm. As in subsection 4.3, here we consider only the 2MS,
2WS and 2PS cases, with the same sample sizes and number of replications. For
each generated sample, we observed the number of iterations and the means and
standard deviations of this quantity were computed. The simulations results are
reported in Table 17.

Results suggest that in the three cases, using MM, the mean number of itera-
tions decreases as the sample size increases, but the same is not true when RVM
is adopted as the initialization method. For the 2PS case, as expected, we have
a poor behavior possibly due to the population homogeneity, as we commented
before. An interesting fact is that, in the 2PS case, the RVM has a smaller mean
number of iterations.
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Table 17: Means and standard deviations of number of iterations.
Cases

Method n
2MS 2WS 2PS

RVM 500 306.14 (387.70) 129.81 (117.01) 337.82 (289.01)

1,000 283.57 (289.32) 126.87 (130.61) 319.70 (242.08)

5,000 280.28 (260.36) 128.29 (213.99) 336.85 (206.38)

10,000 286.31 (271.83) 131.33 (190.77) 353.61 (211.99)

MM 500 147.53 (72.79) 126.62 (26.80) 457.97 (167.28)

1,000 129.37 (33.34) 119.70 (15.39) 429.42 (119.77)

5,000 116.35 (11.57) 113.91 (5.90) 372.14 (71.89)

10,000 115.10 (8.37) 113.29 (4.23) 352.33 (97.54)

5. A Simulation Study of Model Choice

There is a key issue with the use of finite mixtures to estimate the number of
components in order to obtain a suitable fit. One possible approach is to use some
criteria function and compute

k̂ = arg min
k
{C(Θ̂(k)), k ∈ {kmin, . . . , kmax}}

where C(Θ̂(k)) is the criterion function evaluated at the EM estimate Θ̂(k), ob-
tained by modeling the data using the FM-SN model with k components, and
kmin and kmax are fixed positive integers (for other approaches see McLachlan &
Peel 2000).

Our main purpose in this section is to investigate the ability of some classical
criteria to estimate the correct number of mixture components. We consider the
Akaike Information Criterion (AIC) (Akaike 1974), the Bayesian Information Cri-
terion (BIC) (Schwarz 1978), the Efficient Determination Criterion (EDC) (Bai,
Krishnaiah & Zhao 1989) and the Integrated Completed Likelihood Criterion (ICL)
(Biernacki, Celeux & Govaert 2000). The AIC, BIC and EDC criteria have the
form

−2 `(Θ̂) + dk cn

where `(·) is the actual log-likelihood, dk is the number of free parameters that
have to be estimated under the model with k components and the penalty term
cn is a convenient sequence of positive numbers. We have cn = 2 for AIC and
cn = log(n) for BIC. For the EDC criterion, cn is chosen so that it satisfies the
conditions

lim(cn/n) = 0 and lim
n→∞

(cn/(log log n)) =∞

Here we compare the following alternatives

cn = 0.2
√
n, cn = 0.2 log (n), cn = 0.2n/ log (n), and cn = 0.5

√
n

The ICL is defined as
−2 `∗(Θ̂) + dk log(n),
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where `∗(·) is the integrated log-likelihood of the sample and the indicator latent
variables, given by

`∗(Θ̂) =

k∑
i=1

∑
j∈Ci

log(p̂iSN(yj |θ̂i))

where Ci is a set of indexes defined as: j belongs to Ci if, and only if, the obser-
vation yj is allocated to component i by the following clustering process: after the
FM-SN model with k components was fitted using the EM algorithm we obtain
the estimate of the posterior probability that an observation yi belongs to the jth
component of the mixture, ẑij (see equation (6)). If q = arg maxj{ẑij} we allocate
yi to the component q.

In this study we simulated samples of the FM-SN model with k = 3, p1 = p2 =
p3 = 1/3, µ1 = 5, µ2 = 20, µ3 = 28, σ2

1 = 9, σ2
2 = 16, σ2

3 = 16, λ1 = 6, λ2 = −4
and λ3 = 4, and considered the sample sizes n = 200, 300, 500,1000, 5000. Figure
3 shows a typical sample of size 1000 following this specified set up.
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Figure 3: Histogram of a FM-SN sample with k = 3 and n = 1, 000.

For each generated sample (with fixed number of 3 components) we fitted the
FM-SN model with k = 2, k = 3 and k = 4, using the EM algorithm initialized
by the method of moments. For each fitted model the criteria AIC, BIC, ICL
and EDC were computed. We repeated this procedure 500 times and obtained the
percentage of times some given criterion chooses the correct number of components.
The results are reported in Table 18

We can see that BIC and ICL have a better performance than AIC for all
sample sizes. Except for AIC, the rates presented an increasing behavior when
the sample size increases. This possible drawback of AIC may be due to the fact
that its definition does not take into account the sample size in its penalty term.
Results for BIC and ICL were similar, while EDC showed some dependence on
the term cn. In general, we can say that BIC and ICL have equivalent abilities
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Table 18: Percentage of times that the criteria chosen the correct model.
EDC/ cn

n AIC BIC ICL
0.2 log (n) 0.2

√
n 0.2n/ log (n) 0.5

√
n

200 94.2 99.2 99.2 77.8 98.4 99.4 99.4

300 94.0 98.8 98.8 78.2 98.4 98.8 98.8

500 95.8 99.8 99.8 86.4 99.8 99.8 99.8

1000 96.2 100.0 100.0 88.5 100.0 100.0 100.0

5000 95.6 100.0 100.0 92.8 100.0 100.0 100.0

to choose the correct number of components and that, depending on the choice of
cn, ICL can not be as good as AIC or better than ICL and BIC.

6. Final Remarks

In this work we presented a simulation study in order to investigate the perfor-
mance of the EM algorithm for maximum likelihood estimation in finite mixtures
of skew-normal distributions with component specific parameters. The results
show that the algorithm produces quite reasonable estimates, in the sense of con-
sistency and the total number of iterations, when using the method of moments
to obtain the starting points. The study also suggested that the random initia-
lization method used is not a reasonable procedure. When the EM estimates were
used to compute some model choice criteria (AIC, BIC, ICL and EDC), the results
suggest that the EDC, with the penalization term appropriate, provides a good
alternative to estimate the number of components of the mixture. On the other
side, these patterns do not hold when the mixture components are poorly sepa-
rated, notably for the skewness parameters estimates which, in addition, showed
a performance strongly dependent on large samples. Possible extensions of this
work include the multivariate case and a wider family of skewed distributions, like
the class of skew-normal independent distributions (see Cabral et al. (2012)).

[
Recibido: agosto de 2011 — Aceptado: octubre de 2012
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