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Preface

The Turin Fortnight on Nonlinear Analysis is a conferencat tlevery two years,
gathers at the Department of Mathematics of the Univerdityasino a number of
researchers from Italy and abroad with the aim of discussegnt developments in
nonlinear differential equations (both ordinary and d)tiThe conference consists of
seminars and short courses, providing an up-to-date intitgzh to contemporary re-
search. This special issue of the Rendiconti del SeminadteMatico (Universita’ e
Politecnico di Torino) collects the lecture notes from thoé the short courses of the
[l Turin Fortnight, which was held in September 2001. Thetleers were F. Bethuel
(Universite’ Paris VI-Pierre et Marie Curie), C. Rebelo (BF-Lisbon) and F. Zano-
lin (University of Udine). A fourth course was given by V. BarfUniversity of Pisa);
for technical reasons we are not able to include in this gpéssue the related notes,
which we hope to publish in this journal soon.

We wish that these lecture notes, which represent a shootinttion to relevant con-
temporary themes, will be of interest to young people stgrtheir research activity.
On the other hand, mature mathematicians will find here te@sults not yet publi-
shed or dispersed in several research papers.

We thank the lecturers for accepting our invitation to give tourse and to write these
notes (in collaboration with some participants to the cogriee). We also thank all the
speakers and the participants to the Ill Turin Fortnightpwtade it interesting and suc-
cessful. Finally, we thank the institutions that gave a faiarsupport: the Department
of Mathematics (University of Torino) and the GNAMPA-INDANNational Group
for Mathematical Analysis, Probability and its Applicai®of the National Institute
for High Mathematics).

Marino Badiale, Paolo Caldiroli, Anna Capietto
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PARAMETRIC SURFACES WITH PRESCRIBED
MEAN CURVATURE

Abstract. This article contains an overview on some old and new prob-
lems concerning two-dimensional parametric surface®3nwith pre-
scribed mean curvature. Part of this exposition has comstitthe subject

of a series of lectures held by the first author at the DepartimeMath-
ematics of the University of Torino, during the Third Turiorfight on
Nonlinear Analysis (September 23-28, 2001).

1. Introduction

The main focus of this article is the following problem: giv&smooth, real functioH
in R3, find surfacesVl having exactly mean curvatuké(p) at any pointp belonging
to M.

In order to get some intuition in the geometric and analytispects of this ques-
tion, we believe that it might be of interest to consider fitstwo dimensional analog,
where most concepts become rather elementary. Therafdhgsiintroductory part we
will first discuss the following questions:

(Qo) Given a smooth, real function on the planeR?, find a closed curve&, such
that for any pointp in C the curvature of the curve at this point is exaalyp)
(we may possibly impose furthermore titahas no self intersectiorC is then
topologically a circle).

(Q1) [Planar Plateau probleinGiven two pointsa andb in the plane, and a smooth,
real functionk onRR2, find a curveC with dC = {a, b}, such that for any point
p in C the curvature of the curve atis exactlyx (p).

1.1. Parametrization

In order to provide an analytical formulation of these peshs, the most natural ap-
proach is to introduce a parametrization of the cutyée., a mapu: | — R?, such
that|u| = 1,u(l) = C, wherel represents some compact intervalgfand the nota-
tionu = % is used. Notice that, nevertheless there are possibl@attee approaches

to parametrization: we will discuss this for surfaces inrle&t sections.

*The second author is supported by M.U.R.S.T. progetto drci “Metodi Variazionali ed Equazioni
Differenziali Nonlineari” (cofin. 2001/2002).
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176 F. Bethuel - P. Caldiroli - M. Guida

Then, questionsQgp) and(Q1) can be formulated in terms of ordinary differential
equations. More precisely, the fact tiahas curvature (u(s)) at every pointu(s)
belonging taC reads

1) U=ikuu onl,

wherei denotes the rotation b%. Note that the sign of the term of the r.h.s. depends
on a choice of orientation, and the curvature might theeefake negative values.

The constraintu] = 1 might raise difficulties in order to find solutions Qo)
and(Q1). It implies in particular thatl | = length ofC, and this quantity is not know
a priori. This difficulty can be removed if we consider instezf (1) the following
equivalent formulation

1
HE

——————l=ixu onl.
(/; lu|2ds)2

(2)

To see that (2) is an equivalent formulation of (1), note finstt any solutioru to (2)
verifies
(a2 d9?
Ik

so thatju] = Cp = const and, introducing the new parametrizatiogs) = u(s/Co),
we see thaty| = 1, andv solves (1).

Hence, an important advantage of formulation (2) is that weat have to impose
any auxiliary condition on the parametrization since eique?) is independent of the
interval | . Thus, we may choose= [0, 1] and (2) reduces to

dis(llllz)=l'l-l] k(Wiu-u=0,

NI =

) U=iL(ux(uu on]0 1],

1
L(u) == </|U|2ds)2 )
|

Each of the question®)p) and(Q1) has then to be supplemented with appropriate
boundary conditions:

where

u(0) = u(d), u0) = u() for (Qo)
(or alternatively, to consideR/Z instead of [0 1]), and

4) u0) =a, u(l) =b, for (Qq).

1.2. The case of constant curvature

We begin the discussion of these two questions with the sistglase, namely when
the function« is a constankg > 0. It is then easily seen that tlomly solutions to
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equations (1) (or (3)) are portions of circles of radRis= K—lo Therefore, for Qp) we
obtain the simple answer: the solutions are circles of madlidg.

For question Q1) a short discussion is necessary: we have to compare tlaadést
lo := |a — b| with the diameteDg = 2Ry. Three different possibilities may occur:

(i) lo > Do, i.e., %ono > 1. In this case there is no circle of diamey containing
simultaneously andb, and therefore problent):) has no solution.

(i) lo = Do, i.e., %ono = 1. There is exactlpnecircle of diameterDg containing
simultaneousha andb. Therefore Q1) has exactlytwo solutions, each of the
half-circles joininga to b.

(iii) 1o < Do, i.e.,%lo/co < 1. There are exacthyvo circles of diameteDg containing
simultaneouslya andb. These circles are actually symmetric with respect to
the axisab. Therefore Q1) has exactlyfour solutions: twosmall solutions,
symmetric with respect to the axad, which are arcs of circles of angle strictly
smaller thanr, and twolarge solutions, symmetric with respect to the aais,
which are arcs of circles of angle strictly larger than Notice that the length
of the small solutions is 2arcc(3§lo/<o));cgl, whereas the length of the large

solutions is 27 — aI’CCO$%|oKo))K61, so that the sum is the length of the circle
of radiusRy.

As the above discussion shows, the problem can be settlad usiy elementary
arguments of geometric nature.

We end this subsection with a few remarks concerning thenpetréc formulation,
and its analytical background: these remarks will be usehén we will turn to the
general case.

Firstly, we observe that equation (3) in the case «g is variational: its solutions
are critical points of the functional

Feoo(v) = L(v) — xoS(v)

wherel (v) has been defined above and

1 1
S(v) = 5/0 iv-vds.
The functional space foiQp) is the Hilbert space
Hper := (v € HY([0, 1, R?) | v(0) = v(1)} ,
whereas the functional space f@4) is the affine space
Hap = (v € HY([0, 1], R?) | v(0) = &, v(1) = b}.

The functionalS(v) have a nice geometric interpretation. Indeed,fdrelonging to
the spaceHper, S(v) represents the (signedjeaof the (inner) domain bounded by the
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curveC(v) = v([0, 1]). Whereas, fow in Hper Or Ha b, the quantityl (v) is less or
equal to the length af (v) and equality holds if and only)| is constant. In particular,
for v in Hper, we have the inequality

47|S(v)| < L%(v),

which is the analytical form of the isoperimetric inequalit dimension two. There-
fore solutions of Qp), with x = kg are also solutions to the isoperimetric problem

SUPS() | v € Hper, L(v) = 2Ky} .

This, of course, is a well known fact.

Finally, we notice that the small solutions tQ(), in case (iii) are local min-
imizers of F. More precisely, it can be proved that they minimigeon the set
{fveHapl| lIvlew < Ko_l} (in this definition, the origin is taken as the middle point
of ab). In this context, the large solution can then also be amayand obtained)
variationally, as a mountain pass solution. We will not gm idetails, since the argu-
ments will be developed in the frame Bif-surfaces (here however they are somewhat
simpler, since we have less troubles with the Palais-Snualdition).

1.3. The general case of variable curvature

In the general case when the prescribed curvatgp depends on the poim, there
are presumably no elementary geometric arguments whichl ¢é@ad directly to the
solution of Qo) and Q1). In that situation, the parametric formulation offers é&mal
approach to the problems.

In this subsection we will leave asid®¢), since it is probably more involved and
we will concentrate on questior)q). We will see in particular, that we are able to
extend (at least partially) some of the results of the previsubsection to the case
considered here using analytical tools.

We begin with the important remark that (3) is variationakmein the nonconstant
case: solutions of (3) and (4) are critical pointstégy, of the functional

Fc() =Lw) — S (v),
where

1
s(<v)=/0 QW) -0 ds

for any vector fieldQ: R?2 — R? verifying the relation divQ(w) = « (w) for w =
(w1, wa) € R2. A possible choice for such as a vector field is

w2

1 [w
Q(w1, w2) = 5(/ Kk (S, wp) d&/ k(wy,s) ds) .
0 0

Notice that in the case = kg is constant, the previous choice@fyields Q(w) = %w,
and we recover the functiongl,, as written in the previous subsection.
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The existence of “small” solutions t@);) can be established as follows.

PROPOSITIONL. Assume thapl> 0and«x e C1(R?) verify the condition

K < 1.
2 0 o0

. -1
Mo :={v € Hap | lvllc = [Ikllos'} -

In the context ofH -surfaces, this type of result has been established first.by S
Hildebrandt [30], and we will explain in details his proof $ection 4. The proof of
Proposition 1 is essentially the same and therefore we wilt @. Note that, in view
of the corresponding results for the constant case, i.ge, @#) of the discussion in the
previous subsection, Proposition 1 seems rather optimal.

We next turn to the existence problem for “large” solutioligs presumably more
difficult to obtain a general existence result, in the saniit &3 in the previous propo-
sition (i.e., involving only some norms of the functie). We leave to the reader to
figure out some possible counterexamples. We believe thdidhkt one should be able
to prove is a perturbative result, i.e., to prove existerfab® large solution for func-
tionsk that are close, in some norm, to a constant. In this directi@may prove the
following result.

PROPOSITION2. Letlg, kg > 0, and assume that
—I 1
ko < 1.
2 0K0

Then, there exists > 0 (depending only on the numbeyb), such that, for every
functionk € C1(R?) verifying

Ik —Kollcr < &,

equation(3) has four different solutionsy u,, Uy andty, where one of the small
solutions_y and u, corresponds to the minimal solution given by proposition 1.

The new solutiongl; and Uz provided by proposition 2 correspond to the large
solutions of the problem: one can actually prove that theywerye, aglx — «ollct
goes to zero, to the large portion of the two circles of radipﬁ joining a to b, given
in case (iii) of the previous subsection.

Proof. A simple proof of Proposition 2 can be provided using the ioipfunction
theorem. Indeed, consider the affine space

CZp = {v e CX([0,1], R | v(0) = a, v(1) = b},
and the mapb: C3, x R — C?:= C%([0, 1], R?) defined by
d(v,t) = —b +i (ko + Lk (v) — k) L(V)D .



180 F. Bethuel - P. Caldiroli - M. Guida

Clearly @ is of classC! and forw € C&O one has:
QP Dw) = —i+il ) (ko + 1tk @) — ko)) + tk'(v) - w)
1
+i (ko + t(k (V) —KO))L(U)*lof v-wds.
0

Let ug be one of the four solutions fafp. Notice that for an appropriate choice of
orthonormal coordinates in the plang,is given by the explicit formula

Uo(s) = Ko_l exp(i L gkoS),

whereLg = L(up) (recall thatLg = 2/(0_1 arcco$%loxo)) for small solutions, oL.g =

2/(0_1(71 — arccos%loxo)) for large solutions). We compute the derivative at the point
(Uo, 0):

1
9y ® (Ug, 0)(w) = —w + i Lokow + iKoLaluof Up-wds,
0

It remains merely to prove that ® (uo, 0) is invertible, i.e., by Fredholm theory, that
ker a9, ®(ug, 0) = {0}. If w € kerd, ®(ug, 0), then

(5) W = iLokow — a(w)Lokoexpl(iL okos),

wherea(w) = Lal fol Uo - w ds. Takinga as a parameter, equation (5) can be solved
explicitly and its solution is given by:

w(X) = C1 + Coexp(i Lokos) + i s expi L gkos)

whereC; and C; are some (complex-valued) constants. The boundary conditi
w(0) = w(l) = 0 determineC, andC» as functions ofx. In view of the defini-
tion of «, one deduces an equation farAfter computations, sincélo/co < 1,itturns
out that the only solution i& = 0, and therw = 0. Thus the result follows by an
application of the implicit function theorem. O

The result stated in proposition 2 can be improved if one irstead a variational
approach based on the mountain pass theorem. More pre@selynay replace the
C! norm there, by th&.> norm, i.e., prove that if, for some small> 0, depending
only on the valuégxg one has

Il — kolleo < &,

then a large solution exists, for the proble@q{ corresponding to the curvature func-
tion x. The analog of this result for surfaces will be discusseddati®n 6, and it is
one of the important aspects of the question we want to stress

At this point, we will leave the planar problem for curvesgare turn to its version
for surfaces in the three dimensional sp&Se It is of course only for one dimensional
objects that the curvature could be expressed by a simgder $eaction. For higher di-
mensional submanifolds, one needs to make use of a tendbe(aontext of surfaces,
the second fundamental form). However, some “curvaturatfions, deduced from
this tensor are of great geometric interest. For surfac&’ithe Gaussian curvature
and the mean curvature in particular are involved in mangtioes.
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2. Some geometric aspects of the mean curvature

In this section, we will introduce the main definitions anangonatural problems in-
volving the notion ofcurvature Although this notion is important in arbitrary dimen-
sion and arbitrary codimension, we will mainly restrict selves tatwo-dimensional
surfaces embedded®®. More precisely, our main goal is to introduce some problems
of prescribed mean curvaturand their links tasoperimetric problems

We remark that mean curvature concerns problenexfrinsicgeometry, since it
deals with the way objects are embedded in the ambient spacentrast, problems
in intrinsic geometry do not depend on the embedding and for this kind aflems
one considers the Gaussian curvature.

Let us start by recalling some geometric background.

2.1. Basic definitions

Let M be a two-dimensional regular surfaceRA. Fixed pg € M, let us consider near
po a parametrization o, that is a mamu: O — M with O open neighborhood of 0
in R?, u(0) = po, andu diffeomorphism of® onto an open neighborhood pf in M.
Note that, denoting by the exterior product ifR3, one hasix A uy #0on0O, and

_ Uxnuy
[Ux A Uy|

(6)

(evaluated atx, y) € O) defines a unit normal vector atx, y).
The metric onN is given by thefirst fundamental form

gij du'dul = E (dx)? + 2F dx dy+ G (dy)?
where
E=|ul>. F=ux-uy, G=]uy

The notion of curvature can be expressed in terms of the seftordamental form.
More precisely, lety: (—1,1) — M be a parametric curve ov of the formy (t) =
u(x(t), y(t)), with x(0) = y(0) = 0. Thusy (0) = po.

Since%—‘t’ and T are orthogonal, one has

d2y dx\? dxdy dy\?
(7) WﬁZUXxﬁ<a> +2UXyﬁaa+Uyyﬁ<a) .

Setting
LZUXx'ﬁ, MZUXy'ﬁ, NZUyyﬁ,

the right hand side of (7), evaluated@t y) = (0, 0),

L (dx)?+2M dx dy+ N (dy)?
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defines thesecond fundamental form By standard linear algebra, there is a basis
(e1, &) in R? (depending orpo) such that the quadratic forms

E F L M
A=< F G ) ’ Qz( M N )
can be simultaneously diagonalized; in particidare;) anddu(ey) are orthogonal.

The unit vectors
du(er) du(ez)

= . ])2 =
ldu(ey)] |du(ez)|
are calledprincipal directions at pp, while the principal curvatures at pp are the

values
d?y, d?y,
K1:<W’ﬁ> s K2=<W,W
for curvesy; : (=1, 1) — M such that; (0) = po andy/(0) = vi (i =1, 2).
Themean curvature at pg is defined by

V1

H = 3(c1 +k2)

(homogeneous to the inverse of a length), wherea&thessian curvatureis
K = k1k2.

Notice thatH andK do not dependn the choice of the parametrization.
In terms of the first and second fundamental forms, we have

(8) 2H = =55 (GL-2FM + EN) =tr (A1Q) .

REMARK 1. Suppose thatl can be represented ageph i.e. M has a parame-
trization of the form

ux, y) = x,y, f(x,y))
with f € C1(O, R). Using the formula (8) foH, a computation shows that

\Ai
9) 2H =div| ——— ),
V1I+|VE2
whereas the Gaussian curvature is
_ hadyy — 15
14+ |VF|2

Let us note that every regular surface admits locally a patamation as a graph. More-
over, if po = (Xo, Yo, f (X0, Y0)), by a suitable choice of orthonormal coordinates one
may also impose that f (xg, Yo) = 0.
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2.2. Conformal parametrizations and theH -system

In problems concerning mean curvature, it is convenienswaonformal parametri-
zations, since this leads to an equation for the mean cuev#ttat can be handle with
powerful tools in functional analysis.

DEFINITION 1. LetM be a two-dimensional regular surfacefid and letu: O —
M be a (local) parametrizatiod) being a connected open setRA. The parametriza-
tion u is said to beconformal if and only if for everyz € O the linear map
du(z): R?2 —» TuizM preserves angles (and consequently multiplies lengthscoya
stant factor), that is there exist$z) > 0 such that

(20) (du(2)h, du(2)k)ps = A(2)(h, k)g2 for everyh,k RZ.

In other wordsyu is conformal if and only if for everg € O du(2) is the product
of an isometry and a homothety fro? into R3. Note also that the condition of
conformality (10) can be equivalently written as:

(11) |ux|® — Juy|® = 0 = ux - uy

at every pointz € O. In what will follow, an important role is played by théopf
differential which is the complex-valued function:

In particular,u is conformal if and only ifv = 0.

REMARK 2. If the target space of a conformal maphas dimension two, then
u is analytical. This follows by the fact that, given a domdnin R?, a mapping
u € C1(0, R?) is conformal if and only ifu is holomorphic or anti-holomorphic (we
identify R2 with the complex fieldC). However for conformal maps: © — RK with
k > 3 there is no such as regularity result.

We turn now to the expression bf for conformal parametrizations. Ufis confor-
mal, then
E=|u? = |uy|2 =G
F=ux-uy=0,
so that

(12) Hw=24T oo,

|ux|?
On the other hand, deriving conformality conditions (11}haiespect toc andy, we
can deduce thatu is orthogonal both to, and touy. Hence, recalling the expression
(6) of the normal vectoirt, we infer thatAu and# are parallel. Moreover, by (11),
lux A Uy| = |ux|2 = Juy|?, and then, from (12) it follows that

(13) ‘Au:ZH(u)uXAuy onO.‘
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Let us emphasize that (13) is a system of equations, oftéedddlsystem or alsoH -
equation, and for this system the scalar coeffici¢htu) has the geometric meaning
of mean curvature for the surfad& parametrized by at the pointu(z) provided that
u is conformal andi(z) is a regular point, i.elx(z) A uy(z) # 0.

2.3. Some geometric problems involving thé-equation

Equation (13) is the main focus of this article. In order tstify its importance let us
list some related geometric problems.

It is useful to recall that the area of a two-dimensional fegwsurface M
parametrized by some mappiong © — R2 is given by the integral

A(u):/ [Ux A Uyl .
o

In particular, ifu is conformal, the area functional equals the Dirichletgnad:
1 2

(14) Eo(u) = 5 | VU
2 Jo

One of the most famous geometric problems is thahisimal surfaces

DEFINITION 2. A two-dimensional regular surface R? is said to be minimal if
and only if it admits a parametrizatienwhich is a critical point for the area functional,
that is, 92 (u + sp)|,_, = O for everyp € C(O, R).

An important fact about minimal surfaces is given by thedaihg statement.

PROPOSITION3. A two-dimensional regular surface M iR® is minimal if and
only if H=0on M.

Proof. Fixing a pointpg in the interior ofM, without loss of generality, we may assume
that a neighborhooMlp of pg in M is parametrized as a graph, namely there exist a
neighborhood of 0 in R2 and a functionf € C1(©, R) such thatMg is the image of
ux,y) = (x,y, f(x,y)) as(x,y) € O. Interms of f, the area functional (restricted

to Mo) is given by
Ag(f) :/ V1+|Vi2
o

and then

dAo
E(f+51/f)

v f
=— [ dv| — | v
s=0 ~/;9 (\/1+|Vf|2)
for everyy € C° (O, R). Hence, keeping into account of (9), the thesis followd.]

Another famous geometric problem is given by the so-caegerimetric prob-
lem that we state in the following form. Given any two-dimensibregularcompact
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surfaceM without boundarylet V(M) be the volume enclosed dyl. The general
principle says that:

Surfaces which are critical for the area, among surfaceslasiacg
a prescribed volume, (i.e., solutions of isoperimetric pems) verify
H = const.

REMARK 3. Consider for instance the standard isoperimetric proble

Fixing A > 0, minimize the area of M among compact surfaces M without
boundary such that W) = A.

Itis well known that this problem admits a unique solutioorresponding to the sphere

of radius J 3

7. This result agrees with the previous general principleesihe sphere
has constant mean curvature. Nevertheless, there are ragagtg for the isoperimet-
ric problem, in which one may add some constrains (on thelogal type of the

surfaces, or boundary conditions, etc.).

In general, the isoperimetric problem can be phrased irytioal language as fol-
lows: consider any surfackl admitting a conformal parametrizatian © — R3,
whereQ is a standard reference surface, determined by the topalldgjpe ofM (for
instance the sphe®?, the torusT?, etc.). For the sake of simplicity, suppose tNais
parametrized by the sphegé that can be identified with the (compactified) plake
through stereographic projection. HenceyifR? — R2 is a conformal parametriza-
tion of M, the area oM is given by (14), whereas the (algebraic) volumdbfs given

by
V(u)—1/ U-ux AU
_3 R2 X v

In this way, the above isoperimetric problem can be writtefolows:

Fixing 2 > 0, minimize [ |Vu|? with respect to the class of conformal
mappings u R? — R3 such thatfg, U - ux A Uy = 31.

One can recognize that if solves this minimization problem, or alsouifis a critical
point for the Dirichlet integral satisfying the volume ctnagnt, then, by the Lagrange
multipliers Theoremuy solves arH -equation withH constant.

As a last remarkable example, let us considerpghescribed mean curvature
problem: given a mappingH : R® — R study existence and possibly multiplicity
of two-dimensional surface8! such that for allp € M the mean curvature gb at
M equalsH (p). Usually the surfacéM is asked to satisfy also some geometric or
topological side conditions.

This kind of problem is a generalization of the previous csxed it appears in var-
ious physical and geometric contexts. For instance, it aknthat in some evolution
problems, interfaces surfaces move according to mean tcueviaw. Again, noncon-
stant mean curvature arises in capillarity theory.
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3. The Plateau problem: the method of Douglas-Raal

In this section we consider the classi€aateau problenfor minimal surfaces. Ley
be a Jordan curve iR3, that isy is the support of a smooth mappigg St — R3 with
no self-intersection. The question is:

Is there any surface M minimizing (or critical for
the area, among all surfaces with boundary

In view of our previous discussions, the Plateau problenoires:

Find a surface M such th&M = y and having

P .
(Fo) zero mean curvature at all points.

Note that in general, this problem may admit more than ongisal.

We will discuss this problem by following the method of DoagiRado6, but we
point out that many methods have been successfully propsedive the Plateau
problem. Here is a nonexhaustive list of some of them.

1. Wheny is agraph, try to find M as a graph. More precisely suppaséo be
close to a plane curvey. Note that foryg the obvious solution is the planar
region bounded byy itself. Letg: S — R be such thay = g(St) where
g = (z,9(2)) asz = (x,y) € S. If g is “small’, we may useerturbation
techniguegSchauder method) to solve thenlinearproblem

: v f _ . 2
dlv<7\/1+—vn2)_0 in D
f=g on dD? =t

whereD? is the open unit disc if®? (compare with (9), being now = 0).

2. Given a Jordan curvg, find a surfaceM spanningy, with M parametrized in
conformal coordinates. This is the Douglas-Rad6 methatwre will develop
in more details. Here we just note that, differently from girevious case, now
the conformal parametrizatianof M solves thdinear equationAu = 0.

3. Use the tools frongeometric measure theofj21], [39], [40]), especially de-
signed for that purpose. The advantage of this method isith&tfree from
conformality equations, and it is very good for minimizatiproblems, but it
needs a lot of work to recover regularity of the solutionstuadly, this method
is not very useful to handle with saddle critical points.

4. Usesingular limit problems

1 1 2
Ee(u)=§/|Vu|2+8—2/(1—|u|2) .

As the previous one, this method does not use any parantg&riza
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Let us turn now to the Douglas-Radé method. Looking for a&aonal parametri-
zation ofM, by (13), the Plateau problem is reduced to the followingrfor

Findu e C° (ﬁ R3> N C2(D?, R®) such that
Au=0 in D?
lux|? — Juy|> = 0= ux - uy in D2
U‘BDZ monotone parametrization gf .

(Po)

On one hand the Laplace equation is completely standard. h®mther hand, the
boundary condition is less usual than the Dirichlet one &medjdes, one has to deal
with the conformality conditions.

The first step in the Douglas-Rad6 approach consists islaing problem(Py)
into a minimization problem. To this aim let us introduce ®@bolev spacéi! =
H1(D2, R3) and the set

(15) W={veH!: ”|3D2 continuous monotone parametrization of }

and for everyv € W let us denote byEg(v) the Dirichlet integral ofv on D2, as in
(14). Recall that iy is conformal therEg(v) gives the area of the surface parametrized
by v.

LEMMA 1. If u € W minimizes & on W, then u is a solution of the Plateau
problem(Pg).

The most surprising result in this statement is that thea@wnélity conditions come
out as part of the Euler-Lagrange equation.

Proof. Sinceu minimizes the Dirichlet integral for aH 1 maps with the same bound-
ary value,u is a weak solution toAu = 0 in D2. In fact, from regularity theory,
u e C*. Now, let
o = |ux|? — uy|? — 2iuy - uy
be the Hopf differential associateduo Sinceu solves the Laplace equation, it is easy
to verify that‘;—‘; = 0, and therw is constant. In order to prove that= 0, i.e.,u is
conformal, the idea is to useriations of the domainMore precisely, letX be an
. . v

arbitrary vector field orD? such thatX - T = 0 ondD?, and let¢ (t, z) be the flow

— .
generated byX , i.e.

845_—)
ﬁ—x(qﬁ)
¢0,2=2z.

Theno(t,z) = 2+t X (2) + 0 (t?) and¢y := ¢(t,-): D? - D?is a diffeomorphism
for everyt > 0. If we setu; = u o ¢ thenu € W impliesu; € W for everyt > 0 and
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therefore, by the minimality af,

%EO(Ut) =0,
ie.
(16) %/DZ‘VU <z+t7(>(z)>‘2:0.

After few computations, (16) can be rewritten as

aX
/ w-—=0
D2 82

which holds true for evenX e C® (D2, R?) such thatX - B = 0 onaD2 This
impliesw = 0, that is the thesis.
[l

Thanks to Lemma 1, a solution to problai®y) can be found by solving the fol-
lowing minimization problem:

(Qo) Find u € W such that g(u) = in&/ Eo(v)
ve

whereEg(v) is the Dirichlet integral ob andW is defined in (15).

Conformal invariance

The greatest difficulty in the study of problef®p) is that minimizing sequences are
not necessarily compact W, because of theonformal invarianceof the problem.
Let us consider the grou of all conformal diffeomorphisms db?:

G ={p € CY(D? D? : ¢ onetoone and orientation preserving
|6x1? — 1dy|® = 0= ¢x - py}.

Itis easy to verify that, given any € W and¢ € G one hagV (v o ¢)| = A|(Vv) o ¢|
wherel = |¢x| = |pyl. Sincex? = |Jacg|, one obtains

/|V(vo¢>|2=/ |Vv|?
D2 D2

Eo(v o ¢) = Eo(v),

the energy is invariant under a conformal changé®dnNote also that

that is

ueW, 9 G = UopeW

because iy € G theng|,,,: 9D? — dD? is monotone.
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As a consequence of conformal invariance, we are going tdhsg®V is not se-
quentially weakly closeth H2. In order to do that, let us first descrie As already
mentioned in remark 2, conformal magpss G are holomorphic or antiholomorphic;
by a choice of orientation, we can restrict ourselves to imaligphic diffeomorphisms.
It is then a (not so easy) exercise in complex analysis toetioat

G= {qb eCYD2C):JacC, |aj<1, 30 [0,27)st. ¢ = ¢9,a}

where

_Z+a g, 2
$0.a(2) = 1—éze (ze D )

HenceG is parametrized bp? x S, a noncompact three-dimensional manifold with
boundary.

Note now that, given € W N C(D2, R3) and(a,) c D2, if a, — a € D2 then
v o ¢o.a, — v(a) pointwise and weakly itH* (but not strongly), and the weak limit in
general does not belong W which does not contain any constant.

The three points condition

In order to remove conformal invariance, we have to “fix a gdughoosing for every
v € W aspecial elementin the orljit o ¢} .. For this purpose, let us fix a monotone

parametrizationy € C(S%, y) of y and then, let us introduce the class
W* = [v eW : v(e2i¥) = g(e%), k=12, 3].

SinceW* C W and for everyw € W there existg € G such that o ¢ € W*, one has
that:

LEMMA 2. inf,ew+ Eo(v) = infy,ew Eo(v).

Hence, in order to find a solution to the Plateau prob{é), it is sufficient to
solve the minimization problem defined by jafy« Eo(v). This can be accomplished
by using the following result.

LEMMA 3 (COURANT-LEBESGUB. W* is sequentially weakly closed in'H

Proof. We limit ourselves to sketch the proof. To every W*, one associates (in a
unigue way) a continuous mappigg [0, 27] — [0, 2] such that

(17) v(€?) = g(€*?), ¢0) =0.

The functiong turns out to be increasing and satisfying
2k 2k

(18) w(Tﬂ):Tﬂfork:O,...,S.

Take a sequencén) C W* converging to some weakly in HL. Let (gn) €
C([0, 27]) be the corresponding sequence, defined according to (1173e 8iverypn
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is increasing and satisfies (18), for a subsequepcey> ¢ almost everywhere, being
@ an increasing function on [@r] satisfying (18). One can show thatis continuous
on [0, 2], this is the hard step in the proof. Then, from monotonijeity — ¢ uni-
formly on [0, 27]. By continuity of g, from (17) it follows thaiu\aD2 is a continuous
monotone parametrization pfand theru belongs ton*.

O

Hence, apart from regularity at the boundary, we provedtti@aPlateau problem
(Po) admits at least a solution, characterized as a minimum.
4. The Plateau problem forH -surfaces (the small solution)

A natural extension of the previous Plateau probld) is to look for surfaces with
prescribed mean curvature bounding a given Jordan gurtleat is

Find a surface M such th&M = y and the mean

(PH) curvature of M at p equals Kp), for all p € M.

whereH : R3 — R is a given function (take for instance a constant).

Some restrictions on the functidf or ony are rather natural. This can be seen
even for the equivalent version of probldiy) in lower dimension. Indeed, a curve
in the plane with constant curvatukg) > 0O is a portion of a circle with radiuRy =
1/Ko. Therefore, fixing the end poings b € R?, such as a curve joiningandb exists
provided thata — b| < 2Ry. Choosing the origin in the middle of the segmabt this
condition becomes sdfa|, |b|}Ko < 1.

The necessity of some smallness conditiontbior ony is confirmed by the fol-
lowing nonexistence resutiroved by E. Heinz in 1969 [26]:

THEOREM 1. Lety be a circle inR2 of radius R. If i > 1/R then there exists
no surface of constant mean curvature bbundingy .

Hence we are led to assume a condition lik¢| |yl < 1. Under this condi-

tion, in 1969 S. Hildebrandt [30] proved the nexiistence result

THEOREM?2. Lety be a Jordan curve iiR® and let H: R® — R be such that

Hllooll¥ loo < 1.

Then there exists a surface of prescribed mean curvatureodndingy .

We will give some ideas of the proof of the Hildebrandt theor&irstly, by virtue
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of what discussed in section 2, probléR®y ) can be expressed analytically as follows:

Find a (regular) u: D2 — R3such that
AU = 2H (U)ux A Uy in D2
lux|? — Juy|> = 0= ux - uy in D2
u|aD2 monotone parametrization of .

(PH)

The partial differential equation far is nownonlinearand this is of course the main
difference with the Plateau proble(®) for minimal surfaces. The solution ¢P)
found by Hildebrandt is characterized as a minimum, and dffen calledsmall so-
lution. In fact, under suitable assumptions, one can find also angesolution to
(Pn) which does not correspond to a minimum point but to a saddtieairpoint, the
so-calledarge solution (see section 6).

The conformality condition can be handled as in the Dou§ladé approach
(three-point condition). In doing that, we are led to coesitthe more standard Dirich-
let problem

!Au =2H(u)ux Auy in D?
(DH) 2
u=g on oD~

whereg is a fixed continuous, monotone parametrizatiop of

The main point in Hildebrandt’s proof is the existence olioins to the problem
(Dp), thatis:

THEOREM3. Letge HY2(ST, R3) N CYand let H: R — R be such that

19Nl IH loo < 1.

Then problem(Dy ) admits a solution.

Proof. Let us show this result in case the strict inequalify~ ||H || < 1 holds. We
will split the proof in some steps.

Step 1: Variational formulation of probleiDy).

Problem(Dy) is variational, that is, solutions {® ) can be detected as critical points
of a suitable energy functional, defined as follows. Qgt : R® — R be a vector field
such that

div Qu(u) = H(u) forallu € R3.

For instance, take

1 Uy uz us
Qu) = 3 </ H (t, up, uz) dt, / H (ug, t, ug) dt, / H (ug, uz, t) dt) .
0 0 0

Then, denote

Hy = {ue HY(D? R?) :ul,. = g}
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and

1
EH(u)=E/D2|Vu|2+2/D2QH(u)-uXAuy.

Note that in case of constant mean curvatdi@) = Hp one can tak&,(u) = %Hou
andEy turns out to be the sum of the Dirichlet integral with the vokiintegral.

One can check that critical points &4 on Hgl correspond to (weak) solutions to
problem(Dp). Actually, as far as concerns the regularitygyf on the spacde-lg1 some

assumptions o are needed. For instancEy is of classC! if H € CO(R®) and
H (u) is constant fofu| large. A reduction to this case will be done in the next step.

Step 2: Truncation on H and study of a minimization problem.

By scaling, we may assunte= ||H |- < 1 and||g|lc < 1. Then,leth’ € (h, 1) and
H: R3 — R be a smooth function such that

Hu) asul <1,

Aw =
“=1o as|ul >4,

and with || Hlls < h. Let us denote b7 andEjy the functions corresponding to
H. Since|Qpy(u)| < 1 for allu € R®, we obtain

1 5
éEo(u) < Efu) < éEo(u) forallu e Hy .

Moreover,E turns out to be weakly lower semicontinuousldé. Therefore

inf Fg(v
veHéL H()

is achieved by some functiane Hgl. By standard arguments,is a critical point of
Eg and thus, a (weak) solution of

Au=2H(Uux Auy in D?
(D) 2
u=g on oD~.

Step 3: Application of the maximum principle.

In order to prove thati is solution to the original probleniDy), one shows that
lullo < 1. One has that (in a weak sense)

—AUPR =2 (|Vu|2+ u- Au) < —2|VulA(1—Jul|AwW)]) <.
Hence|u|? is subharmonic and the maximum principle yields
Ul op2) < UllLemp2 = I9lle < 1.

SinceI:f(u) = H(u) as|u| < 1,uturns out to solvéDp).
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REMARK 4. 1.The implementation of the Douglas-Radé method pg$sim the
Dirichlet problem(Dy) to the Plateau probleriP ) is made possible by the fact that
the functionalEy is conformally invariant. Actually, note that the volumenitional

VH(U):fDZQH(U)'Ux/\Uy

is invariant with respect to the (larger) group of the oréiain preserving diffeomor-
phisms ofD? into itself.

2. WhenH is constant (e.gH = 1) andu € HZ} is regular, the functiona¥y (u) has

a natural geometric interpretation as a (signed) voluméefrégion bounded by the
surface parametrized hyand a fixed surface given by the portion of cone with vertex
at the origin and spanning. WhenH is nonconstant a similar interpretation holds,
consideringR3 endowed with arH -weighted metric (see Steffen [39]).

3. Although the conditioniy |l ||H lloo < 1 is natural and sufficient for existence of
solutions to probleniPy), it is not necessary. Think for instance of long and narrow
“strips”. In this direction there are some existence reas{idy Heinz [25], Wente [47],
and K. Steffen [40]) both for the Dirichlet proble®) and for the Plateau problem
(Pn) where a solution characterized as a minimum is found asguthat

Hllooy/ Ay = Co

whereA, denotes the minimal area boundipgaindCop is some explicit positive con-
stant.

4. In case of constant mean curvatttéu) = Hg > 0, if y is a curve lying on a sphere
of radiusRy = 1/Ho, the solution given by the above Hildebrandt theorem cpoeds
to the smaller part of the sphere spannjn@gsmall solution. In this special case, the
larger part of the sphere is also a solution(Ry), thelarge solution We will see
below that this kind of multiplicity result holds true for megeneral andH, but it
does not happen, in general, for minimal surfaces.

5. There are also conformal solutions of tHeequation which define compact surfaces
(this is impossible for minimal surfaces). A typical examjs the spher&2. More
surprisingly, Wente in [49] constructed also immerseddbdonstant mean curvature.

5. Analytical aspects of theH -equation

In this section we will study properties of solutions of theequation (13). More
precisely, we will study:

(i) theregularity theoryas well as some aspects of the energy functi@al\Wente's
result [47] and its extensions by Heinz [27], [28], Bethuad &hidaglia [8], [9],
Bethuel [7]),

(ii) a priori boundsof solutions of problentPy) (or also(Dp)),

(i) isoperimetric inequalities
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Clearly, questions (i) and (ii) are elementary for the miaisurface equationu = 0.
For theH -equation (13), they are rather involved, because the meatity is “critical”.

5.1. Regularity theory

Here we consideweak solution®f the equation
(29) AU = 2H (u)ux A uy on O

where® is any domain irfR2. Owing to the nonlinearity B (u)uy A uy as well as to
the variational formulation discussed in the previousieecit is natural to consider
solutions of (19) which are in the spatg' (O, R3).

The first regularity result for (19) was given by H. Wente [46f H constant.

THEOREMA4. If H is constant, then any & H1(O, R3) solution of(19)is smooth,
i.e., ue C*®(0).

Nowadays, this result is a special case of a more generaldine(see Theorem 5
below) that will be discussed in the sequel. In any case, vi pat that the proof of
Theorem 4 relies on the special structure of the nonlingarit

uzud — udug {u?, ud)
ux Aty = | ufuy—ugud [ =1 {udul}
uxug — uzuy {ut, u?}

Here we have made use of the notation

{f,a} = fxgy - fygx

which represents the Jacobian of the ntapy) — (f (X, y), g(X, y)). Thus, consid-
ering the equation (19) witkl constant, we are led to study the more genkmnalar
equation

A¢p ={f,g}inO
wheref, g satisfy [, [V f|2 < +oo and [, |Vg|? < +oo. Obviously{ f, g} € L1(0)
but, in dimension twoA¢ € L1(O) implies¢ e V\/lfj’cp(O) only for p < 2, while the
embeddingW-P < L holds true only ap > 2. However{f, g} has a special
structure of divergence form, and precisely

0 d
{f.g} = a—x(fgy)— @(fgx),

and this can be employed to prove what stated in the followdngmata, which have
been used in various forms since the pioneering work by WeiTie

LEMMA 4. Letg € W-2(R) be the solution of

—A¢p ={f, g} onR2
$(2— 0 as |z] - +oo.
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Then
ol + Vel 2 < CIV T2Vl 2.

Proof. Let—% In |z| be the fundamental solution efA. Since the problem is invari-
ant under translations, it suffices to estimat@). We have

1
#(0) =—2—f Iniz| {f, g} dz
T JR2

In polar coordinates, one has

190 0
{f.g} = F@(fgr)—ﬁ(fge)'

Hence, integrating by parts, we obtain

1 1

— —fgp d
2 /Rz r % €2

1 [T®dr (/ >
— — fge do ).
21 /c; r \Jiz=r %

f do, then, using Cauchy-Schwartz and Poincaré inequality,

f|z=r (f =)o de‘

([ 1= 0) ([ wiw)
c (/ZIzr |f6|2 d6>% (KZ=r |99|2 d@)
Cr? <f|z=r |V |2d9> <f|z=r |Vg|2d9>% .

Going back tap (0), using again Cauchy-Schwartz inequality, we have

#(0)

Settingf = 51~ |

|z|=r

/I fggde‘
|z|=r

IA

IA
Nl

IA
NI

o0 2 2
lp(0) < C/ <r/ |Vf|2d9) <r/ |Vg|2d9) dr
0 |z|=r |z|=r
1 1
+oo 2 +00 3
< c<f f |Vf|2d9rdr> <f f |Vg|2d9rdr>
0 |z|=r 0 |z|=r
= CIV i 2lVdl_z.
Hence

[@llLe = CIV Fll2IVllL2 -
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Finally, multiplying the equation-A¢ = {f, g} by ¢ and integrating oveR?, we

obtain
/ IVo|?
RZ

IA

I{f. gHliali@lle

2 pliL< IV Fll 21Vgll 2
CIVI%,Ival?, .

IATA

O

Using the maximum principle, it is possible to derive similgas obtained by H.
Brezis and J.M. Coron [13]) the following analogous result:

LEMMA 5. Assume fg € H1(D? R) and letg W&’l(Dz, R) be the solution of

—A¢p ={f,g} onD?
$=0 onaD2.

Then
[pliLe + IVolL2 < CIV L2Vl 2.

Another proof of the above lemmas can be obtained by usinlg tmcharmonic
analysis. It has been proved (Coifman-Lions-Meyer-Semfh@} that if f,g <
H1(R?) then{ f, g} belongs to the Hardy spad¢l(R?), a strict subspace df!(R?),
defined as follows:

HYR?) = {ue LYR?) :Kjue Llforj =1,2)

where Kj = 3/8xj(—A)Y2. As a consequence, since any Riesz transfofm=R
3/0xj (—A)~Y2 mapsH1(R?) into itself, one has that - A¢ = { f, g} onR2? then

92¢

_Bxiaxj =RiRj(-A¢p) € HYR?) fori,j=1,2

and hencep € W21(R?) ¢ L*®(R?). This argument holds similarly true in the sit-
uation of lemma 5 and can be pushed further to obtain theatksistimate, exploit-
ing the fact that the fundamental solution (8A) to the Laplace equation belongs to
BMO(R?), the dual ofH(R?).

We now turn to the case of variabite. Regularity of (weakH 1-solutions has been
established under various assumptions on the funé¢tioRor instanceH € C*®(RR3)
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and
SURer3 IHWMIA+ YD) =a <1 (Heinz, [27))
IHllo < +00, H(Y) = H(y1, ¥2) (Bethuel-Ghidaglia, [8])
[Hlloe < +00, supers [VH(Y)I(1+1yD) < +oo  (Heinz, [28])
IH[[L < +00, SUR.cps SR (L +ys)) < C (Bethuel-Ghidaglia, [9]).

However we will describe another regularity theorem, dui. tBethuel [7].
THEOREMS. If H € C®(R3) satisfies
(20) [Hl[Le + IVH]lLe < +00

then any solution ue H1(D?, R%) to Au = 2H (u)ux A uy on D? is smooth, i.e.,
u e C®(D?).

The proof of this theorem involves the use of Lorentz spagbgh are borderline
for Sobolev injections, and relies on some preliminary itesurhus we are going to
recall some background on the subject, noting that thedstdor Lorentz spaces, in
our context, was pointed out by F. Hélein [29], who used thesfore for harmonic
maps.

If ©is a domain inRN andu denotes the Lebesgue measure, we ddffie® ()
as the set of all measurable functiohs2 — R such that theveak [>°°-norm

Il 2 = SUpitZu({x € Q: () > t})}
t>0

is finite. If L21($2) denotes the dual space bf>°(2), one had 23(Q) c L%(Q) C
L2°°(), the last inclusion being strict since, for instanca, & L2°(D?) but 1/r ¢
L2(D?). Moreover, if$2 is bounded, theh2>°(Q) c LP(R) for everyp < 2. See
[50] for thorough details.

Denoting byB; = By (z9) the disc of radius > 0 and centezg € R?, let now
¢ e Wg’l(Br) be the solution of

-A¢ ={f,g} in B
¢=0 on dB;

wheref,ge H 1(B); recalling lemma 5, one has
(21) 1Bl + IVllLz + IVl 21, ,) < CIV Fll 2l VGl 2.

The estimate ol.21-norm of the gradient was obtained by L. Tartar [45] using in-
terpolation methods, but can also be recovered as a consazjoé the embedding
WLl < 21 due to H. Brezis (since, as we have already mentioned, thetat
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{f, g} belongs to the Hardy spad¢’ implies thatp € W?1). Moreover, ifg is con-
stant ond By, then it can be proved (see [7]) that

(22) IVlLz = CIV 21Vl 200

Finally, we recall the following classical result: if ¢ L1(B;), then the solution
¢ € Wy '(Br) to

=0 on d0B
verifies
(23) IVl 2 (g, 5 < ClIlI 1.

Proof of Theorem 5At first we note that the hypothesis (20) grants thaH (u)| <
C|Vu| andH (u) € HL. The proof is then divided in some steps.

Step 1: Rewriting equatiofi9).
Let Bar (zo) € D? and{H (u), u} = ({H (u), ul}, {H(u), u?}, {H(u), u?}). The ideais
to introduce a (Hodge) decomposition dfi2u)Vu in By :

0 0
2HWVu=VA+V8  wherevt = <— ——) )
ay  IX

Since 5 )
a_x(ZH (Wuy) + a_y(_ZH (Wuy) = 2{H (u), u},

the solutiong € W&’l(BZr, R3) to

—AB={H(U),u} in By
B=0 on 0By

belongs, by lemma 5, tbl 1(By, R3) and satisfies
i(2H (Wuy + Bx) + i(—2H (Wux + By) = 0.
aX ay
Hence, there exist8 € H1(By, R3) such that
(24) Ay =2H(Wux — By, Ay =2H (W)uy + Bx
and equation (19), 0By, rewrites:
(25) AU = Ax A Uy + By A Uy.

Step 2: “Morrey type” inequality for the &> norm.
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Since regularity is a local property, as we may reduce thausadwe can assume
without loss of generality thatVul| 25, < ¢ < 1. We are now going to show that
there exist® < (0, 1) such that

1
(26) IVUll 200 (B, < > IVUull 2.0 g,)-

This is the main step of the proof. Let us consi@gy C B/, and letl be the har-
monic extension tdBy, of u,,, . Note that the radiusy can be chosen such that

||VG||L2(Br0) < ClIVUll 200 (B,) (Osee [7] for details). IrBy,, using (25), we may write
U=U0+v1+v2+y3
where the functiongr, ¥, ¥3 are defined by

AI/f1=Ax/\(U—ﬁ)y, AI/12=Ax/\ﬁy, AYz =By AUy in By
Y1=v2=1%3=0 0noBy,.

Note that, using (24), (21), (20) and the fact that 1, computations give
IVAIL2,) < ClIVUll 2(g,)-

By (22), we have

IA

IVl L2(By,) CIVAIl L2 IV(u— ol L2 (Byy)

(27) ClIVull 2, IVUll 20 (g,) < Cell VUl 28,

IA

and, using (21), we obtain

A

IV¥2llize,, = CIVAIL2@E ) IVUlL2@,)
ClVullL2g) IVUll 2B, ) < CellVUll 200 g,)-

IA

(28)
Using the duality ofL?! andL2>, (23) and (21) yield

||VW3|||_2,00(Br0/2) = C||V,3|||_2»l(|3,/2)||vu||LZ»M(B,/Z)
(29)

IA

C82||Vu||L2,OO(Br) < CS”VU“LZ,C)O(B,_).
By the properties of harmonic functions, one has that
(30) VC( S (0, 1) ”VU”LZ(BM()) 5 C“”VGHLZ(BrO) 5 Ca”vu”LZC)O(Br)

Combining (27)—(30) and recalling the decompositioruan By,, we finally deduce
that
Vo € (O, 1) ||VU||L2.00(BMO) < C(8 + OI)HVU”LZ.OO(Br)

and, by a suitable choice efand«, (26) follows.

Step 3: Hlder continuity.
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From the last result, by iteration, we deduce that theretexise (0, 1) such that
VUl 200 (B, (z9)) < Cr* for every discBy (z0) C D2 and, thanks to a theorem of C.
Morrey (see [22] for example), this yields thate C% for everya e (0, ). Higher
regularity can be derived by standard arguments.

O

As a first consequence of regularity, we will now prove a restlich shows that,
for solutions not supposed to be a priori conformal, how#vedefect of conformality
can be “controlled”.

THEOREM 6. If u € HZ(O, R®) is a solution to(19), then its Hopf differential
o = (lux|? — Juy|?) — 2iuy - uy satisfies (in the weak sens& = 0in O.

Proof. Let X € CZ°(O, R?) be a vector field or0 and letp = Xiuy + Xauy. Since
we have assumed thate H?, we deduce thap € HOl and therefore we may takeas
atest function for (19). Beingl (u)ux A uy - ¢ = 0, one has

0= Au- ¢ = X1(Uxx - Ux + Uyy - Ux) + X2(Uxx - Uy + Uyy - Uy)

which yields directly the result.
O

REMARK 5. Note that the argument would fail fét 1-solutions, but it holds still
true for smooth solutions and, moreowerurns out to be holomorphic.

5.2. L°°-bounds for the H-equation

The a priori bounds on solutions to thE-equation we are going to describe are basic
in the context of the analytical approach to the followinggetric problem. Let us
consider a Jordan curyein R3 and a surfacé c R3 of mean curvaturél and such
thatoM = y. The question is:

Is it possible to bounduppe,\,I [H(p)|
by a function of|y ||~ and the area of M?

Although a direct approach to this problem is probably guesithe analytical one
(based on ideas of M. Griter [23] and rephrased by F. Betm@lO. Rey [11]) relies
on the following estimates, which play a central role alsthia variational setting of
the H-problem.

THEOREM 7. Let u be a smooth solution to problei@y). Assume u conformal
and H bounded. Then

1
2
(31) llull e §C<||9||L°0+||H||L°°/ |Vu|2+<f |Vu|2) )
D2 D2
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Proof. The proof is based on the introduction, fay € D2 andr > O such that
dist(u(zo), y) > r, of the following sets and functions:

W(r) = u (B (u(z0))), V(r)=2aW()
) 3ul

¢>(r)=/ [Vul®, () =/ o
W(r) vy | v

wherev is the outward normal t& (r). Obviously, B, (u(zg)) Ny = @. We limit
ourselves to describe briefly the steps which lead to thelasion.

Step 1.Using the conformality condition, we have

d
(32) PO =20
In fact, assuming (without loss of generality)zo) = 0 and noting that
2 2
vup =2|2) 5 2|2
av av
we obtain
d d dull> _d )
o0 =25 /W(r) oo =2 L, P =200

where the last equality can be deduced from the coarea farafitiederer [21].

Step 2.Again by conformality, it is possible to prove that
) o(r) :
(33) lim sup,wﬁor—2 > 27, assumingVu(zp)| # 0.

The idea is the following. As — 0, the image ofi becomes locally flat, so that the
areaA, of the image o1 in B; (u(zp)) is close tarr2. On the other hands(r) = 2A;.

Step 3.Using theH -equation and (32), we have

d
(34) 2p(r) —raqﬁ(r) < 2Hor ¢ (r).

In fact, integrating by parts, we obtain

2 au
o) = |Vul2 = —AU-U+ u-—
W(r) W(r) v o 9v

0
< Ho/ ul |Vu|2+rf Al
wW(r) vy | v
< Ho/ Ul VU + 19 (r)
W(r)
< Horom + 2r Lo
- 0 2 dr ’
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Step 4.Combining (32), (33) and (34), it is possible to prove that
2
(35) p(r) = grz

1
foreveryO<r < 2

Step 5.Combining the estimate (35) with a covering argument, thefof the theorem
can be completed.
O

A relevant fact is that the conformality assumption of tleenr7 can be removed.
More precisely, we have:

THEOREMS8. Let u be a smooth solution to the probl¢by). If H is smooth and
bounded, then

(36) lulle sc(||g||Loo+||H||Loo (”/DZ'V“'Z))'

Proof. Let us note that, iy were conformal, for the theorem 7 it would satisfy the
inequality (31), which would directly yield (36). Whenis not conformal, an adapta-
tion of an argument of R. Shoen [38] allows a reduction to thiefarmal case. This
procedure is based on the following construction. It is fidsdo determine a function
¥ : D2 — C such that

oy

] 1
_KU =——w and — =0
0z 4 0Z

(37)
whereo = |ux|? — |uy|? — 2iu - uy is holomorphic (see remark 5). Then, defining
(38) v=v1+tiv=Z2+¢y +a«a

where the constant € C is to be chosen later, we have

and
1 v dv 1 2 2
(40) —2¢9= <E E>(C =3 (val — Jvy|® — 2i Ne(vy, vy)(c> .

If we set
U :(u,vl,vz)eR3xRxR,

then, by (37) and (40), we hayey|?> — |Uy|? — 2iUx - Uy = 0 and, by (39) and thl -
equation, we obtaimAU | < Ho|VU |2. Now, one may apply tt) a generalized version
of theorem 7, the proof being essentially the same. See §tthbrough details.

O
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Turning back to the geometric problem mentioned at the méggnof this sub-
section and as an application of the previous estimates,usdhe following result,
again from [11].

THEOREMO. Let M be a compact surface &3, diffeomorphic t? and of mean
curvature H. Then _
diam(M)

f’Pef%AXIH(p)I =C areaM)

wherediam(M) = maxp gem | P — Q|-

5.3. Isoperimetric inequalities

We conclude this section recalling some central resulthefvwork of Wente [48].
Considering the Plateau problem fbr-surfaces in the case of constantunder a
variational point of view, he observed that the volume fiorl

1
V) == :
(u) 3/02“ Ux A Uy,

whose existence needshounded, could instead be well defined by continuous exten-
sion for anyu € H* with bounded tracel, ,. To define this extension, he used the
decompositioru = h + ¢ where¢ < HO1 andh is the bounded harmonic part of
(i.e., the minimizer for Dirichlet integral on + Hol). Then, the classical isoperimetric
inequality can be applied t¢ provided that it is regular enough and, since the area
functional A(¢) does not exceed the Dirichlet integiad(¢) = %sz |Vul|2, one has
that |V (¢)| < (1/v/36m)A(¢)¥? < (1/+/36m)Eo(¢)%/? (see Bononcini [12]). From
the factV (¢) is a cubic form inp, Wente deduced th&t can be continuously extended
on H} with the same inequality:

THEOREM10. Letue H3(D? R3). Then

1 , 3/2
U-ux AU Vu .
/Dz SRS By, = </Dz| | )

Moving from this result and in order to achieve the extensmwhole H?, Wente
also obtained that, for any e H! with bounded trace, the integral

D2

defines a continuous functional of € Hol. This fact is of great importance in the
variational setting of théd -problem, for constanti .

=

As far as the case of variablté is concerned, we just note that K. Steffen in [39]
pointed out the intimate connection between isoperimetdqualities and the Plateau
problem with prescribed mean curvature. In particularngighe theory of integer
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currents, he proved the following version of isoperimetrexjuality for the generalized
volume functional

Vh(U) Z/DZ QH(U) - ux AUy,
whereQy : R® — R3is such that divQy = H.

THEOREM11. If H € L>(R®), then there exists a constanqdepending only
on ||H ||so) such that

3/2
[VH (W] < Ch </ |Vu|2) for every ue HF N L™ .
D2

Moreover the functional \f admits a unique continuous extension o(:}n, End it satis-
fies the above inequality for everyeuHol.

6. The large solution to theH -problem (Rellich’s conjecture)

As we noticed in section 4, remark 4, lfp > 0 andy is a perfect circle lying on
a sphere of radiu®y = 1/Ho, the solution given by the Hildebrandt's theorem 2
corresponds to the smaller part of the sphere spannijtige small solution. However
also the larger part of the sphere is a solution to the santedRiproblem, the so-called
large solution.

This example has lead to conjecture that in case of consteantcurvaturéiy £ 0,
if ¢ is Jordan curve such th@iy’ || |Ho| < 1, then there exists a pair of parametric
surfaces spanning (Rellich’s conjecturi

In 1984 H. Brezis and J.-M. Coron [13] proved this conjectimdependently, also
M. Struwe [42] obtained essentially the same result.

Technically, the main difficulty in showing the Rellich’sigecture is to prove that
the Dirichlet problem

Au = 2Hgux Auy in D?

D
(Bro) u=g on 9D?

admits two different solutions. Herg St — y is a regular, monotone parametrization
of y. In this section we will discuss the following multiplicitgsult, proved by Brezis
and Coroniin [13].

THEOREM12. Let ge HY2n C%HD?, R3) and let H) # 0 be such that
l9llL=|Hol < 1.

If g is nonconstant, then the problei,) admits at least two solutions.

The existence of a first solutiom (the small solution) is assured by theorem 2.
Brezis and Coron proved the existence of a second solUtigru. As a consequence,
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even the corresponding Plateau problem has a second sphgowill not discuss this
matter, we just limit ourselves to say that the proof can uded from the Dirichlet
problem, using the usual tools (e.g. the three points cmmjitliscussed in section 3.

We prefer to focus the discussion on the proof of a secondisolto (D), in
which the main difficulty is the behavior of the Palais-Smsdggjuences of the func-
tional involved in its variational formulation. It is a tygl example of a variational
problem withlack of compactnesthe overcoming of which moved on from the break-
through analysis of Sacks and Uhlenbeck [37], and Aubin [} us notice that this
kind of matters appears in many conformally invariant peots, such as harmonic
maps (in dimension 2), Yamabe problem and prescribed scataature problem, el-
liptic problems with critical exponent, Yang-Mills equatis.

In the next subsections 6.1, 6.2 and 6.4 we will give an oeittifithe proof of the-
orem 12. We always assume all the hypotheses given in trersat of the theorem.
Moreover, we will denote by the small solution tgDn,) given by theorem 2.

6.1. The mountain-pass structure

Let us recall that the probleDn,) has a variational structure (see the proof of theo-
rem 2), i.e. its (weak) solutions are critical points of thadtional

1 2Ho
(41) EHO(U)=5/D2|Vu|2+?/Dzu-ux/\uy

on
1 1,2 w3y -
Hg = {ue HY(D% R :ul, ;. = g}.

Now, we are going to point out that the functiorf&l, has, essentially, a mountain pass
geometry. Let us first recall the classical mountain passianstated by A. Ambrosetti
and P. Rabinowitz in 1973 [4].

THEOREM 13 (MOUNTAIN PASS LEMMA). Let X be a real Banach space and let
F: X — R be a functional of class € Assume that

(mpy) there existg > 0such thatnf)y =, F(x) > F(0),
(mp2) there exists xe X such that|x1|| > p and F(x1) < F(0).
Then, setting? = {p € C°([0, 1], X) : p(0) = 0, p(1) = x1}, the value

42 — inf F
(42) c AQPSETQT] (p(s))

is a generalized critical value, i.e., there exists a se@e€xy,) in X such that Kx,) —
canddRxn) — 0in X'.

REMARK 6. 1. In the situation of the theorem 13, sirjee|| > p, by the hypothe-
sis(mpy), itis clearly maxco,1) F (p(s)) > « forall p € P, beinga = infjx =, F(x).
Hencec > o > F(0).
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2. A sequencéx,) C X satisfyingF (xn) — canddF(x,) — 0in X’ is known as a
Palais-Smale sequence for the functioRalt levelc.

3. Recall that a functiondf € C1(X, R) is said to satisfy the Palais-Smale condition
if any Palais-Smale sequence fBris relatively compact, i.e., it admits a strongly
convergent subsequence. Hence, if in the above theorerurtbonal F satisfies the
Palais-Smale condition (at leve) then it admits a critical point at level i.e,cis a
critical value.

Coming back to our functiondtn,, the possibility to apply the mountain-pass
lemma is granted by the following properties.

LEMMA 6. The functional , is of class € on Hg1 andforallue Hg1 one has
(43) dEny(Uu) = —Au + 2Houx A uy.

Here the fact thatix A uy € H~L, which is implied by Wente’s result given in
theorem 10, is of fundamental importance, since it cleaydgd Ep,(u) € H 1 for
anyu e Hg1 and hence thaEn, is differentiable. We also remark that for variathie

it is no longer clear and rather presumably false tH&t)ux A uy € H ~1 for every
ueHL
g

LEMMA 7. The second derivative of g at u is coercive, i.e., there exisés> 0
such that

d?En, (W) (@, 9) :/2<|V¢|2+4H09’¢X/\(py> 28/2|V¢|2
D D
forall ¢ € H}(D?, R3).

A proof of this lemma is given in [13].

Finally, since the volume teriy,(u) = 2—20 Jp2U - ux A uy is cubic, whereas the
Dirichlet integral is quadratic, the next result immedigfellows.

LEMMA 8. infueHgl EHo(U) = —oo0.

Proof. Letv € HO1 be such thaVh,(v) # 0. Taking—v instead ofv, if necessary, we
may assum&y,(v) < 0. The thesis follows by noting that

Eno(tv + U) = 2t3Vi,(v) + O(t?)

ast — +o0.
O

Now we apply the mountain pass lemma to the functidﬁaHol — R defined by

(44) F(v) = En(v + W) — Enxp(U) .
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The regularity ofF is assured by lemma 6, singes Hg1 =u+ HOl and
(45) dF() =dEx,(v+u) .

The condition(mp;) is granted by lemma 7. The conditiégmp,) follows immediately
from lemma 8. Hence, by theorem 13, the functidha@dmits a Palais-Smale sequence
(vn) C HO1 at a levelc > 0. By (44) and (45), setting, = vy + U, we obtain a Palais-
Smale sequence i||=lg1 for the functionalEn, at levelc 4+ En,(u).

Owing to the conformal invariance of the problem, the fumatil En, is not ex-
pected to verify the Palais-Smale condition, and a deepaysis of the Palais-Smale
sequences foEn, is needed.

6.2. Palais-Smale sequences f@,

Recalling remark 6, by (41) and (43), a Palais-Smale sequfem¢he functionaEn,
is a sequenca") C Hg1 such that

(46) Eo(Un) — €
(47) AU" = 2Hou A uj + fqin D?, with fy — OinH™!

for somec € R.
As a first fact, we have the following result.

LEMMA 9. Any Palais-Smale sequenag,) C Hg for Ep, is bounded in H.

Proof. Since(un) C Hg1 it is enough to prove that sufyunll2 < +oo. Settingpn =
un — U, and keeping into account th&En, (u) = 0, one has

1
Eno(Un) = EHO(H)‘FEdZEHo(H)((ﬂnv‘Pn)+2VH0((Pn)
dEny(Un)gn = d%Eng(U)(¢n, ¢n) + 6Vig(¢n).

Hence, subtracting, one obtains
1o
3EH,(Un) = Enxy(u) + Ed Eho (W (@n, ¢n) + d Eng(Un)en.

Using Lemma 7, one gets

SIIVenll3 < d?Eny(U)(@n. ¢n)
G(EHO(Un) - EHO(H)) —2d EHO(Un)(ﬂn
< CH+|ldEnyun)ll Venll2-

By (46) and (47) one infers th&py) is bounded irH(} and then the thesis follows.
O
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In the case of variabl#l, it is not clear whether the lemma holds or not. A method
to overcome this kind of difficulty can be found in Struwe [42]

From the previous lemma we can deduce that all Palais-Sregleesces foEn,
are relatively weakly compact. The next result states thatiteak limit is a solution
to (Dhy).

LEMMA 10. Let (uy) C Hgl be a Palais-Smale sequence foyEconverging
weakly in H' to someli € Hg. Then dE,(0) = 0, i.e., U is a (weak) solution to
(DHO)'

Proof. Fix an arbitraryy € C°(D?, R®). By (47), one has

|, Vun- Vo + 2Hol (un. ) - 0
D2
where we set
D2
By weak convergencé,, Vun - Vo — (2 Vi - Vo. Moreover, using the divergence
expression @x A Uy = (U A Uy)x + (Ux A U)y, one has that

2L(u,<p)=—/2(<px~UAuy+<py-uxAu).
D

HenceL (un, ¢) — L(Q, ¢), sinceu, — 0 strongly in L2 and weakly inH™. In
conclusion, one gets

D2 D2

that is the thesis.
O

However, the Palais-Smale sequences [y, are not necessarily relatively
strongly compact irH®. In the spirit of Aubin [5] and Sacks-Uhlenbeck [37], and
inspired by the concentration-compactness principle Hy. Rions [35], Brezis and
Coron in [14] have precisely analyzed the possible defestrohg convergence, as the
following theorem states.

THEOREM 14. Suppose thatun) € Hg1 is a Palais-Smale sequence fopf Then
there exist

(i) T e Hg solvingAT = 2Holx A Ty in D?,

(i) a finite number pe N U {0} of nonconstant solutions®, ..., vP to Au =
2Houx A uy ONR2,

(iiiy p sequenceg@l), ..., (a}) in D?
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(iv) psequence&}), ..., (X)) in Ry with limp_ 400 g'=0foranyi=1,...,p

such that, up to a subsequence, we have

un—U—ivi <;a,'1)

i=1 n

-0

H1

p
f |Vun|2=f |VU|2+Z/ Vo' % 4 0(1)
D2 D2 i—; JR2

p .
Eno(Un) = Eng(@ + Y Eny @) +0(1)
i=1

where in generaEp, (v) = 3 fz2 V|2 + 2—20 Jg2 v - vx A vy. Incase p= 0any sum
P, iszeroandy — @ strongly in H.

REMARK 7. The conformal invariance is reflected in the concentrategps
vl (%a—"") This theorem also emphasizes the role of solutions oHf®quation on
n
wholeR?, which are completely known (see below).

6.3. Characterization of solutions onR?

The solutions to théHg-equation on the whole plarig? are completely classified in
the next theorem. It basically asserts that all solutiorth@fproblem

Au = 2Houx AUy on R?

(48) {fR2|VU|2 < 400

are conformal parametrizations of the sphere of raéigis= 1/|Ho|.

Note first that, ifu is a solution to (48), defining = |ux|2 — |uy|?> — 2iux - Uy
the usual defect of conformality far, it holds that%—‘*z’ = 0 (by the equation), and
Jgzlwl < 400 (by the summability condition oi¥u). Hencew = 0, that is,u is
conformal.

Pushing a little further the analysis, Brezis and Coroniokththe following result
(see [14)).

THEOREM15. Letu € L} (R? R®) be a solution tq48) with Ho # 0. Then u
has the form
1 P(2)
uzy =—I1 <—> +C,
Ho Q2

where C is a constant vector iR3, P and Q are (irreducible) polynomials (in the
complex variable = (x, y) = x+iy) andIl: C — S?is the stereographic projection.
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Moreover
8k
/ vu? = 22
R2 HO
- 47k
Ep,(w) = 3702,

where k = maxdegP, degQ} is the number of coverings of the sph&®by the
parametrization u.

We point out that problem (48) is invariant with respect te tonformal group.
For instance, if1 is a solution to (48), then, (z) = u(12) is also a solution. Note that
u, — constasi — +o00, orasi — 0.

6.4. Existence of the large solution

In this subsection, taking advantage from the resultsaiatthe previous subsections,
we will sketch the conclusion of the proof of theorem 12.

Let us recall that the function& defined by (44) admits a mountain pass level
¢ > 0. In view of the result on the Palais-Smale sequences stafBaeorem 14, it is
useful also an upper bound forand precisely:

4
LEMMA 11. c < Iz
This estimate is obtained by evaluating the functidag] along an explicit moun-
tain pass path which, roughly speaking, is constructedtaglaing in a suitable way a
sphere to the small solution.

Let now (u,) C Hgl be the Palais-Smale sequence Hy, introduced at the end
of the subsection 6.1. We have already seen that, up to acudrsee(u,) converges
weakly to a solutiorti to (D). If up — G strongly inH ! then

(49) Ero(U) = Enp(W) + € > Epy (L)

because > 0.

On the contrary, if no subsequence (©f,) converges strongly irH1, then we
use theorem 14 on the characterization of Palais smale seggleln particular, with
the same notation of theorem 14, we have> 1 and, denoting bys the set of all
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nonconstant solutions to (48),

p
Ero@@ = Engw)+Cc— ) Eng(ui)
i=1

EHO(H) +Cc—p inf EH()(v)
veS

IA

IA

Eno(U) + ¢ — inf Epy(w)
weS

< En,(u)+c A
= THl= 3H2

(50) < EnW)

according to (46), theorem 15 and lemma 11.

Thus, either from (49) or from (50), it follows that = u and the conclusion of
theorem 12 is achieved.

6.5. The second solution for variableH

In the previous sections, we have seen how Brezis and Coowegthe existence of
a second solution (different from the small one) to the pgob{Dy), for constant
H. Unfortunately, in the attempt of extending their proof e ttase of variabléd,
lot of the main arguments fail. In view to overcome such otdsteStruwe introduced
in [44] a perturbed functional, which brings some compagsriato the problem, and
he succeeded to prove existence of a large solution for & ofasurvature functions
H, which is a dense subset in a small neighborhood of a nhonzerstant, for some
strong norm involving, in particular, a weight€ norm. His results were then slightly
improved by Wang in [46].

Here we present a result by Bethuel and Rey [11] (see als9,[d@]re general
than the above mentioned results by Struwe and Wang, whieimés theorem 12 for
variableH, in a perturbative setting. A similar result is contained38] (see also
[34)).

THEOREM16. Let g € HY2n C%9 D2, R®) be nonconstant and letd+~ 0 be
such that||g|lL~|Ho| < 1. Then there exists > 0 such that for any He C1(R3)
satisfying

IH — HollLe < «
the problem(Dy) admits at least two solutions.

The proof is developed by a direct variational approach [$&B. Fundamental
tools in the proof are: a careful analysis of the Palais-8matjuences (which is more
delicate than in the case of consta&hy; thea priori bound on solutions given in the-
orem 7, which permits the truncation ¢h outside a suitable ball. Indeed, replacing
the originalH by a functionH such thatH (u) = H(u) as|u] < R, H(u) = Hg as
|ul > 2R, and solving the problem withi, thea priori bound yields that the solution
found to the truncated problem is also a solution to the palgproblem.
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7. H-bubbles

In this section we deal witB2-type parametric surfaces 3 with prescribed mean
curvatureH, briefly H-bubbles On this subject, which might have some applications
to physical problems (e.g., capillarity phenomena, sed)[2de discuss here some
very recent results obtained in a series of papers by P. Ghldhd R. Musina (see
[15]-[18]).

Let us make some preliminary remarks, useful in the sequrst, e observe that
the “H-bubble problem”:

Given a (smooth) function HR® — R, find anS?-type surface M such
that the mean curvature of M at p equalg p), forall p € M,

after the identification o§? with the compactified plan&? U {co}, via stereographic
projection, and using conformal coordinates, admits tieviang analytical formula-
tion:

Find a nonconstant, conformal function ®? — R2, smooth as a map
on S?, satisfying

Au = 2H (U)ux AUy on R?

B)n 2 IVU[? < +o0.

In principle, the two formulations of thE -bubble problem are not exactly equiva-
lent, since in the analytical version one cannot excludeaighe presence of branch
points (i.e., self-intersection points, or poinis= u(z) whereVu(z) = 0). We do
not enter in this aspect of geometric regularity and, from mm, we just study the
analytical versior{B)y of the H-bubble problem.

Observe that iH = 0, clearly the only solutions aB)y are the constants. More-
over, as we saw in the previous section, when the prescriteghnourvature is a
nonzero constarit (u) = Ho, Brezis and Coron in [14] completely characterized the
set of solutions ofBy) (see Theorem 15).

REMARK 8. 1. We point out that it is enough to look for weak solutiohgB) .
Indeed, by regularity theory fdf -systems (see Section 5),Hf is smooth, then also
any solution of(B)y is so. In particular, iH € C1, then any solution ofB)y turns
out to be of clas€3.

2. If u solves(B)n, thenu is conformal for free. Indeed, by Theorem 6, its Hopf
differential is constant of2, and actually, by the summability conditigi. |Vu|? <

400, it is zero, namelyu is conformal. The deep reason of this rests on the fact that
problem(B)y contains no boundary condition and it is invariant underabion of

the conformal group 082 ~ R? U {oo}. This invariance means that in fact we deal
with a problem on the image of the unknowprather than on the mappingitself.
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Problem(B)y can be tackled by using variational methods. In particaae can
detect solutions ofBy) as critical points of the energy functional

1
EH(u)=E/H;Z|Vu|2+2/ﬂéZQH(u)-uxAuy,

where Qn : R® — R3 is any vector field such that diQy = H. We can write
Enx (U) = Ep(u) + 2V (u), whereEg(u) = %fRZ |Vu|? is the Dirichlet integral, and

Vi (u) =/ QH(U) - ux AUy
RZ
is the so-calledH -volume functional.

REMARK 9. This name for the functionaly is motivated by the fact that i
is a regular parametrization of sorfé-type surfaceM, thenVy (u) equals theH -
weighted algebraic volume of the bounded region enclosetflbyAs a remarkable
example, consider the mappiag R? — R3 defined by

WX
(51) w@=| ny s n=p@) = ——s,

1-p 1+ |z)2
where, as usuat, = (x, y) € R2. Notice thaiw is a (1-degree) conformal parametriza-
tion of the unit spher&2 centered at the origin. Indeesisolves(B)y with H = 1.
One has thaEg(w) = 47 = area of the unit spher®?, and, by the Gauss-Green
theorem,

(52) Vit (@) =—/B H(q) dg.
1

where B; denotes the unit ball ifR3. Notice also that for everp € Z \ {0} the
mapping»"(z) = w(z") (in complex notation) is a-degree parametrization ¢ and
VH(0") = NVH ().

Keeping into account of the shape of the functidBgl, the natural functional space
to be considered as a domainkf; seems to be the Sobolev space

Hl:= (vow|ve HYS? R3)

wherew: R?2 — S2, defined in (51), is the inverse of the stereographic prigjact
Clearly,H' is a Hilbert space, endowed with the norm

ul?,, = /Rz(wmzwzwﬁ) :

it is isomorphic toH1(S? R®), and it can also be defined as the completion of
C°(R?, R3) with respect to the Dirichlet norm.
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REMARK 10. 1. Since in generaQy is not bounded (e.g., iH = 1, then
Qn(u) = %u), the H-volume functionaMy as well as the energlgy turn out to be
well defined only fou € H1 N L. But we can take advantage from the generalized
isoperimetric inequality, due to Steffen [39] and statedlieorem 11 for functions in
H(D?,R3). In fact, using the conformal invariance, the same ineguablds true
also for functions inH® and, in this more general version, it guarantees Yhaand
En can be extended on the whole sp&t&in a continuous way.

2. The functional®/y andEy are of clasCl onH1 only in some special cases, like,
for instance, wherH is constant far out. For an arbitrary functi¢h (smooth and
bounded), we can just consider the derivatives along dinestin a (dense) subspace
of H1: for everyu € H! and for everyy € H1 N L there exists

(53) a(pEH(u)zf Vu~ch+2/ H(We - ux Auy.
R2 R2

In particular, from (53) one can recognize thatiife H?! is a critical point ofEn,
namelyd,Eq(u) = O forall ¢ € H1N L>, thenu is a weak solution ofB)y. In
addition, by (53) one can see that thevolume functional does not depend on the
choice of the vector fiel@Qy.

REMARK 11. The functionalEy inherits all the invariances of probleiB)y,
and in particularEy (u o g) = Ep (u) for every conformal diffeomorphism @&? ~
R? U {o0}. Since the conformal group 6 is noncompact, this reflects into a lack of
compactness in the variational problem associatgd)@;, similarly to what we saw
for the Plateau problem.

For several reasons, it is often meaningful to investigagekistence ofl -bubbles
having further properties concerning their energy or thatation. Here is a list of
some problems that will be discussed in the next subsections

(i) Calling By the set ofH -bubbles and assuming thag is nonempty (as it happens,
for instance ifH is constant, with a nonzero value, far away), is it true that
infues, EH(U) > —00 ?

(if) Assuming By nonempty andey = infyep, EH(U) > —oo, is uy attained in
Bu?

(iii) Find conditions onH ensuring the existence of an-bubbleu, possibly with
minimal energy, that is, witley (U) = uy.

(iv) Study the H-bubble problem in some perturbative setting, like for amste,
H(u) = Ho + eH1(u), with Hg € R\ {0}, H1 smooth real function ofR3,
and|e| small.
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7.1. On the minimal energy level forH-bubbles

Here we takeH e CY(R3) N L* and, denoting by3y the set ofH-bubbles and
assumingsy # @, we set

(54) uH = inf Eq(u).
UEBH

In this subsection we will make some considerations abaintmimal energy level
un and about the corresponding minimization problem (54). fdsalts presented
here are contained in [16].

To begin, we notice that iH is constant and nonzero, i.¢1,(u) = Hp € R\ {0},
then by Theorem 15,° := F-w belongs o3k, andEp, (0°) = 325 = wHo-
0

REMARK 12. In case of a variablél, it is easy to see that in general it can be
By # ¥ anduy = —oo. Indeed, if there exists € By with Ey (u) < 0 then, setting
u"(2) = u(@"), for anyn € N the functionu™ solves(B)y, namelyu" € By, and
En (U™ = nEyx(u). Consequentlyty = —oo. One can easily construct examples of
functionsH e CL(R3) N L for which there exisH-bubbles with negative energy.
For instance, suppose thidt(u) = 1 as|u| = 1, so that the mapping defined in (51)
is anH -bubble. By (52) En (w) = 47 — fBl H (g) dg. Hence, for a suitable definition
of H in the unit ballB1, one getEH (w) < 0.

The previous remark shows that in order that is finite, noH -bubbles with neg-
ative energy must exist. In particular, one needs some tondihich preventdd to

have too large variations. To this extent, in the definitibthe vector fieldQy such
that divQy = H, it seems convenient to choose

1
QuU) =myWu, myU) = / H(sus?ds.
0

Taking any H-bubbleu, sinced,En(u) = 0, and using the identity By (u) +
Vmy (u) - u = H(u), one has

1
Enu) = EH(U)—éauEH(U)
= 1/ |Vul? ZfVm(U)UUU/\U
6 Jre 3 Jr2 H X y

.l \Y
<6 3 ) R2| U|

My = sup |Vmy(u) - u ul.
ueR3

(55)

where

Hence, ifMy < 3, thenuy > 0.
Now, let us focus on the simplest case in whidhis assumed to be constant far
out. This hypothesis immediately implies thag is nonempty and the minimization
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problem defined by (54) reduces to investigate the semiwoityiof the energy func-
tional Eq along a sequence dfi-bubbles. As shown by Wente in [47], in general
En is not globally semicontinuous with respect to weak coneaog, even ifH is
constant. However, as we will see in the next result, underctnditionMy < %
semicontinuity holds true at least along a sequence ofieaidf (B) .

THEOREM17. Let H € C1(R3) satisfy
(h1) H@u) = Hy € R\ {0} as|u| > R, for some R> 0,
(hy) My < %

Then there exist® € By such that y(w) = uy. Moreoveruy < 34—”2.

Proof. First, we observe that bghy), By # @, since the spheres of radijid|~*

placed in the regiotu| > RareH-bubbles. In particular, this implies thaty < 3‘%.

Now, take a sequenc@™) C By with E4 (U™ — uy. Since the problenQBfoH
is invariant with respect to the conformal group, we may assuhat||Vu"|, =
|Vu"(0)| = 1 (normalization conditions).

Step 1 (Uniform global estimatesje may assume
sup||Vu"||2 < 400 and suglu™ e < 400 .

The first bound follows by (55), byh,), and by the fact thatu") is a minimizing
sequence for the energy By. As regards the second estimate, first we observe that
using Theorem 7 one can prove that

sup diamu” =: p < 400,
n

If Ju"looc > R+ p, then by the assumptiatin;), u" solvesAu = 2HUx A Uy. Let
pn € rangeu” be such thatpp| = |JU"||0. Setgn = ( — %) pn andd" = u" —qp.
Then|i"|. < R+ p, and|i"(2)] > R for everyz € R2. Hence, alsai" € By,

and Ex (") = Ep, (") = En@u™). Therefore(@") is a minimizing sequence of
H-bubbles satisfying the required uniform estimates.

where, in general, diam = sup, ;g2 |U(2) —u(Z)|. If [u"[|c < R+ p, setd" = u".

Step 2 (Local ¢-regularity” estimates):there exist > 0 and, for everng € (1, +00)
a constanCs > 0 (depending only ofiH ||»), such that ifu is a weak solution of
(B)y, then

IVUllL2(ppz)y =& = [IVUllHLs(DR @) = CsllVUllL2(DR(2))

for everyR € (0, 1] and for everyz € R?.

Theses-regularity estimates are an adaptation of a similar reshitiined by Sacks and
Uhlenbeck in their celebrated paper [37]. We omit the q@tdnhical proof of this step
and we refer to [15] for the details.
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Step 3 (Passing to the limitjhere existsi € HX N C1(R?, R3) such that, for a subse-
quencep” — uweakly inH® and strongly irCL (R?, R®).

By the uniform estimates stated in the step 1, we may assuahéhénsequenog”) is
bounded inH1. Hence, there exists € H such that, for a subsequence, still denoted
(u"), one has that" — u weakly in HL. Now, fix a compact seK in R2. Since
[Vo"|loo = 1, there existR > 0 and a finite coveringDr/2(zi)}ie| of K such that
VUl 2(pr(z)) < ¢ foreveryn e Nandi e I. Using thes-regularity estimates stated

in the step 2, and sina@") is bounded in_>°, we have thatju"|| H25(DRj2(z)) = CsR

for some constan€s g > 0 independent of € | andn € N. Then the sequence
(u") is bounded inHZP(K,R3). Fors > 2 the spaceH25(K,R3) is compactly

embedded int€C1(K, R3). Henceu" — u strongly inC1(K, R3). By a standard

diagonal argument, one concludes tht—> u strongly inCl .(R?, R3).

Step 4: uis anH-bubble.
For everyn € N one has that ip € C°(R?, R®) then

/RZVU”.WJFZ/RZH(u”)<p~u2/\u3=0.

By step 3, passing to the limit, one immediately infers thigta weak solution ofB) .
According to Remark 8y is a classical, conformal solution 6B) . In addition,u is
nonconstant, since/u(0)| = lim [Vu"(0)| = 1. Henceu € By.

Step 5 (Semicontinuity inequality):£u) < liminf Ey (u").

By the strong convergence @ (R2, R3), for everyR > 0, one has
(56) En(u", DR) — En(u, DRr)
where we denoted
n 1 n2 Ny, N n n
EHW, =</ |VU|"4+2 | my@UHU -uy AU
2 Jg Q y
(and similarly forEy (u, €2)). Now, fixinge > 0, letR > 0 be such that

(57) En(u,R?\ DR) < ¢

(58) / [Vul? <e.
R?\Dr

By (57) and (56) we have

En (u)

IA

En(u,DRr) +¢€
En(u", DR) + € + 0(1)
(59) = Enu") — E4(u",R?\ DR) + € +0(1)
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with o(1) — 0 asn — +o0. Since every" is an H-bubble, using the divergence
theorem, for anyR > 0 one has

1 aun

—/ IVU"? = 3En(u",R?\ DR) —/ u - —

2 RZ\DR 9DR v

+2/ (HU™ = 3myuM)u” - uj A ug )
R2\Dgr

We can estimate the last term as in (55), obtaining that

1 au" 1 My
—Enu",R?\Dr) < -—/1 u“-——--(—-———)/n [vu"?
\ 3 9dDR Jv 6 3 RZ\DR

1 ou"
(60) < ——/’ un S
3 9DR av

because of the assumptidm). Using again th@&m convergence ofi” to u, as well
as the fact that is anH -bubble, we obtain that

/ n ou” / au
u'. — — u. —
DR Jv 9DR Jv
= / (u AU+ |Vu|2)
R?\Dr

= f (2H(u)u-ux/\uy+|Vu|2>
R2\Dgr

<||u||oo||H||oo+1)/ |Vul?
R?\Dr

A

lim
n— 400

IA

(61)

IA

(IulleollH loo + 1) €
thanks to (58). Finally, (59), (60) and (61) imply
Eq(U) < EHU™ 4+ Ce +0(1)

for some positive consta independent of andn. Hence, the conclusion follows.
O

7.2. Existence of minimalH -bubbles

Here we study the case of a prescribed mean curvature fardtia C1(R3) asymp-
totic to a constant at infinity and, in particular, we discasgesult obtained in [15]
about the existence dfl -bubbles with minimal energy, under global assumptions on
the prescribed mean curvature

Before stating this result, we need some preliminariesstfive observe that, by
the generalized isoperimetric inequality stated in Theoté and sinc&y is invariant
under dilation, for a nonzero, bounded functidnthe volume functional/y turns out
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to be essentially cubic andl = 0 is a strict local minimum folEy in the space of
smooth function<<Z® (R2, R®). Moreover, ifH is nonzero on a sufficiently large set
(as it happens iH is asymptotic to a nonzero constant at infinit§y, (v) < 0 for
somev € CgO(RZ, R3). HenceEy has a mountain pass geometry@@P(Rz, R3).
Let us introduce the value

CH = inf sup Ex(su),
ueCF(R?,R%) s>0
u£0

which represents the mountain pass level along radial patlesv, the existence of
minimal H -bubbles can be stated as follows.

THEOREM18. Let H € C1(R3) satisfy
(h3) H(Uu) - Hy as|u] — oo, forsome H, € R,
(hg) supegrs IVHU) -uul =My <1,
(hs) cy < ;4—”30
Then there exists an H-bublilewith Ey (0) = cy = infuep,, En(U).

The assumptiorths) is a stronger version of the conditighy) (indeed My <
My ), and it essentially guarantees that the valyds an admissible minimax level.

The assumptiotihs) is variational in nature, and it yields a comparison between
the radial mountain pass lewa}, for the energy functiongEy and the corresponding
level for the problem at infinity, in the spirit of concenimat-compactness principle by
P.-L. Lions [35]. Indeed, the problem at infinity correspsiid the constant curvature

Ho and, in this case, one can evaluatg, = 33‘4—”2.
o0

The hypothesighs) can be checked in terms ¢f in some cases. For instance,
(hs) holds true wherfH (u)| > |Heo| > Oforallu € R butH # Hy, or when
|[H(Uu)| > |He| > O for |u] large, or whenH,, = 0 andEn(v) < O for some
v € C(R?, R3). On the other hand, one can show thatlife C1(R®) satisfies(hs),
(hs), and|H (u)| < |Ho| for all u € R3, then(hs) fails and, in this case, Theorem 18
gives no information about the existencetbfbubbles.

As a preliminary result, we state some properties aboutahgeeey , which make
clearer the role of the assumptigm).

LEMMA 12. Let H € CL(R®) be such that M < 1. The following properties
hold:

(i) ifu € By then By (u) > cy;
(iiy if » € (0,1]thengy > cH;

(iii) if (Hn) ¢ CY(R3) is a sequence converging uniformly to H angM< 1 for all
n € N, thenlim supcy, < CH.
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Proof. (i) Let u € By and consider the mappimsy— f(s) ;= Ex(su) fors > 0. We
know thats = 1 is a stationary point fof sinceu is a critical point ofEy. Moreover,
if 3> 0is a stationary point fof , then

0= f’(é):é/ |Vu|2+2§2f H (Su)u - ux A uy
R2 R2
and consequently
(5 = / |Vu|2+4§/ H(gu)u.uxx\uy+2§2/ VH(SU) -U U- Ux A Uy
R2 R2 R2
= —/ |Vu|2+2/ VH(SU) - SuSu- uy A uy
R2 R2
< —a-Mw [ Vo,
R2

Hence, there exists only one stationary pa@nt- 0 for f andSs = 1. Moreover
max>o Ex(SU) = Ep(u). SinceC(R? R3) is dense inH! with respect to the
Dirichlet norm, for everye > O there existy € C°(R?, R?) such that Ey (sv) —
En(su)| < € forall s > 0 in a compact interval. This is enough to obtain the desired
estimate.

The statements (ii) and (iii) follow by the definition of;, and by using arguments

similar to the proof of (i).
O

Proof of Theorem 18. We just give an outline of the proof and we refer to [15] fdr al
the details.

First part: The case H constant far aut

Firstly one proves the result under the additional conditin ). SinceMy < %MH <

% one can apply Theorem 17 to infer the existence dflabubble at the minimal level
uH. Then one has to show that = wH, which is an essential information in order
to give up the extra assumptigh), performing an approximation procedure on the
prescribed mean curvature functih From Lemma 12, part (i), one getsy > cH.
The opposite inequality needs more work and its proof isinbthin few steps.

Step 1: Approximating compact problems.
Let us introduce the family of Dirichlet problems given by

(D)H,a

div((1 + [Vu?*~1Vu) = 2H (u)ux Auy in D2
u=0 on 9D?,

wherea > 1, o close to 1. This kind of approximation is in essence the sasria a
a well known paper by Sacks and Uhlenbeck [37] and it turnst@ine particularly
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helpful in order to get uniform estimates. Solutions(@)y , can be obtained as
critical points of the functional

5w = 5 [ @+ VU~ 1+ 2V

defined onH)?* := Hy®*(D?,R3). SinceH,* is continuously embedded into
HE& N L™, the functionalEY, is of classC! on H}'?*. Moreover, fora > 1, « close
to 1, Ef, admits a mountain pass geometry at a lesfel > 0, and it satisfies the
Palais-Smale condition, because the embeddirh@éoq“ into L°° is compact. Then, an
application of the mountain pass lemma (Theorem 13) givegxiistence of a critical
pointu* e Hé’z"‘ for E}; at levelct;, namely a nontrivial weak solution (®)H ¢ .

Step 2: Uniform estimates orf uThe family of solutiongu®) turn out to satisfy the
following uniform estimates:

(62) limsupE (u*) <cn ,

a—1
(63) Co < [|[Vu%||2 < Cy for some O< Cg < C1 < 400,
(64) supllu®|le < 400 .

o

The inequality (62) is proved by showing that lim gup, ¢, < cy, which can be
obtained usinghs), the definitions ot}, andcy, and the fact thakEf, (u) — Ep(u)
asa — 1 foreveryu e ch(DZ, RR3). As regards (63), the upper bound follows by an
estimate similar to (55), whereas the lower bound is a carssee of the generalized
isoperimetric inequality. In both the estimates one usebthundMy < % Finally,
(64) is proved with the aid of a nice result by Bethuel and @yl [8] which needs
the condition thatd is constant far out (here we use the additional assumgtiox).
Now, taking advantage from the previous uniform estimateg, can pass to the limit
asa — 1 and one finds that the weak limitof (u¥) is a solution of

(D)n

Au=2H(Uux AUy in D?
u=0 on dDZ? .

A nonexistence result by Wente [48] implies thia= 0. Hence a lack of compactness
occurs by a blow up phenomenon.

Step 3: Blow-up.
Let us define
v¥(2) = U*(Zy + €4 2)
with z, € R? ande, > 0 chosen in order thdtVv® | = |Vv¥(0)| = 1. Notice that

€w — Oandthe set®, := {z€ R? : |z, + €42| < 1} are discs which become larger
and larger az — 1. Moreoven® € C.(R?, R%) N H1is a weak solution to

2(a—1) o
a _ __2a=1) 2.« o o 2¢q H@Y) o a i
Av* = e§+wva\2(v v¥, V) V% 4 @ Vet X Avy N Dgy

v=0 on aD, ,
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satisfying the same uniform estimateauédor the Dirichlet and_*>° norms, as well as
the previous normalization conditions on its gradient.ndsa refined version (adapted
to the above system) of theregularity estimates similar to the step 2 in the proof of
Theorem 17, one can show that there exists H* such that® — u weakly inH?!

and strongly irCt .(R?, R®), andu is aiH-bubble for some. € (0, 1]. Here the value

A comes out as limit oég(“_l) whena — 1. It remains to show that actually= 1.
Indeed, one can show th&y (u) < Aliminf EY (u¥). Using (62) and Lemma 12,
parts (i) and (ii), one infers thayy < cyy < Ex(U) < AcH. Thereforer = 1 andu is
an H-bubble, withEy (u) = cy. In particularuy < cy and actually, by Lemma 12,
part (i), .n = cH, which was our goal.

Second part: Removing the extra assumptior).

It is possible to construct a sequeri¢t,) ¢ CL(R3) converging uniformly toH and
satisfying(h1) andMp, < My. By the first part of the proof, for eveny € N there
exists anHp-bubbleu” with En, (U") = un, = CH,. SinceMy, < My < 1, by
an estimate similar to (55), one deduces that the sequefigés uniformly bounded
with respect to the Dirichlet norm. Moreover one has that timsupEn,(u") =
lim supch, < cH, because of Lemma 12, part (iii). In order to get also a unifar®
bound, one argues by contradiction. Suppose thdt is unbounded in.*°. Using
Theorem 7, one can prove that the sequence of values aiasmbounded. Conse-
guently, the sequena@™) moves at infinity and, roughly speaking, it accumulates on
a solutionu®> of the problem at infinity, that is on aHy-bubble. In addition, as in
the proof of Theorem 17, the semicontinuity inequality IiThEn, (U™) > Epn  (U>)
holds true. Since the problem at infinity corresponds to astzomt mean curvature

Hwo, by Theorem 15, one has thii, (U*) > up, = ;4—”2. On the other hand,
En, (U™ = cn,, and thercy > lim supcy, > ;‘T”z, in contradiction with the assump-
tion (hs). Therefore(u™) satisfies the uniform bounds

sup||[Vu"|lz < +oo, supflu”le < +00 .

Now one can repeat essentially the same argument of the pfodheorem 17
to conclude that, after normalization? converges weakly irH! and strongly in
Cl.(R?, R3) to anH-bubbled. Moreover

En(0) < liminf Ey(u™) = liminfcy, <cn .

SinceEy (0) > cy (see Lemma 12, (i)), the conclusion follows.
O

In [17] it is proved that the existence result about miniraedbubbles stated in
Theorem 18 is stable under small perturbations of the ptesticurvature function.
More precisely, the following result holds.

THEOREM 19. Let H € CL(R®) satisfy(hz)—(hs), and let H € C1(R3). Then
there ise > 0 such that for every e (—¢, &) there exists arfH + e¢Hz1)-bubble 4.
Furthermore, ag — 0, U¢ converges to some minimal H-bubble u ikGS?, R3).
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We remark that the energy of is close to the (unperturbed) minimal energy of
H-bubbles. However in general we cannot say ttias a minimal(H + ¢ H1)-bubble.

Finally, we notice that Theorem 19 cannot be applied whemtiperturbed curva-
ture H is a constant, since assumptign) is not satisfied. That case is studied in the
next subsection.

7.3. H-bubbles in a perturbative setting

Here we study thed -bubble problem when the prescribed mean curvature is a per-
turbation of a nonzero constant. More precisely we invastighe existence and the
location of nonconstant solutions to the problem

Au = 2H,(u)ux Auy on R?

(B)H,
Jg2 IVU|? < +o0.

where
H:(u) = Ho + eH1(u)

beingHp € R\ {0}, H; € C%(R®) ande € R, with |¢| small. All the results of this
subsection are taken from [18].

To begin, we observe that the unperturbed proliBim, is invariant under transla-
tions on the image, since the mean curvature is the condtaint admits a fundamental
solution
o_1

= e

(with  defined by (51)), and a corresponding family of solutionefformw®og+ p
whereg is any conformal diffeomorphism @2 U {oc} and p runs inR3.

Notice that the translation invariance on the image is bndke s # 0, when the
perturbatiorH is switched on, but problefB) 4, maintains the conformal invariance
for everys.

An important role for the existence dfi;-bubbles is played by the following
Poincaré-Melnikov function:

w

I'(p) = —/ H1(q) dq
B1//HgI (P)
which measures thel;-weighted volume of a ball centered at an arbitrprg R3 and
with radius ¥|Hg|. For future convenience, we point out that:
(65) L(p) = Vi (@° + p) ,
(66) v = [ Hae? + prof A af.
R2
The first equality is like (52), the second one can be obtainedsimilar way, noting

that div(H1(- + p)g) = 9 H; (- + p) (e1, e, e3 denotes that canonical basisRA, o;
means differentiation with respect to th¢h component).
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The next result yields a necessary condition, expressegtinstofl", in order to
have the existence d¢i.-bubbles approaching a spheregas- 0.

PropPoOsITION4. Assume that there exists a sequengeaf H,, -bubbles, with
ek — 0, and a point pe R3 such that

lu* — (@° + P)licrgzrs — 0 ask— oo.
Then p is a stationary point fdr.

Proof. The mapsifk solve Autk = 2HoUy* A Uy + e H1 (UK U A uyF. Testing with
the constant functiong (i = 1, 2, 3) and passing to the limit, we get

o=f Hi(u™)e - us A usk :o(l)+/ Hi(@°+ p)& - of Aoy = 0o(1)+ 4T (p),
R2 R2

thanks to (66). Then the Proposition is readily proved.
([l

In the next result we consider the case in whithdmits nondegenerate stationary
points.

THEOREM 20. If p € R® is a nondegenerate stationary point fbt then there
exists a curve — U of class G from a neighborhood I R of 0 into C1(S2, R3)
such that§ = %+ p and, for every € |, u? is an H.-bubble, without branch points.

In the case of extremal points for, we can weaken the nondegeneracy condition.
More precisely, we have the following result.

THEOREM21. If there exists a nonempty compact setkR3 such that

r r in inT
maxT'(p) < maxI'(p) or min I'(p) > min'(p).

then for|e| small enough there exists anHdubble W, without branch points, and such
that
Iu® — (@° + Pe)llces2 g3 — 0 ase — 0,

where p € K is such thaf"(p,) — max I', or I'(p;) — mink ', respectively.

To prove Theorems 20 and 21 we adopt a variational-pertuebatethod intro-
duced by Ambrosetti and Badiale in [1] and subsequently wg#d success to get
existence and multiplicity results for a wide class of vawiaal problems in some per-
turbative setting (see, e.g., [2] and [3]).

Firstly, we observe that solutions to problgm)H, can be obtained as critical
points of the energy functional

En, (U) = Enxy(U) + 26V, (U) .
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Notice thatEn, is the energy functional corresponding to the unperturlyetipm
(B)H,- Since in our argument we will need enough regularityiey, a first (technical)
difficulty concerns the functional setting (see Remark 10,\®e can overcome this
problem, either multiplyindH; by a suitable cut-off function and proving some a priori
estimates on the solutions we will find, or taking as a doméig«g a Sobolev space
smaller tharH 1, like for instance the space

WS =(vow : veWHSS? R3)

with s > 2 fixed. Let us follow this second strategy, taking for simjpyis = 3. Hence
En, is of classC? on W3, sinceH; € C? andW?2 is compactly embedded into™.

Secondly, we point out that the unperturbed energy funatidy, admits a mani-
fold Z of critical points that can be parametrized®yx R3, whereG is the conformal
group ofS? ~ R? U {oc}, having dimension 6, anBl® keeps into account of the trans-
lation invariance on the image.

Thanks to some key results already known in the literatuee,esg. [32],Z is a
nondegenerate manifold, that is

TuZ = ker Eﬁo(u) for everyu € Z ,

whereT, Z denotes the tangent spacedétu, whereas kekEy, (u) is the kernel of the
second differential oEn, atu. This allows us to apply the implicit function theorem
to get, taking account also of ti&-invariance ofEn,, for |¢| small, a 3-dimensional
manifold Z, close toZ, constituting a natural constraint for the perturbed figrl
EH,. More precisely, defining

(T,oZ)t :={veH? f Vv-Vu=0 YueTyZ},
R2
we can prove the following result.

LEMMA 13. Let R> 0be fixed. Then there exist> 0, and a map;®(p) € W3
defined and of class¥on (=&, £) x Br R x R3, such that;°(p) = 0and

Eh,(w+p+n°(p) € TpZ
n°(p) € (Tpo2)*

/ne(p) = 0
SZ

Moreover, for every fixed € (—z, &) the setZR := {0+ p+n°(p) | |p| < R} is
a natural constraint for E,, that is, if u € ZR is such that d g, |ZR(U) = 0, then

Ehs(u) =0.

We refer to [18] for the proof of Lemma 13. Now, the problemdsluced to look
for critical points of the functiorf.: Br — R defined by

(67) fe(p) = En,(@®+ p+1°(p)) (peBRr).
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This step gives the finite dimensional reduction of the peobl The proofs of Theo-
rems 20 and 21 can be completed as follows.

Proof of Theorem 20Let p € R3 be a nondegenerate critical pointlofand letR >
| pl. One can show that the functidi defined in (67) satisfies:

(68) Vi.(p) = 2eG(e, p)

where
G, ) = [ HaloP 4 P+ 1" (6P 1 (P A @0+ (P

By (66), one has thaG(0, p) = VI'(p) and, in addition,d; Gk(0, p) = aﬁ(r(p).
HenceG(0, p) = 0, because is a stationary point of. Moreover, sinced is non-
degenerateypG(0, p) is invertible. Therefore by the implicit function theorethere
exists a neighborhoot of 0 (in R) and aC' mappinge — p? € R3 defined onl,
such thatp® = pandG(e, p?) = O foralle € |. Hence, by (67), (68) and by Lemma
13, we obtain that the function

e U =0+ p° +0°(p°) (eel)

defines &C* curve froml into W13 of H,-bubbles, passing througi?+ p whens = 0.
It remains to prove that the curge— ¢ is of classC! from | into C1#(S?, R3). This
can be obtained by a boot-strap argument. IndéesblvesAu? = F¢ onRZ, where

F¢ = 2H.(U*)u§ A U§. Sinces — u° is of classC! from | into W13 we have

thate — F¢ is of classC! from | into L3/2. Now, regularity theory yields that the
mappings — U turns out of clas€?! from | into W2/2, This implies that +— du
is C1 from | into L8, by Sobolev embedding. Henee— F¢ belongs toC1(I, L3).
Consequently, again by regularity theary— u? is of classC! from | into W23, By
the embedding oiv?2 into C1-%(S?, R3), the conclusion follows. Lastly, we point out
thatu® has no branch points because— «° + pin C1%(S? R3) ase — 0, andw®
is conformal oriR?.

O

Proof of Theorem 21Sincen®(p) is of classC! with respect to the paite, p), and
n%(p) = 0, we have that

(69) 7% (P)llwzs = O(e) uniformly for p € Br, ase — 0.
Now we show that
(70)  fo(p) = Epp(@®) + 2¢T(p) + O(e?) ase — 0, uniformly for p € Br .
Indeed, set
RE(P) = fe(p) — Enp(@®) — 2¢T(p)
= Enp(@®+n°(p)) — Eny(0°)
+28 (Vi (0° + p+ 1°(P) = Vey (@ + )
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Using Eho (0% = 0andthe decompositiory, (U+v) = VHy(U)+VH,(v)+Ho fRZ u-
vx A vy + Ho [g2 v - Ux A Uy we compute

Eno(@® +7°(P) — Eng(@®) = En(m°(P)) + 2Vie(n° (P))
+2H0/ - 0 (P A 1 (P)y
RZ
= O(ldn*(P)II3)

Therefore, using also (69), we infer that

RE(p)e 2

O(ldn* (P31 +2 (Vi (@° + p+ 1 (p)) = Vi (@° + p)) 72
= O(1) + 2(dVi, (@° + Pnf(p) + I (P)lwr3o(1)e ™t = O(D),

and (70) follows. Now, leK be given according to the assumption and t&ke-
0 so large thak c Bgr. The hypothesis oK and (70) imply that forie| small,
there existsp; € K such thau® := ® + p, + n°(p.) is a stationary point foEp,
constrained toZeR. According to Lemma 13E;_,8(u5) = 0, namelyu? is an H,-
bubble. Moreover™(p;) — maxc I" (or I'(p:) — mink I') ase — 0. To prove that
lu® — (pe + (,()O)Hcl,a(SZ’R?,) — 0 ase — 0 one can follow a boot-strap argument, as
in the last part of the proof of Theorem 20.

O

The assumptions of in Theorems 20 and 21 can be made explicit in termd pf
when|Hp| is large. In particular, as a first consequence of the abastesxce theorems
we obtain the following result, which says that nondegeteecdtical points as well
as topologically stable extremal points of the perturbaterm H; are concentration
points of H.-bubbles, in the double limi — 0 and|Hg| — oo.

THEOREM22. Assume that one of the following conditions is satisfied:
(i) there exists a nondegenerate stationary pqirt RS for Hy;

(i) there exists a nonempty compact set & R3 such thatmaxpesk Hi(p) <
mMaxpek H1(p) or Minpesk Hi(p) > Minpek Hi(p).

Then, for every i € R with [Hg| large, there existgn, > O such that for every
& € [—eHy, €H,] there is a smooth Hbubble uto-¢ without branch points. Moreover

i i Ho.e —
e

where p = pif (i) holds, or p € R3is such that p € K and Hy(p;) — max Hi,
or Hi(p:) — mink Hy if (i) holds. In addition, under the conditiofi), the map
¢ > uto£ defines a & curve in G- (S2, R3).
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As a further application of Theorem 21, we consider a pedtiob H1 having some
decay at infinity.

THEOREM 23. If H1 € LY(R3) + L2(R3), then for|e| small enough there exist
p. € R3 and a smooth Ebubble 4, without branch points, such th#t® — («° +
Pe)llcre(s2 g3y — 0ase — 0, and(p,) is uniformly bounded with respect ¢o

We refer to [18] for the proofs of Theorems 22 and 23.
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\ol. 60, 4 (2002)
Turin Lectures

F. Dalbono - C. Rebeld

POINCAR E-BIRKHOFF FIXED POINT THEOREM AND
PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR
PLANAR HAMILTONIAN SYSTEMS

Abstract. This work, which has a self contained expository charadier,
devoted to the Poincaré-Birkhoff (PB) theorem and to itsligptions to
the search of periodic solutions of nonautonomous perioldicar Hamil-
tonian systems. After some historical remarks, we recal dlassical
proof of the PB theorem as exposed by Brown and Neumann. Ten,
variant of the PB theorem is considered, which enablesthegavith the
classical version, to obtain multiplicity results for agytatically linear
planar hamiltonian systems in terms of the gap between thedvian-
dices of the linearizations at zero and at infinity.

1. The Poincaie-Birkhoff theorem in the literature

In his paper [28], Poincaré conjectured, and proved in sgpeeial cases, that an area-
preserving homeomorphism from an annulus onto itself axlfait least) two fixed
points when some “twist” condition is satisfied. Roughlyakiag, the twist condition
consists in rotating the two boundary circles in oppositgudar directions. This con-
cept will be made precise in what follows.
Subsequently, in 1913, Birkhoff [4] published a completegirof the existence of at
least one fixed point but he made a mistake in deducing thé&eexis of a second one
from a remark of Poincaré in [28]. Such a remark guarantesstie sum of the indices
of fixed points is zero. In particular, it implies the existerof a second fixed point in
the case that the first one has a nonzero index.
In 1925 Birkhoff not only corrected his error, but he also Wer@ed the hypothesis
about the invariance of the annulus under the homeomorphidmfact Birkhoff him-
self already searched a version of the theorem more conwdoighe applications. He
also generalized the area-preserving condition.

Before going on with the history of the theorem we give a mestatement of the
classical version of Poincaré-Birkhoff fixed point themrand make some remarks.
In the following we denote byl the annulusd := {(x,y) € R? : r2 < x2+y? <

r22, 0 < r1 < rz} and byC; andC; its inner and outer boundaries, respectively.

*The second author wishes to thank Professor Anna CapietttharlUniversity of Turin for the invita-
tion and the kind hospitality during thEhird Turin Fortnight on Nonlinear Analysis.
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Moreover we consider the covering spade:= R x Rg of R? \ {(0,0)} and the
projection associated to the polar coordinate sysiemH — R?\ {(0, 0)} defined
by IT(9,r) = (r cosy, r send). Given a continuous map : D c R2\ {(0, 0)} —>
R?\ {(0,0)},amapy : T-1(D) — H is called a lifting ofy to H if

Moy = @oll.
Furthermore for each s& c R2\ {(0, 0)} we setD := [1"1(D).

THEOREM 1 (POINCARE-BIRKHOFF THEOREM). Lety : A — A be an area-
preserving homeomorphism such that both boundary cirdie$ are invariant under
¥ (i.e. ¥ (Cq1) = C1 andy(Cp) = Cp). Suppose that admits a Iifting{} to the polar
coordinate covering space given by

(1) Y@, = @ +9@,1), F@,1),
where g and f ar@r —periodic in the first variable. If the twist condition
(2) g, r1) g, r2) <0 V¥ € R [twist condition]

holds, then/ admits at least two fixed points in the interior.df

The proof of Theorem 1 guarantees the existence of two fixéatpcalled Fy
and F,) of J such thatF, — F» # k(2r, 0), for anyk € Z. This fact will be very
useful in the applications of the theorem to prove the miitity of periodic solutions
of differential equations. Of course the imagesFaf F2> under the projectiorl are
two different fixed points ofyr.

We make now some remarks on the assumptions of the theorem.

REMARK 1. We point out that it is essential to assume that the homegimsm
is area-preserving. Indeed, let us consider an homeonsmphi: A — A which
admits the Iifting@(z?, r =@ +a(), B(r)), wherea andp are continuous functions
verifying 27 > a(r1) > 0 > a(r2) > =2, B(rj) = rj fori € {1, 2}, B is strictly
increasing angg(r) > r for everyr € (r,r2). This homeomorphism, which does
not preserve the area, satisfies the twist condition, budstrio fixed points. Also its
projection has no fixed points.

REMARK 2. The homeomorphism preserves the standard area measuoydn
RR? and hence its lifi) preserves the measurer d. We remark that it is possible to
consider a lift in the Poincaré-Birkhoff theorem which geeves ddi¢ instead of dr dv¢
and still satisfies the twist condition. In fact, let us calesithe homeomorphisih of

R x [r1,r2] onto itself defined byT (¢,r) = (¥, ar? + b), wherea = and
. riro
S ri+r - -

rdrdy in a multiple of d d. Thus, if we defina/* := T o ¥ o T~1, we note that it

preserves the measuredd. Furthermore, there is a bijection between fixed poknts

rp+rz
. The homeomorphisr preserves the twist and transforms the measure
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of ¢* and fixed pointd ~1(F) of v Finally, it is easy to verify tha/* is the lifting of
an homeomorphisnt* which satisfies all the assumptions of Theorem 1. This remark
implies that Theorem 1 is equivalent to Theorem 7 in Section 2

Itis interesting to observe that if slightly stronger asgtions are required in The-
orem 1, then its proof is quite simple (cf. [25]). Indeed, vexér the following propo-
sition.

PrROPOSITIONL. Suppose that all the assumptions of Theotesne satisfied and
that

3) g(¥, -) is strictly decreasingor strictly increasing for eachy.

Then,y» admits at least two fixed points in the interior.4f

Proof. According to (2) and (3), it follows that for every € R there exists a unique
r () € (ry, r) such thag(s,r()) = 0. By the periodicity ofg in the first variable,
we have thag(® + 2km,r(#)) = g, r(®)) = O for everyk € Z andv € R.
Hence agy(¢ + 2k, r (¥ + 2kwr)) = 0, we deduce from the uniqueness 6#) that
r: 9 — r(¥) is a 2r—periodic function. Moreover, we claim that it is continuous
too. Indeed, by contradiction, let us assume that there éxisR and a sequencé,
converging ta¥ which admits a subsequenég, satisWinngTww r(Wn) =b#r().

Passing to the limit, from the equaliy(¥n,, r (¥n,)) = 0, we immediately obtain
g, b) = 0= g, r (¥)), which contradict® # r ().

By construction,@(ﬁ,r(ﬂ)) = @ +9g@,r@), f@r@)) = @, f@r@))).
Hence, each point of the continuous closed cutve A defined by

F={x,y)eR?: x=r@) cosy , y=r(@)seny, o € R}

is “radially” mapped into another one under the opergtoBeingys area-preserving
and recalling the invariance of the boundary ciralgs C, of .4 undery,, we can
deduce that the region bounded by the cu@ga&ndI" encloses the same area as the
region bounded by the curv€ andy (I"). Therefore, there exist at least two points
of intersection betweeh and (I"). In fact as the two regions mentioned above have
the same measure, we can write

21 pr(d®) 2 p @, @))
/ / rdrdﬂ:/ / rdrdg,
0 r 0 r

2
which implies/ (rz(ﬁ) — 2, r(ﬁ))) d9 = 0. Being the integrand continuous
0

and 2r —periodic, it vanishes at least at two points which give risanto distinct fixed
points ofy (-, r (-)) in [0, 27). Hence, we have found two fixed points vfand the
proposition follows.

O
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Morris [26] applied this version of the theorem to prove tlestence of infinitely
many 2r —periodic solutions for

X" + 2x3 = e(t),

wheree is continuous, 2 —periodic and it satisfies

2
/ e(t) dt = 0.
0

If we assume monotonicity of + g(,r) in @, for eachr, then also in this case the
existence of at least one fixed point easily follows (cf. J25]

PrRoPOSITION2. Assume that all the hypotheses of Theofehold. Moreover,
suppose that

(4) 9 + g(,r) is strictly increasingor strictly decreasingin o for each

Then, the existence of at least one fixed point follows, whiandifferentiable.

Proof. Let us suppose that — ¥ + g(,r) is strictly increasing for every

(0 +g(,r))

[r1,r2]. Thus, since > 0 for everyr, it follows that the equation

0¥ =9 4+ g(9, r) defines implicitly? as a function ob* andr. Moreover, taking into
account the 2 —periodicity of g in the first variable, it turns out that = ¢ (¥*,r)
satisfies? (0* + 2m,r) = 3 (¥*,r) + 27 for everyd* andr. We setr* = f(,r).
Combining the area-preserving condition and the invagasfcthe boundary circles
underyr, then the existence of a generating functid@ *, r) such that

¥ = 8W(z?* r)
T ’
(5) W
r = @*,r)
v+

is guaranteed by the Poincaré Lemma.
Now we consider the functiom(8*,r) = W(9*,r) — ¢*r. Since, according to (5),
the following equalities hold

0

wo_ r* —r
ov*
0
Wy o,
ar

the critical points ofw give rise to fixed points of.

It is easy to verify thatv has period 2 in 9*. Indeed, according to the hypothesis
of boundary invariance and to (5), we get

V¥ 4+2m V¥ 4+2r
W@* +2m,r1) — W®*,1r1) = / rs(s,ry)ds = / rids = 2wry.

* *
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Furthermore, combining (5) with the equali®(d®* + 2r,r) = 9 (9%, r) + 27, we
deduce

r
W@ +2m,r) — W@* + 27,11) = / P + 27, s) ds
r

1

r
=/ F(W*,8)ds + 2w(r —rq)
r

=W®@*,r) — W®*,r1) + 27 —r).
Finally, we infer that

w@* + 27, 1) —w@*, 1) =W@* +2m,r) —W@*,r)—2nr
=W@* +2m,1r1) = W@*,r1) —27r, =0,

and the periodicity ofv in the first variable follows.
Consider now the external normal derivativesof

d

(6) L ot o RYCI DA
Bng1
Jw

@) S —r e — 99 (0.1 = & - %,
Bnc~2

The twist condition (2) implies that* — ¢ has opposite signs on the two boundary
circles. Hence, by (6) and (7), the two external normal déies inC; andC; have
the same sign. Being a 27 —periodic function ind*, critical point theory guarantees
the existence of a maximum or a minimumwofin the interior of the covering space

A. Such a point is the required critical pointwf
([l

It is interesting to notice that as a consequence of the gieitg of g and f in ¥,
the existence of a second fixed point (a saddle) follows frdtital point theory.

As we previously said, in order to apply the twist fixed poim¢drem to prove
the existence of periodic solutions to planar Hamiltonigstems, Birkhoff tried to
replace the invariance of the annulus by a weaker assumpliwteed, he was able
to require that only the inner boundary is invariant unéierHe also generalized the
area-preserving condition. More precisely, in his art[8ethe homeomorphisnt is
defined on a regioR bounded by a circl€ and a closed curvE surroundingC. Such
an homeomorphism takes values on a redftarbounded byC and by a closed curve
I'1 surroundingC. Under these hypotheses, Birkhoff proved the followingtieen

THEOREM 2. Let T : R — Ry be an homeomorphism such thatd) = C
and T(I') = I'1, withT" andT"; star-shaped around the origin. If T satisfies the twist
condition, then either
o there are two distinct invariant points P of R and éhder T
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or
e there is a ring in R(or Ry) around C which is carried into part of itself by Tor
T-1).

Since Birkhoff’s proof was not accepted by many mathemetiej Brown and Neu-
mann [6] decided to publish a detailed and convincing prbagéd on the Birkhoff's
one) of Theorem 1. In the same year, Neumann in [27] studiedrgéizations of such
a theorem. For completeness, we will recall the proof givej] and also the details
of a remark stated in [27] in the next section.

After Birkhoff's contribution, many authors tried to geaéirze the hypothesis of
invariance of the annulus, in view of studying the existeatperiodic solutions for
problems of the form

X" + f(t,x) =0,

with f : R2 — R continuous and -periodic int.

In this sense we must emphasize the importance of the worBadnbowitz and W-Y
Ding. In his article [22] Jacobowitz (see also [23]), gaveeasion of the twist fixed
point theorem in which the area-preserving twist homeotisrp is defined on an
annulus whose internal boundary (roughly speaking) deg#e®into a point, while
the external one is a simple curve around it. More precisefirst considered two
simple curved; = (% (-), ri(-)), i = 1, 2, defined in [01], with values in thg, )
half-planer > 0, such that};(0) = —x, (1) = =, ¥i(S) € (—m, ) for each
s € (0,1) andrij(0) = ri(1). Then, he considered the correspondimgriodic
extensions, which he called agdih. Denoting byA; the regions bounded by the
curveT (included) and the axis = 0 (excluded), Jacobowitz proved the following
theorem

THEOREM3. Lety : A1 —> Ay be an area-preserving homeomorphism, defined
by
v(@r) =@ + 9@, 1), f@r),

where

e g and f are2r —periodic in the first variable;
e g(®,r) <0 onTly;

. Ii{ﬂ igfg(ﬁ,r) > 0.

Then,y» admits at least two fixed points, which do not differ from atipld of (27, 0).

Unfortunately the proof given by Jacobowitz is not very etsyollow. Subse-
quently, using the result by Jacobowitz, W-Y Ding in [15] qdé] treated the case
in which also the inner boundary can vary under the areaepregy homeomorphism.
He considered an annular regighwhose inner boundai@; and the outer on€; are
two closed simple curves. BY; he denoted the open region boundedlyi =1, 2.
Using the result by Jacobowitz, he proved the following tieeo

THEOREM4. LetT : A — T(A) c R?\ {(0, 0)} be an area-preserving home-
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omorphism. Suppose that
(a) Cj is star-shaped about the origin;
(b) T admits a Iifting:I: onto the polar coordinate covering space, defined by
Tw,r = ® + gw.r), f@,n),

where f and g ar@r —periodic in the first variable, %, r) > 0 on the lifting
of C; and g, r) < 0on the lifting of G;

(c) there exists an area-preserving homeomorphigm D, — R?, which satis-
fies o, = T and(0, 0) € To(Dy).

Then,T has at least two fixed points such that their images undeus@l covering
projectionIT are two different fixed points of T .

We point out that conditiondj cannot be removed.
Indeed, we can defingl := {(x,y) : 272 < x2+y? < 22} and consider an
homeomorphisnT : A — R?\ {(0, 0)} whose lifting is given byf(z?,r) =
(19 +1-r,r2+ 1). It easily follows thafl’ preserves the measurdr d¢ and, con-
sequently,T preserves the measuragadl. Moreover, the twist condition is satisfied,

. . 1 .
beingg(¥,r) = 1 —r positive onr = — and negative on = 2. We also note that

it is not possible to extend the homeomorphism into the iotesf the circle of ra-
dius 1/2 as an area-preserving homeomorphism, and hende (ot satisfied. Since

1 ~
f(,r) =/r24+1 > r for everyr e (5, 2), we can conclude thak has no fixed

points.

In [29], Rebelo obtained a proof for Jacobowitz and Ding s of the Poincaré-
Birkhoff theorem directly from Theorem 7.
The W-Y Ding version of the theorem seems the most usefulrmgeof the applica-
tions. In 1998, Franks [18] proved a quite similar resulihgsanother approach. In
fact he considered an homeomorphi$rfrom the open annulug = St x (0, 1) into
itself. He replaced the area-preserving condition withwieaker condition that every
point of A is non-wandering undef. We recall that a point is non-wandering under
f if for every neighbourhoot of x there is am > 0 such thatf"(U) NU # @.
Being f, from the covering spacel = R x (0, 1) onto itself, a lift of f, it is said
that there is a positively returning disk fdrif there is an open disk C A such that
f(UyNU =@andf"(U) N (U + k) # @ for somen, k > 0. A negatively return-
ing disk is defined similarly, but witlk < 0. We recall that byJ + k it is denoted
the set{(x + k,t) : (x,t) € U}. Franks generalized the twist condition on a closed
annulus assuming the existence of both a positive and aimegaturning disk on the
open annulus, since this hypothesis holds if the twist dmndis verified. Under these
generalized assumptions, Franks obtained the existeradixd¢d point (for the open
annulus). However, he observed that reducing to the cadeeaflbsed annulus, one
can conclude the existence of two fixed points.
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On the lines of Birkhoff [5], some mathematicians genemizhe Poincaré-
Birkhoff theorem, replacing the area-preserving requaetiby a more general topo-
logical condition. Among others, we quote Carter [8], wheBirkhoff, considered an
homeomorphisng defined on an annulug bounded by the unit circl& and a simple,
closed, star-shaped around the origin cupvthat lies in the exterior off. She also
supposed thag(T) = T, g(y) is star-shaped around the origin and lies in the exterior
of T. Before stating her version of the Poincaré-Birkhoff tteen, we only remark that
a simple, closed curve A is called essential if it separat@&sfrom y .

THEOREMS. If g is a twist homeomorphism of the annuldsnd if g has at most
one fixed point in the interior ofl, then there is an essential, simple, closed curve C in
the interior of A which meets its image in at most one poiitthe curve C intersects
its image, the point of intersection must be the fixed poigtiofthe interior ofA).

We point out that Theorem 2 can be seen as a consequence oEfthB@bove.

Recently, in [24], Margheri, Rebelo and Zanolin proved a ified version of the
Poincaré-Birkhoff theorem generalizing the twist comdit They assumed that the
points of the external boundary circle rotate in one angdilection, while only some
points of the inner boundary circle move in the oppositedlion. The existence of
one fixed point is guaranteed. More precisely, they proveddtowing

THEOREMG6. Lety : A —> A be an area-preserving homeomorphism4n=
R x [0, R], R > Osuch that

v(@,1) = (J1,11),

) 9 + g,r)
rr = f@,r),

where f and g ar@r —periodic in the first variable and satisfy the conditions

with

o (1,00 =0, f(¥, R) = R foreveryy € R (boundary invariance,

e g(¥, R) > Oforevery? e R and there is¥ such that g#,0) < 0 (modified
twist condition).

Then,y» admits at least a fixed point in the interior g

2. Proof of the classical version of the Poinca-Birkhoff theorem

In this section we recall the proof of the classical versidérihe@ Poincaré-Birkhoff
theorem given by Brown and Neumann [6] and give the detailhefproof of an
important remark (see Remark 3 below) made by Neumann in [27]
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_ THEOREM 7. Letus defined = R x [r1,r2], 0 < r1 < rp. Moreover, let h:
A — A be an area-preserving homeomorphism satisfying

h(x,r2) = (x —s1(x),r2),

h(x,r1)) = (X4 %2(x),r1),
h(x +2r,y) = h(x,y) + (27, 0),

for some2r —periodic positive continuous functiong, &. Then, h has two distinct
fixed points fr and F, which are not in the same periodic family, that is - F» is not
an integer multiple of2x, 0).

Note that Theorem 7 and Theorem 1 are the same. In fact, takiogaccount
Remark 2, Theorem 7 corresponds to Theorem 1 chodsiag) .

Before giving the proof of the theorem we give some usefdimieary definitions
and results.
Q-P

We define the direction fronP to Q, setting OP, Q) = m wheneverP

and Q are distinct points oR?. If we considerX ¢ R?, C a curve inX andh :

X — R? an homeomorphism with no fixed points, then we will denotéftg) the
index ofC with respect tch. This index represents the total rotation that the directio
D(P, h(P)) performs ad? moves alond. In order to give a precise definition, we set
C : [a,b] — R2?and definethe map : [a,b] — St :={(x,y) e R? : x?+y? =

1} by C(t) := D(C(t), h(C(t))). If we denote byr : R — St the covering map
n(r) = (cosr, serr), then we can lift the functiod into C : [a, b] — R assuming
C = 7 o C. Finally, we set

C(b) — C(a)

277: 9
which is well defined, since it is independent of the lifting.
This index satisfies the following properties:

in(C) =

1. For a one parameter continuous family of cur¥es homeomorphismis, i (C)
varies continuously with the parametdtgmotopy lifting property.

2. If C runs from a pointA to a pointB, thenin(C) is congruent modulo 1 tef;
times the angle between the directions®h(A)) and OB, h(B)).

3. If C = C1C; consists ofC; andC: laid end to end (i.eC1 = C|[a,q andCz
Clie,b) With a < ¢ < b), thenih(C) = ih(C1) +in(C2). In particular,in(—C) =
—in(C).

4. ip(C) = i-1((C)).
As a consequence of properties 1 and 2 we have that in ordatcglate the index

we can make first an homotopy 6nso long as we hold the endpoints fixed, this will
be very important in what follows.
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In the following it will be useful to consider an extensiontbé homeomorphism
h: A— AtoallR?
To this aim, we introduce the following notations:
Hi = ((x,y) e R? 1 y =17},

Ho = {(x,y) e R? : y <ryq)

and consider the extensionlo{which we still denote byn)

X =s1(%),y) y=rz
hx,y) '= 1 X+%(X),Yy) ysn
h(x,y) r<y<ro.

The following lemma will be essential in order to prove thedrem.

LEMMA 1. Suppose that all the assumptions of Theo¥eare satisfied and that h
has at most one family of fixed points of the fa&ks, r *) with r* € (r1,r2). Then,
for any curveC running from H_ to H; and not passing through any fixed point of h,

. 1
(@) in(€) = 5 (mod D,
(b) ir(C) is independent af.

Proof of the lemmaFrom Property 2 of the index, it is easy to deduce that paiis(a)
verified.

Let us now consider two curved (i = 1, 2) running fromA; € H_ to B € Hy
and not passing through any fixed pointrofOur aim consists in proving th& and

C2 have the same index. Let us take a cufydrom B; to B, in H;. and a curve’,
from Az to A; in H_. Being D(P, h(P)) constant inH andH_, we immediately
deduce that,(C3) = in(C4) = 0. Now, we can calculate the index of the closed curve
C’ := C1C3(—C2) Cq4. In particular, from Property 3 we get

ih(C") = in(C1) +in(C3) +in(—C2) +in(Ca) = in(C1) —in(C2).

Hence, in order to prove (b), it remains to show that such deris zero. To this
purpose, we give some further definitions. We denote byhpixhe fixed point set

of h and by (R? \ Fix(h), A1) the fundamental group d&2 \ Fix(h) in the base-
point A;. We recall that such a fundamental group is the set of alldbgd (closed
curves defined on closed intervals and taking valué&?in Fix(h)) based omAy, i.e.
whose initial and final points coincide with;. The fundamental group is generated
by paths which start fromi\;, run along a curv€g to near a fixed point (if there are
any), loop around this fixed point and return b¢p to A;. Hence, sinc€’ belongs

to 1 (R2 \ Fix(h), A1), it is deformable into a composition of such paths. Thus, it
is sufficient to show thait, is zero for any path belonging to the set of generators of
the fundamental group. Sindehas at most one family of fixed points of the form
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2k, r*) with r* € (rq, r2), then a loop surrounding a single fixed point can be de-
formed into the loo®’ := D1 Dy D3 Dg4, Where
D, covers Fr, 7] x {ro} with rg < r1, moving horizontally fromA; = (=7, rg) to
Az = (m, Io);
D, covers{rr} x [ro, r3] with r3 > rp, moving vertlcally fromAz to A3 = (m,r3);
D3 covers [, ] x {r3}, moving horizontally fromA3 = (m,r3) to A4 = (—m,r3);
D4 covers{—m} x [ro, r3], moving vertically fromA4 to A1
Roughly speaking,D’ is the boundary curve of a rectangle with vertices
(£7, ro), (£7, r3).
As D; andDs lie in H_ and H. respectively, their index is zero. Moreover, being
h(x,y) — (X, 0) a 2r—periodic function in its first variable, it follows thag(D4) =
—in(D2). Thus, Property 3 of the index ensures thdD’) = 0. This completes the
proof.

O

Proof of Theorem 7To prove the theorem, we will argue by contradiction. Assume
thath has at most one family of fixed poins = (¢9*,r*) + k (27, 0), withk € Z. It

is not restrictive to suppos#&* = 0. Indeed, we can always reduce to this case with a
simple change of coordinates. In order to get the contriadictve will construct two
curves, with different indices, satisfying the hypotheselsemma 1.

Now we define the set
3
— ((X,y) eR?: 2kn+% S xS Artor, kel

Since the fixed points df (if there are any) are of the fori2ksr, r*), we can conclude
thath has no fixed points in this region. Moreover, there exists 0 such that

(8) e < |P=h(P) VPeW.

Indeed, by the periodicity afx, 0) — h(x, y) in its first variable, it is sufficient to find
& > 0 which satisfies the above inequality only for evérye Wy := {(X,y) : & <

X < 7'[}. If we chooses < mins, fori € {1, 2} the inequality is satisfied on the sets
W1 N Hx. On the regiorVV = {(X,Yy) : % <X < %n, ri <y <ry}, the function
Ild — h| is continuous and positive, hence it has a minimunVgmwhich is positive
too.

Define the area-preserving homeomorphism R? — R? by
TX,y) =Xy + %(| COSX| — COSX)) .

We point out that it moves only points & and||T(P) — P|| < ¢ for everyP e RZ.
Combining this fact with (8), we deduce thato h (just like h) has no fixed points
in W. Furthermore, fixed points df o h coincide with the ones di in R? \ W and,
consequently, ifiR?.

Let us introduce the following sets

Do = H_ \ (Toh)™1H_,
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D1 := (Toh)Dg = (TohyH_ \ H_,
Di := (Toh) Do VieZ.

\ D1 D2 D1 D2 y=rg
Do Do

Figure 1: Some of the sef3;

We immediately observe th&tyg ¢ H_, while D1 C R2\ H_ = {(x, y) 1 y>ri}.
Since(T o h)(R?\ H_) c R?\ H_, we can easily conclude th&;, c R?\ H_ for
everyi > 1. HenceDj N Do = ¢ for everyi > 1. This implies thaDx N Dj = @
wheneverj # k. Since(T o h)™*H_ ¢ H_, we also geD; c H_ for everyi < 0.
Furthermore, a¥, h and, consequentlyT o h) are area-preserving homeomorphisms,
everyD; has the same area in the rolled-up pl&fe ((x, y) = (x + 27, y)) and its
value is 2. Thus, as the se®; are disjoint and contained ®%\ H_ foreveryj > 1,
they must exhaust and hence interseét,. In particular, there exists > 0 such that
Dn N Hy # ¥. SinceDy, C (T o h)"H_, we also obtain thafT c h)"H_ N Hy # @.

For such am > 0, we can consider a poif, € (T o h)"H_ N H, with maximal
y—coordinate. The poinP, is not unique, but it exists since, by periodicity, it is
sufficient to look at the compact regioh o h)"H_N{(x,y) : 0<Xx <27, y >r1}.
Let us define A

P =(.,Yi) = (Toh)' "P,, i €Z.

Clearly, P, € HL andPy = (T oh)™" P, € H_. Moreover,P,;1 = (T o h) P, for
everyi e Z. Hence, recalling thatT o h) Hy ¢ H; and(T o h)"*H_ c H_, we
obtainPn;1 € Hy andP-1 € H_.

Let us denote b¥ the straight line segment frofd_; to Py and let
G =(Toh)Co, i €Z.

In particular, the curv€; runs fromP;_1 to PB. Furthermore, let us define the curve
C:=CpC1...Cn—1Cn. Thus,(T o h)(C) =C1C2...CnCny1.

We have constructed a curgeunning fromH_ to H... Now, we will show that it does
not pass through any fixed point bfand we will calculate its index. First, we need to
list and prove some properties that this curve satisfies.

1. The curve& Chy1 = Co.. . .Cny1 has no double points;
2. No point ofC has largey—coordinate tharP,1;

3. No point of(T o h)(C) has smallely—coordinate tharP_;.
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In order to prove Property 1, we first observe thaf@has no double points arido h
is @ homeomorphism, each cur@e has no double points. Hence, we only need to
show thaCj NCj = @ for everyi # j, exception made for the common endpoint when
li—j| = 1. We initially prove that this is true wherand | are both negative. We recall
that the functionsf := (Id + ) : R — R and f ~! are strictly monotone, being
both continuous and bijective. From the positivenessyofit immediately follows
that both functions are strictly increasing. Moreoverl(xg) < X < Xo, Whenever
(X, y) € Co. Thus, sinc&y ¢ H_ and sincef ~1 is an increasing function, it turns out
that f —2(xo) < x < f~1(xg), wheneverx, y) € C_1 = h=1(T~1(Cp)). In general,
we have . .
G c{oey : 7o) < x < flg)}  Vi<O

andc; intersects the boundaries of this strip only in its endmo{because this is true
for Co and f ~1 is strictly increasing). Thus] andCs intersect at most in a endpoint,
if we choosd ands negative. In general, if we tak& andCj withi # j, then there
existsk < 0 such thatT o h)¥ transforms such curves in two cur@sandCs with |
ands both negative. Finally, the previous step guarantee<rat’; and hence; NCj
are empty, if we exclude the intersection in the common eimipo

Property 2 is easily proved. In fact, it is immediate to shbat€ c (T o h)" H_.
Thus, from the maximal choice involving the-coordinate ofP,, we can conclude
that for every(x, y) € C, we obtainy < y,. Moreover, since®, € H. and P11 =
(T o h)Py, we can conclude that, < yn+1. This completes the proof of Property 2.
With respect to Property 3, we remark that if we take= y_; and if we define
x',y) = (T o h)(x,y), theny > y_3. This is a consequence of the fact that
P_1 € H_. Moreover,yp > y_1 and henc&y C {(X,y) : y > y_1}. Thus, for
every(x, y) € C1 = (T o h)Co, we gety > y_1. By induction, Property 3 follows.

Property 1 guarantees th@tdoes not pass through any fixed pointTob h and,
consequently, offi.
We are interested in calculating the indexGofMore precisely, we will show that its
value is exactly%. First, we will calculaté (ton)(C).
The curveC runs fromP_1 to P,. Thus, recalling thatT o h) (P_1) = Pp and(T o
h) (Pn) = Pnhi1, let us consider the angl# between DP_1, Py) and D(Py, Pht1).
Since, by construction,

Po = (X0, Yo) = (X—1+ S2(X-1), Y-1+82) , 0<dx<ce,

Pnt1 = (Xn+1, Yn+1) = (Xn — S1(Xn), Yn + 31) , 0<é1=<e,
then we can write the explicit expressiondf

9 = arctg [ 22 arct %2
=7 ( g(sl(xn)> * g(a(xﬂ))'

By Property 2 of the index, we can conclude that

. 4
i(Toh)(C) = —n(mOdD

2
1 1 51 82
T 2 2 <amtg<81(xn)) * amg(Sz(X—l))) (mod 3
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From the choice of, we get 0< § < ¢ < ming fori e {1, 2}. This implies that

8 8 :
both arctg(sl(}(n)) and arctg(w'il)) belong to the interval [07 [. Consequently,

1 v 1

- <— <=
4 27 2

Our aim now consists in proving that we can cut mod 1 in theipres/formula for
i (Tohy (C). For this purpose, we will construct a suitable homotopy.
Let P : [-1, 0] — RR? be a parametrization @b. SettingP(t + 1) := (T oh)(P(t))
for t € [—1,n], we extend the given parametrization €f into a parametrization
P : [-1,n+ 1] — R2 of CCpy1. Clearly, if we restrictP to the interval -1, n],
we obtain a parametrization 6f Moreover, it is immediate to see th@ti) = P, for
every integef € {—1,0,...,n+ 1}. In order to calculate.n) (C), by definition, we
will consider the magP : [—1, n] — St given by

P(t) := D(P(t), (Toh)(P(t))) = D(P(t), P(t +1)).
Let us define nowPq : [—1,2n 4 1] — S, setting

_ P(t) —-1<t<n
9 Po =

P() n<t<2n+1.

Of course, in order to evaluate the index we canBgénstead ofP.

Now, we are in position to write the required homotopy. Wd iniroduce a family
of mapsP;, : [-1,2n+ 1] — St with 0 < A < n+ 2. We will define this family
treating separately the casesO. <n+landn+1<i <n+2.

We develop the first case. The homotopy that we will exhibit egrry the initial map
Po, which deals with the rotation of [P, (T o h)(P)) as P moves along’, into the
map Pn1 defined by

D(P(-1), P(t +1)) -l<t<n

(10) Ppjat) =
D(Pt—n—-1),P(n+1)) n<t<2n+1

This map corresponds to a rotation obtained if we initiallpwa (T o h)(P) along
(T o h)(C) from (T o h)(P_1) = Py to Pyy1, holding P_; fixed, and then we move
alongC from P_; to Py, holding P41 fixed.

More precisely, when & A < n+ 1, we set

D(P(-D,P(t+1) —1<t<ar-1
- D(P(t—2), P(t+1) Ar—1<t<n
P,(t) =

D(P(t—2x),P(n+1) n<t<n+a

D (P(n), P(n+ 1)) n+i<t<2n+1

Clearly, the above definition d?;, in the case. = 0 andi = n + 1 is compatible
with (9) and (10), respectively. Furthermore, we note gtt) is always of the form
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D (P(tp), P(t1)) with —1 < tp < t1 < n+ 1. By Property 1 of’, we deduce that
P(tp) # P(t1), henceP; is well defined for every &< » < n + 1.

We consider now the second caset+ 1 < A < n + 2. The homotopy we will
exhibit will carry the mapPy, 1 into the mapP,,,» defined by

_ D(P(-1), P'(t+1)) —-1<t<n
(11) Pn+2(t) =
D(P"t —n—-121),P(n+1) n<t<2n+1,

where byP’ : [0,n+ 1] — R2andP” : [-1,n] — R? we denote the straight
line segments fronf(0) to P(n + 1) and fromP(—1) to P(n), respectively.
The mapP,,,» corresponds to a rotation obtained if we initially maWeo h)(P) along
the straight line segme’ from Py to P,1, holding P_1 fixed, and then if we move
P along the straight line segmeRt’ from P_; to Py, holding P, 1 fixed.

More precisely, for every & p < 1, we define

D(P(-1), A—p) P(t+1) + u P/t +1))
B ) = —-1<t<n
nt+1+u D(1—w)Pt—n—1)+uP”(t —n—1), P(n+ 1))
n<t<2n+1.

Clearly, the above definition 041+, in the casqu = 0 andu = 1 is compatible
with (10) and (11), respectively.
Moreover, the homotopy is well defined. To prove this, we wlilbw first thatP (—1)
is never equal t@) = (1 — w)P(t + 1) + uP’(t + 1) for anyt € [—1, n]. Indeed,
by Property 3 ofC, we deduce tha@Q has largery—coordinate tharP(—1), except
possibly whert = —1 or u = 0. However, in both these cas®s= P(t + 1) for some
t € [—1,n]. Since in this intervat + 1 > 0 > —1, then Property 1 of guarantees
thatP(t + 1) # P(—1). Hence,P(-1) # Q.
Analogously, by applying Property 2 and Property 1(@fwe can conclude that
A-wPt—-n—-1)+uP’(t —n—-1) # P(n+1). Thus, the homotopy is well
defined.

In particular,Pp > defined in the intervalf1, 2n + 1] describes an increase in the
angle which corresponds exactly#o calculated above. Thus as a consequence of the
homotopy property, we conclude that

i (C)—i—}—i<arct<81>+arct<82 ))
T = o =27 27 TN\ 5000 Nexn))

From the previous calculations, we get

NI =

1
7= i(Toh)(C) <

Our aim consists now in proving tha{(C) = %
To this end, we define for evesye [0, 1] the mapTs : RZ2 —> R2, setting

Ts(X,y) = (x, y + (%8) (] cosx| —cosx)).
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In particular,Top = Id andT; = T. Arguing as before, we can easily see that

. _ 1 1 Sé1 Sé2
(12)  i(Teoh)(C) = > o <arctg<sl(Xn)> + arctg(sz(xl))) (mod).

Since this congruence becomes an equality in the sasel, by the continuity of
the index we infer that also the congruence in (12) is an égfal everys € [0, 1].
Hence, whers = 0 we can conclude that

1
13 in@C) = =.
(13) h(©) = 3
In order to get the contradiction with Lemma 1, we need to tansanother curve
C’ running fromH_ to H,, having index different fron%. To this aim, we can repeat
the whole argument replacirigwith h—. Now everything works as before except the

fact that the directions along which the two boundariesiofiove undeh and under

P ~ 1
h—! are opposite. In such away, we find a cufMieom H_ to H withi,-1(C) = —5

Let us define?’ :== h-0C : H_. —> H,. By Property 4 of the index, we finally
infer 1
in(C') = ih-1 (W (C)) = 1h-2(C) = 3.
If we compare the above equality with the equality in (13),ge¢the desired contra-
diction with Lemma 1.
O

As a consequence of the above proof, Neumann in [27] provigedollowing
useful remark

REMARK 3. If h satisfies all the assumptions of Theorem 7 and it has a finite
number of families of fixed pointdinite number of fixed points in [@rx] x [r1,r2]),
then there exist fixed points with positive and negativedadi

We recall that the definition of index of a fixed point coin@gdsith iy,(«) for a
small circlea surrounding the fixed point when it has a positive (counteciavise)
direction. Given a fixed poirf, we will denote byind(F) its index.

Proof. Let us denote byr (i = 1,2,...,k) the distinct fixed points in [r] x
(r1, r2), belonging to different periodic families. Theorem 7 gusegs thak > 2.

It is not restrictive to assume th&t € (0, 27) x (ry,r2) since we suppose that the
number of families of fixed points is finite. As in the proof dfiforem 7, we extend
the homeomorphisth to an homeomorphism in the whdR?, and we still denote it
by h.

If we fix rg < rq, arguing as in the proof of Lemma 1, we can construct a [Dop=
D1 D2 D3 Dy € m1(R2\ Fix(h), (0, rg)), where

D1 covers [Q 2] x {ro}, moving horizontally from(0, rp) to (27, ro);

D5 covers{2r} x [ro, r3] with r3 > rp, moving vertically from(2r, ro) to (27, r3);
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D3 covers [Q 2] x {r3}, moving horizontally from2r, r3) to (O, r3);

D4 covers{0} x [ro, ra], moving vertically from(0, r3) to (0, ro).

In particular,D’ moves with a positive orientation and, by construction,dhly fixed

points ofh it surrounds are exactly the fixed poirfis, i € {1,...,k}. We note that
in(D1) = in(D3) = 0, since the curve®; and D3 respectively lie inH_ and H.

and O P, h(P)) is constant in these regions. Furthermore, béitg y) — (x,0) a

2 —periodic function in its first variable, it follows tha(Ds) = —in(D2). Thus,
Property 3 of the index guarantees tfi¥thas index zero.

We recall that the fundamental groap(R2 \ Fix(h), (0, ro)) is generated by paths
which start from(0, rp), run along a curvé€y to near a fixed point, loop around this
fixed point and return by-Cp to (0, rp). It is possible to show that the generating
paths, whose composition is deformable into the closedeciXy surround only the
inner fixed pointd . Consequently, the following equality holds

k
(14) 0=in(@) = ) ind(F)).

=1

This means that the sum of the fixed point indices is zero. \Wark that such a result
could have been directly obtained from the Lefschetz fixddtgheorem.

Next step consists in constructing two curves with oppasitéces, running from
H_ to H; and not passing through any fixed pointof

Since the number of fixed points in,[Br] x [r1,r2] is finite, it is possible to
consider a non-empty vertical str\'ﬁl = [a, B] x R, for someq, 8 € (0, 27), which
does not contain anl;. Let us extend ﬁ—periodicaIIyW into the set

U (W+(2mn,0)) ={(X,y) eR?®: 2mr +a <X <2mmw + B, meZ},

meZ

that we still denote bW.

Arguing as in the proof of Theorem 7, we can find a positive tams < min 5
foreveryi e {1, 2}, satisfyinge < ||P—h(P)|| for everyP € W. Letus now introduce
the area-preserving homeomorpthm R?2 — R? by setting

~ (X, Y + & oS 550y (2X — B — ) for x € [a, B]
Ti0.27]xR (X, Y) 1= (2(/3 ) )
*x.y) otherwise

Fixed points ofT o h coincide with the ones df in R2. If we proceed exactly as in
the proof of Theorem 7, considering the homeomorph‘fsim\stead ofl and the seW
instead oW, we are able to construct a curyef index%, which runs fromP_1 € H_
to Py € Hy and does not pass through any fixed pointofAnalogously, we can find
another curve’ of index—% running fromP’; € H_to P, € H,.

Let us consider now the closed curfe:= C B (—C’) B’, whereB is the straight
line segment fronP, to P,;; while B’ is the straight line segment froR’, to P_;. In
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particular,5 lies in H;. and connects the curéeto the curve-C’; while B’ lies in H_
and connects the curveC’ to the curveC.

Since, by constructiort3 and3’ have index equal to zero, we infer from Property
2 of the index that
(2)
—-{—-=) =1
2

Moreover, the loopF belongs to the fundamental group(R? \ Fix(h), P_1) and
surrounds a finite number of fixed points. Each of them is ofdh@ F +m(2x, 0) for
somei € {1,2...,k} and some integen € Z. Sinceind(F + m(2x, 0)) = ind(F)
for everym e Z, we can deduce that

ih(F) = in(C) —in(C) =

NI =

k
(15) 1=in(F) = Y v(F, Fy) ind(F),
j=1

where the integer(F, Fj) coincides with the sum of all the signs corresponding to
the directions of every loop in whic/ can be deformed in a neighbourhood of every
point of the formF; 4 m(2r, 0) surrounded by-. From (15), we infer that there exists
j*e€{1,2...,k} suchthab (F, Fj«)ind(Fj+) > 0 and, consequentlynd(Fj«) # 0.

Hence, recalling that the sum of the fixed point indices i®Zef. (14)), we can
conclude the existence of at least a fixed point with positiekex and a fixed point
with negative one. This completes the proof.

O

3. Applications of the Poinca-Birkhoff theorem

In this section we are interested in the applications of thiaedaré-Birkhoff fixed point
theorem to the study of the existence and multiplicityf gberiodic solutions of Hamil-
tonian systems, that is systems of the form

X = %(t, X, Y)
(16)

y =-Zaxy
whereH : R x RZ — R is a continuous scalar function that we assueperiodic
intandC2in z = (x, y).
Under these conditions uniqueness of Cauchy problemsiagstd¢o system (16) is
guaranteed. Hence for eaeh = (X, Yo) € R? andtg € R thereis a unique solution
(X(1), y(t)) of system (16) such that
17) (X(to), y(to)) = (Xo, Yo) := Zo.

In the following we will denote such a solution by

z(t; to, zo) 1= (X(t; o, 20), Y(1; to, Z0)) := (X(1; to, (X0, Y0)), Y(t; to, (X0, Y0))).
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For simplicity we setz(t; zo) := (X(t; Z0), Y(t; Z0)) = (X(t; 0, 29), y(t; 0, 29)). If
we suppose that satisfies further conditions which imply global existendette
solutions of Cauchy problems, then the Poincaré operator

T 1 Zp = (X0, Yo) = (X(T; (X0, Y0)), Y(T; (X0, Y0)))

is well defined inR? and it is continuous. Also fixed points of the Poincaré ofera
are initial conditions of periodic solutions of system (B8)d as a consequence of the
Liouville theorem, the Poincaré operator is an area-pvasg map. Hence it is natural
to try to apply the Poincaré-Birkhoff fixed point theorenoirer to prove the existence
of periodic solutions of the Hamiltonian systems.

Before giving a version of the Poincaré-Birkhoff fixed pidimeorem useful for the
applications, we previously introduce some notation.
Let z : [0, T] — R? be a continuous function satisfyirgt) # (0, 0) for every
t € [0, T] and (¥ (-), r(-)) a lifting of z(-) to the polar coordinate system. We define
the rotation number of, and denote it by R¢t) as

?(T) — 20

Rot(z) = 5
T

Note that Rotz) counts the counter-clockwise turns described by the vérz—ar))
ass moves in the interval [OT]. In what follows, we will use the notation R@y) to
indicate Rotz(-; zp)).

From the Poincaré-Birkhoff Theorem 4, we can obtain théofdhg multiplicity
result.

THEOREMS ([29]). Let.A c R?\{(0, 0)} be an annular region surroundin@, 0)
and let G and G be its inner and outer boundaries, respectively. AssumeGhés
strictly star-shaped with respect 1@, 0) and that z-; to, zp) is defined intp, T] for
every 3 € Coand p € [0, T]. Suppose that

i) z(t; to, zo) # (0, 0) Vipe [0, T[, VZzpe C1, VYt e[to, T];
i) there exist m, mp € Z with m; > mj such that

Rot(zg) > m1 Vz9 € Cq,

Rot(zg) < my Yz € Co.

Then, for each integer | with & [my, m4], there are two fixed points of the Poinéar
map which correspond to two periodic solutions of the Hamnitin system having | as
T —rotation number.

Sketch of the proofThe idea of the proof consists in applying Theorem 4 to tha-are
preserving Poincaré map: zo — z(T; zg), considering different liftings of it. For
each integer with mp <1 < mqy, itis possible to consider the liftings

T, r) = (O + 27 (RotII(¥,r) — ), [t (TI@, ) |).
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Sincez(t; zg) # (0, 0) for everyt € [0, T] and for everyzg € A, the liftings are well
defined. We note that as a consequence @0j))) belongs to the image of the interior
of C1 and also that

Rot(zg) — | > Rot(zg) — m; > O Yzp € Cq,
Rot(zg) — | < Rot(zg) — m» < O Vzg € Co.

Hence we can easily conclude that assumptiahaiid @) in Theorem 4 are satisfied.
Moreover it is easy to show that also assumptigrig verified. Hence, from Theorem
4 we infer the existence of at least two fixed poi(w$, rl'), i = 1,2, of 7 whose
imagesz| under the projectioiil are two different fixed points of. Since(9/, r/) are
fixed points oft, we get that Rc(1z|i) = | for everyi € {1, 2}. We can finally conclude
thatz(-; zll) andz(-; z|2) are the searchef—periodic solutions.

O

There are many examples in the literature of the applicatibthe Poincaré-
Birkhoff theorem in order to study the existence and muttipt of T —periodic so-
lutions of the equation

(18) X" + f(,x) =0,
with f : R?> — R continuous andr -periodic int. Note that if we consider the
system

‘) = y(t
(19) iX() y(®)

y't = —f(t, x),

this system is a particular case of system (16) and its solsfjjive rise to solutions of
equation (18). Hence we can consider equation (18) as aplarticase of an Hamil-
tonian system and everything we mentioned above holds éocdke of this equation.

Among the mathematicians who studied existence and miualtipbf periodic so-
lutions for equation (18) via the Poincaré-Birkhoff theor, we quote Jacobowitz [22],
Hartman [20], Butler [7]. We remark that in order to reach tesults, in all of these
papers the authors assumed the validity of the conditi@nO) = 0.

With respect to the particular case of the nonlinear Duffirggjuation

X" 4+ g(x) = p(t),

we mention the papers [15], [11], [13], [12], [17], [32], irweh the Poincaré-Birkhoff
theorem was applied in order to prove the existence of perieolutions with pre-

scribed nodal properties. Among the applications of the&aé-Birkhoff theorem to
the analysis of periodic solutions to nonautonomous secoddr scalar differential

equations depending on a real paramstewe refer to the paper [10] by Del Pino,
Manasevich and Murua, which studies the following equmatio

X" + g(x) = s(1 + h())
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and also the paper [30] by Rebelo and Zanolin, which deals tivi¢ equation
X"+ gx) = s + w(t,Xx).

Finally, we quote Hausrath, Manasevich [21] and Ding, 2iar|d 4] for the treatment
of periodically perturbed Lotka-Volterra systems of type

x' = x(@@() — bt)y)
y' = y(=d() + ct)X).

We describe now recent results obtained in [24] in which a iffextiversion of
the Poincaré-Birkhoff fixed point theorem is obtained apglid, together with the
classical one, in order to obtain existence and multipliot periodic solutions for
Hamiltonian systems. In their paper the authors study By$16) assuming that =
0 is an equilibrium point, i.e.H,(t,0) = 0, and that it is an asymptotically linear
Hamiltonian system. This implies that it admits lineariaas at zero and infinity. More
precisely, ad,(t, 0) = 0, if we consider the continuous afid-periodic function with
range in the space of symmetric matrices givern by Bo(t) := H,/(t,0), t € R, we
have

J Hy(t,z) = J Bo(t) z + o(||z]), when z — 0.

Moreover, by definiton of asymptotically linear system, rehexists a continuous,
T —periodic functionBy(-) such thatB(t) is a symmetric matrix for each € R,
satisfying

J Hy(t,2) = J Bo(t) z + o(|2]), when ||z|| — oo.

We remark that system (16) can be equivalently written irfeflewing way
(20) Z = JH)t,2), zZ=(X,Y), J:(_O1 é)

Before going on with the description of the results obtaiimd@4], we recall some
results present in the literature dealing with the studysyhaptotically linear Hamil-
tonian systems.

In [2] and [3], Amann and Zehnder considered asymptotidaligar systems iiR2N
of the form of system (20) with

sup IH/(t, 2)|| < 400
te[0,T], zeR2N

and which admit autonomous linearizations at zero and atifyfi
Z=JBz, Z=JByz,

respectively. In these papers an indedepending orBp and By, was introduced and
the existence of at least one nontrivial-periodic solution combining nonresonance
conditions at infinity with the sign assumption>- 0 was achieved. The authors also
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remarked that in the planar cabk= 1 the condition > O corresponds to the twist
condition in the Poincaré-Birkhoff theorem.

Some years later, Conley and Zehnder studied in [9] Ham#dtosystems with
bounded Hessian, considering the general case in whiciniserized systems at zero
and at infinity

Z = JByt)z and Z = JBy(t)z

can be nonautonomous. The authors assumed nonresonamtigoosnfor the lin-
earized systems at zero and at infinity. Hence, after defthiéylaslov indices associ-
ated to the above linearizations at zero and infinity, deshm#epectively by$ andi$°,
they proved the following result.

THEOREM 9. If iQ # i%°, then there exists a nontrivial Fperiodic solution of
Z = J Hy(t, 2). If this solution is nondegenerate, then there exists agrolk-periodic
solution.

Note that in this last theorem the existence of more than ttions is not guar-
anteed, even i|ﬁ$ —i7°| is large. This is in contrast with the fact that in the papér [9
and for the cas®&l = 1 the authors mention that the Maslov index is a measure of the
twist of the flow. In fact, if this is the case, a Iargé — i7°| should imply large gaps
between the twists of the flow at the origin and at infinity. Elerthe Poincaré-Birkhoff
theorem would provide the existence of a large number obgérisolutions.

The main goal in [24] consists in clarifying the relation \beeni$, i7° and the
twist condition in the Poincaré-Birkhoff theorem, whiin= 1, obtaining multiplicity
results in the case wheif —i%°| is large.

Now we give a glint of the notion of Maslov index in the planee Will follow [1]
(see also [19]).
Let us consider the following planar Cauchy problem

i Z = JB()z

21
@) z(0) = w,

whereB(t) is a T-periodic continuous path of symmetric matrices. The malr{t)
is called the fundamental matrix of the system (21) if itSfas W () w = z(t; w).
Clearly, W (0) = Id. Moreover, it is well known that aB(t) is symmetric, the funda-
mental matrix¥ (t) is asymplectic matrifor eacht € [0, T]. We recall that a matrix
A of order two is symplectic if it verifies

(22) ATJA =1,

where J is as in (20). Since we are working in a planar setting, comi{22) is
equivalent to
detA =1,

from which it follows immediately that the symplecticx22 matrices form a group,
usually denoted b p(1).
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We will show that, under a nonresonance condition on (213, piossible to associate
to the patht — W(t) of symplectic matrices witl (0) = Id an integer, thd —Maslov
indexiT (V).

The systent’ = J B(t)z is said to beT —nonresonanif the only T-periodic solution
it admits is the trivial one or, equivalently, if

det(ld — W(T)) # O,

whereV is the fundamental matrix of (21).

Before introducing the Maslov indices, we need to recallspnmoperties o5p(1).
If we take A € Sp(1), thenA can be uniquely decomposed as

A=P-0O,

whereP € {P € Spl) : Pis symmetric and positive definitexx R? and O is
symplectic and orthogonal. In particula® belongs to the group of the rotations
SO2) ~ S. Thus we can conclude that

Spl) ~ R?x St ~ {zeR?: |z <1} x S' = the interior of a torus

Hence, as [01) x R x R is a covering space of the interior of the torus, we can
parametrize&Sp(1) with (r, o, ¥) € [0, 1) x R x R. In [1] a parametrization
d: [0,L)xRxR — Spl)
(r,o, ) =  ®(r,0,9) =P(r,0) R(®¥)
is given, where? is the angular coordinate o® and (r, o) are polar coordinates
in {z € R? : |z| < 1}. In such a parametrization, for eakhe Z ando € R,
®(0, 0, 2kr) = Idand®(0, o, 2(k+ 1)) = —Id (for the details see [1]). The follow-
ing sets are essential in order to defineTheMaslov index:
': = {AeSpl : detld—A) > 0}
. /4 4
= ®{r,0,9) .1 < sifd® and |9] < 5 or W=}

I~ = (Ae Spl) : detld—A) < 0} = ®{(r,0,9) : r > si?9 and [9] < %},
% :— {AeSpl) : defld—A) = 0} = ®{(r,0,9) : r = si?9 and |9] < %}.

The set™? is called the resonant surface and it looks like a two-hoswethce with a
singularity at the identity.

Now we are in position to associate to each gath W (t) defined from [0 T] to
Sp(l), satisfying¥ (0) = IdandW¥ (T) ¢ r%an integer which will be called the Maslov
index of W. To this aim we extend such a path> W (t) € Sp1) in [T, T +1], without
intersecting™® and in such a way that

e W(T+1) = —Id, if¥(T)elt,
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e V(T + 1) is a standard matrix witlt =0, if ¥(T)eI'".

We define theT -Maslov index+ (W) as the (integer) number of half turns f(t) in
Sp(l), ast movesin [Q T + 1], counting each half turst1 according to its orientation.

In order to compare Theorem 8 with Theorem 9 it is necessdigndaa character-
ization of the Maslov indices in terms of the rotation nun#hero this aim, in [24] a
lemma which provides a relation between TheMaslov index of system

(23) Z = JB()z
and the rotation numbers associated to the solutions ofas)given.

LEMMA 2. Let ¥ be the fundamental matrix of systé&B) and let i and v be,
respectively, its T -Maslov index and the Poireamap defined by

viw—> Y(Mw.
Consider the Frotation numbeRot, (T) associated to the solution @23) satisfying
2(0) = w € St. Then,
a)it = 20+ 1with¢ € Zif and only if

degld — ¥, B(1),0) = 1and¢ < minRot,(T) < maxRot,(T) < ¢ + 1,
weSt weSt
b)it = 2¢with ¢ € Z if and only if

1 1
degld — ¢, B(1),0) = —1and¢ — = < min Rot,(T) < maxRot,(T) < £+ —;
2 yest weSt 2

moreover, in this case there awe, wo € S such that
Rot,, (T) < £ < Rot,,(T).

In the statement of Lemma 2 thie—rotation number Rgf(T) associated to the
solution of (23) with z(0) = w e S! was considered. We observe that from the
linearity of system(23) it follows that Rot, (T) = Rot, ,,(T) for everyi > 0.

Now, we are in position to make a first comparison between flém@®& and Theorem
9.
Let us consider the second order scalar equation

(24) X" + q(t,x)x = 0,

where the continuous functian: R x R — R is T —periodic in its first variable
and it satisfies

(25) qt,00) =g € R and lim q(t,X) = g € R,
(0.¢]

IX|—+
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uniformly with respect ta € [0, T]. Hence, the linearizations of (24) at zero and
infinity are respectivelx” + gox = 0 andx” + g.oX = 0. We observe that equation
(24) can be equivalently written in the following form

X"\ y _ 3 q(t, x)x
y )\ —atox | y )

Analogously, the corresponding linearizations at zero iafidity are given respec-

tively by
, g O 0 1
zZ = J Z = Z
0 1 —q O
and
0 0o 1
Z =1 Goc zZ= z
0o 1 —Owo O
If we chooseqp = —% andg. = 5, we can easily deduce that there exigts> 0
such that Rai(T) € (-3, 3) for every|lw| = ro and there existRy > ro such

that Rot,(T) € (-3, —2) for every|w| = Rp. Hence applying Theorem 8 we can
guarantee the existence of four nontriviaperiodic solutions to equation (24). On the
other hand, sincé? = 0 andi$® = —5, Theorem 9 ensures the existence of at least
one periodic solution.

We recall that, even if the gap betwegnandq is large, Theorem 9 guarantees
only the existence of at least one solution (or at least twatiems if the first one is
nondegenerate) while it is quite clear that the number otmaal periodic solutions
we can find by applying Theorem 8 depends on the gap betgeanddqo.

On the other hand, there are particular situations in whigceofem 9 can be ap-

plied, while Theorem 8 cannot, because the twist condisarot satisfied.

For instance, let us sep = —% andgs, = % The corresponding indices are

different, sincé? = 0, as before, ant?® = —1. Hence, from Theorem 9, we know
that there exists a periodic solution of (24). As far as thation humbers are con-
cerned, one can prove the existencé&pf> ro such that Rqt(T) € (—1, 0) for every
lw|l = Ro; while, from Lemma 2, there exist1, wo € R? with |wi|| =ro (i =1, 2)
such that-3 < Rot,,(T) < 0 < Rot,,(T) < 3. Consequently, the twist condition
is not verified and Theorem 8 is not applicable. In [24] thehatd tried to sharpen
the results obtained via the Poincaré-Birkhoff theorerorigher to obtain periodic so-
lutions in cases like this one. For this purpose, they d@earl@ suitable version of the
Poincaré-Birkhoff theorem. Before describing this résed can obtain a first result of
multiplicity of T-periodic solutions for system (16) which is a consequeritemma

2 and of Theorem 8.

We will use the notation: for each € R, we denote by s| the integer part o8,
while we denote bys] the smallest integer larger than or equatto

CoROLLARY 1. Assume that'z= J H,(t, z) is asymptotic at infinity and at zero to
the T—periodic and T-nonresonantlinear systems=z J By, (t)z and Z= J By(t)z,
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respectively. Let® and i2 be the corresponding FMaslov indices. If§ # i2° then
the Hamiltonian system admits at least

o i — i$| nontrivial T—periodic solutions if? and ir° are odd,

e [i%° —i¥| — 2 nontrivial T—periodic solutions iff and i are even;
[ - . _ _
o2 — nontrivial T—periodic solutions otherwise.

REMARK 4. If i$ andi{® are either consecutive integers or consecutive even inte-
gers, the previous corollary does not guarantee the existefT —periodic solutions.
Indeed in these cases the twist condition in Theorem 8 isatisfied.

However, ifi$ andi$® are consecutive integers the excision property of the degre
implies the existence of &—periodic solution.

THEOREM 10 (MODIFIED POINCARE-BIRKHOFF THEOREM). Lety : A — A
be an area-preserving homeomorphismdn= R x [0, R], R > 0 such that

v(@,1) = (J1,11),

with
¥ + g(d,r)

th
ri. = f@wrn),

where f and g ar@r —periodic in the first variable and satisfy the conditions

o (1,00 =0, f(¥, R = R foreveryy € R (boundary invariance,

e g(¥, R) > Oforevery? e R and there is¥ such that g#,0) < 0 (modified
twist condition).

Then,yr admits at least a fixed point in the interior gf. If 1 admits only one fixed
point in the interior ofA4, then its fixed point index is nonzero.

Idea of the proof.By contradiction, it is assumed that there are no fixed pamtee
interior of A. As in the proof of Theorem 7, the homeomorphignis extended to an
homeomorphisny : R2 — R2. If the fixed point set of} is not empty, it is union of
vertical closed halflines in the halfplane< 0 with origin on the line = 0.

Without loss of generality, one can assufes (0, 27). Hence, denoting by the
maximal strip contained il x] — oo, 0] such thai®¥, 0) € A andg(?, 0) < 0in A/,
the following important property of/ holds:

if (9,1) € Ugez NV + (2km, 0)), then for eacln > 0 we have tha’(ﬁ‘”(ﬁ, r) belongs
to the connected componentf.z (N + (2kr, 0)) which containg#, r).

Then the proof follows steps analogous to those in Theoraakifg into account this
property. The contradiction follows from the existence afuaveI with iz (I") =
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—%, which runs from the point, 0) to a point into{(,r) : r > R} and such that
ig1(¥ (D) = 3.

The fact that ifyy admits only one fixed point in the interior of, then its fixed
point index is nonzero can be proved following similar stepghose in the proof of
Remark 3. Now it will be important to take into account thegeay of A" mentioned
above.

O

At this point, the authors in [24] obtain a variant of Theorgtnin which the in-
variance of the outer boundary is not assumed. The prooi®brollary follows the
same steps as the proof of Theorem 1 in [29].

Let I'1 be a circle with center in the origin and radiRs> 0 andI"; be a simple
closed curve surrounding the origin. For eachk {1, 2} we denote by53; the finite
closed domain bounded ky. Let T be the lifting of I'; and A be the lifting of A;,
whereA; := 5 \ {0}. Then, the following result holds.

COROLLARY 2. Lety : A1 — Az be an area-preserving homeomorphism. As-
sume thaty admits a lifting which can be extended to an homeomorphjismA; U
{®,r) :r=0} > Ay U {(@,r) : r =0} given by1/7(z9, r =@ +g@,r), f(,r)),
where g and f ar@r —periodic in the first variable. Moreover, suppose thatg ) >
Ofor every(z? r) e I'1 and there is¥ such that ¢, 0) < 0 ( modified twist condition.

Then, admits at least a fixed pointin the interior g whose i image under the usual
covering projectiorIT is a fixed point of) in A1. If 1 admits only one fixed point in
the interior of A1, then its fixed point index is nonzero.

We point out that the proof of Corollary 2 cannot be repeatetiei modify the
twist condition by supposing that there(8,7) € I'1 such thatg(®,7) > 0, while
g(®, 0) < O for everyd € R.

Now, we will show how the application of Theorem 10 to the acaquation (24)
can improve the multiplicity results achieved by applyifggdrem 8 and Theorem 9.

First let us set once agaip = —1 andde = 3 in (25). By the modified
Poincaré-Birkhoff theorem, there is a fixed pol of ¢ (that corresponds to a non-
trivial T —periodic solution) and, if it is the unique fixed point, then

ind(Pg) # 0.

We recall that Simon in [31] has shown that an isolated fixedtmd an area-preserving
homeomorphism ifR? has index less than or equal to 1. In particular, the fixedtpoin
index of Py satisfies

ind(Pp) < 1.

As the fixed point index ofy changes from-1 (near the origin) te+1 (near infinity),
there is at least another fixed poiBt of ¢. Hence, in this case we can guarantee
the existence of at least two nontrivil-periodic solutions. We recall that applying
Theorem 9 only the existence of one nontrivial periodic 8otucould be guaranteed.
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Now we choose)p = —% andg. = 3in (25). The Poincaré-Birkhoff theorem,
according to Theorem 8, guarantees that there are at leagbdd pointsP; and P>
of ¢ (which correspond to twd —periodic solutions with rotation numberl). If they
are unique, then from Remark 3 we obtain that

ind(Py) = +1, ind(P) = —1.

Moreover, by the modified Poincaré-Birkhoff theorem thisra fixed pointPs; of ¢
(which corresponds to & —periodic solution with rotation number 0) and, if it is
unique,

0 # ind(P3) < 1.

As the fixed point index of changes from-1 (near the origin) te-1 (near infinity),
there exists at least a fourth fixed poitt of ¢. Summarizing, Theorem 8 combined
with the modified Poincaré-Birkhoff theorem guaranteesehkistence of at least four
nontrivial T —periodic solutions to (24). We recall that also in this cabedrem 9 is
applicable and it ensures that there exists at least oneiviahperiodic solution.

Finally, we state the main multiplicity theorem. We point tluat the multiplicity
results achieved in the above examples can be also obtayregaplying the following
theorem.

THEOREM11. Assume that the conditions of Corollatyhold.

joo — iO
Thenif @ # i2° the Hamiltonian systerti6) admits at Ieasmax{ 1,2 LLZHJ }

nontrivial T—periodic solutions.
0o _i0

.0 - . . . I I L.
If |$ is even then the Hamiltonian system admits at Ié%; T > Tl—‘ nontrivial

T —periodic solutions.
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D. Papini - F. Zanolin*

DIFFERENTIAL EQUATIONS WITH INDEFINITE WEIGHT:
BOUNDARY VALUE PROBLEMS AND QUALITATIVE
PROPERTIES OF THE SOLUTIONS

Abstract. We describe the qualitative properties of the solutionshef t
second order scalar equatiéint q(t)g(x) = 0, whereq is a changing
sign function, and consider the problem of existence andipfiglty of
solutions which satisfy various different boundary coiaais. In partic-
ular we outline some difficulties which arise in the use of gheoting
approach.

1. Introduction

We discuss the second-order scalar nonlinear ordinargrdiftial equation:
1) X+qt)gx) =0,
where:

e g: R — Riscontinuous (maybe locally Lipschitz continuousi®or onR\ {0})
and such thag(s) - s > 0 for everys # 0

e the “weight’q : R — R is continuous (sometimes more stronger regularity as-
sumptions will be needed and, in some applications, likewloepoint boundary
value problem, it will be enough thgtis defined in an interval).

ExampLE 1. A simple case of (1) is the nonlinear Hill's equation:
) X+q®[x]”Ix=0, y>0
(recall that the classical Hill's equation is the one wjith= 1).

The expression “indefinite weight” means that the functjahanges sign.

Waltman [86] in a paper of 1965 studied the oscillating Soha of

X4+qt)x"1=0 neN,

*Lecture notes of the course held by F. Zanolin during the @ fiurin Forthnight on Nonlinear Analy-
sis”, Sept. 23 — Oct. 6 2001, Turin, Italy
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when the weighty is allowed to change sign. Many authors studied the oszilfat
properties of equations like (1): Bhatia [16], Bobisud [1Blitler [19, 20], Kiguradze
[52], Kwong and Wong [54], Onose [68], Wong [94, 95, 96].

The existence of periodic solutions for a large class of #qgns (including (2))
was considered by Butler: in the superlinear cgse~( 1) he found infinitely many
“large solutions” [22] while in the sublinear ong (< 1) he found infinitely many
“small solutions” [23]. In both cases there are periodiawsohs with an arbitrarily
large number of zeros and Butler’s results, which are vaitt vespect to a quite wide
class of nonlinearities, have been improved in the supgalinase by Papiniin [69, 70]
and in the sublinear case by Bandle Pozio and Tesei [12] hfoekistence of small
solutions, and by Liu and Zanolin [59] for what concerns éasglutions.

Recently, many authors considered generalizations of ¢ft) im the direction of
Hamiltonian systems (with respect to the problem of findiagqdic or homoclinic so-
lutions) and elliptic partial differential equations witlirichlet boundary conditions. In
particular Hamiltonian systems with changing sign weigtese studied by Lassoued
[55, 56], Avila and Felmer [10], Antonacci and Magrone [9gBNaoum, Troestler
and Willem [13], Caldiroli and Montecchiari [25], Fei [3ping and Girardi [33], Gi-
rardi and Matzeu [41], Le and Schmitt [57], Liu [58], Schnatid Wang [76], Felmer
and Silva [39], Felmer [38], Ambrosetti and Badiale [8],nid50]. On the other hand,
the partial differential case was developed by Alama and Peb [1], Alama and
Tarantello [2, 3], Amann and Lopez-Gomez [7], Badiale aradbdha [11], Berestycki,
Capuzzo-Dolcetta and Nirenberg [14, 15], Khanfir and LasddB1], Le and Schmitt
[57], Ramos, Terracini and Troestler [74]. Equations offtren:

% 4+ q)x>" = mt)x + h(t),

with a changing sigmg, were considered by Terracini and Verzini in [85] paired with
either Dirichlet or periodic boundary conditions. They bgqb a suitable version of
the Nehari method [67] in order to find solutions of the bougdelue problem with
prescribed nodal behavior. More precisely, if the domainT[Oof q is decomposed
into the union of consecutive and adjacent closed interMalsl; , 17, 15, ..., 1
such that:

g>0,g#£0 inl¥ and q<0,gq#0 inl",

then they found natural numberm, ..., mg, one for each interval of positivity;*,
in such a way that, for every choice kihatural numbersny, ..., mg, with m; > mf
foralli =1,..., Kk, there are two solutions of the boundary value problem whateh
exactlym; zeros inl.* and one zero in,”.

An analogous situation was considered in [70, 71, 72] whéeea shooting ap-
proach, boundary value problems associated to (1) weréeestudlith a general nonlin-
earityg which has to be superlinear at infinity in some sense. In @sg cafter having
arbitrarily chosen the natural numberg > m* and a(k — 1)-tuple (81, ..., ék-1),
with §; € {0, 1}, we found two solutions witlm; zeros inIiJr ands; zeros inl;”~.

On the other hand Capietto, Dambrosio and Papini [26] fattiseir attention on
the existence of globally defined solutions of (1) with prédsed nodal behavior again
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in the case ofy superlinear at infinity and) changing sign. They showed that the
Poincaré map associated to (1) exhibits chaotic features.

It is the aim of these lectures to discuss some qualitativpgaties of the solutions
and some difficulties which arise in the use of the shootimyagch.

2. The shooting method

Equation (1) can be written as a first order system in the pplase:

3) X=y
y=—-q®)gx)

If we assume that the uniqueness for the Cauchy problems8¥dralds, then we de-
note byz(t; tg, p) = (X(t; to, p), Y(t; to, p)) the solution of (3) withz(tp; to, p) =

p = (X0, Yo) € R2. The shooting method is based on the theorem on the continuous
dependence of the solutions with respect to the initial:datat; to, p) is defined on

an interval f, 8] > to for sometp € R and somep € R2, thenz(t; to, p1) is defined

on [«, B] for eachp; “near” p and we have that(-; to, p1) — z(-; to, p) uniformly on

[, Blasp1 — p.

Therefore there is a couple of problems if we wish to applg thiethod for the
study of boundary value problems associated to (1) and (®.fifst one is about the
uniqueness, which is granted wheneyés locally integrable and is locally Lipschitz
continuous: in particular, i behaves likex|” ~x near zero and & y < 1, we might
loose the uniqueness at zero.

The second problem is the global existence of the solutginse the sole continu-
ity of g does not imply that all the maximal solutions of (1) are glbobdefined, even if
g is assumed to be greater than a positive constant, as sho@oftogan and Ullrich in
[28]. Indeed they produce a weightt) = 1+ 5(t), with a functions : [0, +oo[ — R
which is positive and continuous, but has unbounded variati every left neighbor-
hood of somd > 0, and they show that the equation:

K4+ 1+8t)x3=0

has a solution which starts frots = 0 and blows up astends tof from the left. On
the other hand they prove that,gfis positive, continuous and has bounded variation
in an interval f, b], then every solution of:

has B, b] as maximal interval of definition. If we consider a positiveightg which is
continuously differentiable ora[ b] and a functiorg such thag(x) - x > 0forx # 0,

it is not difficult to show that the same conclusion holds fbr (ndeed, let us consider
a solutionx of (1) starting fromt = a and define the auxiliary function:

1
() = Exz(t) +q@t)G(x(1)),
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whereG(x) = f(;( g(s)dsis nonnegative by the sign assumptiongrhe functionv
is surely defined in an intervdl C [a, b] with a as left end-point. For evettyin J we
have:

u(t) = XOX(®) + qd)gx®)x(t) + qt)G(x(1))
aOGx(1).

Sinceq is strictly positive and is continuous ond, b] there is a constaritl > 1 such
that:
qt) <Mq@)  Vtela b,

so that we obtain:
(1) < Mqt)G(x(t)) < Mu(t) Vted.
Hencev satisfies the inequality:
v(t) < MeM=a vyt e

and turns out to be bounded ih This implies thatx(t)| and, therefore|x(t)| are
bounded, too, and, thus,must be defined up to.

The argument just employed can be modified in order to coger sdme cases in
which g is nonnegative and vanishes somewhere. Indeed Butlervaus#rat if one
starts fromt = a then the solution is defined up to (and including) the firsbzgr- a
of q provided thatj < 0 (or, more generally is decreasing) in a left neighborhood of
to. Then the solution surely proceeds furtigsimply by Peano’s theorem about local
existence. Similarly, if one looks for backward contindigni every solution starting
fromt = b reaches the first zettg < b of g provided thafj is monotone increasing in
a right neighborhood df,. Therefore, if every interval, b] in which q is nonnegative
can be expressed as the union of a finite number of closed@gpossibly degener-
ating to a single point) wherg vanishes and of a finite number of open sub-intervals
Jto, t1] , such thaq is strictly positive in such intervals and is monotone igiag in a
right neighborhood aoffy and decreasing in a left neighborhoodgfthen the argument
above can be repeated a finite number of times in order torotitaicontinuability of
the solutions across] b].

EXAMPLE 2. Let us see how the shooting method can be used to solvechDiri
let boundary value problem associated to a superlineastdijuation like (2) with a
nonnegative weight. To be precise we look for solutions of:

X=y
y = —qb)Ix]”x telo.Tl
X(0)=x(T)=0

assuming thay > 1 and thaig is a nonnegative continuous function in [0] which
also satisfies the regularity assumptions discussed almosach a way that all the
solutions of the differential equation are continuablenglthe interval [QT].
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The idea is to consider all the solutions which have value®sopek € R for
t = 0, thatisz(-; 0, (0, k)) with the notation previously introduced, and to determine
for which values ok we havex(T; 0, (0, k)) = 0. In other words, we are considering
the set of the solutions which starttat= 0 from they-axis of the phase plane and
we wish to select those which come back to jhaxis att = T. One way to do this
is to measure the angle spanned in the phase plane by thmsalettorz(t; O, p) as
t runsin [Q T]; indeed, if p lies on they-axis, thenz(T; O, p) is again on the-axis
if and only if the angle spanned kg(t; 0, p) on [0, T] is an integer multiple ofr.
Now, if z(t) = (x(1), y(t)) is a nontrivial solution of the differential equation, then
z(t) # (0, 0) for everyt € [0, 1] by the uniqueness of the constant solut{@n0);
hence we can define an angular functigt) such that:

X(t) = |z(t)| coso(t) and y(t) = |z(t)| sind(t)
and it is easy to see that it satisfies:

y2(t) +q(t)[x(t)[r 1
Y2(t) + X2(t)

Therefore the measure of the angle spanner(bycan be obtained by integrating the
last expression and it is given by:

—6(t) =

1 [T y2(t; 0, p) + qd)|x(t; 0, p)[7+?
rot(p) = = y<( - P) q] 2( : 9]
7 Jo y4(t; 0, p) + x=(t; 0, p)
Thusz(-; 0, (0, k)) is a solution of the Dirichlet boundary value problem if andyoif

rot((0, k)) € Z. Now, rot(p) is clearly a continuous function gf and in this case it
can be proved that:

rot(p) — +oo as |p| = 400,

therefore, by the intermediate values theorem, our boyndgalue problem has in-
finitely many solutions. Moreover, the value ¢pj clearly gives information about
how many times the curva(t; 0, p) crosses theg/-axis in the phase plane asuns
from0toT and, more precisely, we have that if ¢@, k)) = j € Nthenx(:; 0, (0, k))
has exactlyj zerosin [QT][.

The same technique can be used to solve Sturm-Liouvilledenyrvalue problems
like the following one:

X=y

. te[0,T]
y = —a®Ix|” x
aix(0) + b1y(0) =0
ax(T) +byy(T) =0
whereai2 + bi2 # 0,1 = 1, 2, since the boundary conditions just mean that one looks

for solutions which start @t = 0 on the straight lin@;x + b1y = 0 in the phase plane
and end at = T on the straight linepx + bpy = 0.
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On the other hand other boundary value problems, like thiegierone, are more
difficult to be solved by the shooting method, as one has tdassetrivial fixed points
theorems.

What about if we do not have the continuability of the solog® Hartman [44]
avoids the use of the global continuability for an equatibthe form:

fit
R+ f(t.x)=0  with jim (&%)

X— =300 X

= 400 uniformly w.r.t.t,

by assuming that:

ft,00=0 and that

f(t); X) is bounded in a neighborhood wf= 0.

The idea is that, if, on one hand, small solutions (that aocsdhstarting at a point
suitably near to the origin of the phase plane) are contileuapto T by the theorem
on continuous dependence on initial data, on the other, dfatisn blows up before
t = T, then it oscillates infinitely many times. Therefore(imt can be defined at least
in a neighborhood op = (0, 0), and it becomes unbounded either ps — +oc0o for
the superlinearity assumption dnor for thosep’s nearby some blowing up solution
and, thus, the shooting argument can be still used.

Now we come to the general situation of (1). We denotedgy) = fOX g(s)ds
the primitive of the nonlinearity and we assume th&(x) — +o0o ass — =+oo.
Leth1 . [0, +00[ — ]—00, 0] andG; 2 : [0, +-00[ — [0, +oc[ be, respectively, the
left and the right inverse functions @&. We describe the phase plane portrait of two
autonomous equations which model the situatiog ef 0 andq < 0, respectively.

Consider a constant weigft= 1; then equation (1) becomes:

X4+9x)=0
or, equivalently:

X=yYy
4
@ {S/ =-9(x)

Each non trivial solutiorix, y) of (4) satisfies:
15
for some constart > 0. Since the level sets of the functidr, y) — %yz + G(x) are

closed curves around the origin, every solution of (4) isquic with a periodr (c)
which depends only on the “energg’bf the solution and can be explicitly evaluated:

. s Glo (s
) = V2 / — __ ¢>0.
Gl vC—G(9)
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Figure 1: The phase portrait for (5)
with e = |c|.

It is well known that the following facts hold:

. S .
lim 9e =+400= Ilim t7(c)=0;
s—+o0c0 S Cc—+00

o if the ratio g(s)/s monotonically increase® +oo ass — oo thent™(c)
monotonically decreasds 0 asc — +oc.

On the other hand, if we take a constant weight —1, then (1) becomes:

X—g(x)=0
or, equivalently:

X=y
5
© :y=ga)

and each solutiorx, y) of (5) satisfies:
1
SV -Gy =c Vvt

for some real constat

The phase portrait is that of a saddle (see Figure 1) in wiiiehfaur nontrivial
and unbounded trajectories with “energy’= 0 correspond to the stable (Il and IV
guadrants) and to the unstable (I and Il quadrants) matsfeiith respect to the only
critical point (0, 0). For each negative valuethere are two unbounded trajectories
with energyc : one of them lies in the half plane > 0, crosses the positive-axis
at (Gr‘l(—c), 0) and corresponds to convex and positive solutiorand the other lies
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in X < 0, crosses the negatiweaxis at(Gl_l(—c), 0) and corresponds to concave and
negative solutiong. On the other hand, for each positigghere are two unbounded
trajectories with energg : one of them lies iny > 0, crosses the positivg-axis

at (0, v/2c) and corresponds to solutiomswhich are monotone increasing and have
exactly one zero, while the other liesyn< 0, crosses the negatiyeaxis at(0, —/2c)

and corresponds to solutiomswhich are monotone decreasing and have exactly one
zero.

In this case we do not have any nontrivial periodic solutiod,aherefore, any
period to evaluate; however, whengrows in a superlinear way towards infinigl|
solutions with nonzero energy have a blow-up in finite timathbin the future and in the
past (see [18]). Then we can compute the length of the madntexlval of existence
of each trajectory and it turns out to be a function of the gyef the trajectory itself.
Indeed, in the case of each of the two trajectories with peséinergyc, that length is:

1 /+°° ds
V2 ) s VE+GE)
while for the trajectories with negative energy we have giidguish between that on
x > 0, whose maximal interval length is:

+00 ds
T e
Grl—o) VC+ G(s)
and the other om < 0, for which the length is:
-
o0 c+ G(s)

If for every nonzerac we sum the length of the maximal intervals of the two corre-
sponding trajectories, we obtain the following function:

+oo ds .
- 2[ e fe=0
T (©= ﬁ Gfl(—c) ds ﬁ +o0 ds . 0
/700 Jc+ G(s) + /Grl(c) Jc+ G(s) hes

which, like t T, is infinitesimal forc — 4o in the superlinear case:

/ioo ds G(ks)
G(s)

9 _ 1= lim t7(¢)=0
) c—>+00
(k is some constant larger than 1).

lim —= = 400,

< 400, liminf
s—>+o0 S

S— 400

ExamMPLE 3. Consider again Hill's equation (2) with exponent- 1 and a piece-
wise constant weight functioswhich changes sign:

+1 ifo<t <ty
qt) = _
-1 ifto<t<T
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for sometg € 10, T[. Let us consider the behavior on,[D] of the solutionxy such
thatxx(0) = 0 andxx(0) = k > 0 as the initial slopé increases. The problem is:
is xx defined on [0T] and which is its shape? Clearly a blow-up can appear only in
]Jto, T] and it depends on which trajectory of (5) the pairt(to), Xk (to)) belongs to.
Indeed we have that™(c) tends to zero, as tends totoo, for our g(s) = |s|” s
and, thus, all the orbits of (5) with an energyuch thatc| > 0 have a very small
maximal interval of existence and are not defined on the whgld]. On the other
hand, all the solutions of (5) passing sufficiently near the stable manifolds (that
are the trajectories of (5) with zero energy which lie in tke@d and in the fourth
guadrant) have a maximal interval of existence which isdathan fo, T].

Now, we observe that all the trajectories of (4) interseetstable manifolds of (5),
but for some values df the point(xk(to), Xk (tp)) will be near to the stable manifolds,
while for others it will lie far: it depends essentially oretivalue rog(0, k)), that is
on the measure of the angle spanned by the vegi@y, X(t)) ast goes from 0 tdyp.
Since rof(0, k)) tends to+oo together withk, it is possible to select a sequence of
successive and disjoint intervals:

lo=1[0,ko[, 1 =]1hy,Kka[,..., Ij =]hj,kj[,...
such that:

o if k € Ij then(xk(to), Xk(to)) lies near the stable manifolds of (5) and, henge,
is defined on [0T];

e initial slopes belonging to the sanhgdetermine solutions with the same number
of zeros in [Q tp], but such a number increases together wyith

Moreover, since the stable manifolds separates the tagjestof (5) with positive and
negative energy, it is possible to distinguish inside elgcthose initial slopes such
thatxy is monotone intp, T] and with exactly one zero therein, from those such that
Xk has constant sign and is convex/concavegnT]. A generalization of this example

is given by Lemma 4.

We remark that, wheg is superlinear at infinity and is an arbitrary function, the
blow-up always occurs in the intervals wheye< O at least for some “large” initial
conditions, no matter how muahandg are regular. This was shown by Burton and
Grimmer in [18]: they actually proved that, éf < O, the convergence of one of the
following two integrals:

/ ds and /+°° ds
oo /G5 VG(©)’

is a necessary and sufficient condition for the existence lebat one exploding solu-
tion of (1).
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3. Butler's theorems

In [21] Butler considers the problem of finding periodic ¢@us of equation (1), or of
its equivalent first order system (3), assuming that:

e g: R — Ris alocally Lipschitz continuous function such thgs) - s > 0 for
S#£0;

For example, a functiog satisfying the first condition and:
l9(s)| = kisllog” |s| ~ if s> 1,

for somek > 0 anda > 2, satisfies also the other two assumptions. With respect
to the weight functiorg, he supposes that it isB-periodic and continuous function
changing sign a finite number of times and that it is enoughleggn the intervals in
which it is nonnegative (e.gq is piecewise monotone), in such a way that in these
intervals the solutions cannot blow up; therefore, up toretshift, there arg zeros
ofq,0<ty <th <--- <tj <T, such that:

e g <0andq#0in][0,ty]andin ftj_1,tj];
e g>0andg#0in[tj, T];
e ( # 0 and eitheg > 0 orq < 0 in each other intervati[, tj +1].

Using the notation introduced at the beginning of Section@r&calling what has
been said in [18], the valur(t; to, p) is surely not defined for somp € R? if the
interval betweerty andt contains points in whicly is negative. Therefore Butler
introduces the following set of “good” initial conditionsitiv respect to a fixed time
interval:

Qg ={pe R? : z(t; a, p) is defined in the closed interval betwesandb}.

In general very little can be said about the shap@@t the theorem about the contin-
uous dependence on initial data implies that it is open amdssumptions guarantee
that it always contains the origin, since (1) admits the tamssolutionrx =0.1f g > 0
in [a, b], thenQEjl = IR?, of course, and in particular one has tm{; = Qg. Clearly,
if b lies betweera andc thenQ§ ¢ Qb.

One way to findT -periodic solutions of (1) or (3) is to write the-periodic bound-
ary conditionz(T) = z(0) in a way which puts in evidence the dependence on the
initial valuez(0) = p; indeed, we are essentially looking for initial conditions R?
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such thatz(T; 0, p) = p, that is we search points in the plane where the vector field
p — z(T; 0, p) — p vanishes. If we introduce the following two auxililary fumans:

o(p) = 11z(T; 0, p)ll — |pll
T ,,2
_ y2(t; 0, p) + q(H)g(x(t; 0, p)x(t; O, p)
vip = 0 y2(t; 0, p) + X2(t; 0, p) dt,

then the solution departing fromatt = 0 is T-periodic if and only if:

¢(p)=0
v(p) = 2k for somek € Z.

Before entering more in the details of Butler's technigeeuk fix some notation. If
r is a positive number, the®, will denote the circumferendg € R? : || p|| = r} with
radiusr ; if, moreover,R > r, then Alr, R] will be the closed annulus with boundary
Cr U Cr. By the word “continuum” we mean, as usual, a compact and aiadeset.

Here is a first lemma about what happens in any interval otipiigifor g.

LEMMA 1. Assume that = 0 and q # 0in [a, b]. Then for every M> 0 and
n € N there existr=r (M, n) and R= R(M, n), with0 < r < R, such that:

1. ||z(t; a, p)|| = M forallt € [a, b] and| p|| >T;

2.T > p — argz(b; a, p) is a n-fold covering of § for any continuunl™ C
A[r, R] which does not intersect both axes and satidfiesC; # ¢ = ' N CR.

Roughly speaking, the second statement just means thatahem> z(b; a, p)
transforms any continuum crossing the annulis R] into a continuum which turns
around the origin at leasttimes. Observe that it is required tHat'does not intersect
both axes”, that is it must be contained in one of the four-plhes generated by the
coordinate axes: this prevertdgtself from turning around the origin and escaping the
twisting effect of the map — z(b; a, p).

REMARK 1. If q is nonnegative ind, b], then the mappingp — z(b; a, p) and
p — z(a; b, p) are defined oiR?2, continuous and each one is the inverse of the other.
Thus they are homeomorphismsk#? onto itself and, in particular, map bounded sets
into bounded sets.

Even if little can be said in general about the structure oéla(g (it might be
disconnected and its boundary might not be a continuous Butler actually proved
the following, when &, b] is an interval of negativity foqg.

LEMMA 2. Assume that g< 0 and q % OonJa,b]. If 3 c R is any compact
interval, thenszg’l N J x R is non-empty and bounded.
The same holds faR.
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This result is simple iff = —1, since in this case it turns out that, on one hand, the
setQ{?1 must contain the stable manifolgs= —./2G(x), for x > 0, andy = +/2G(x),
for x < 0, while, on the other, it cannot contain any point from thedctpriesy =
++2(c+ G(x)), if ¢ > 0is such that—(c) < b — a and this happens for every
sufficiently largec.

LEMMA 3. There arew < 0 < B and a continuous ar¢y = (y1, y2) : la, B[ —
Q¢ such that:

1. y(0) = (0, 0);

2. lim y1(8) = Iim ypa(s) = lim y1(S) = lim y»(s) = o0;
+ s—at s—B~ s—p~

S—a

3. llz(tj; 0, ¥ (9) Il and ||z(T; O, ¥ (s)) || are uniformly bounded for & Ja, A .

Proof. Let us consider just the cage= 1, in whichtj_; = 0 andt; = t;. The
intersection betweeﬁ?. and they-axis {0} x R determines, by Lemma 2, a bounded
and open (relatively to the topology of the straight line)whbich contains the origin.
Therefore there ar@ < 0 < 8 such that the segmef@d} x ]a, B[ is contained ir\Q?j
while its end-pointg0, o) and (0, 8) belong toaQ?j. By construction each solution
departing from(0} x ]Je, B[ at timet; is defined at least up ta Gence we can set:

v(s) =2(0;tj, (0, 9)) forse e, B[.

Sincey (s) is the value at time 0 of a solution defined ontd, we have that the support
of y liesin Qtj, which in turn coincides witmg because in the last interval [ T] g
is nonnegative and, therefore, solutions cannot blow ugethdy our assumptions on
g.

Clearly statement 1 is satisfied and Statement 2 follows frenfiact that the points
(0, @) and(0, B) do not belong t(ﬂ?j - hencez(t; tj, (0, @)) andz(t; tj, (0, B)) blow
up somewhere in [@;] and an argument based on the continuous dependence ah initi
data shows thag (s) is unbounded whesranges neax andg.

The definition ofy implies that:
z(tj; 0,y(s)) = (0,8)  forse]a, B[,

thus||z(tj; 0, y(s)) |l is bounded by m&x-«, B}. Finally, observe that(T; 0, ¥ (s)) =
z(T; tj, (0,s)) and thatq is nonnegative ont[, T]; then also Statement 3 holds by
Remark 1.

O

THEOREM 1. Equation(1) has infinitely many T -periodic solutions.

Proof. We start fixing some constants. By Lemma 2 the intersectidhneof-axis with

the se'ﬂzg’l is bounded by a constanig; therefore, ifz(tj; 0, p) lies on they-axis then
llz(tj; O, p)ll = 1y(tj; O, p)| < A1. Moreover, by Remark 1 the following constant:

Az =maxX|z(T; tj, p)ll : 1Pl < Ad}



Differential equations with indefinite weight 277

exists and is finite. In particular, jf is the curve given in Lemma 3, we have that:
lz(tj; 0, y(sHI <A1 and  z(T;0,y(s) < A2 forse]e, Bl.

Now let Az be any real number such thAg > A, and letL, be the vertical straight
line {As} x R. Let Q be the connected component@% which contains the support
of y. By Lemma 2 and the fact th& c Qg, we have that the sét; N Q is bounded

and we can define:

As=sug|pl:pelinQ} <+oo (= As> Ag).

Now takeM = 2A4 andany natural number mand consider the two radii=r (M, n+
1) andR = R(M, n+ 1) which are obtained applying Lemma 1 in the interta) T'].
We set:

As = max||z(T; tj, p)ll : Ipll < R}

and callL, the vertical straight lind Az + As} x R. Now, Statement 2 in Lemma 3
guarantees that crosses at least one of the two vertical strips,[Az + As] x R and
[—As — As, —A3z] x R : assume that it crosses the first one (if it crosses the otieer o
one can argue in a similar way) and calft_1, L»]. By Lemma 2, the intersection of
Q with the vertical stripS[L1, L2] is bounded, therefore:

As =sudlipll: pe QN[Az, Az + As] x R} < 4o0.

The curvey, passing from_1 to Lo, divides2 N §L1, L»] into two bounded regions.
If p e §Li, Lo] belongs to the support of, then||z(T; 0, p)|| < A2 < Az < |Ipll;
hence:

pey(o, B NYL1, L] = ¢(p) <O0.

On the other hand, ip lies in Q2 N L1, Lo] neara2, then| p|| remains bounded by
As, but ||z(T; 0, p)|| can be made arbitrarily large, singeis near “bad” points with
respect to the interval [O]; thus:

o(p) — +oo if p—9Q, pen gLy, L]

Therefore, on every curve contained in©2 N §L1, L] and such that it connects a
point of y with a point ofd$2, we can find a poinp in which¢ (p) = 0. This implies
(but it is not a trivial topological fact) that there exist€antinuumI'g contained in
QN gLj, Lo] and intersecting alsb1 andL; such that:

(6) pelo= [z(T;0, Pl =Ilpl.

The set:
Iy ={ztj;0,p): peTo}

is still a continuum since it is the image ©% through the continuous maspg
p — z(j;0, p). T'j does not intersect thg-axis, since, ifx(tj;0, p) =
then one hag|z(tj; 0, p)|| < Az, by the definition of A1, and ||z(T; 0, p)||

Swv
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1z(T; tj, z(tj; O, pHIl < Az < Agz, by the definition ofA;, while ||z(T; 0, p)|| =
Ipll = Asif p € I'g. Moreover, fixp € L1 NT'gandg € L2 N T'p; we have:

1z(T; tj, z(tj; 0, Pl = 1z(T; 0, Pl = lIpll < Aa < M = |Iz(tj; O, p)I| <
by the definition ofA4 and Statement 1 in Lemma 1; and also:
12(T5 tj, z(t; 0, )| = 12(T; O, Il = Il = Az + As > As = ||z(tj; 0, 9)[ > R

by the definition ofAs. Thus, we have found one point Bf inside the ball of radius

and another point df'j outside that of radiu® and we can say that; is a continuum
crossing the annulug[r, R]. Hencerl'; fulfills all the requirements of Statement 2 in
Lemma 1. In particular we have that the mpp— argz(T; 0, p) coversS' at least

n + 1 times asp ranges inl'p. Let us see what it means in terms of angles and of the
functiony,. We can select a continuous angular coordifatg¢0, T] x I'o — R such
that:

1. zt;0,p) = (llz(t; 0, p)l cosA(t, p), llz(t; O, p)lI siné(t, p)) for (t,p) e
[0, T] x To;

2. _z < 60, p < % for p € I'g (recall thatl'g is contained in the right half-
plane).

With this choices, the functiotr can be written as:

v(p) =6(0, p) —6(T, p).

The fact that"g > p — argz(T; 0, p) coversS! at leasin + 1 times, means that the
image ofd (T, -) contains a th+ 1)z -long interval. Sinc® (0, -) is forced in ar-long
interval, we have thaf,(p) reaches at least successive integer multiples ofr2as
p ranges inlg. Therefore (1) has at least T-periodic solutions, witm arbitrarily
chosen.

O

We have seen that the superlinear growth at infinity of thdinear termg in (1)
leads to the blow-up of solutions in the intervals wheggdtains negative values. On the
other hand, ifg is sublinear around,Ghere is the possibility of solutions reaching the
origin in finite time, since the uniqueness of the zero sofuts no more guaranteed.
This case was studied by Butler in [23].

EXAMPLE 4. Let us consider the autonomous system (4) with a fungiamich
is sublinear in zero, that is:

The uniqueness of the solution of Cauchy problems is stiirgnteed, but, now,
smaller solutions oscillate more and more.
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On the other hand, if we look to the zero-energy solutionssyf Which satisfy
%)’(2 — G(x) = 0, we found that the time that they take to regohO) from the value
X = Xp > 0 is given by the integral:

/XO ds

0 V2G(s)

which isfinite wheng(s) is a sublinear function liks|s|? 1, with 0 < y < 1. There-
fore the uniqueness of the zero-solution holds no more.

In [48] Heidel gives conditions that prevent solutions gff¢bm reaching the origin
in finite time in the case of a nonnegative weightn particular assuming € C* and
g being piecewise monotone around its zeros turns out to lieisat to this aim and
is what Butler needs in [23]. Indeed, Butler proves thag i§ sublinear around the
origin andq is a T-periodic weight which changes sign and is enough reguien t
(1) has infinitely manyT -periodic solutions with an arbitrarily large number of dma
oscillations in the intervals of positivity @f.

On the other hand such solutions may be identically zero inessubintervals of
the intervals of negativity of]. Indeed, let us consider a weight such thag, = —1
in [0, 2[, e = € > 0in [2, 4] and which is 4-periodic. Then Butler shows tlatan
be chosen sufficiently small in such a way that every solutifon

>'<'+q€(t)x% =0

which is nowhere trivial must be strictly monotone (and,degsmonperiodic) on some
half line.

4. Another possible approach: generalized Sturm-Liouvik conditions

Let us consider a situation in which: [a, c] — R is such that:
g=>0in[a,b] and g<0infb,c],
and assume thatin (1) is superlinear at infinity in the sense that:

lim tt@)= lim 77 (c)=0.
C—+00 Cc—+o00

Let Ql = [07 +OO[ X [07 +OO[ ) Q2 = ]_OO, O] X [07 +OO[ ) Q3 = ]_OO, O] X]_OO, O]

andQ4 = [0, +oo[ x ]—o0, 0] be the four closed quadrants of the plane. Then we have

the following result.

LEMMA 4. There exists R> 0 (depending only on g and|@,c) such that, for
every R> Othere is a natural numbern= n} with the property that for every natural
numbers n> n* ands € {0, 1} and for any pathy : [«, B[ — [0, +00[ x R, with
ly(@| < R and|y(s)|| - +oco0 as s— B, we can select an interval & o, 8],
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with | = Jan, Bn], if 8 =0, and | = [Bn, an[, if § = 1, in such a way that for each
s € | we have:

e Z(C; a, y(9)) is defined

e X(+; &, y(s)) has exactly n zeros ifa, b[, § zeros in]b, c[ and exactlyl — §
changes of sign of the derivative]ip, c[

e the curveyn(s) = z(c; a, ¥(s)), s € |, satisfies|yn(Bn)ll < R*, [y ()| —
400 as s— ap and its support lies either in Q(if n + § is even) or in Q (if
n+ 4§ is odd).

The same holds when the support of the cyrlies in the left half plang—oo, 0] x R
by simply interchanging the role of Gnd Qs.

Let us see how to use Lemma 4 in order to find multiple solutafr(4) satisfying
the two-point boundary condition:

@) x(0) = x(T) = 0.

We assume that there afewithi = 0,...,2j + 1, suchthatO=1ty <t; < --- <
trj41 =T and:

q>0, q=#0inty_2, ta_1] and gq=<0, gq#0in[ty_1,1t],

fori =1,...,] + 1, soqis positive near both 0 and. Let us apply Lemma 4 in the
interval [0, t2] to the unbounded curvgy(s) = (0, s), for s > 0, which parametrizes
the positivey-axis in the phase plane: each solutioof (1)—(7) withx(0) > 0 should
start from the support ofp at timet = 0. Let R} > 0 andn] € N be respectively
the numbersR* andn}, given by Lemma 4 with an arbitrarily smaR > 0 (since
y0(0) = (0,0)) and fix anyn; > nj andé; € {0, 1} : then, we obtain an interval
1 = Jaa, B1[ C [0, +oco[ such that the solution of (1) starting fat= 0 from yp(s)
has nodal behavior in [@] prescribed by the coupléns, §1), as in Lemma 4, ifs
belongs tol1, and, moreover, the curvye (s) = z(t2; 0, yo(s)) is defined fors € 11,
is contained either in the first or the third quadrant, it ibounded whers tends to
one of the endpoints offy, while it lies inside a circle of radiu&; for s belonging
to a neighborhood of the other endpoint. Therefore we catydmimma 4 on the

successive intervat], t4] and to the curve; with the choiceR = R].

After j successive applications of Lemma 4 to the intervais §, toi], fori =
1,...,j,we getR]k > 0 andj positive integersy?, ..., n}* such that, for every-tuple
(N1,...,nj) € NI, with nj > n, and for everyj-tuple (81, ..., 8j) € {0, 1}/, there
is a final intervall j C [0, +oo[ with the following properties:

e the curvey(s) = z(tyj; 0, (0, 9)) is defined fors € |}, lies in the first or in the
third quadrant (it depends on the paritygf-61+- - - +nj +§j), itis unbounded
whens tends to one of the endpoints f, while it is inside the circle of radius
R}“ if s belongs to a neighborhood of the other endpoint;
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e ifse ljandi =1,...,j, the solutionx(t; 0, (0, s)) has a nodal behavior in
[t2i—2, toi] which is described by the coupie;, ;) as in Lemma 4.

It remains to find somsin the intervall j such that the solution startingtat= t; from
y (S) reaches thg-axis exactly at = T and this can be done by a result of Struwe
[83], since the weight| is nonnegative in the intervaly, T] (see Example 2 for an
idea of the argument).

Clearly another set of solutions can be found starting froenrtegativey-axis and
it is not difficult to obtain the same kind of resultdfis negative either near= 0 or
neart = T or both. However, a more important fact is perhaps that weadjurst the
technique explained above in order to find multiple solwtiohmore general boundary
value problems for (1), namely all those problems whose dannconditions can be
expressed by:

(x(0), X(0)) € T'o and X(T),x(T)) eI't,

whereT’p and 't are suitable subsets of the phase plane. They are calle@rgen
alized” Sturm-Liouville boundary conditions (see [83]hat they coincide with the
usual Sturm—Liouville conditions whdry andI't are two straight lines. In particular,
whenq is positive near 0 and, it is possible to adapt the technique to cover all the
cases in whichg andI't are two unbounded continua (i.e. connected, closed and un-
bounded sets) contained, for instance, in some half-plandact, by approximating
bounded portions of continua by means of supports of coatiagurves, it is possible

to prove a generalization of Lemma 4 which holds also whermp#tky is substituted

by an unbounded continuuthcontained either in the right half plane or in the left one.

4.1. Application to homoclinic solutions

Assume that:
qit) <0 Vt € ]—o0,a]Ulb, +oof

+00
[ o] 0

Then, using an argument similar to that employed by Conld29j, it is possible to
show that there are four unbounded contilifa ¢ Q1, 'y € Qs, I'l € Q4 and
I, C Q2 such that:

and that:

., lim z(t; a, p) = (0, 0) for everyp € Fgf;
——00

e lim zt;b, p) = (0,0) foreveryp e I'f
t—-+o0

(see Lemmas 5 and 7 in [72] for precise statements and prblo€refore the problem
of finding homoclinics solutions of (1) is reduced to that etefmining solutions of
(1) in [a, b] which satisfy the generalized Sturm—Liouville boundaoydition:

(x(@), %(@) € Iy (x(b), (b)) € T
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and this can be done in the superlinear case by the techrligagg explained in this
section (Lemma 4 plus Struwe’s result [83]).

4.2. Application to blow-up solutions

In [61] (see also [62]) the problem of finding solutions of {@)ich blow up at a precise
time was considered whanhas a superlinear growth at infinity and: 10, 1[ - R
is a continuous weight such thatis nonpositive in some neighborhood of 0 and of 1
and both 0 and 1 are accumulation points of the set in whiishstrictly negative. See
the paper [27] for recent results about the analogous prolide partial differential
equations.

To be precise, let us assume tlgds nonpositive in J0a] and in [b, 1[; then there
are two unbounded contindg andI'1 which are contained in the right half plane
X > 0 and moreover:

1. there areR > r > 0 ande > 0 such that:

FoN[O0,r] x RcC[0,r] x ]—o00, —€]
MoN[R, +oo] x R C [R, +o0[ x [€, +00[
N0, r] xR C[0,r] x [€, +oo]

I'1 N[R, +oo[ x R C [R, 400[ x ]—00, —¢]

2. tIirr?)x(t; a,p= tIimlx(t; b,q) =+oc0if pelgandqg e I'1.

If g < 0inthe whole ]01[, then we can choose= b = 1/2 and the localization
properties in statement 1 imply thBg N "1 # @ and this proves that there is a positive
solution which blows up at 0 and 1

On the other hand, ifj changes sign a finite number of times insidel]p, we can
consider the generalized Sturm—Liouville boundary valeditions:

(x(@), x(@)) € I'o (x(0), X(b)) € T'1

and apply the procedure previously explained in order togwidtions of (1) in J01[
which blows up at 0 and 1 and have a prescribed nodal behasigiei the interval.

5. Chaotic-like dynamics

The chaotic features of (1) were studied in the papers [88][26] wheng is super-
linear at infinity. Here we would like to give an interpretatiof chaos in the sense

of “coin-tossing”, as it is defined in [53] for the discreterdymical system generated

by the iterations of a continuous planar mapvhich is not required to be defined in
the whole plane (like the Poincaré map associated to owatimu(1l) wherg is super-
linear at infinity andg is somewhere negative). To be more precise, consider the set
X which is the union of two disjoint, nonempty and compact $g§andK;. We say
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that the discrete dynamical system generated by the iteddite continuous mapping
¥ is chaotic in the sense of coin-tossiififor every doubly infinite sequence of binary
digits (8 )iz € {0, 1}%Z, there is a doubly infinite sequen¢g ); <z, of points ofX such
that:

L ¥ (pi) = Pit1
2. Pi € K(si

for everyi € Z. The first condition states that the sequetpg;cz is anorbit of the
dynamical system generated ty the second one guarantees the possibility of finding
orbits which touch at each time the prescribed componeKt of

We remark that in this definitiott is not necessarily defined in the whofeand it
is not required to be 1-to-Actually we are interested in the case of planar maps, since
we wish to study the Poincaré map associated to (1), an@yticplar, we will consider
compact set¥; with a particular structure: we call aiented cella couple(A, A7)
whereA c R? is a two-dimensional cell (i.e., a subset of the plane hongephic to
the unit squar® = [—1, 1]%) and.A~ c 3.4 is the union of two disjoint compact arcs.
The two components ot~ will be denoted by4,” and.A;~ and conventionally called
the left and the right sides of. The order in which we make the choice of namig
andA; is immaterial in what follows.

If ¥ is a continuous mafk? > Dom(y) — R? and (A, A7), (B, B7) are two
oriented cells, we say thdt stretcheqg A, A7) to (B, B~) and write:

Vi (ALAT) < (B, BT,

e 1 is properon A, which means thaty(p)| — +oo whenever Dortwy) N A >
p — po € d Dom(y) N A;

e for any pathl’ C A such thatl" N A # ¢ andI' N A7 # ¢, there is a path
I ¢ T N Dom(yr) such that:

vy cB, yvIHNB #0, yvT)HNB #0.

THEOREM2. If ¢ : (A, A7) <~ (A, A7), thenyr has at least one fixed point in
A.

Sketch of the proofLet us consider just the case df = [0, 1] x [0, 1], with A =
{0} x [0,1] and A7 = {1} x [0, 1], and lety (X1, X2) = (Y1(X1, X2), Y2(X1, X2)).

If © c Ais a path joining the vertical sides of, let I’ c T" be the subpath such
that ¢ (I'’) is again a path ind which joins its vertical sides and, in particular, let
p = (p1, p2) andq = (qi1, g2) two points inT” such thaty(p) € {0} x [0, 1] and
¥(Q) € {1} x [0, 1]. Therefore we have:

Y1(p1, p2) — pr=—-p1 <0 and  Y1(Q1,02) — 1 =1—-01 > 0.
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Hence, every path il joining the vertical sides meets the closed set in whichuinef
tion 11(X1, X2) — X1 vanishes and this implies that actually there is a wholeinaotn
I'1 C Ajoining thehorizontalsides ofA such that/1(x1, X2) — X1 vanishes il and
¥ (1) C A (see the argument to firidp in (6)). Again, this implies that the function
Y2(X1, X2) — X2 changes sign of : there is a point i"1 where alsa/z(x1, X2) — X2
vanishes, and such a point is clearly a fixed poingof

O

THEOREM 3. Let (Ao, Ay) and (A, A7) be two oriented cells. If/ stretches
each of them to itself and to the other one:

Yo (AiL AT) < (Aj, A, for (i, j) € {0, 1}2,
theny shows a chaotic dynamics of coin-tossing type.

These results can be applied, for instance, to the followitugtion:
(8) X+ [ag™(®) - Bg~(O]gX) =0,

where « and B are positive constantsg®(t) = maxq(),0} and g~ (t) =
max{—q(t), O} are respectively the positive and the negative part of aimoatis and
periodic functiong which changes sign, arglis a nonlinear function such that:

0 < d'(0) < g'(c0).

The parametew regulates the twisting effect of the Poincaré map alongritervals

of positivity of q, while 8 controls the stretching of the arcs along the intervals of
negativity ofq. Assume, for simplicity, thad is T -periodic with exactly one change of
signint €]0, T[in such a way that:

g>0 in]O, [ and g<0 in]g, T[.

For every fixedh € N, using the theorems stated above, it is possible todind- 0
such that, for every > «p, there isg, > 0 such that for eacf > B, we have the
following results (see Theorem 2.1 in [30]):

1. for anym € N and anym-tuple of binary digits(5s, ..., ém) € {0, 1}™ such
thatmn+ 81 + - - - + 8m is an even number, there are at least twd-periodic
solutionsx™ andx~ of (8) which have exactly zerosin [i — DT, (i — D) T +1]
ands; zerosin[i — )T +,iT], foreachi = 1,..., m; moreovex™(0) > 0
andx—(0) < 0;

2. for any doubly infinite sequence of binary digits)icz € {0, 1)Z, there is at
least a globally defined solutionof (8) which has exactip zerosin [T, i T +17]
ands;j zerosin [T +7,( + 1)T], foralli € Z.
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6. Subharmonic solutions

Our aim here is to consider large solutions of equationglifkén which the nonlinear-
ity g is sublinear at infinity, as in Hill's equation (2) whenfy < 1. The results we
are going to present are contained in a joint work with B. 15@][and are valid also
for the forced version of (1):

X+ qt)gx) = e(t).
Throughout this section we assume tgatR — R is a continuous function such that:
e 9(0)=0;

e thereisRy > 0 such thag(s) - s > 0 andg’(s) > 0if |s| > Ry (= g(—o0) <
0 < g(+00));

lim @ =0.
s—>+o0 S

The third condition is the so-called condition of sublirigaat infinity. Moreover we
will suppose thaty is a continuous and -periodic function, even if continuity is not
necessary: local integrability would be enough.

THEOREM4. Besides the assumptions stated above, suppose that:

1 T
9 q= —/ q(t)dt > 0.
T Jo

Then for each integer p 1there is nf € N such that, for every m= m7 equation
(1) has at least one mT -periodic solutiofn s which has exactl@ j-zeros in[0, mT[ .
Moreover, for each n» 1 there is My > 0 such that any mT -periodic solution x of
(1) satisfies:

IXllct = Mm;

on the other hand, for every fixed> 1 we have:
mir[:oo(lxj,m(t)l + 1Xj,m®)]) = +o0,
uniformly with respect to £ R.
ExXAMPLE 5. Theorem 4 holds, for instance, for the following Hill'suedion:
% + [k + cogt +0)]x|” "Ix =0,

where 0< y < 1, k > 0 andd € R. The same is true if we substitupe|” ~1x with
another sublinear function like/(1 + |x|), for instance.
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We remark that condition (9) was already considered by ath#rors dealing with
the superlinear case (see for instance [76]). A partial ems®; with respect to this
assumption, holds in the case of Hill's equation (2) foxOy < 1; in this case, if
g < O, thereis a constar® > 0, such that every solution of (2) satisfying:

X0+ [x(0)| > B

is unbounded, that is:

SUP(IX ()] + [X(1)]) = +o0.
teR

REMARK 2. Inthe book [34, p. 129] it is pointed out that “the quest®whether
we can findfor each k> 2 a subharmonig [that is ak T-periodic solution] such that
the xi are pairwise distinct. No result is known in the subquadregise”. The same

question was pointed out by Cac and Lazer in [24]. Of coursadeal with a scalar
model, which is a very simple case of a Hamiltonian system.

The trick to study (1) is the introduction of the so-called¢€&ati integral equation”
associated to (1):

Xt X(s) _/t[ %(&) T/ g _/t .
ax®) ~ gx@®)  J Lax@)y | FEENE— | a@ds,

which is easily deduced recalling that:

XO__ —q(t)

gx®) ’

by equation (1). This integral equation was already useddopfe working in oscilla-
tion theory.

We use here a small variant of a notation already introdutferis a solution of
(3), we denote by r@g; t1, tp) the amplitude of the angle spanned by the veetor
ast varies fromt; to tp, measured in clockwise sense. Thus we do not normalize any
more by dividing by, as we did in the previous sections.

Sketch of the prooffor simplicity we assume the uniqueness property for theelau
problems associated to (1) and divide the proof into sevenainas.

1. The continuability of the solutionghe sublinear growth afj at infinity implies
that every maximal solution of (1) is defined Bn

2. There isv > 1/2 such that for every R> Ry there exists R> Rj such that, if
z(t) = (x(1), y(t)) is any solution of(3) satisfying||z(t1) || = Ru, [|z(t2)|| = R
(or [lz(t2)| = Ry, llz(ty)] = Re) and R < ||z(t)|| < Ry, forall t € [ta, tz], it
follows that:

rot(z; t1, to) > v2r.

This lemma can be proved by arguments similar to those uged |85, 32].
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3. Iteration of Step 2iet us writev = § + 1/2, so thats > 0; we fix Ry > Ryg and
apply Step 2 obtaining, > Rp; then we apply again Step 2 witR; in place
of Ry obtainingRs > R. Let z be a solution of (3) such thdiz(t1)|| = Rs,
lzt2)]l = Rrand Ry < ||lz(t)|| < Rsfort € [ti,t2], and consider the first
instants; and the last instarg, in [t1, to] such that||z(s)|| = R». Since the
trajectories of (3) cross the positiyeaxis from the left to the right hand side and
the negativey-axis from the right to the left one, it is easy to see that altfu
rot(z; s1, &) > —m, therefore we obtain:

rot(z; ty, t2) = rot(z; ty, S1) + rot(z; s1, S2) + rot(z; s, to)
1
> V27 — 7w +v21 = <§+28>271.

Therefore, for everyy > 0, it is possible to find sufficiently large annuli such
that every solution which crosses them must rotate aroumatigin at least]
times.

4. If Ais a sufficiently large annulus and z is a solution such that z A for all
t > to, then:
rot(z; to,t) —» +oo ast— +oo,

uniformly with respect topte [0, T].
5. Large solutions rotate littleusing the sublinear condition at infinity it is possible

to show that for every. > 0 there isEL > Rgpsuch that, if O< t; —t; < L and
zis any solution satisfyingz(t)|| > Ry forall t € [t1, to], then:

rot(z; t1, tp) < 2.

Now, let us fixj and, by Step 3, consid&®) < R; < Ry < Rz such that each solution
crossing eitheB[R2] \ B(Ry) or B[R3] \ B(Rp) turns at leasf + 1 times around the
origin. Let A = B[R3] \ B(R1). By Step 4, there isn*j‘ such that:

m > m]!‘ = rot(z;O,mT) > j2r if Ry < |zt)| < Rs Vte [0, mT].

Consider any solution withz(0)|| = Ry : eitherz(t) remains inA for all t € [0, mT]

or there is a first instaritin which the solutiore exits the annulusl. In the former case
we already know that rét; 0, mT) > j2x; in the latter one we can select an interval
[t1, t2] C [0, mT] such that:

e either|z(ty) || = Ry, [lz(t)| = RiandRy < [lz() || < Roforallt € [ty, t7]
e orz(ty)|l = Ry, [lz(t2)|l = Rz andR < [lz(t)|| < Rsforallt € [ty, to].

In both these situations we can conclude thatzdt, t2) > (j +1)27 by the choice of
R1, Rz andRs. Therefore, arguing as in Step 3, we conclude again thatrdtmT) >
j2r. We can summarize this by the following implication:

IzO)| =R = rot(z 0.mT) > j2r.
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Let us fix nowm > m}‘ and apply Step 5 with. = mT : we getS > R, such that
the conclusion of Step 5 holds|ikz(t)|| > S for all [0, mT]. By the continuability of
all the solutions of (3) (Step 1), itis possible to fisg> S such that|z(t)|| > S for
everyt € [0, mT], if ||z(0)|| = $. Hence:

1zO)|| =S = rot(z;0,mT) < 27.
Finally, consider thenT-Poincaré map:
B($)\ B[Rz] > p> z(mT; 0, p)

whose fixed points are th@T-periodic solutions of (3). It turns out that tmaT-
Poincaré map satisfies the Poincaré—Birkhoff fixed pdiebtem by the discussion
carried above, and, therefore, it has a fixed point such tiacorrespondingn T-
periodic solution rotate exactly times around the origin in [0nT] and, hence, has
exactly 2 zerosin [QmT][.

O

We remark that ifj andm are coprime numbers ands them T-periodic solution
of (1) given by Theorem 4 with these choices, then it turnstioatm T is actually the
minimal period ofx in the class of the integral multiples of
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