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Preface

This special issue of Rendiconti del Seminario Matematico dell’Università e del
Politecnico di Torino contains the invited papers presented at the Workshop Giornate
di studio su funzioni spline e funzioni radiali, held at the University of Torino, on
February 5-7, 2003, in conclusion of the GNCS project Funzioni spline e funzioni ra-
diali: applicazioni a problemi integrali e differenziali, Catterina Dagnino coordinator.
The Workshop was supported by GNCS (Gruppo Nazionale per il Calcolo Scientifico).

As far as the program was concerned, there were three invited speakers: Armin
Iske (Munich University of Technology, Germany), George Micula (Babes-Bolyai Uni-
versity, Cluj-Napoca, Romania) and Paul Sablonnière (Institut National des Sciences
Appliquées, Rennes, France).

In addition, speakers from several Italian Universities provided papers for inclusion
in the current issue, which were all refereed.

The contributions collected here deal with different aspects of numerical approx-
imation based on splines and radial basis functions: a variational approach to spline
functions theory, quadratic spline quasi-interpolants on bounded domains of Rd, d =
1, 2, 3, basics and advanced topics on radial basis functions and meshfree methods for
transport problems, a deficient spline collocation method for certain differential and
integral equations with delay, some recent results on a new class of bivariate refinable
functions, optimal nodal splines and their applications to integral problems, a local
hybrid scheme for scattered data approximation, optimal center locations for radial ba-
sis function interpolation, a collocation method for linear fourth order boundary value
problems and closed spline curves bounding maximal area.

The invited papers appear according to their order during the oral presentation, the
other ones in alphabetical order according to the author’s name.

The guest editors are deeply grateful to the authors who contributed to this issue.
Moreover they thank Seminario Matematico, for taking care of the publication and
GNCS for its support.

Catterina Dagnino, Vittoria Demichelis
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G. Micula∗

A VARIATIONAL APPROACH TO SPLINE FUNCTIONS

THEORY

Abstract. Spline functions have proved to be very useful in numerical
analysis, in numerical treatment of differential, integral and partial dif-
ferential equations, in statistics, and have found applications in science,
engineering, economics, biology, medicine, etc. It is well known that in-
terpolating polynomial splines can be derived as the solution of certain
variational problems. This lecture presents a variational approach to spline
interpolation. By considering quite general variational problems in ab-
stract Hilbert spaces setting, we derive the concept of “abstract splines”.
The aim of this leture is to present a sequence of theorems and results
starting with Holladay’s classical results concerning the variational prop-
erty of natural cubic splines and culminating in some general variational
approach in abstract splines results. The whole exposition of this lecture
is based on the papers of Champion, Lenard and Mills [24], [25].

1. Introduction

It is more than 50 years since I. J. Schoenberg ([56], 1946) introduced “spline func-
tions” to the mathematical literature. Since then, splines, have proved to be enormously
important in various brances of mathematics such as approximation theory, numerical
analysis, numerical treatment of differential, integral and partial differential equations,
and statistics. Also, they have become useful tools in field of applications, especially
CAGD in manufacturing, in animation, in tomography, even in surgery.

Our aim is to draw attention to a variational approach to spline functions and to un-
derline how a beautiful theory has evolved from a simple classical interpolation prob-
lem. As we will show, the variational approach gives a new way of thinking about
splines and opens up directions for theoretical developments and new applications.

Despite of so many results, this topics is not mentioned in many relevant texts on
numerical analysis or approximation theory: even books on splines tend to mention the
variational approach only tangentially or not at all.

Even though, there are recently published a few papers which underline the vari-

∗The author is very grateful to Professor Paul Sabloni ère for helpful comments and additional references
during the preparation of final form of this lecture. Extremly indebted is the author to Professors R. Cham-
pion, C. T. Lenard and T. M. Mills for the kindness to send him the papers [24] and [25] on which basis this
lecture has been preparated.
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210 G. Micula

ational aspects of splines, and we mention the papers of Champion, Lenard and Mills
([25], 2000, [24], 1996) and of Beshaev and Vasilenko ([17], 1993).

The contain of this lecture is a completation of the excellent expository paper of
Champion, Lenard and Mills [25]. We shall keep also the definitions and the notation
from these papers.

The theorems and results of increasing generality or complexity which culminate
in some general and elegant abstract results are not necessarily chronological.

2. Preliminaries

Notations:

R – the set of real numbers

I : [a, b] ⊂ R

Pm := {p ∈ R → R, p is real polynomial of degree ≤ m, m ∈ N}
H m(I ) := {x : I → R, x (m−1) abs. cont. on I, x (m) ∈ L2(I ), m ∈ N, given}

If we define an inner product on H m(I ) by

(x1, x2) :=
∫

I

m∑

j=0

x ( j)
1 (t)x ( j)

2 (t)dt

then H m(I ) becomes a Hilbert space.

If X is a linear space, then θX will denote the zero element of X .

DEFINITION 1. Let a = t0 < t1 < · · · < tn < tn+1 = b be a partition of I . The
function s : I → R is a polynomial spline of degree m with respect to this partition if

• s ∈ Cm−1(I )

• for each i ∈ {0, 1, . . . , n}, s|[ti ,ti+ j ] ∈ Pm

The interior points {t1, t2, . . . , tn} are known as “knots”.

Natural cubic splines

Suppose that t1 < t2 < · · · < tn and {z1, z2, . . . , zn} ⊂ R are given. The classical
problem of interpolation is to find a “suitable” function 8 which interpolates the data
point (ti , zi ), 1 ≤ i ≤ n, that is:

8(ti) = zi , 1 ≤ i ≤ n.

Classical approaches developed by Lagrange, Hermite, Cauchy and others rely on
choosing 8 to be some suitable polynomial. But are there better functions for solving
this interpolation problem? The first answer to this question can be found in a result
which was proved by Holladay [38] in 1957.



A variational approach 211

THEOREM 1 (HOLLADAY, 1957). If

• X := H 2(I ),

• a ≤ t1 < · · · < tn ≤ b; n ≥ 2,

• {z1, z2, . . . , zn} ⊂ R, and

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n},

then ∃! σ ∈ In such that

(1)
∫

I
[σ (2)(t)]2dt = min

{∫

I
[x (2)(t)]2dt : x ∈ In

}

Furthermore,

• σ ∈ C2(I ),

• σ |[ti ,ti+1] ∈ P3 for 1 ≤ i ≤ n − 1,

• σ |[a,t1] ∈ P1 and σ |[tn,b] ∈ P1.

From (1) we conclude that σ is an optimal interpolating function – “optimal”, in

the sense that it minimize the functional
∫

I
[x (2)(t)]2dt over all functions in In . The

theorem goes on to state that σ is a cubic spline function in the meaning of Schoenberg
definition (1946). As σ is linear outside [t1, tn] it is called “natural cubic spline”.

So, in a technical sense, we have found functions which are better than polynomials
for solving the interpolation problem. Holladay’s theorem is most surprising not only
because its proof is quite elementary, relying on nothing more complicated than inte-
gration by parts, but it shows the intrinsec aspect of splines as solution of a variational
problem (1) that has been a starting point to develop a variational approach to splines.

It is natural to ask: “Why would one choose to minimize
∫

I
[x (2)(t)]2dt?”

For three reasons:

i) The curvature of function σ is σ (2)/(1 + σ ′2)3/2 and so the natural cubic spline
is the best in the sense that it approximates the interpolating function with mini-
mum total curvature if σ ′ is small.

ii) The second justification is that the natural cubic spline approximates the solution
of a problem in physics, in which a uniform, thin, elastic, linear bar is deformed
to interpolate the knots specified in absence of external forces. This shape of
such a bar is governed by a minimum energy in this case minimum elastic po-
tential energy. The first order approximation to this energy is proportional to the
functional (1). Hence the term natural spline is borrowed the term “spline” from
the drafting instrument also known as a spline.
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iii) When presented with a set of data points (ti , zi ), 1 ≤ i ≤ n, a statistician
can find a regression line which is the line of best fit in the least squares sense.
This line is close to the data points Holladay’s theorem shows that σ minimizes∫

I
[x (2)(t)]2dt while still interpolating the data. We could say that σ is an in-

terpolating function which is “close to a straight lines” in that it minimizes this
integral.

Thus, linear regression gives us

a straight line passing close to the points

whereas Holladay’s result gives a curve σ which is

close to a straight line but passing through the points.

3. More splines

As we shall see, the Holladay’s theorem was the starting point in developing the varia-
tional approach to splines. In what follows we shall describe a few of the many impor-
tant generalizations and extensions of Holladay’s theorem.

Dm-splines

The next step was taken in 1963 by Carl de Boor [18] with the following result.

THEOREM 2 (C. DE BOOR, 1963). If

• X := H m(I ),

• a ≤ t1 < t2 < · · · < tn ≤ b; n ≥ m,

• {z1, z2, . . . , zn} ⊂ R and

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n}

then ∃! σ ∈ In such that

∫

I
[σ (m)(t)]2dt = min

{∫

I
[x (m)(t)]2dt : x ∈ In

}

Furthermore,

• σ ∈ C2m−2(I ),

• σ |[ti ,ti+1] ∈ P2m−1, 1 ≤ i ≤ n − 1, and

• σ |[a,t1] ∈ Pm−1 and σ |[tn,b] ∈ Pm−1.
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The function σ was called Dm-spline because it minimizes
∫

I
(Dm x)2dt , as x

varies over In . The function σ is called the interpolating natural spline function of
odd degree.

Clearly if we let m = 2 in de Boor result, then we obtain Holladay result. For the
even degree splines, such result was given by P. Blaga and G. Micula in 1993 [49],
following the ideas of Laurent [44].

Trigonometric splines

In 1964, Schoenberg [57] changed the setting of the interpolation problem from the
interval [a, b] to the unit circle: that is, from a non-periodic setting to a periodic setting.

Similarly, let H k
2π([0, 2π)) denote the following space of 2π-periodic functions:

H k
2π([0, 2π)) := {x : [0, 2π) → R : x − 2π − periodic,

x (k−1) abs. cont. on [0, 2π), x (k) ∈ L2
2π ([0, 2π))}.

THEOREM 3 (SCHOENBERG, 1964). If

• X := H 2m+1
2π ([0, 2π))

• 0 ≤ t1 < t2 < · · · < tn < 2π, n > 2m + 1

• {z1, z2, . . . , zn} ⊂ R and

• T : X → L2
2π ([0, 2π)), where T := D(D2 + 12) . . . (D2 + m2),

then ∃! σ ∈ In such that

∫ 2π

0
[T (σ )(t)]2dt = min

{∫ 2π

0
[T (x)(t)]2dt : x ∈ In

}
.

The optimal interpolating function σ is called the trigonometric spline. Schoenberg
defined a trigonometric spline as a smooth function which in a particular piecewise
trigonometric polynomial manner. He shows that trigonometric splines, so defined,
provide the solution of this variational problem.

Note that the differential operator T has as K er T all the trigonometric polynomials
of order m, that is, of the form:

x(t) = a0 +
m∑

j=1

(a j cos j t + b j sin j t).
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g-splines

Just over 200 years ago in 1870 Lagrange has constructed the polynomial of minimal
degree such that the polynomial assumed prescribed values at given nodes and the
derivatives of certain orders of the polynomial also assumed prescribed values at the
nodes.

In 1968, Schoenberg [58] extended the idea of Hermite for splines. To specify that
the orders of the derivatives specified may vary from node to node we introduce an
incidence matrix E . As usual, let I := [a, b] be an interval partitioned by the nodes
a ≤ t1 < t2 < · · · < tn ≤ b. Let l be the maximum of the orders of the derivatives to
be specified at the nodes. The incidence matrix E is defined by:

E := (e(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ l) =: (e(i, j))

where each e(i, j) is 0 or 1. Assume also that each row of E and the last column of E
contain a 1.

DEFINITION 2. If m ≥ 1 is an integer, we will say that the incidence matrix E =
(e(i, j)) is m-poised with respect to t1 < t2 < · · · < tn if

• P ∈ Pm−1 and

• e(i, j) = 1 ⇒ P( j)(ti) = 0

together imply that P ≡ 0.

Now we can state Schoenberg’s result.

THEOREM 4 (SCHOENBERG, 1968). If

• X := H m(I )

• a ≤ t1 < t2 < · · · < tn ≤ b

• E is an m-poised incidence matrix of dimension n × (l + 1)

• l < m ≤
∑

i
∑

j e(i, j)

• {zi j : e(i, j) = 1} ⊂ R and

• In := {x ∈ X : x ( j)(ti) = zi j if e(i, j) = 1}

then ∃! σ ∈ In such that
∫

I
[σ (m)(t)]2dt = min

{∫

I
[x (m)(t)]2dt : x ∈ In

}
.

Schoenberg called the function σ as g-spline from “generalized-splines”. Better
may have been H-splines after Hermite or HB-splines after Hermite and Birkhoff.

Again, Schoenberg has defined g-splines as smooth piecewise polynomials where
the smoothness is governed by E and then he proved that g-splines solves the above
variational problem.
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L-splines

In 1967, Schultz and Varga [59] gave a major extension of the Dm-splines. Instead
of the m-order derivative, operator Dm they considered a linear differential operator L
creating a theory of so called L-splines. We shall state only one simple consequence of
the many results of Schultz and Varga.

THEOREM 5 (SCHULTZ AND VARGA, 1967). If

• X := H m(I )

• a ≤ t1 < t2 < · · · < tn ≤ b; n ≥ m

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n}

• L : X → L2(I ), so that L[x](t) :=
m∑

j=0

a j (t)D
j x(t), where a j ∈ C j (I ),

0 ≤ j ≤ m, and ∃ ω > 0 such that am(t) ≥ ω > 0 on I and

• L has Pólya’s property W on I

then ∃! σ ∈ In such that
∫

I
[L[σ ](t)]2dt = min

{∫

I
[L[x](t)]2dt : x ∈ In

}
.

Clearly complexity is increasing with generality.

We note that L has Pólya’s property W on I if L[x] = 0 has m solutions
x1, x2, . . . , xm such that, for all t ∈ I and for all k ∈ {1, 2, . . . ,m}

det




x1(t) x2(t) . . . xm(t)
Dx1(t) Dx2(t) . . . Dxm(t)
. . . . . . . . . . . .

Dk−1x1(t) Dk−1x2(t) . . . Dk−1xm(t)


 6= 0.

The relevance of Pólya’s property W is contained in the following sentence. To say
that L has Pólya’s property W on I implies that, if L[x] = 0 and x has m or more zeros
on I , then x ≡ 0.

The optimal function σ is known as an L-spline.

If L ≡ Dm we obtain the Dm-spline: so this is a major extension of previously
stated results.

Schultz and Varga have defined an L-spline to be a smooth function constructed in a
piecewise manner, where each piece is a solution of the differential equation L∗Lx = 0
where L∗ is the formal adjoint of the operator L.

A consequence of their paper is that L-spline provide a solution of the above vari-
ational problem.
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REMARK 1. - The result of Schultz and Varga was proved in 1964 by Ahlberg,
Nilson and Walsh [2]. They called σ a “generalized splines”.

- The above result also follows from a paper of de Boor and Lynch [20] published
in 1966.

- Perhaps the first paper along these lines of replacing the operator Dm by a more
general differential operator was given by Greville [36] also in 1964. Unfortu-
nately this often cited technical report was never published. Greville illustrates
his method with an application to the classical numerical problem of interpo-
lating mortality tables. Schultz and Varga applied their ideas to the numerical
analysis of nonlinear two-point boundary value problems.

- Prenter [53] and Micula [50] are two of the few text books which touch this topic.

Lg-splines

Schoenberg extended the concept of Dm -splines to allow interpolation conditions of
the Hermite type: this leads to g-splines. Schultz and Varga (and others) extended
the concept of Dm -spline in a different direction by replacing the differential operator
Dm by a more general operator: this leads to L-splines. The question is if one could
combine both these extensions. In 1969 Jerome and Schumaker [31] combined these
two extensions together in a very effective manner. One of their results is the following:

THEOREM 6 (JEROME AND SCHUMAKER, 1969). If

• X := H m(I )

• {λ1, λ2, . . . , λn} is a set of linearly independent, continuous linear functionals
on X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n}

• L : X → L2(I ) so that L[x](t) =
m∑

j=0

a j(t)D
j x(t), a j ∈ C j (I ), 0 ≤ j ≤ m,

and ∃ ω > 0 such that am(t) ≥ ω > 0 on I and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}

then ∃! σ ∈ In such that

∫

I
[L[σ ](t)]2dt = min

{∫

I
[L[x](t)]2dt : x ∈ In

}
.
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The optimal function σ is called the Lg-spline. The hypothesis about Pólya’s prop-
erty W in Theorem 5 has with the more functional-analytic flavour. Jerome and Schu-
maker allow interpolation conditions for the more general form λi (x) = zi , 1 ≤ i ≤ n,
where λi (1 ≤ i ≤ n) are continuous linear functionals on X . This idea could cover

also others conditions like
∫ ti+1

ti
x(t)dt = zi , 1 ≤ i ≤ n. We note also that they and

Laurent [44], pp. 225-226 replace the conditions λi (x) = zi by zi ≤ λi (x) ≤ zi , where
zi and zi (i = 1, 2, . . . , n) are given real numbers with z i ≤ zi .

pLg-splines

For 1 < p < ∞ we define the space H m(I p) of functions by:

H m,p(I ) := {x : I → R : x (m−1) abs. cont., x (m) ∈ L p(I )}

With a norm on H m,p(I ) defined by:

‖x‖m,p :=
m∑

j=0

|x ( j)(a)| +
(∫

I
|x (m)(t)|pdt

)1/p

the H m,p(I ) is a Hilbert space.

In 1978 Copley and Schumaker [26] established the following result:

THEOREM 7 (COPLEY AND SCHUMAKER, 1978). If

• X := H m,p(I ), p > 1

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear functionals on
X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n} 6= ∅

• L : X → L p(I ) so that L[x](t) =
m∑

j=0

a j (t)D
j x(t), a j ∈ C j (I ), 0 ≤ j ≤ m

and ∃ ω > 0 such that am(t) ≥ ω > 0 on I , and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}

then ∃! σ ∈ In such that:

∫

I
|L[σ ](t)|pdt = min

{∫

I
|L[x](t)|pdt : x ∈ In

}
.
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The optimal function σ is called a pLg-spline. For the first time, in this paper
Copley and Schumaker have defined a pLg-spline to be a solution of the variational
interpolation problem. One of the main problems that they investigated is to determine
the structure of such splines. Can they be constructed in a piecewise manner? The com-
plexity of their answer compensates the simplicity of their definition on a pLg-spline.
In fact, Copley and Schumaker investigated more general interpolation problems. For
example, they consider sets of linear functionals {λα : α ∈ A} where the index set A
may be infinite, and also many extremly important examples.

Vector-valued Lg-splines

The following extension have come from researches in electrical engineering. In 1979
Sidhu and Weinert [60] consider the problem of simultaneous interpolation, that is, a
method by which one could interpolate several functions at once.

THEOREM 8 (SIDHU AND WEINERT, 1979). If

• r ≥ 1, n1 ≥ 0, . . . , nr ≥ 0 are fixed integers

• X := H n1(I )× H n2(I )× · · · × H nr (I )

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear functionals on
X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n}
• L : X → L2(I )× · · · × L2(I ) (an r-fold product), where

L[x](t) :=




r∑

j=1

L i j [x j ](t) : i = 1, 2, . . . , r




′

,

L i j :=
n j∑

k=0

ai j k(t)D
k ; ai jn j = δi j ; ai j k ∈ Ck(I ), 0 ≤ k ≤ n j , and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}
then ∃! σ ∈ X such that:∫

I
(L[σ ](t))′L[σ ](t)dt = min

{∫

I
(L[x](t))′L[x](t)dt : x ∈ In

}
.

(Here A′ indicates the transpose of the matrix or vector A.)

The optimal interpolating vector σ is known as a vector-valued Lg-spline. The
authors have defined a vector-valued Lg-spline to be the solution of a variational in-
terpolation problem, proved the existence-uniqueness theorem and then discussed an
algorithm for calculating such splines in the special case that the functional λi are of
extended Hermite-Birkhoff type.
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Thin plate splines

So far we have been considering the problem of interpolating functions of a single
variable. In 1976, Jean Duchon [29], [23] - [27] - [28] developed a variational approach
to interpolating functions of several variables. We will state his result only for functions
of two variables. We denote an arbitrary element of R2 by t = (ξ1, ξ2), ‖t‖2 := ξ2

1 +ξ2
2

and the set of linear polynomials by:

P1 := {p1(t) = a0 + a1ξ1 + a2ξ2 : {a0, a1, a2} ⊂ R}.

THEOREM 9 (DUCHON, 1976). If

• X := H 2(R2),

• {t1, t2, . . . , tn} ⊂ R2 such that if p1 ∈ P1 and p1(t1) = · · · = p1(tn) = 0, then
p1 ≡ 0,

• {z1, z2, . . . , zn} ⊂ R,

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n} and

• J : X → R such that

J (x) :=
∫∫

R2



(
∂2x

∂ξ2
1

)
+ 2

(
∂2x

∂ξ1∂ξ2

)2

+
(
∂2x

∂ξ2
2

)
 dξ1dξ2

then ∃! σ ∈ In such that

J (σ ) = min{J (x) : x ∈ In}.

Furthermore, ∀ t ∈ R2

σ(t) =
n∑

j=1

µi‖t − ti‖2 ln ‖t − ti‖ + p1(t)

where p1 ∈ P1 and (∀ q ∈ P1),

(
n∑

i=1

µiq(ti) = 0

)
.

The optimal function σ is known as a “thin plate spline”. The dramatic aspect of
this result is the form of the spline σ : it is no a piecewise polynomial function.

This two-dimensional result appeared almost 20 years after Holladay’s one-
dimensional result. The delay is not so surprising. Holladay’s proof involves noth-
ing more complicated than integration by parts whereas Duchon’s paper uses tempered
distribution, Radon measure and other tools from functional analysis.

REMARK 2. i) A more elementary approach to Duchon’s result is outlined in
Powell [52].
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ii) Duchon was not the first person to investigate the multivariate problem. In 1972
the work of two aircraft engineers Harder and Desmarais [37] approached this
problem from an applied point of view. In 1974 Fisher and Jerome [32] ad-
dressed the multivariate problem. In 1970, J. Thomann [62] in his doctoral thesis
considered a variational approach to interpolation on a rectangle or on a disk in
R2. The book by Ahlberg, Nilson and Walsh [3] also deals with multivariate
problems, but from a point of view which is essentially univariate.

Yet more splines

The overture of splines could be continued. There are other many splines associated
with some variational interpolation problems and for each case we could state a theo-
rem similar to those above. We shall only nominate they:

3-splines (1972, Jerome and Pierce [41])

LMg-splines (1979, R. J. P. de Figueiredo [30])

ARMA-splines (1979, Weinert, Sesai and Sidhu [67])

Spherical splines (1981, Freeden, Scheiner and Franke [33])

PDLg-splines (1990, R. J. P. de Figueiredo and Chen [31])

Polyharmonic splines (1990, C. Rabut [54])

Vector splines (1991, Amodei and Benbourhim [5])

Hyperspherical splines (1994, Taijeron, Gibson and Chandler [61]).

4. Abstract splines

The statements of the above theorems were becoming quite long and complicated.
But, there is a general abstract result which captures the essence of most of them.
The following result is attributed to M. Atteia [10], [11],[12] - [15], and it relates to
following diagram:

X

A
��

T
// Y

Z

THEOREM 10 (ATTEIA, 1992). If

• X, Y, Z are Hilbert spaces,

• T, A are continuous linear surjections,

• z ∈ Z

• ker T + ker A is closed in X,

• ker T ∩ ker A = {θX} and
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• I (z) = {x ∈ X : Ax = z}

then ∃! σ ∈ I (z) such that:

‖Tσ‖Y = min{‖T x‖Y : x ∈ I (z)}.

The optimal σ is known as a variational interpolating spline.

To illustrate that this theorem reflects the essence of the most above results, let us
see how it generalizes Theorem 1 of Holladay. Put X = H 2(I ), Y = L2(I ), Z = Rn ,
T x := x (2), Ax := (x(t1), x(t2), . . . , x(tn)). All the hypotheses of Atteia’s theorem
are satisfied. Atteia’s theorem does not cover all the above results, e.g. Theorem 7
which deals with pLg-splines.

- An equivalent result to Atteia’s theorem is found in the often cited, but unfortu-
nately never published, report by Golomb [34] in 1967.

- The essential ideas also can be found in Anselone and Laurent [6] in 1968 and in
the classic book by Laurent [44], entitled Approximation et Optimisation (Her-
man, Paris, 1972).

There are important remarks to be made about this theorem.

1. The role of the condition about ker T + ker A is to ensure the existence of σ
whereas the role of the condition ker T ∩ ker A is to ensure the uniqueness of σ .
This separation was made clear by Jerome and Schumaker [42] in 1969.

2. The challenge of any abstract theory is to generalize a wide variety of particular
cases, and simultaneously, preserve as much of the detail as possible. To a large
extent, Atteia and others have, over many years, being doing this in the case that
X is a reproducing kernel Hilbert space. Details of this theory can be found in the
excellent monographs of Atteia ([11], 1992) and Bezhaev and Vasilenko ([17],
1993). The origins of this program can be found in 1959 paper by Golomb and
Weinberger [35], in Habilitation Thesis of Atteia ([10], 1966) and in 1966 paper
by de Boor and Lynch [20].

3. The above general theorem can itself be generalized in many directions.

One generalization enables us to consider constrained interpolation problems which
are very important in contemporary mathematics. It is due to Atteia [10] and Utreras,
[63] in 1987 and relates to the following diagram

C ⊂ X

A
��

T
// Y

z ∈ Z
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THEOREM 11 (UTRERAS, 1987). If

• X, Y, Z are Hilbert spaces,

• C is a closed, convex subset of X,

• z ∈ Z

• A, T are continuous, linear surjections,

• w ∈ I (C, z) := {x ∈ C : Ax = z}

• ker T + (ker A ∩ (C − w)) is closed in X and

• ker A ∩ ker T = {θX}

then ∃! σ ∈ I (C, z) such that

‖Tσ‖Y = min{‖T x‖Y : x ∈ I (C, z)}.

If we put C = X then we obtain Theorem 10 of Atteia. Utreras’ theorem is useful
if, for example, we want to interpolate positive data by positive functions. In this case
we have X = H m(I ) and C is the set of positive function in X .

Other generalizations have extended Atteia’s theorem to Banach spaces settings,
rather than Hilbert spaces. So that are known the following new splines in Banach
spaces:

R-splines (1972, Holmes [40])

M-splines (1972, Lucas [47], 1985 Abraham [1])

Lf-splines (1983, Pai [51])

Tf-splines (1993, Benbourhim and Gaches [16]).

A key work in the Banach space setting is the 1975 paper of Fischer and Jerome
[32], where the perfect splines are very important in this contex.

5. Conclusions and comments

The book of Laurent ([44], 1972) was perhaps the first book which emphasized the
variational approach to splines.

Atteia’s book ([11], 1992) is the key work in this area, especially for those inter-
ested in functional analysis.

Whaba ([66], 1990) is the first book describing applications of these ideas (in
smoothing rather the interpolation) to statistics.

Bezhaev and Vasilenko ([17], 1993) published in Novosibirsk entitled “Variational
Spline Theory” contains the most abstracts and rigorous results in this field.

To close this presentation there are three conclusions to be underlined.
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1. Splines may be defined as solution of variational problems rather than functions
constructed in some piecewise manner. We have seen that these variational prob-
lems have become increasingly abstract and hence the concept of “splines” has
became increasingly abstract. This may not be everyone’s liking, at least, ini-
tially. For example, in 1966 in [20] de Boor and Lynch have written: “in order
not to dilute the notion of spline functions too much, we prefer to follow Gre-
ville’s definition of a general spline function” – which is based on a piecewise,
constructive approach. In any case, the variational theory gives us a new appre-
ciation of the concept of a “spline”.

2. The variational approach facilitates a natural, attractive way to extend the clas-
sical theory of interpolating splines, especially to multivariate situations. The
works of Duchon [29], [23] - [27] - [28], in 1976 and Whaba [65] in 1981 illus-
trate this conclusion. More recently, in 1993, de Boor [19] changing his earlier
opinion wrote: “I am convinced that the variational approach to splines will
play a much greater role in multivariate spline theory that it did or should have
in univariate theory”.

3. The theory of variational splines demonstrates the power of functional analysis
to yield a unified approach to computational problems in interpolation. As S.
Sobolev [45], one year before his dead has been quoted: “It is impossible to
image the theory of computations with no Banach spaces”.
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[12] ATTEIA M., Fonctions splines généralisées, Sci. Paris 261 (1965), 2149–2152.
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[22] BOUHAMIDI A. AND LE MÉHAUTÉ A., Splines curves et surfaces under tension,
in: “Wavelets, Image and Surface Fitting” (Eds. Laurent P.J., Le Méhauté A.,
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Splines and Radial Functions

P. Sablonnière∗

QUADRATIC SPLINE QUASI-INTERPOLANTS ON BOUNDED

DOMAINS OF Rd, d = 1, 2, 3

Abstract. We study some C1 quadratic spline quasi-interpolants on
bounded domains � ⊂ Rd, d = 1, 2, 3. These operators are of the form
Q f (x) =

∑
k∈K (�) µk( f )Bk(x), where K (�) is the set of indices of

B-splines Bk whose support is included in the domain � and µk( f ) is
a discrete linear functional based on values of f in a neighbourhood of
xk ∈ supp(Bk). The data points x j are vertices of a uniform or nonuni-
form partition of the domain�where the function f is to be approximated.
Beyond the simplicity of their evaluation, these operators are uniformly
bounded independently of the given partition and they provide the best ap-
proximation order to smooth functions. We also give some applications to
various fields in numerical approximation.

1. Introduction and notations

In this paper, we continue the study of some C1 quadratic (or d-quadratic) spline dis-
crete quasi-interpolant (dQIs) on bounded domains � ⊂ Rd , d = 1, 2, 3 initiated in
[36]. These operators are of the form Q f (x) =

∑
k∈K (�) µk( f )Bk(x), where K (�)

is the set of indices of B-splines Bk whose support is included in the domain � and
µk( f ) is a discrete linear functional

∑
i∈I (r) λk(i) f (xi+k), with I (r) = Zd ∩ [−r, r ]d

for r ∈ N fixed (and small). The data points x j are vertices of a uniform or nonuniform
partition of the domain � where the function f is to be approximated. Such operators
have been widely studied in recent years (see e.g. [4], [6]-[11],[14], [23], [24], [31],
[38], [40] ), but in general, except in the univariate or multivariate tensor-product cases,
they are defined on the whole space Rd : here we restrict our study to bounded domains
and to C1 quadratic spline dQIs. Their main interest lies in the fact that they provide
approximants having the best approximation order and small norms while being easy
to compute. They are particularly useful as initial approximants at the first step of a
multiresolution analysis. First, we study univariate dQIs on uniform and non-uniform
meshes of a bounded interval of the real line (Section 2) or on bounded rectangles of
the plane with a uniform or non-uniform criss-cross triangulation (Section 3). We use

∗The author thanks very much prof. Catterina Dagnino, from the Dipartimento di Matematica
dell’Universit à di Torino, and the members of the italian project GNCS on spline and radial functions, for
their kind invitation to the Giornate di Studio su funzioni spline e funzioni radiali, held in Torino in February
6-7, 2003, where this paper was presented by the author.
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quadratic B-splines whose Bernstein-Bézier (abbr. BB)-coefficients are given in tech-
nical reports [37], [38] and which extend previous results given in [12]. In the same
way, in section 4, we complete the study of a bivariate blending sum of two univariate
dQIs of Section 1 on a rectangular domain. Finally, in Section 5, we do the same for
a trivariate blending sum of a univariate dQI (Section 1) and of the bivariate dQI de-
scribed in Section 2. For blending and tensor product operators, see e.g. [2], [3], [16],
[18], [19], [20], [21], [30]. For some of these operators, we improve the estimations of
infinite norms which are bounded independently of the given partition of the domain.
Using the fact that the dQI S is exact on the space P2 ∈ S2 of quadratic polynomials
and a classical result of approximation theory: ‖ f − S f ‖ ≤ (1+‖S‖)d( f,S2) (see e.g.
[15], chapter 5), we conclude that f − S f = O(h3) for f smooth enough, where h is
the maximum of diameters of the elements (segments, triangles, rectangles, prisms) of
the partition of the domain. But we specify upper bounds for some constants occuring
in inequalities giving error estimates for functions and their partial derivatives of total
order at most 2. Finally, in Section 6, we present some applications of the preced-
ing dQIs, for example to the computation of multivariate integrals, to the approximate
determination of zeros of functions, to spectral-type methods and to the solution of
integral equations. They are still in progress and will be published elsewhere.

2. Quadratic spline dQIs on a bounded interval

Let X = {x0, x1, . . . , xn} be a partition of a bounded interval I = [a, b] , with x0 = a
and xn = b. For 1 ≤ i ≤ n, let hi = xi − xi−1 be the length of the subinterval Ii =
[xi−1, xi ]. Let S2(X) be the n + 2-dimensional space of C1 quadratic splines on this
partition. A basis of this space is formed by quadratic B-splines {Bi, 0 ≤ i ≤ n + 1}.
Define the set of evaluation points

2n = {θ0 = x0, θi = 1

2
(xi−1 + xi), f or 1 ≤ i ≤ n, θn+1 = xn}.

The simplest dQI associated with 2n is the Schoenberg-Marsden operator (see e.g.
[25], [36]):

S1 f :=
n+1∑

i=0

f (θi)Bi

This operator is exact on P1. Moreover S1e2 = e2 +
∑n

i=1
1
4h2

i Bi . We have studied in
[1] and [36] the unique dQI of type

S2 f = f (x0)B0 +
n∑

i=1

µi ( f )Bi + f (xn)Bn+1

whose coefficient functionals are of the form

µi ( f ) = ai f (θi−1)+ bi f (θi)+ ci f (θi+1), 1 ≤ i ≤ n
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and which is exact on the space P2 of quadratic polynomials. Using the following
notations and the convention h0 = hn+1 = 0, we finally obtain, for 1 ≤ i ≤ n:

σi = hi

hi−1 + hi
, σ ′

i = hi−1

hi−1 + hi
= 1 − σi ,

ai = −
σ 2

i σ
′
i+1

σi + σ ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −

σi (σ
′
i+1)

2

σi + σ ′
i+1

.

Defining the fundamental functions of S2 by

B̃0 = B0 + a1B1,

B̃i = ci−1 Bi−1 + bi Bi + ai+1 Bi+1, 1 ≤ i ≤ n,

B̃n+1 = cn Bn + Bn+1,

we can express S2 f in the following form

S2 f =
n+1∑

i=0

f (θi)B̃i .

In [26] (see also [22] and [32], chapter 3), Marsden proved the existence of a unique
Lagrange interpolant L f in S2(X) satisfying L f (θi) = f (θi) for 0 ≤ i ≤ n + 1. He
also proved the following

THEOREM 1. For f bounded on I and for any partition X of I , the Chebyshev
norm of the Lagrange operator L is uniformly bounded by 2.

Now, we will prove a similar result for the dQI S2 defined above. It is well known
that the infinite norm of S2 is equal to the Chebyshev norm of the Lebesgue function
32 =

∑n+1
i=0 |B̃i | of S2.

THEOREM 2. For f bounded on I and for any partition X of I , the infinite norm
of the dQI S2 is uniformly bounded by 2.5.

Proof. Each function |B̃i | being bounded above by the continuous quadratic spline
B̄i whose BB-coefficients are absolute values of those of B̃i , we obtain 32 ≤
3̄2 =

∑n+1
i=0 B̄i . So, we have to find an upper bound of 3̄2. First, we need the

BB-coefficients of the fundamental functions: they are computed as linear combi-
nations of the BB-coefficients of B-splines. In order to avoid complicated nota-
tions, we denote by [a, b, c] the triplet of BB-coefficients of the quadratic polynomial
a(1 − u)2 + 2bu(1 − u) + cu2 for u ∈ [0, 1]. Any function g ∈ S2(X) can be writ-
ten in this form on each interval [xi−1, xi ], 1 ≤ i ≤ n, with the change of variable
u = (x − xi−1)/hi . So, the BB-coefficients of g consist of a list of n triplets. Let us
denote by L(i) the list associated with the function B̃i (we do not write the triplets of
null BB-coefficients). Setting, for 1 ≤ i ≤ n − 1:

di = ciσi+1 + bi+1σ
′
i+1, ei = biσi+1 + ai+1σ

′
i+1,
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we obtain for the three first functions B̃0, B̃1, B̃2:

L(0) = [1, a1, a1σ2], [a1σ2, 0, 0]

L(1) = [0, b1, e1], [e1, a2, a2σ3], [a2σ3, 0, 0]

L(2) = [0, c1, d1], [d1, b2, e2], [e2, a3, a3σ4], [a3σ4, 0, 0]

For 3 ≤ i ≤ n − 2 (general case), we have supp( B̃i) = [xi−3, xi+2] and

L(i) = [0, 0, ci−1σ
′
i−1], [ci−1σ

′
i−1, ci−1, di−1], [di−1, bi , ei ],

[ei , ai+1, ai+1σi+2], [ai+1σi+2, 0, 0]

Finally, for the three last functions B̃n−1, B̃n, B̃n+1, we get:

L(n−1) = [0, 0, cn−2σ
′
n−2], [cn−2σ

′
n−2, cn−2, dn−2], [dn−2, bn−1, en−1], [en−1, an, 0]

L(n) = [0, 0, cn−1σ
′
n−1], [cn−1σ

′
n−1, cn−1, dn−1], [dn−1, bn, 0]

L(n + 1) = [0, 0, cnσ
′
n], [cnσ

′
n, cn, 1]

We see that di ≥ 0 (resp. ei ≥ 0), for it is a convex combination of ci and bi+1 (resp.
of bi and ai+1), with bi ≥ 1 and |ci | and |ai | ≤ 1 for all i . Therefore, the absolute
values of the above BB-coefficients (i.e. the BB-coefficients of the B̄ ′

is) are easy to
evaluate. Now, it is easy to compute the BB-coefficients of the continuous quadratic
spline 3̄2 =

∑n+1
i=0 B̄i . On each interval [xi−1, xi ], for 2 ≤ i ≤ n − 1, we obtain

[λi−1, µi , λi ] = [−ai−1σi+di−1+ei−1−ciσ
′
i , bi−ai−ci,−aiσi+1+di+ei−ci+1σ

′
i+1]

For the first (resp. the last) interval, we have λ0 = 1 (resp. λn = 1) For the central
BB-coefficient, we get, since σi and σ ′

i are in [0, 1] for all indices:

µi = bi − (ai + ci ) = 2bi − 1 = 1 + 2σiσ
′
i+1 ≤ 3

For the extreme BB-coefficients, we have, since ai + bi + ci = 1:

λi = (1 − 2ai)σi+1 + (1 − 2ci+1)σ
′
i+1 = 1 +

2(σi)
2σi+1σ

′
i+1

σi + σ ′
i+1

+
2σi+1σ

′
i+1(σ

′
i+2)

2

σi+1 + σ ′
i+2

.

Let us consider the rational function f defined by λi = 1 + f (σi , σi+1, σi+2):

f (x, y, z) = 2x2y(1 − y)

1 + x − y
+ 2y(1 − y)(1 − z)2

1 + y − z
,

the three variables x, y, z lying in the unit cube. Its maximum is attained at the vertices
{(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} and it is equal to 1. This proves that λi ≤ 2
for all i . Therefore, in each subinterval (after the canonical change of variable), 3̄2 is
bounded above by the parabola:

π2(u) = 2(1 − u)2 + 6u(1 − u)+ 2u2

whose maximum value is π2(
1
2) = 5

2 = 2.5.
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Now, we consider the case of a uniform partition, say with integer nodes for sim-
plification (e.g. I = [0, n], X = {0, 1, . . . , n}). In that case, we have

σ1 = 1, σ ′
1 = 0; σi = σ ′

i = 1

2
f or 2 ≤ i ≤ n; σn+1 = 0, σ ′

n+1 = 1,

from which we deduce:

a1 = cn = −1

3
, b1 = bn = 3

2
, c1 = an = −1

6
,

and, for 2 ≤ i ≤ n − 1:

ai = ci = −1

8
, bi = 5

4
.

It is easy to see that, in order to compute ‖S2‖∞, it suffices to evaluate the maximum
of the Lebesgue function on the subinterval J = [0, 4]. Here are the lists L(i) of the
BB-coefficients of the fundamental functions { B̃i, 0 ≤ i ≤ 6} whose supports have
at least a common subinterval with J . As in the nonuniform case, we only give the
triplets associated with subintervals of supp( B̃i) ∩ J :

supp(B̃0) ∩ J = [0, 2], L(0) =
[

1,−1

3
,−1

6

]
,

[
−1

6
, 0, 0

]

supp(B̃1) ∩ J = [0, 3], L(1) =
[

0,
3

2
,

11

16

]
,

[
11

16
,−1

8
,− 1

16

]
,

[
− 1

16
, 0, 0

]
,

supp(B̃2) ∩ J = [0, 4], L(2) =
[

0,−1

6
,

13

24

]
,

[
13

24
,

5

4
,

9

16

]
,

[
9

16
,−1

8
,− 1

16

]
,

[
− 1

16
, 0, 0

]
,

supp(B̃3) ∩ J = [0, 2], L(3) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

[
9

16
,

5

4
,

9

16

]
,

[
9

16
,−1

8
,− 1

16

]
,

supp(B̃4) ∩ J = [1, 4], L(4) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

[
9

16
,

5

4
,

9

16

]
,

supp(B̃5) ∩ J = [2, 4], L(5) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

supp(B̃6) ∩ J = [3, 4], L(6) =
[

0, 0,− 1

16

]
,

Drawing 32 reveals that the abscissa x̄ of its maximum lies in the interval [0.6, 1]. In
this interval, we obtain successively:

32(x) = −B̃0(x)+ B̃1(x)+ B̃2(x)− B̃3(x) = −(1 − x)2 + 10

3
x(1 − x)+ 35

24
x2
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whence 3′
2(x) = 1

12(64 − 69x) and x̄ = 64
69 . This leads to

‖S2‖∞ = ‖32‖∞ = 32(x̄) = 305

207
≈ 1.4734.

�

So, we have proved the following result:

THEOREM 3. For uniform partitions of the interval I , the infinite norm of S2 is
equal to 305

207 ≈ 1.4734.

REMARK 1. Further results on various types of dQIs will be given in [21].

Now, we will give some bounds for the error f − S2 f . Using the fact that the dQI
S2 is exact on the subspace P2 ⊂ S2 of quadratic polynomials and a classical result
of approximation theory (see e.g. [17], chapter 5), we have for all partitions X of I in
virtue of Theorem 4:

‖ f − S2 f ‖∞ ≤ (1 + ‖S2‖∞) dist ( f,S2)∞ ≤ 3.5 dist ( f,S2)∞

So, the approximation order is that of the best quadratic spline approximation. For
example, from [17], we know that for any continuous function f

di st ( f,S2)∞ ≤ 3 ω( f, h)∞

where h = max{hi, 1 ≤ i ≤ n}, so we obtain

‖ f − S2 f ‖∞ ≤ 10.5 ω( f, h)∞

But a direct study allows to decrease the constant in the right-hand side.

THEOREM 4. For a continuous function f , there holds:

‖ f − S2 f ‖∞ ≤ 6 ω( f, h)∞

Proof. For any x ∈ I , we have

f (x)− S2 f (x) =
n+1∑

i=0

[ f (x)− f (θi)]B̃i(x)

Assuming n ≥ 5 and x ∈ Ip = [x p−1, x p], for some 3 ≤ p ≤ n − 2, this error can be
written, since supp(B̃i) = [xi−3, xi+2]:

f (x)− S2 f (x) =
p+2∑

i=p−2

[ f (x)− f (θi)]B̃i(x).
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As θi = 1
2(xi−1 + xi), we have |x − θi | ≤ ri h, with ri = |p − i | + 0.5. Using a well

known property of the modulus of continuity of f , ω( f, ri h) ≤ (1 + ri )ω( f, h), we
deduce

| f (x)− S2 f (x)| ≤




p+2∑

i=p−2

(1 + ri)B̄i(x)


ω( f, h).

Without going into details, we use the local BB-coefficients of B̄i , p − 2 ≤ i ≤ p + 2
in the subinterval [x p−1, x p], and we can prove that for all partitions of I , we have

p+2∑

i=p−2

(1.5 + |p − i |)B̄i(x) ≤ 6

so, we obtain finally a lower constant (but not the best one) in the right-hand side of
the previous inequality:

‖ f − S2 f ‖∞ ≤ 6 ω( f, h)∞

Now, let us assume that f ∈ C3(I ), then we have the following

THEOREM 5. For all function f ∈ C3(I ) and for all partitions X of I , the follow-
ing error estimate holds, with C0 ≤ 1:

‖ f − S2 f ‖∞ ≤ C0h3‖ f (3)‖∞

Proof. Given x ∈ Ip fixed and t ∈ [x p−3, x p+2], we use the Taylor formula with
integral remainder

f (t) = f (x)+ (t − x) f ′(x)+ 1

2
(t − x)2 f ′′(x)+ 1

2

∫ t

x
(t − s)2 f (3)(s)ds

As p1(t) = t − x and p2(t) = (t − x)2 are in P2, we have S2 p1 = p1 and S2 p2 = p2,
which can be written explicitly as

S2 p1(t) = t − x =
n+1∑

i=0

(θi − x)B̃i(t), S2 p2(t) = (t − x)2 =
n+1∑

i=0

(θi − x)2 B̃i(t)

and this proves that S2 p1(x) = S2 p2(x) = 0. Therefore it remains:

S2 f (x)− f (x) = 1

2

p+2∑

i=p−2

[∫ θi

x
(θi − s)2 f (3)(s)ds

]
B̃i(x)
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As |
∫ θi

x (θi − s)2ds| ≤ 1
3 |x − θi |3, we get the following upper bound:

|S2 f (x)− f (x)| ≤ 1

6
‖ f (3)‖∞

p+2∑

i=p−2

|x − θi |3 B̄i(x)

≤ h3

6
‖ f (3)‖∞

p+2∑

i=p−2

(|p − i | + 1

2
)3 B̄i(x)

As in the proof of theorem above, and without going into details, one can prove that the
last sum in the r.h.s. is uniformly bounded by 6 for any partition of I . So, we obtain
finally:

|S2 f (x)− f (x)| ≤ h3‖ f (3)‖∞

By using the same techniques, the results of theorem 5 can be improved when X is
a uniform partition of I :

THEOREM 6. (i) For f ∈ C(I ), there holds:

|S2 f (x)− f (x)| ≤ 2.75 ω( f,
h

2
)∞

(ii) for f ∈ C3(I ) and for all x ∈ I there holds:

|S2 f (x)− f (x)| ≤ h3

3
‖ f (3)‖∞

|(S2 f )′(x)− f ′(x)| ≤ 1.2 h2‖ f (3)‖∞

and locally, in each subinterval of I :

|(S2 f )′′(x)− f ′′(x)| ≤ 2.4 h‖ f (3)‖∞

3. Quadratic spline dQIs on a bounded rectangle

In this section, we study some C1 quadratic spline dQIs on a nonuniform criss-cross
triangulation of a rectangular domain. More specifically, let � = [a1, b1] × [a2, b2] be
a rectangle decomposed into mn subrectangles by the two partitions

Xm = {xi, 0 ≤ i ≤ m}, Yn = {y j , 0 ≤ j ≤ n}

respectively of the segments I = [a1, b1] = [x0, xm] and J = [a2, b2] = [y0, yn].
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we set hi = xi − xi−1, k j = y j − y j−1, Ii =
[xi−1, xi ], J j = [y j−1, y j ], si = 1

2 (xi−1 + xi) and t j = 1
2 (y j−1 + y j). Moreover
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s0 = x0, sm+1 = xm, t0 = y0, tn+1 = yn . In this section and the next one, we use the
following notations:

σi = hi

hi−1 + hi
, σ ′

i = hi−1

hi−1 + hi
= 1 − σi ,

τ j = k j

k j−1 + k j
, τ ′

j = k j−1

k j−1 + k j
= 1 − τ j ,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, with the convention h0 = hm+1 = k0 = kn+1 = 0.

ai = −
σ 2

i σ
′
i+1

σi + σ ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −

σi (σ
′
i+1)

2

σi + σ ′
i+1

,

ā j =
τ 2

j τ
′
j+1

τ j + τ ′
j+1

, b̄ j = 1 + τ jτ
′
j+1, c̄ j = −

τ j (τ
′
j+1)

2

τ j + τ ′
j+1

.

for 0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1. Let Kmn = {(i, j) : 0 ≤ i ≤ m + 1, 0 ≤ j ≤
n + 1}, then the data sites are the mn intersection points of diagonals in subrectangles
�i j = Ii × J j , the 2(m + n) midpoints of the subintervals on the four edges, and the
four vertices of �, i.e. the (m + 2)(n + 2) points of the following set

Dmn := {Mi j = (si , t j ), (i, j) ∈ Kmn}.

As in Section 2, the simplest dQI is the bivariate Schoenberg-Marsden operator:

S1 f =
∑

(i, j)∈Kmn

f (Mi j )Bi j

where
Bmn := {Bi j , 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}

is the collection of (m +2)(n+2)B-splines (or generalized box-splines) generating the
space S2(Tmn) of all C1 piecewise quadratic functions on the criss-cross triangulation
Tmn associated with the partition Xm × Yn of the domain� (see e.g. [14], [13]). There
are mn inner B-splines associated with the set of indices

K̂mn = {(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}

whose restrictions to the boundary 0 of � are equal to zero. To the latter, we add
2m + 2n + 4 boundary B-splines whose restrictions to 0 are univariate quadratic B-
splines. Their set of indices is

K̃mn := {(i, 0), (i, n + 1), 0 ≤ i ≤ m + 1; (0, j), (m + 1, j), 0 ≤ j ≤ n + 1}

The BB-coefficients of inner B-splines whose indices are in {(i, j), 2 ≤ i ≤ m−1, 2 ≤
j ≤ n − 1} are given in [32]. The other ones can be found in the technical reports
[37] (uniform partition) and [38](non-uniform partitions). The B-splines are positive
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and form a partition of unity (blending system). The boundary B-splines are linearly
independent as the univariate ones. But the inner B-splines are linearly dependent, the
dependence relationship being:

∑

(i, j)∈K̂mn

(−1)i+ j hi k j Bi j = 0

It is well known that S1 is exact on bilinear polynomials, i.e.

S1ers = ers f or 0 ≤ r, s ≤ 1

In [36], we obtained the following dQI, which is exact on P2:

S2 f =
∑

(i, j)∈Kmn

µi j ( f )Bi j

where the coefficient functionals are given by

µi j ( f ) = (bi + b̄ j − 1) f (Mi j )+ ai f (Mi−1, j )+ ci f (Mi+1, j )

+ ā j f (Mi, j−1)+ c̄ j f (Mi, j+1).

As in Section 2, we introduce the fundamental functions:

B̃i j = (bi + b̄ j − 1)Bi j + ai+1 Bi+1, j + ci−1 Bi−1, j + ā j+1Bi, j+1 + c̄ j−1Bi, j−1.

We also proved the following theorems, by bounding above the Lebesgue function of
S2:

32 =
∑

(i, j)∈Kmn

|B̃i j |

THEOREM 7. The infinite norm of S2 is uniformly bounded independently of the
partition Tmn of the domain:

‖S2‖∞ ≤ 5

THEOREM 8. For uniform partitions, we have the following bound:

‖S2‖∞ ≤ 2.4

These bounds are probably not optimal and can still be slightly reduced.

4. A biquadratic blending sum of univariate dQIs

In this section, we study a biquadratic dQI on a rectangular domain � = [a1, b1] ×
[a2, b2] which is a blending sum of bivariate extensions of quadratic spline dQIs of
Section 2. We use the same notations as in Section 2 for the domain �, the partitions
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of I = [a1, b1], J = [a2, b2] and data sites. The partition considered on� is the tensor
product of partitions of I and J . We use the two sets of univariate B-splines

{Bi(x), 0 ≤ i ≤ m + 1}, {B j (y), 0 ≤ j ≤ n + 1}

and the two sets of univariate fundamental functions introduced in Section 2:

{B̃i(x), 0 ≤ i ≤ m + 1}, {B̃ j (y), 0 ≤ j ≤ n + 1}

The associated extended bivariate dQIs are respectively (see e.g. [14] for bivariate
extensions of univariate operators)

P1 f (x, y) :=
m+1∑

i=0

f (si , y)Bi(x), P2 f (x, y) :=
m+1∑

i=0

f (si , y)B̃i(x)

Q1 f (x, y) :=
n+1∑

j=0

f (x, t j )B j(y), Q2 f (x, y) :=
n+1∑

j=0

f (x, t j )B̃ j (y)

The bivariate dQI considered in this section is now defined as the blending sum

R := P1 Q2 + P2 Q1 − P1 Q1

and it can be written in the following form

R f (x, y) =
∑

(i, j)∈Kmn

f (Mi j )B̄i j (x, y)

where the biquadratic fundamental functions are defined by

B[i j (x, y) := Bi(x)B̃ j (y)+ B̃i(x)B j (y)− Bi(x)B j(y)

In terms of tensor-product B-splines Bi j (x, y) = Bi(x)B j(y), we have:

R f (x, y) =
∑

(i, j)∈Kmn

µi j ( f )Bi j (x, y),

where the coefficient functionals are given by

µi j ( f ) := ai f (Mi−1, j )+ ci f (Mi+1, j )+ ā j f (Mi, j−1)

+ c̄ j f (Mi, j+1)+ (bi + b̄ j − 1) f (Mi j )

We have proved in [36] the following

THEOREM 9. The operator R is exact on the 8-dimensional subspace (P12[x, y])⊕
(P21[x, y]) of biquadratic polynomials. Moreover, its infinite norm is bounded above
independently of the nonuniform partition Xm ⊗ Yn of the domain�

‖R‖∞ ≤ 5
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5. A trivariate blending sum of univariate and bivariate quadratic dQIs

In this section, we study a trivariate dQI on a parallelepiped� = [a1, b1] × [a2, b2] ×
[a3, b3] which is a blending sum of trivariate extensions of univariate and bivariate
dQIs seen in Sections 2 and 3. We consider the three partitions

Xm := {xi , 0 ≤ i ≤ m}, Yn = {y j , 0 ≤ j ≤ n}, Z p := {zk, 0 ≤ k ≤ p}

respectively of the segments I = [a1, b1] = [x0, xm], J = [a2, b2] = [y0, yn] and
K = [a3, b3] = [z0, z p]. For the projection �′ = [a1, b1] × [a2, b2] of � on the
xy − plane, the notations are those of Section 3. For the projection �′′ = [a3, b3] of
� on the z − axis, we use the following notations, for 1 ≤ k ≤ p:

lk = zk − zk−1, Kk = [zk−1, zk ], uk = 1

2
(zk−1 + zk),

with u0 = z0 and u p+1 = z p. For mesh ratios of subintervals, we set respectively

ωk = lk

lk−1 + lk
, ω′

k = lk−1

lk−1 + lk
= 1 − ωk

for 1 ≤ k ≤ p, with l0 = lp+1 = 0 (all these ratios lie between 0 and 1), and

âk = −
ω2

kω
′
k+1

ωk + ω′
k+1

, b̂k = 1 + ωkω
′
k+1, ĉk = −

ωk(ω
′
k+1)

2

ωk + ω′
k+1.

Let K = Kmnp = {(i, j, k), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1, 0 ≤ k ≤ p + 1}, then
the set of data sites is

D = Dmnp = {Ni j k = (xi , y j , zk), (i, j, k) ∈ Kmnp},

The partition of � considered here is the tensor product of partitions on �′ and �′′,
i.e. a partition into vertical prisms with triangular horizontal sections. Setting K′

mn =
{(i, j), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}, we consider the bivariate B-splines and
fundamental splines on �′ = [a1, b1] × [a2, b2] defined in Section 3 above:

{Bi j (x, y), (i, j) ∈ K′
mn}, and {B̃i j (x, y), (i, j) ∈ K′

mn}

and the univariate B-splines and fundamental splines on [a3, b3] defined in Section 2:

{Bk(z), 0 ≤ k ≤ p + 1} and {B̃k(z), 0 ≤ k ≤ p + 1}.

The extended trivariate dQIs that we need for the construction are the following

P1 f (x, y, z) :=
∑

(i, j)∈K′mn

f (si , t j , z)Bi j (x, y),

P2 f (x, y, z) :=
∑

(i, j)∈K′
mn

f (si , t j , z)B̃i j (x, y),
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Q1 f (x, y, z) :=
p+1∑

k=0

f (x, y, uk)Bk(z), Q2 f (x, y, z) :=
p+1∑

k=0

f (x, y, uk)B̃k(z).

For the sake of clarity, we give the expressions of P2 and Q2 in terms of B-splines:

P2 f (x, y, z) =
∑

(i, j)∈K′mn

µi j ( f )Bi j (x, y)

µi j ( f ) = ai f (si−1, t j , z)+ ci f (si+1, t j , z))+ ā j f (si , t j−1, z)+ c̄ j f (si , t j+1, z)

+(bi + b̄ j − 1) f (si , t j , z)

Q2 f (x, y, z) :=
p+1∑

k=0

{âk f (x, y, uk−1)+ b̂k f (x, y, uk)+ ĉk f (x, y, uk+1)}Bk(z)

We now define the trivariate blending sum

R = P1 Q2 + P2 Q1 − P1 Q1

Setting

B[i j k(x, y, z) = Bi j (x, y)B̃k(z)+ B̃i j (x, y)Bk(z)− Bi j (x, y)Bk(z)

we obtain

R f =
∑

(i, j,k)∈Kmnp

f (Ni j k )B
[
i j k

In terms of tensor product B-splines Bi j k = Bi j Bk , one has

R f =
∑

(i, j,k)∈Kmnp

νi j k( f )Bi j k

where νi j k( f ) is based on the 7 neighbours of Ni j k in R3:

νi j k( f ) = âk f (Ni, j,k−1)+ ĉk f (Ni, j,k+1)+ ai f (Ni−1, j,k)+ ci f (Ni+1, j,k)

+ā j f (Ni, j−1,k )+ c̄ j f (Ni, j+1,k )+ (bi + b̄ j + ĉk − 1) f (Ni j k ).

In [36], we proved the following

THEOREM 10. The operator R is exact on the 15-dimensional subspace
(P1[x, y] ⊗ P2[z])⊕ (P2[x, y] ⊗ P1[z]) of the 18-dimensional space P2[x, y]⊗P2[z].
Moreover, its infinite norm is bounded above independently of the nonuniform partition
of the domain�

‖R‖∞ ≤ 8.
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6. Some applications

We present some applications of the preceding sections. For sake of simplicity, we give
results for uniform partitions only. Let Q be any of the previous dQIs.
1) Approximate integration. Approximating

∫
�

f by
∫
�

Q f gives rise to several inter-
esting quadrature formulas (abbr. QF) in Rd , mainly for d = 2, 3. For d = 1 and for a
uniform partition of I with meshlength h, we obtain the QF:

QFn( f ) =
∫ b

a
S2 f = h(

1

9
f0 + 7

8
f1 + 73

72
f2 +

n−2∑

i=3

fi + 73

72
fn−1 + 7

8
fn + 1

9
fn+1),

where fi = f (θi) for 0 ≤ i ≤ n+1. This formula is exact for P3, like composite Simp-
son’s formula, i.e. QFn( f ) =

∫ b
a f for all f ∈ P3. Therefore

∫ b
a f −QFn( f ) = O(h4)

for functions f ∈ C4(I ). Numerical experiments show that it is better than Simpson’s
formula based on n + 1 points (n even). Moreover, the errors associated with the two
QFs have often opposite signs, thus giving upper and lower values of the exact integral.
2) Approximate differentiation: pseudo-spectral methods. One can approximate the
first (partial) derivatives of f by those of Q f at the data sites. We thus obtain differen-
tiation matrices which can be also used for second derivatives and for pseudo-spectral
methods. Let us give an example for d = 1 and for a uniform partition of meshlength
h of the interval I . Denoting g = S2 f , then we get:

g′(θ0) = 1

h

(
−8

3
f0 + 3 f1 − 1

3
f2

)
,

g′(θ1) = 1

h

(
−7

6
f0 + 11

16
f1 + 13

24
f2 − 1

16
f3

)
,

g′(θ2) = 1

h

(
1

6
f0 − 3

4
f1 + 1

48
f2 + 5

8
f − 3 − 1

16
f4

)
,

g′(θn−1) = 1

h

(
1

16
fn−3 − 5

8
fn−2 − 1

48
fn−1 + 3

4
fn − 1

6
fn+1

)
,

g′(θn) = 1

h

(
1

16
fn−2 − 13

24
fn−1 − 11

16
fn + 7

6
fn+1

)
,

g′(θn+1) = 1

h

(
1

3
fn−1 − 3 fn + 8

3
fn+1

)
,

and for 3 ≤ i ≤ n − 2:

g′(θi) = 1

h

(
1

16
fi−2 − 5

8
fi−1 + 5

8
fi+1 − 1

16
fi+2

)
.

3) Approximation of zeros of polynomials. We have tested the approximation of the
Legendre polynomial f (x) = P8(x) and of its zeros in the interval I = [−1, 1]
by the dQI S2 f of Section 1 based on Chebyshev points with n = 32. We obtain
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‖ f − S2 f ‖∞ ≈ 0.0034. There is practically no difference between the approximation
S2 f and the Marsden interpolant of f which needs the solution of a linear system of
n+2 equations. We obtain also quite good approximations of the eight roots of f in the
interval. For bivariate or trivariate functions, the advantage of using dQIs over inter-
polants is still bigger since one avoids the solution of large linear systems. Moreover,
at least in the bivariate case, one can use the nice properties of piecewise quadratic
surfaces (see e.g. the results given by M.J.D. Powell in [29]).
4) Integral equations The dQIs can be used for various types of approximation of the
solution of Fredholm type integral equation with a regular or a weakly singular kernel.
This work is still in progress (see e.g. [15]).
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[37] SABLONNIÈRE P., BB-coefficients of basic bivariate quadratic splines on rect-
angular domains with uniform criss-cross triangulations, in: “Modern develop-
ments in multivariate approximation”, (Eds. Hausmann W., Jetter K., Reimer M.
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Splines and Radial Functions

A. Iske∗

RADIAL BASIS FUNCTIONS: BASICS, ADVANCED TOPICS

AND MESHFREE METHODS FOR TRANSPORT PROBLEMS

Abstract. This invited contribution first reviews basic features of multi-
variate interpolation by radial basis functions, before selected of its ad-
vanced topics are addressed, including recent results concerning local
polyharmonic spline interpolation. The latter is one main ingredient of
a novel class of adaptive meshfree semi-Lagrangian methods for transport
problems. The construction of these particle-based advection schemes is
discussed in detail. Numerical examples concerning meshfree flow simu-
lation are provided.

1. Introduction

Radial basis functions are well-known as traditional and powerful tools for multivariate
interpolation from scattered data, see [5, 12, 13, 38, 42] for some different surveys, and
[24] for a recent tutorial with accompanying exercises and supplementary software,
www.ma.tum.de/primus2001/radial/.

Just very recently, radial basis functions have gained enormous popularity in mesh-
free methods for partial differential equations (PDEs). The theory includes meshfree
Galerkin methods [51], collocation methods [16, 17], and multilevel schemes [15].
First applications of radial basis functions in computational fluid dynamics are dating
back to Kansa [26, 27]. There is nowadays a vast amount of literature on the subject,
see e.g. the rich bibliography in [15, 44]. For a couple of more recent contributions
concerning radial basis functions for solving PDEs, we refer to the special issue [56].

This paper first reviews basic features of multivariate interpolation by radial basis
functions in the following Section 2, before recent results concerning local polyhar-
monic spline interpolation are discussed in Section 3. The latter have provided recent
advances in the numerical simulation of transport processes by meshfree particle meth-
ods [1, 2, 3]. Details on these are explained in Section 4, and numerical examples
concerning meshfree flow simulation are finally presented in Section 5.

∗This paper is based on an invited lecture which I gave at the workshop Spline Functions and Radial
Functions: Applications to Integral and Differential Problems of the GNCS, held at the University of Turin
in February 2003. I wish to thank the organizers of the meeting for their generous support and their kind
hospitality. Moreover, the assistance of Martin K äser with the preparation of the numerical examples is
gratefully appreciated.
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2. Radial basis function interpolation

2.1. Interpolation scheme

In order to explain multivariate scattered data interpolation by radial basis func-
tions, suppose a data vector u

∣∣
4

= (u(ξ1), . . . , u(ξn))
T ∈ Rn of function values,

sampled from an unknown function u : Rd → R at a scattered finite point set
4 = {ξ1, . . . , ξn} ⊂ Rd , d ≥ 1, is given. Scattered data interpolation requirescomput-
ing a suitable interpolant s : R

d → R satisfying s
∣∣
4

= u
∣∣
4

, i.e.,

(1) s(ξ j ) = u(ξ j ), for all 1 ≤ j ≤ n.

To this end, the radial basis function interpolation scheme works with a fixed radial
function φ : [0,∞) → R, and the interpolant s in (1) is assumed to have the form

(2) s(x) =
n∑

j=1

c jφ(‖x − ξ j ‖)+ p(x), p ∈ Pd
m,

where ‖ · ‖ is the Euclidean norm on Rd . Moreover, Pd
m denotes the linear space

containing all real-valued polynomials in d variables of degree at most m − 1, where
m ≡ m(φ) is said to be the order of the basis function φ. We come back to the depen-
dence between m and φ later in Subsection 2.4. But let us first give some examples for
φ.

Classical choices for radial basis functions φ, along with their order m, are shown
in Table 1, where for any x ∈ R, the symbol dxe denotes as usual the smallest integer
greater than or equal to x . Later in this text, bxc denotes the largest integer less than or
equal to x .

Among the most popular radial basis functions are the polyharmonic splines, which
are discussed more detailed in Section 3. This class of radial basis functions includes
the thin plate splines, where φ(r) = r 2 log(r) and m = 2, which are particularly
suited for interpolation from planar scattered data. Further commonly used radial basis
functions are given by the Gaussians, φ(r) = exp(−r 2), the multiquadrics, φ(r) =
(1 + r 2)1/2 of order m = 1, and the inverse multiquadrics, φ(r) = (1 + r 2)−1/2, where
m = 0. Table 1 gives a more general form for the (inverse) multiquadrics and their
corresponding order m.

2.2. Compactly supported radial basis functions

More recent developments [50, 53] have provided a whole family of compactly sup-
ported radial basis functions. In this case, we have m = 0 for their order, and so the
polynomial part in (2) is omitted. While the radial basis functions in Table 1 can be
used in arbitrary space dimension d, the selection of one suitable compactly supported
φ depends on d, see Table 2. Since the dimension d is known beforehand, this is no
severe restriction, as shall be established below.
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Table 1: Radial basis functions.

Radial Basis Function φ(r) = Parameters Order

Polyharmonic Splines
r ν

r2k log(r)

ν > 0, ν /∈ 2N

k ∈ N

m = dν/2e

m = k + 1

Gaussians exp(−r 2) m = 0

Multiquadrics
(
1 + r 2

)ν
ν > 0, ν /∈ N m = dνe

Inverse Multiquadrics
(
1 + r 2

)ν
ν < 0 m = 0

To this end, let us further discuss some basics about compactly supported radial
basis functions. As to Wendland’s functions [50], these are of the form

(3) φd,k(r) =
{

pd,k, for 0 ≤ r ≤ 1,

0, for r > 1,

where pd,k is a specific univariate polynomial of degree bd/2c + 3k + 1, and so the
support supp(φd,k) of φd,k : [0,∞) → R is normalized to the unit interval [0, 1].
Moreover, due to Wendland’s construction in [50], the basis function φd,k has deriva-
tives up to order 2k, i.e., φd,k ∈ C2k(Rd). Possible choices for φd,k are listed in the
following Table 2, where the symbol

·= denotes equality up to a positive factor, and the
truncated power function (·)+ : R → [0,∞) is given by (x)+ = x , for x > 0, and
(x)+ = 0, for x ≤ 0.

By their construction, Wendland’s radial basis functions φd,k are positive definite
on Rd .

DEFINITION 1. A continuous radial function φ : [0,∞) → R is said to be positive
definite on Rd , φ ∈ PDd , iff for any finite set 4 = {ξ1, . . . , ξn}, 4 ⊂ Rd , of pairwise
distinct points the matrix

8φ,4 =
(
φ(‖ξ j − ξk‖)

)
1≤ j,k≤n ∈ R

n×n

is positive definite.

Due to the construction in [53], there exists, for any space dimension d, a positive
definite and compactly supported φ ∈ PDd of the form (3). Remarkably enough,
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Table 2: Wendland’s compactly supported radial basis functions [50].

Dimension d Radial Basis Function Smoothness 2k

d = 1

φ1,0 = (1 − r)+
φ1,1

·= (1 − r)3+(3r + 1)

φ1,2
·= (1 − r)5+(8r 2 + 5r + 1)

C0

C2

C4

d ≤ 3

φ3,0 = (1 − r)2+
φ3,1

·= (1 − r)4+(4r + 1)

φ3,2
·= (1 − r)6+(35r 2 + 18r + 3)

φ3,3
·= (1 − r)8+(32r 3 + 25r 2 + 8r + 1)

C0

C2

C4

C6

d ≤ 5

φ5,0 = (1 − r)3+
φ5,1

·= (1 − r)5+(5r + 1)

φ5,2
·= (1 − r)7+(16r 2 + 7r + 1)

C0

C2

C4

Wendland showed that any basis function φd,k , constructed in [50] (such as any in
Table 2), has minimal degree among all positive definite functions φ ∈ PDd ∩C2k(Rd)

of the form (3). Moreover, by these properties, φd,k in (3) is unique up to a positive
constant.

2.3. Well-posedness of the interpolation problem

Now let us turn to the well-posedness of the interpolation problem (1). To this end, we
distinguish the case, where m = 0 from the one where m > 0.

First suppose m = 0 for the order of the basis functionφ, such as for the Gaussians,
the inverse multiquadrics (in Table 1) and Wendland’s functions (in Table 2). In this
case, the interpolant s in (2) has the form

(4) s(x) =
n∑

j=1

c jφ(‖x − ξ j‖).

By requiring the n interpolation conditions in (1), the computation of the unknown
coefficients c = (c1, . . . , cn)

T ∈ Rn of s in (4) amounts to solving the linear equation
system

(5) 8φ,4 · c = u
∣∣
4
.
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Recall that according to Definition 1, the matrix8φ,4 in (5) is guaranteed to be positive
definite, provided that φ ∈ PDd . In this case, the system (5) has a unique solution. This
in turn implies the well-posedness of the given interpolation problem already.

THEOREM 1. For φ ∈ PDd , the interpolation problem (1) has a unique solution s
of the form (4).

Now let us turn to the case, where m > 0 for the order of φ. In this case, the
interpolant s in (2) contains a nontrivial polynomial part, yielding q additional degrees

of freedom, where q =
(

m − 1 + d
d

)
is the dimension of the polynomial space Pd

m .

These additional degrees of freedom are usually eliminated by requiring the q moment
conditions

(6)
n∑

j=1

c j p(ξ j ) = 0, for all p ∈ Pd
m .

Altogether, this amounts to solving the linear system

(7)

[
8φ,4 54

5T
4 0

]
·
[

c

d

]
=
[

u
∣∣
4

0

]
,

where we let 54 =
(
(ξ j )

α
)

1≤ j≤n;|α|<m ∈ R
n×q , and d = (dα)|α|<m ∈ R

q for the

coefficients of the polynomial part in (2). Moreover, for any point x = (x1, . . . , xd)
T ∈

Rd , and multi-index α = (α1, . . . , αd) ∈ N
d
0 we let xα = xα1

1 · · · · · xαd
d , and |α| =

α1 + . . .+ αd .

In order to analyze the existence and uniqueness of a solution of (7), we first con-
sider its corresponding homogeneous system

8φ,4 · c +54 · d = 0,(8)

5T
4 · c = 0,(9)

here split into its interpolation conditions (8) and moment conditions (9). If we mul-
tiply the equation (8) from left with cT , and by using the moment conditions (9), we
immediately obtain the identity

(10) cT ·8φ,4 · c = 0.

Now in order to guarantee the existence of a solution to (8),(9) we require that the
matrix 8φ,4 ∈ R

n×n is, for any set 4 of interpolation points, positive definite on the
linear subspace of Rd containing all vectors c ∈ Rn satisfying (9), i.e.,

(11) cT ·8φ,4 · c > 0, for all c ∈ R
n \ {0} with 5T

4c = 0.

In this case, the basis function φ is said to be conditionally positive definite, which
deserves the following definition.
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DEFINITION 2. A continuous radial function φ : [0,∞) → R is said to be con-
ditionally positive definite of order m on Rd , φ ∈ CPDd(m), iff (11) holds for all
possible choices of finite point sets 4 ⊂ Rd .

As shall be established in the following Subsection 2.4, we remark that for every
radial basis function φ in Table 1, we either have φ ∈ CPDd(m) or −φ ∈ CPDd(m),
with the corresponding order m given in the last column of Table 1. In either case, we
say that m is the order of the radial basis function φ. Note that every positive definite
φ, such as for instance any of Wendland’s functions in Table 2, is conditionally positive
definite of order m = 0, and therefore PDd = CPDd(0).

Now let us return to the above discussion concerning the solvability of the linear
system (8),(9). With assuming φ ∈ CPDd(m) (or −φ ∈ CPDd(m)), we conclude
c = 0 directly from (10), and so (8) becomes 54 · d = 0. Therefore, in order to
guarantee a unique solution of (8),(9), it remains to require the injectivity of the matrix
54. But this property depends on the geometry of the interpolation points in4. Indeed,
note that the matrix54 is injective, iff for p ∈ Pd

m the implication

(12) p(ξ j ) = 0 for 1 ≤ j ≤ n H⇒ p ≡ 0

holds. In this case, any polynomial in Pd
m can uniquely be reconstructed from its func-

tion values sampled at the points in4. The point set4 is then said to be P d
m-unisolvent.

Note that the requirement (12) for the points in 4 is rather weak. Indeed, when m = 0,
the condition is empty, for m = 1 it is trivial, and for m = 2 the points in 4 must not
lie on a straight line.

We summarize the discussion of this subsection as follows.

THEOREM 2. For φ ∈ CPDd(m), the interpolation problem (1) has under con-
straints (6) a unique solution s of the form (2), provided that the interpolation points
in 4 are Pd

m-unisolvent by satisfying (12).

2.4. Conditionally positive definite functions

By the discussion in the previous subsection, radial basis function interpolation essen-
tially relies on the conditional positive definiteness the chosen basis function φ. Indeed,
this is one of the key properties of the interpolation scheme. In this subsection, we dis-
cuss two alternative ways for the construction and characterization of conditionally
positive definite functions.

One technique, dating back to Micchelli [35], works with completely monotone
functions. The other alternative relies on generalized Fourier transforms [23]. We
do not intend to discuss these two different techniques in all details. Instead of this
we briefly review relevant results. For a more comprehensive discussion concerning
conditionally positive definite functions, we refer to the recent survey [45].
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Completely monotone functions

DEFINITION 3. A function ψ ∈ C∞(0,∞) is said to be completely monotone on
(0,∞), iff

(−1)`ψ`(r) ≥ 0, ` = 0, 1, 2, . . . ,

holds for all r ∈ (0,∞).

Micchelli provides in [35] a sufficient criterion for φ ∈ CPDd(m), which gener-
alizes an earlier result by Schoenberg [47, 48] for positive definite radial functions.
Micchelli also conjectured the necessity of this criterion. This was finally shown by
Guo, Hu and Sun in [20]. We summarize the relevant results from [20, 35, 47, 48] by

THEOREM 3. Let φ : [0,∞) → R be a continuous radial function. Moreover, let
φ√ ≡ φ(

√·). Suppose φm ≡ (−1)mφ(m)√ is well-defined and φm is not constant. Then,

the following two statements are equivalent.

(a) φ ∈ CPDd(m) for all d ≥ 1;

(b) φm is completely monotone on (0,∞).

Now, by using Theorem 3, it is easy to show for any φ in Table 1 that either φ or −φ
is conditionally positive definite of order m, with m given in the last column of Table 1.
Note, however, that the characterization in Theorem 3 applies to radial functions only.
Moreover, it excludes the construction of compactly supported radial basis functions.
The latter is due to the Bernstein-Widder theorem [4] (see also [52]) which says that
any function ψ : [0,∞) → R is completely monotone on (0,∞), if and only if it has
a Laplace-Stieltjes-type representation of the form

ψ(r) =
∫ ∞

0
exp(−rs) dµ(s),

where µ is monotonically increasing with
∫∞

0 dµ(s) < ∞. Hence, in this case ψ has
no zero, and so any ψ = φm in (b) of Theorem 3 cannot be compactly supported.

Generalized Fourier transforms

A different technique for the characterization and construction of (not necessarily ra-
dial) functions φ ∈ CPDd(m), including compactly supported ones, is using (general-
ized) Fourier transforms, see the recent survey [45, Section 4] (which basically relies
on the results in [23]). We do not explain generalized Fourier transforms here, but
rather refer to the textbooks [18, 19], where a comprehensive treatment of the relevant
technical background is provided.

For the purposes in this subsection, it is sufficient to say that every radial basis func-
tion φ in Table 1 has a radial (generalized) Fourier transform φ̂ ∈ C(0,∞) satisfying
the following two properties.
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• φ̂(‖ · ‖) is L1-integrable around infinity, i.e.,

(13)
∫

Rd\B1(0)

∣∣∣φ̂(‖ω‖)
∣∣∣ dω < ∞,

• φ̂(‖ · ‖) has at most an algebraic singularity of order s0 ∈ N0 at the origin, such
that

(14)
∫

B1(0)
‖ω‖s0 φ̂(‖ω‖) dω < ∞,

holds, with s0 ∈ N0 being minimal in (14).

Table 3 shows the (generalized) Fourier transforms of the radial basis functions in
Table 1, along with their order s0, where

·= means equality up to a constant factor, and
where Kδ denotes the modified Bessel function.

We remark that if φ has a Fourier transform φ̂ ∈ L1(R
d),

φ̂(‖ω‖) =
∫

Rd
φ(‖x‖) exp(−i x Tω) dx,

in the classical sense, then this classical Fourier transform φ̂ coincides with the gener-
alized Fourier transform of φ. Examples are given by the Gaussians, the inverse multi-
quadrics, and Wendland’s compactly supported radial basis functions. In this case, we
have s0 = 0 for the order of φ̂.

Now let us turn straight to the characterization of conditionally positive definite
functions by generalized Fourier transforms. This particular characterization relies on
the identity

(15)
n∑

j,k=1

c j ckφ(‖ξ j − ξk‖) = (2π)−d
∫

Rd
φ̂(‖ω‖)

∣∣∣∣
n∑

j=1

c j exp(−iξT
j ω)

∣∣∣∣
2

dω,

which can be established [23] for any φ̂ satisfying (13) and (14), provided that the
symbol function

(16) σc,4(ω) =
n∑

j=1

c j exp(−iξT
j ω)

has a zero at the origin of order at least m = ds0/2e. Note that the latter can be
guaranteed by requiring the moment conditions (6) with m = ds0/2e.

THEOREM 4. A continuous radial function φ : [0,∞) → R is conditionally pos-
itive definite on Rd , if φ has a continuous nonnegative generalized Fourier transform
φ̂ 6≡ 0 satisfying (13) and (14). In this case, we have m = ds0/2e for the order of
φ ∈ CPDd(m).
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Proof. Let φ̂ satisfy (13) and (14), and suppose (6) with m = ds0/2e, so that the
identity (15) holds. By the nonnegativity of φ̂, the quadratic form

cT8φ,4c =
n∑

j,k=1

c j ckφ(‖ξ j − ξk‖)

appearing in the left hand side of (15), is nonnegative. Hence it remains to show that
cT8φ,4c vanishes, if and only if c = 0. In order to see this, suppose that cT8φ,4c,
and thus the right hand side in (15), vanishes. In this case, the symbol function σc,4

in (16) must vanish on an open subset of Rd with nonempty interior. But then, due
to the analyticity of σc,4, this implies that the symbol function vanishes identically on
Rd , i.e., σc,4 ≡ 0. Since the points in 4 are pairwise distinct, and so the exponentials
exp(−iξT

j ω) are linearly independent, the latter is true, if and only if c = 0.

Table 3: Generalized Fourier transforms of radial basis functions.

Radial Basis Function φ(r) = φ̂(s)
·= Order s0

Polyharmonic Splines
r ν

r2k log(r)

s−d−ν

s−d−2k

bνc + 1

2k + 1

Gaussians exp(−r 2) exp(−s2/4) 0

Multiquadrics
(
1 + r 2

)ν
Kd/2+ν(s) · s−(d/2+ν) b2νc + 1

Inverse Multiquadrics
(
1 + r 2

)ν
Kd/2+ν(s) · s−(d/2+ν) 0

2.5. Error estimates in native function spaces

This subsection is devoted to available bounds on the error ‖u − su,4‖L∞(�), where
� ⊂ Rd is a bounded and open domain comprising 4, i.e., 4 ⊂ �. Moreover, it
is assumed that � ⊂ Rd satisfies an interior cone condition, and u lies in the native
function space Fφ associated with the radial basis function φ ∈ CPDd(m).
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In order to explain the native function space Fφ just very briefly, let

Rφ =



sc,p,4 =

∑

ξ∈4
cξφ(‖ · −ξ‖)+ p :4 ⊂ R

d finite ,5T
4c = 0, p ∈ Pd

m





denote the recovery space of φ ∈ CPDd(m) containing all possible interpolants of the
form (2). Due to its conditional positive definiteness, φ provides by

(sc,p,4, sd,q,ϒ)φ =
∑

ξ∈4,υ∈ϒ
cξdυφ(‖ξ − υ‖), for sc,p,4, sd,q,ϒ ∈ Rφ,

a semi-inner product (·, ·)φ , and semi-norm | · |φ = (·, ·)1/2φ , whose kernel are the

polynomials in Pd
m . The topological closure of the linear space (Rφ, | · |φ) is the native

function space Fφ , i.e., Rφ = Fφ .

One key feature of the radial basis function interpolation scheme is its optimal
recovery, which can be explained as follows. For u ∈ Fφ and any finite point set
4 ⊂ Rd , the interpolant su,4 satisfying su,4

∣∣
4

= u
∣∣
4

is the orthogonal projection of u
onto the recovery space Rφ ⊂ Fφ , so that the Pythagoras theorem

|su,4|2φ + |u − su,4|2φ = |u|2φ, for u ∈ Fφ,

holds. Hence, by
|su,4|2φ ≤ |u|2φ, for u ∈ Fφ,

the interpolation process is optimal w.r.t. the optimal recovery space Fφ . For more
details on this, we refer to the variational theory in the seminal papers by Madych &
Nelson [29, 30, 31].

Now let us turn to error estimates. For the radial basis functions in Table 1, available
bounds on the pointwise error εx = u(x)− s(x), x ∈ �, are due to [30, 31, 54] of the
form

(17) |u(x)− su,4(x)| ≤ C · |u|φ · F1/2
φ (h%,4(x)), for u ∈ Fφ,

where, for some specific radius % > 0, the local fill distance

h%,4(x) = max
y∈B%(x)

min
ξ∈4

‖y − ξ‖

reflects the local density of 4 around x , where B%(x) = {y : ‖y − x‖ ≤ %}. Moreover,
Fφ : [0,∞) → [0,∞) is a monotonically increasing function with Fφ(0) = 0, which
depends merely on φ. For the radial basis functions φ in Table 1, its corresponding Fφ
is listed in Table 4, see also [42].

It can be shown that the given pointwise error bounds carry over to uniform bounds
in the domain�, yielding error estimates depending on the fill distance

(18) h4,� = max
y∈�

min
ξ∈4

‖y − ξ‖
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Table 4: Radial basis functions: Convergence Rates (see [42] for details).

Radial Basis Function φ(r) = Fφ(h)
·=

Polyharmonic Splines
r ν

r2k log(r)

hν

h2k

Gaussians exp(−r 2) exp(−α/h)

(Inverse) Multiquadrics
(
1 + r 2

)ν
exp(−α/h)

of 4 in �, i.e.,

(19) ‖u − su,4‖L∞(�) ≤ C · |u|φ · F1/2
φ (h4,�), for u ∈ Fφ .

For further details, we refer to [42, 46].

2.6. Lagrange representation of the interpolant

In the following discussion of this paper, especially in the following Section 3, it is
convenient to work with the Lagrange representation

(20) su,4(x) =
n∑

j=1

λ j (x)u(ξ j )

of the interpolant s ≡ su,4 in (2), where the Lagrange basis functions λ1(x), . . . , λn(x)
satisfy

(21) λ j (ξk) =
{

1, for j = k,

0, for j 6= k
1 ≤ j, k ≤ n,

and so s
∣∣
4

= u
∣∣
4

.

For a fixed x ∈ Rd , the vectors

λ(x) = (λ1(x), . . . , λn(x))
T ∈ R

n and µ(x) = (µ1(x), . . . , µq(x))
T ∈ R

q

are the unique solution of the linear system

(22)

[
8φ,4 54

5T
4 0

]
·
[
λ(x)

µ(x)

]
=
[
ϕ(x)

π(x)

]
,
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where ϕ(x) = (φ(‖x − ξ j ‖))1≤ j≤n ∈ Rn and π(x) = (xα)|α|<m ∈ Rq . We abbreviate
this linear system as

A · ν(x) = β(x)

by letting

A =
[
8φ,4 54

5T
4 0

]
, ν(x) =

[
λ(x)

µ(x)

]
, β(x) =

[
ϕ(x)

π(x)

]
.

This allows us to combine the two alternative representations for s in (20) and (2) by

(23)

s(x) = < λ(x), u
∣∣
4
>

= < ν(x), u4 >

= < A−1 · β(x), u4 >

= < β(x), A−1 · u4 >

= < β(x), b >,

where < ·, · > denotes the inner product of the Euclidean space Rd , and where we let

u4 =
[

u
∣∣
4

0

]
∈ R

n+q and b =
[

c
d

]
∈ R

n+q

for the right hand side and the solution of the linear system (7).

3. Polyharmonic spline interpolation

In this section, details on the interpolation by polyharmonic splines, often also referred
to as surface splines, are explained. The utility of polyharmonic splines for multivariate
interpolation was established by Duchon [8, 9, 10]. In order to discuss the particular
setting of Duchon, let us be more specific about the choice of the basis function φ.
According to [8, 9, 10], we assume from now the form

φd,k(r) =
{

r2k−d log(r), for d even,

r2k−d , for d odd,

for the polyharmonic splines, where k is required to satisfy 2k > d. According to
Table 1 (last column), the order of φd,k is given by m = k − dd/2e + 1.

Now note that the inclusion CPDd(m1) ⊂ CPDd(m2), for m1 ≤ m2, allows us to
also work with any order greater than m. In order to comply with Duchon’s setting,
we replace the minimal choice m = k − dd/2e + 1 by k ≥ m. Therefore, we let from
now m = k for the order of φd,k ∈ CPDd(m). We come back with an explanation
concerning this particular choice for m later in Subsection 3.1.
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With using m = k, the resulting interpolant in (2) has the form

(24) s(x) =
n∑

i=1

ciφd,k(‖x − ξi‖)+
∑

|α|<k

dαxα .

We remark that the polyharmonic spline φd,k is the fundamental solution of the k-th
iterated Laplacian, i.e.,

1kφd,k(‖x‖) = cδx .

For instance, for d = k = 2, the thin plate spline φ2,2(r) = r 2 log(r) solves the
biharmonic equation

11φ2,2(‖x‖) = cδx .

In this case, the interpolant s in (24) has the form

(25) s(x) =
n∑

i=1

ci‖x − ξi‖2 log(‖x − ξi‖)+ d1 + d2x1 + d3x2,

where we let x = (x1, x2)
T ∈ R

2. Finally, we remark that for the univariate case,
where d = 1, the polyharmonic spline φ1,k = r2k−1, k ≥ 1, coincides with the natural
spline of order 2k.

3.1. Optimal recovery in Beppo-Levi spaces

Recall the discussion in Subsection 2.5 concerning optimal recovery of radial basis
function interpolation in native function spaces. In this subsection, we wish to discuss
the native function space of polyharmonic splines.

Due to fundamental results in the seminal papers [8, 9, 10] of Duchon and [32, 33,
34] of Meinguet, for a fixed finite point set 4 ⊂ Rd , an interpolant s in (24) minimizes
the energy

(26) |u|2
BLk(Rd )

=
∫

Rd

∑

|α|=k

(
k
α

) (
Dαu

)2
dx,

(
k
α

)
= k!

α1! · · · · · αd !
,

among all functions u of the Beppo-Levi space

BLk(Rd) =
{

u ∈ C(Rd) : Dαu ∈ L2(Rd) for all |α| = k
}

⊂ C(Rd)

satisfying u
∣∣
4

= s
∣∣
4

. So the Beppo-Levi space BLk(Rd) is equipped with the semi-
norm | · |BLk(Rd), whose kernel is the polynomial space Pd

k . The latter explains why
we use order m = k rather than the minimal choice m = k − dd/2e + 1. In this case,
the Beppo-Levi space BLk(Rd) is the optimal recovery space Fφ for the polyharmonic
splines φd,k . Note that BLk(Rd) is the Sobolev space H k(Rd).
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When working with thin plate splines, φ2,2(r) = r 2 log(r), in two dimensions we
have

|u|2
BL2(R2)

=
∫

R2

(
u2

x1x1
+ 2u2

x1x2
+ u2

x2x2

)
dx1 dx2, for u ∈ BL2(R2).

In this case, the semi-norm | · |BL2(R2) is the bending energy of a thin plate of infinite
extent, and this explains the naming of thin plate splines.

3.2. Approximation order

The following result concerning the convergence rate of polyharmonic spline interpo-
lation is dating back to Wu & Schaback [54] (cf. Subsection 2.5).

THEOREM 5. Let � be a bounded and open domain satisfying an interior cone
condition. Then, there exist constants h0,C, such that for any finite point set 4 ⊂ �

satisfying h4,� ≤ h0 and any function u ∈ BLk(Rd) the error bound

‖u − s‖L∞(�) ≤ C · |u|BLk(Rd )h
k−d/2
4,�

holds, where s is the polyharmonic spline interpolant in (24), using φd,k , satisfying
s
∣∣
4

= u
∣∣
4

.

Hence, in this sense, the global approximation order of the polyharmonic spline
interpolation scheme, using φd,k , is p = k − d/2 with respect to the Beppo-Levi space
BLk(Rd).

In the following discussion of this subsection, we analyze the approximation order
of local polyharmonic spline interpolation. We remark that this analysis in combination
with the subsequent discussion concerning the stability of local polyharmonic spline
interpolation is relevant for the application in the following Section 4.

As regards the local approximation order, we consider solving, for some fixed point
ξ0 ∈ Rd and any h > 0, the interpolation problem

(27) u(ξ0 + hξ j ) = sh(ξ0 + hξ j ), 1 ≤ j ≤ n,

where 4 = {ξ1, . . . , ξn} ⊂ Rd is a Pd
k -unisolvent point set of moderate size, i.e., n is

small. Moreover, sh denotes the unique polyharmonic spline interpolant of the form

(28) sh(hx) =
n∑

j=1

ch
jφd,k(‖hx − hξ j ‖)+

∑

|α|<k

dh
α(hx)α

satisfying (27). The discussion in this subsection is dominated by the following defini-
tion.

DEFINITION 4. Let sh denote the polyharmonic spline interpolant, using φd,k , sat-
isfying (27). We say that the approximation order of local polyharmonic spline inter-
polation at ξ0 ∈ Rd and with respect to the function space F is p, iff for any u ∈ F the
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asymptotic bound

|u(ξ0 + hx)− sh(ξ0 + hx)| = O(h p), h → 0,

holds for any x ∈ Rd , and any finite Pd
k -unisolvent point set 4 ⊂ Rd .

For the sake of notational simplicity, we let from now ξ0 = 0, which is, due to the
shift-invariance of the interpolation scheme, without loss of generality.

Note that the coefficients ch = (ch
1 , . . . , ch

n)
T ∈ Rn, dh = (dh

α)|α|<k ∈ Rq of (28)
are solving the linear system

(29)

[
8h 5h

5T
h 0

]
·
[

ch

dh

]
=
[

u
∣∣
h4

0

]
,

where we let

8h =
(
φd,k(‖hξi − hξ j ‖

)
1≤i, j≤n ∈ R

n×n,

5h =
(
(hξi )

α
)

1≤i≤n;|α|<k ∈ R
n×q,

u
∣∣
h4 = (u(hξi ))1≤i≤n ∈ R

n.

We abbreviate the above linear system (29) as

(30) Ah · bh = uh,

i.e., for notational brevity, we let

Ah =
[
8h 5h

5T
h 0

]
, bh =

[
ch

dh

]
, and uh =

[
u
∣∣
h4

0

]
.

Recall from the discussion in Subsection 2.6 that any interpolant sh satisfying (27)
has a Lagrange-type representation of the form

(31) sh(hx) =
n∑

i=1

λh
i (hx)u(hξi ),

corresponding to the one in (20), where moreover

(32)
n∑

i=1

λh
i (hx)p(hξi) = p(hx), for all p ∈ Pd

k ,

due to the reconstruction of polynomials in Pd
k .
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Moreover, for x ∈ Rd , the vector λh(hx) = (λh
1(hx), . . . , λh

n(hx))T ∈ Rn is,
together with µh(hx) = (µh

α(hx))|α|<k ∈ Rq , the unique solution of the linear system

(33)

[
8h 5h

5T
h 0

]
·
[
λh(hx)

µh(hx)

]
=
[
ϕh(hx)

πh(hx)

]
,

where

8h =
(
φd,k(‖hξi − hξ j ‖)

)
1≤i, j≤n ∈ R

n×n,

5h =
(
(hξi )

α
)

1≤i≤n;|α|<k ∈ R
n×q ,

ϕh(hx) =
(
φd,k(‖hx − hξ j ‖)

)
1≤ j≤n ∈ R

n,

πh(hx) =
(
(hx)α

)
|α|<k ∈ R

q .

It is convenient to abbreviate the system (33) as Ah · νh(hx) = βh(hx), i.e., we let

Ah =
[
8h 5h

5T
h 0

]
, νh(hx) =

[
λh(hx)

µh(hx)

]
, βh(hx) =

[
ϕh(hx)

πh(hx)

]
.

Starting with the Lagrange representation of sh in (31), we obtain

(34)

sh(hx) = < λh(hx), u
∣∣
h4 >

= < νh(hx), uh >

= < A−1
h · βh(hx), uh >

= < βh(hx), A−1
h · uh >

= < βh(hx), bh >,

see the identity (23). This in particular combines the two alternative representations for
sh in (31) and (28).

The following lemma, proven in [25], plays a key role in the following discussion.
It states that the Lagrange basis of the polyharmonic spline interpolation scheme is
invariant under uniform scalings. As established in the recap of the proof from [25]
below, this result mainly relies on the (generalized) homogeneity of φd,k .

LEMMA 1. For any h > 0, let λh(hx) be the solution in (33). Then,

λh(hx) = λ1(x), for every x ∈ R
d .

Proof. For fixed 4 = {ξ1, . . . , ξn} ⊂ Rd , and any h > 0, let

Rh
φ,4 =

{
n∑

i=1

ciφd,k(‖ · −hξi‖)+ p : p ∈ Pd
k ,

n∑

i=1

ciq(ξi) = 0 for all q ∈ Pd
k

}
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denote the space of all possible polyharmonic spline interpolants of the form (28)
satisfying (27). In what follows, we show that Rh

φ,4 is a scaled version of R1
φ,4,

so that Rh
φ,4 =

{
σh(s) : s ∈ R1

φ,4

}
, where the dilatation operator σh is given by

σh(s) = s(·/h). This then implies that, due to the unicity of the interpolation in
either space, Rh

φ,4 or R1
φ,4, their Lagrange basis functions must coincide by satisfying

λh = σh(λ
1), as stated above.

In order to show that Rh
φ,4 = σh(R

1
φ,4), we distinguish the special case where

d is even from the one where d is odd. If the space dimension d is odd, then
Rh
φ,4 = σh(R

1
φ,4) follows immediately from the homogeneity of φd,k , where

φd,k(hr) = h2k−dφd,k(r).

Now suppose that d is even. In this case we have

φd,k(hr) = h2k−d
(
φd,k(r)+ r 2k−d log(h)

)
.

Therefore, any function sh ∈ Rh
φ,4 has, for some p ∈ Pd

k , the form

sh(hx) = h2k−d

(
n∑

i=1

ch
i φd,k(‖x − ξi‖)+ log(h)q(x)

)
+ p(x),

where we let

q(x) =
n∑

i=1

ch
i ‖x − ξi‖2k−d .

In order to see that sh is contained in σh(R
1
φ,4), it remains to show that the degree of

the polynomial q is at most k − 1. To this end, we rewrite q as

q(x) =
n∑

i=1

ch
i

∑

|α|+|β|=2k−d

cα,β · xα(ξi)
β =

∑

|α|+|β|=2k−d

cα,β · xα
n∑

i=1

ch
i (ξi )

β,

for some coefficients cα,β ∈ R with |α| + |β| = 2k − d. Due to the vanishing moment
conditions

n∑

i=1

ch
i p(hξi) = 0, for all p ∈ Pd

k ,

for the coefficients ch
1 , . . . , ch

n , this implies that the degree of q is at most 2k − d − k =
k − d < k. Therefore, sh ∈ σh(R

1
φ,4), and so Rh

φ,4 ⊂ σh(R
1
φ,4). The inclusion

R1
φ,4 ⊂ σ−1

h (Rh
φ,4) can be proven accordingly.

Altogether, we find that Rh
φ,4 = σh(R

1
φ,4) for any d, which completes our proof.

Now let us draw important conclusions on the approximation order of local poly-
harmonic spline interpolation with respect to C k . To this end, regard for u ∈ Ck , any
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x ∈ Rd and h > 0, the k-th order Taylor polynomial

(35) ph(y) =
∑

|α|<k

1

α!
Dαu(hx)(y − hx)α.

By using

u(hx) = ph(hξi )−
∑

0<|α|<k

1

α!
Dαu(hx)(hξi − hx)α, for all 1 ≤ i ≤ n,

in combination with (31) and (32), we obtain the identity

u(hx)− sh(hx) =
n∑

i=1

λh
i (hx)

[
ph(hξi )− u(hξi )

]
.

Now due to Lemma 1, the Lebesgue constant

3 = sup
h>0

n∑

i=1

∣∣λh
i (hx)

∣∣ =
n∑

i=1

∣∣λ1
i (x)

∣∣

is bounded, locally around the origin ξ0 = 0, and therefore we can conclude

|u(hx)− sh(hx)| = O(hk), h → 0.

Altogether, this yields the following result.

THEOREM 6. The approximation order of local polyharmonic spline interpolation,
using φd,k , with respect to Ck is p = k.

We remark that the above Theorem 6 generalizes a previous result in [21] concern-
ing the local approximation order of thin plate spline interpolation in the plane.

COROLLARY 1. The approximation order of local thin plate spline interpolation,
using φ2,2 = r2 log(r), with respect to C2 is p = 2.

3.3. Numerical stability

This section is devoted to the construction of a numerically stable algorithm for the
evaluation of polyharmonic spline interpolants. Recall that the stability of an algo-
rithm always depends on the conditioning of the given problem. For a more general
discussion on the relevant principles and concepts from error analysis, especially the
condition number of a given problem versus the stability of a numerical algorithm, we
recommend the textbook [22].

In order to briefly explain the conditioning of polyharmonic spline interpolation,
let � ⊂ Rd denote a compact domain comprising 4 = {ξ1, . . . , ξn}, i.e., 4 ⊂ �, the
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Pd
k -unisolvent set of interpolation points. Now recall that the condition number of an

interpolation operator I : C(�) → C(�), � ⊂ Rd , w.r.t. the L∞-norm ‖ · ‖L∞(�), is
the smallest number κ∞ satisfying

‖Iu‖L∞(�) ≤ κ∞ · ‖u‖L∞(�) for all u ∈ C(�).

Thus, κ∞ is the operator norm of I w.r.t. the norm ‖ · ‖L∞(�). In the situation of
polyharmonic spline interpolation, the interpolation operator Id,k : C(�) → C(�),
returns, for any given argument u ∈ C(�) the polyharmonic spline interpolant
Id,k(u) = su ∈ C(�) of the form (24) satisfying su

∣∣
4

= u
∣∣
4

. The following re-
sult is useful for the subsequent discussion on the stability of local interpolation by
polyharmonic splines.

THEOREM 7. The condition number κ∞ of interpolation by polyharmonic splines
is given by the Lebesgue constant

(36) 3(�,4) = max
x∈�

n∑

i=1

|λi (x)|.

Proof. For u ∈ C(�), let u
∣∣
4

be given, and let su = Id,k(u) ∈ C(�) denote the inter-
polant of the form (24) satisfying u

∣∣
4

= su
∣∣
4

. Using the Lagrange-type representation

su(x) =
n∑

i=1

λi(x)u(ξi)

of su , we obtain

‖Id,ku‖L∞(�) = ‖su‖L∞(�) ≤ max
x∈�

n∑

i=1

|λi (x)| · |u(ξi)| ≤ 3(�,4) · ‖u‖L∞(�)

for all u ∈ C(�), and therefore κ∞ ≤ 3(�,4).

In order to see that κ∞ ≥ 3(�,4), suppose that the maximum of 3(�,4) in
(36) is attained at x∗ ∈ �. Moreover, let g ∈ C(�) denote any function satisfying
g(ξi ) = sign(λi (x∗)), for all 1 ≤ i ≤ n, and ‖g‖L∞(�) = 1. Then, we obtain

‖Id,k g‖L∞(�) ≥
(
Id,kg

)
(x∗) =

n∑

i=1

λi(x
∗)g(ξi) =

n∑

i=1

|λi (x
∗)| = 3(�,4)

and thus ‖Id,kg‖L∞(�) ≥ 3(�,4)‖g‖L∞(�). But this implies 3(�,4) ≤ κ∞. Alto-
gether, κ∞ = 3(�,4), which completes our proof.

The above Lemma 1 immediately yields the following important result concerning
the stability of interpolation by polyharmonic splines.



266 A. Iske

THEOREM 8. The absolute condition number of polyharmonic spline interpolation
is invariant under rotations, translations and uniform scalings.

Proof. Interpolation by polyharmonic splines is invariant under rotations and transla-
tions. It is easy to see that this property carries over to the absolute condition num-
ber. In order to see that κ∞ ≡ κ∞(�,4) is also invariant under uniform scalings, let
�h = {hx : x ∈ �} and 4h = {hξ : ξ ∈ 4}. Then, we obtain

3(�h, 4h) = max
hx∈�h

n∑

i=1

λh
i (hx) = max

x∈�

n∑

i=1

λi (x) = 3(�,4)

which shows that κ∞(�h, 4h) = κ∞(�,4).

Now let us turn to the construction of a numerically stable algorithm for evaluating
the polyharmonic spline interpolant sh satisfying (27). To this end, we require that
the given interpolation problem (27) is well-conditioned. Note that according to The-
orem 8, this requirement depends on the geometry of the interpolation points 4 w.r.t.
the center ξ0, but not on the scale h.

However, the spectral condition number of the matrix Ah depends on h. The fol-
lowing rescaling can be viewed as a simple way of preconditioning the matrix Ah for
very small h. To this end, in order to evaluate the polyharmonic spline interpolant sh

satisfying (27), we prefer to work with the representation

(37) sh(hx) =< β1(x), A−1
1 · uh >,

which immediately follows from the identity (34) and the scale-invariance of the La-
grange basis, Lemma 1. Due to (37) we can evaluate sh at hx by solving the linear
system

(38) A1 · b = uh .

The solution b ∈ Rn+q in (38) then yields the coefficients of sh(hx) w.r.t. the basis
functions in β1(x).

By working with the representation (37) for sh instead of the one in (28), we can
avoid solving the linear system (30). This is useful insofar as the linear system (30)
is ill-conditioned for very small h, but well-conditioned for sufficiently large h. The
latter relies on earlier results due to Narcowich and Ward [37], where it is shown that
the spectral norm of the matrix 8−1

h is bounded above by a monotonically decreasing
function of the minimal Euclidean distance between the points in h4. This in turns
implies that one should, for the sake of numerical stability, avoid solving the system
(30) directly for very small h. For further details on this, see [37] and the more general
discussion provided by the recent paper [43] of Schaback.
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4. Meshfree methods for transport problems

4.1. Transport equations

Numerical methods in flow simulation are concerned with time-dependent hyperbolic
conservation laws of the form

(39)
∂u

∂ t
+ ∇ f (u) = 0,

where for some domain � ⊂ Rd , d ≥ 1, and a compact time interval I = [0, T ],
T > 0, the solution u : I ×� → R of (39) is sought.

Moreover, f (u) = ( f1(u), . . . , fd (u))T denotes a given flux tensor, and we assume
that initial conditions

(40) u(0, x) = u0(x), for x ∈ �,

at time t = 0 are given.

One special case for (39) is passive advection, where the flux f is linear, i.e.,

f (u) = v · u,

and thus (39) becomes

(41)
∂u

∂ t
+ v · ∇u = 0,

provided that the given velocity field

v = v(t, x) ∈ R
d, t ∈ I, x ∈ �,

is divergence-free, i.e.,

div v =
d∑

j=1

∂v j

∂x j
≡ 0.

For a comprehensive introduction to hyperbolic conservation laws, we recommend
the textbook [28].

4.2. Semi-lagrangian advection

For the special case of passive advection, the resulting Cauchy problem (41), (40) is
well-posed. In this case, the solution u is constant along the streamlines of fluid parti-
cles, and the shapes of these streamlines are entirely determined by the given velocity
field v.

This suggests to work with a semi-Lagrangian method (SLM) in order to solve the
Cauchy problem for passive advection. Loosely speaking, a SLM is one which follows
the flow of a discrete set of particles along their streamline trajectories, and moreover
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the particle set is subject to dynamic changes during the simulation. Therefore, any
SLM may be regarded as a special instance of the classical method of characteristics
(MOC). Indeed, this is because the streamlines of the flow particles are the character-
istic curves of the equation (41) [28].

In order to be more precise about the SLM, let 4 ⊂ � denote a current finite
set of nodes, at time t ∈ I , each of whose elements ξ ∈ 4 corresponds to a fluid
particle located at ξ . Now for a fixed time step size τ > 0, the advection in the
SLM at time step t → t + τ is accomplished as follows. For any node ξ ∈ 4, an
approximation to its upstream point x− ≡ x−(ξ) is computed. The upstream point
x− of ξ is the spatial location of that particle at time t , which by traversing along
its corresponding streamline arrives at the node ξ at time t + τ . Figure 1 shows the
corresponding upstream point of a node ξ , along with its streamline trajectory.

x−

ξ

Figure 1: The point x− is the upstream point of the node ξ .

We remark that computing the upstream point x− of any node ξ ∈ 4 amounts to
solving the ordinary differential equation (ODE)

(42) ẋ = dx

dt
= v(t, x)

with initial condition x(t + τ) = ξ , and so x(t) = x−.

Adopting some standard notation from dynamic systems, we can express the up-
stream point x− of ξ as

(43) x− = 8t,t+τξ,

where 8t,t+τ : � → � denotes the continuous evolution of the (backward) flow of
(42). An equivalent formulation for (43) is given by ξ = 8t+τ,t x−, since 8t+τ,t is the
inverse of 8t,t+τ .
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Now since the solution u of (41) is constant along the trajectories of the flow parti-
cles, we have u(t, x−) = u(t + τ, ξ), and so the desired values {u(t + τ, ξ)}, ξ ∈ 4,
may immediately be obtained from the upstream point values u(t, x −). But in general,
neither the exact location of x−, nor the value u(t, x−) is known.

Therefore, during the performance of the flow simulation, this requires first com-
puting an approximation x̃ of the upstream point x− = 8t,t+τ ξ for each ξ ∈ 4. It is
convenient to express the approximation x̃ of x− as

x̃ = 9 t,t+τξ,

where 9 t,t+τ : � → � is the discrete evolution of the flow, corresponding to the
continuous evolution 8t,t+τ in (43) [7]. The operator 9 t,t+τ is given by any specific
numerical method for solving the above ODE (42).

Having computed x̃ , the value u(t, x̃) is then determined from the current values
{u(t, ξ)}ξ∈4 by local interpolation. Altogether, the above discussion leads us to the
following algorithm concerning the advection step t → t + τ of the semi-Lagrangian
method.

ALGORITHM 1. (Semi-lagrangian advection).

INPUT: Time step size τ > 0, node set 4 ⊂ �, and values {u(t, ξ)}ξ∈4.

FOR each ξ ∈ 4 DO

(a) Compute the upstream point approximation x̃ = 9 t,t+τ ξ ;

(b) Determine the value u(t, x̃) by local interpolation;

(c) Advect by letting u(t + τ, ξ) = u(t, x̃).

OUTPUT: The values u(t + τ, ξ), for all ξ ∈ 4, at time t + τ .

The local interpolation in step (b) of the above algorithm needs some comments.
First note that x̃ , the approximation of the upstream point of ξ , is not necessarily con-
tained in the node set 4. Therefore, the desired value u(t, x̃) is to be computed from
the given values {u(t, ξ)}ξ∈4 of u at the nodes in4. This is done by local interpolation.
To this end, a set N ≡ N (x̃) ⊂ 4 of neighbouring nodes of x̃ is determined. In order
to make one concrete example, N could, for some suitable number n, be the set of n
nearest neighbours of x̃ in 4. The given function values of u(t, ·) at the neighbouring
nodes are then used in order to solve the interpolation problem

(44) u(t, ν) = s(ν), for all ν ∈ N ,

by a suitable scattered data interpolation scheme, which outputs an interpolant s : � →
R satisfying (44). For this purpose, we prefer to work with polyharmonic spline inter-
polation, so that s in (44) is required to have the form (24). The desired approximation
of u(t, x̃) is obtained by the evaluation of s at x̃ , so we let u(t, x̃) = s(x̃).
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We remark that semi-Lagrangian advection schemes of the above form are uncondi-
tionally stable. This is in contrast to Eulerian schemes, which, for the sake of stability,
typically work with very small time steps [28]. For a concise analysis concerning the
convergence and stability of semi-Lagrangian methods, we refer to the paper [14] by
Falcone and Ferretti. A more general discussion on semi-Lagrangian methods is pro-
vided in the textbooks [11, 36]; for applications of the SLM in atmospheric problems,
see the review [49] by Staniforth and Côté and the seminal papers [40, 41] of Robert.

4.3. Method of backward characteristics

Now let us return to the general case of (39) where the flux function f is, unlike in
(41), nonlinear. We remark that nonlinear cases are much more complicated than the
linear one of passive advection. Therefore, the construction of a generalization to the
above semi-Lagrangian method in Algorithm 1 requires particular care. Indeed, in
contrast to the linear case, a nonlinear flux function f usually leads to discontinuities
in the solution u, shocks, as observed in many relevant applications, such as fluid flow
and gas dynamics. In such situations, the classical method of characteristics becomes
unwieldy or impossible, as the evolution of the flow along the characteristic curves is
typically very complicated, or characteristic curves may even be undefined (see [11,
Subsection 6.3.1] for a discussion on these phenomena).

Now in order to be able to model the behaviour of the solution with respect to
shock formation and shock propagation we work with a vanishing viscosity approach,
yielding the modified advection-diffusion equation

∂u

∂ t
+ ∇ f (u) = ε ·1u,(45)

where the parameter ε > 0 is referred to as the diffusion coefficient. In this way, the so-
lution u of the hyperbolic equation (39) is approximated arbitrarily well by the solution
of the modified parabolic equation (45), provided that the parameter ε is sufficiently
small. This modification is a standard stabilization technique for nonlinear equations,
dating back to Burgers [6], who utilized a flux function of the form

(46) f (u) = 1

2
u2 · r,

with some flow direction r ∈ Rd , for modelling free turbulences in fluid dynamics.
The resulting Burgers equation is nowadays a popular standard test case for nonlinear
transport equations. We come back to this test case in Subsection 5.2.

Now let us propose a meshfree advection scheme for solving the above nonlinear
equation (45). Starting point for this modified approach is the discretization

u(t + τ, ξ) − u(t, x−)

τ
= ε ·1u(t, x−)(47)

of the Lagrangian form
du

dt
= ε ·1u,
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of (45), where
du

dt
= ∂u

∂ t
+ ∇ f (u)

is the material derivative.

Note that the discretization in (47) allows us to work with a similar advection
scheme as in the linear case, given by Algorithm 1. Indeed, having computed for
any ξ ∈ 4 an approximation x̃ = 9 t,t+τξ to its upstream point x− = 8t,t+τ ξ , the
desired approximation of u(t + τ, ξ) is then given by

u(t + τ, ξ) = u(t, x̃)+ τ · ε ·1u(t, x̃), for ξ ∈ 4.

However, in contrast to plain passive advection, the characteristic curves of the equa-
tion (45) depend also on u. In particular, the advection velocity v = ∂ f (u)

∂u depends on
u. This amounts to applying a more sophisticated integration scheme (compared with
the one of the previous subsection) in order to compute for any ξ ∈ 4 its corresponding
upstream point approximation x̃ = 9 t,t+τξ . For the sake of brevity, we prefer to omit
these lengthy technical details, which are immaterial for the purposes of this chapter.
Instead, we refer to the discussion in [3].

The following algorithm reflects the advection step t → t + τ of the suggested
method of (backward) characteristics.

ALGORITHM 2. (Method of characteristics).

INPUT: Time step τ , nodes 4, values {u(t, ξ)}ξ∈4, diffusion coefficient ε.

FOR each ξ ∈ 4 DO

(a) Compute the upstream point approximation x̃ = 9 t,t+τ ξ ;

(b) Determine the values u(t, x̃) and 1u(t, x̃) by local interpolation;

(c) Advect by letting u(t + τ, ξ) = u(t, x̃)+ τ · ε ·1u(t, x̃).

OUTPUT: The values u(t + τ, ξ), for all ξ ∈ 4, at time t + τ .

Step (b) of Algorithm 2 deserves a comment concerning the interpolation of the
value 1u(t, x̃). Similar as in Algorithm 1 we work with local interpolation by poly-
harmonic splines, but with a smoother basis function, such that the Laplacian1s of the
interpolant s satisfying (44) is everywhere well-defined. The desired approximation of
1u(t, x̃) is then obtained by 1s(t, x̃).

4.4. Adaption rules

In this section, the adaptive modification of the node set 4 is explained. This is done
after each time step t → t + τ of the semi-Lagrangian method (Algorithm 1) in case of
passive advection (41), or of the method of characteristics (Algorithm 2), when solving
nonlinear advection-diffusion equations of the form (45). In either case, the current
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node values u(t, ξ), ξ ∈ 4, are used in order to adaptively modify 4. Immediately
before the first time step 0 → τ , the nodes are first randomly chosen in �, before the
adaption rules, to be explained below, are applied. This then yields the initial node set
4 ≡ 4(0).

The modification of the current node set 4 ≡ 4(t) (at time t) is accomplished by
the removal (coarsening), and the insertion (refinement) of selected nodes, so that a
modified node set 4 ≡ 4(t + τ) (at time t + τ ) is obtained. The adaptive modification
of the nodes in 4 relies on a customized a posteriori error indicator, to be explained in
the following subsection.

Error indication.

An effective strategy for the adaptive modification of the nodes requires well-motivated
refinement and coarsening rules as well as a customized error indicator. We understand
the error indicator η : 4 → [0,∞) as a function of the current node set 4 ≡ 4(t) (at
time t) which assigns a significance value η(ξ) to each node ξ ∈ 4. The value η(ξ) is
required to reflect the local approximation quality of the interpolation around ξ ∈ 4.
The significances η(ξ), ξ ∈ 4, are then used in order to flag single nodes ξ ∈ 4 as “to
be refined” or “to be coarsened” according to the following criteria.

DEFINITION 5. Let η∗ = maxξ∈4 η(ξ), and let θcrs, θref be two tolerance values
satisfying 0 < θcrs < θref < 1. We say that a node ξ ∈ 4 is to be refined, iff η(ξ) >
θref · η∗, and ξ is to be coarsened, iff η(ξ) < θcrs · η∗.

In our numerical examples, typical choices for the relative tolerance values are
θcrs = 0.001 and θref = 0.1. Note that a node ξ cannot be refined and be coarsened at
the same time; in fact, it may neither be refined nor be coarsened.

Now let us turn to the definition of the error indicator η. To this end, we follow
along the lines of [21], where a scheme for the detection of discontinuities of a surface,
fault lines, from scattered data was developed. We let

η(ξ) = |u(ξ)− s(ξ)|,
where s ≡ sN denotes the polyharmonic spline interpolant, which matches the val-
ues of u ≡ u(t, ·) at a neighbouring set N ≡ N (ξ) ⊂ 4 \ ξ of current nodes, i.e.,
s(ν) = u(ν) for all ν ∈ N . In our numerical examples for bivariate data, where d = 2,
we work with local thin plate spline interpolation. Recall that this particular interpo-
lation scheme reconstructs linear polynomials. In this case, the value η(ξ) vanishes
whenever u is linear around ξ . Moreover, the indicator η(ξ) is small whenever the
local reproduction quality of the interpolant s is good. In contrast to this, a high value
of η(ξ) typically indicates that u is subject to strong variation locally around ξ .

Coarsening and refinement

In order to obtain good approximation quality at small computational costs, we insert
new nodes into regions where the value of η is high (refinement), whereas nodes from
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4 are removed in regions where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data structures, effec-
tive adaption rules are required to be as simple as possible. In particular, these rules
ought to be given by local operations on the current node set 4. The following coars-
ening rule is in fact very easy and, in combination with the refinement, it turned out to
be very effective as well.

Coarsening. A node ξ ∈ 4 is coarsened by its removal from the current node set 4,
i.e., 4 is modified by replacing 4 with 4 \ ξ .

As to the refinement rules, these are constructed on the basis of the local error
estimate (17) for polyharmonic spline interpolation. The refinement of any node ξ ∈ 4
should aim at the reduction of the local error (17) around ξ . We accomplish this by
reducing the distance function

dN = min
ν∈N

‖ · −ν‖

in a local neighbourhood of ξ . In order to explain this, we need to recall some ingredi-
ents from computational geometry, in particular Voronoi diagrams [39].

For any node ξ ∈ 4, its corresponding Voronoi tile

V4(ξ) =
{

y ∈ R
d : d4(y) = ‖y − ξ‖

}
⊂ R

d

w.r.t. the point set 4 is a convex polyhedron containing all points in Rd which are at
least as close to ξ as to any other point in 4. The boundary vertices of V4(ξ), called
Voronoi points, form a finite point set Vξ in the neighbourhood of ξ . Figure 2 shows
the Voronoi tile V4(ξ) of a node ξ along with the set Vξ of its Voronoi points.

ξ

VΞ(ξ)

Figure 2: Refinement of the node ξ . The Voronoi points (�) are inserted.

Now observe that for any ξ ∈ N , the distance function dN is convex on V4(ξ).
Moreover, the function dN has local maxima at the Voronoi points in Vξ . Altogether,
this gives rise to define the local refinement of nodes as follows.
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Refinement. A node ξ ∈ 4 is refined by the insertion of its Voronoi points into the
current node set 4, i.e., 4 is modified by replacing 4 with 4 ∪ Vξ .

5. Meshfree fluid flow simulation

In this section, the good performance of the proposed meshfree advection scheme is
shown, where the utility of the adaptive sampling strategy is demonstrated. To this
end, we work with the following two popular test case scenarios from flow simulation.

The slotted cylinder, subject of Subsection 5.1, is concerning passive advection. In
this case, the semi-Lagrangian method (Algorithm 1) in combination with the adaption
rules of Subsection 4.4 is used. The subsequent discussion in Subsection 5.2 is then
devoted to the aforementioned nonlinear Burgers equation. In this test case, we work
with the method of characteristics (Algorithm 2) in combination with the adaption rules
of Subsection 4.4

5.1. The slotted cylinder: a test case for passive advection

The slotted cylinder, suggested by Zalesak [55], is a popular test case scenario for
flow simulation concerning passive advection. In this test case, the domain � =
[−0.5, 0.5] × [−0.5, 0.5] ⊂ R2 is the shifted unit square, and the initial conditions
in (40) are given by

u0(x) =
{

1 for x ∈ D,
0 otherwise,

where D ⊂ � is the slotted disc of radius r = 0.15 centered at (−0.25, 0) with slot
width 0.06 and length 0.22, see Figure 3 (a).
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Figure 3: The slotted cylinder. (a) Initial condition and (b) velocity field.
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The slotted cylinder is rotated counter-clockwise by the steady flow field v(x) =
(−x2, x1), see Figure 3 (b). Throughout the simulation, we work with a constant time
step size τ = 0.1, so that one revolution of the slotted cylinder around the origin
requires 63 time steps. In our numerical experiment, we have recorded ten revolutions
of the slotted cylinder, i.e., we let I = [0, 629τ ].

Figure 6 shows the 3D view on the solution u and the corresponding node distribu-
tion during the first revolution of the slotted cylinder, at times t16 = 16τ , t32 = 32τ ,
and t47 = 47τ . Observe that the distribution of the nodes is well-adapted to the edges
of the slotted cylinder. In fact, the dense sampling along the edges leads to a high res-
olution of the model near the discontinuities of the solution u. On the other hand, the
sparsity of the sampling in flat regions, where u is constant, serves to reduce the data
size of the model, and thus the required computational costs. In conclusion, due to the
adaptive sampling strategy, the two (conflicting) requirements of good approximation
quality and computational efficiency are well-balanced.

As to the long-term behaviour of the simulation, Figure 7 shows in comparison the
3D view and the node distribution for the initial condition u0, along with the numerical
solution u obtained after five (at time t315 = 315τ ) and ten (at time t629 = 629τ ) full
revolutions of the slotted cylinder. Observe that the shape of the slotted cylinder is
maintained remarkably well. Moreover, numerical diffusion is widely avoided. This
robust behaviour is due to the adaptive node sampling, which continues to resolve the
edges of the slotted cylinder very well.

5.2. Burgers equation: a nonlinear standard test

The equation

(48)
∂u

∂ t
+ u∇u · r = ε ·1u,

was introduced in 1940 by Burgers [6] as a mathematical model of free turbulence in
fluid dynamics. Burgers equation (48) is nowadays a popular standard test case for the
simulation of nonlinear flow processes, and for the modelling of shock waves.

The nonlinear flux tensor (46) leads, in the hyperbolic equation (39), to shocks. As
soon as the shock front occurs, there is no classical solution of the equation (39), and
its weak solution becomes discontinuous. However, the modified parabolic equation
(48) has for all t > 0 a smooth solution uε which approximates (for sufficiently small
ε) the occuring shock front propagation arbitrarily well.

We use Burgers equation (48) in order to demonstrate the utility of adaptive sam-
pling, in combination with the meshfree method of characteristics (Algorithm 2), for
the modelling of shock fronts.

In the considered test case, we let

u0(x) =





0 for ‖x − c‖ ≥ R,

exp
(

‖x−c‖2

‖x−c‖2−R2

)
otherwise,
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for the initial condition in (40), where R = 0.25, c = (0.3, 0.3), and we let the unit
square � = [0, 1]2 be the computational domain. Figure 4 shows the initial condition
and the flow field r = (1, 1), being aligned along the diagonal in �.
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Figure 4: Burgers equation. (a) Initial condition u0 and (b) flow field.
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Figure 5: Burgers equation. (a) Randomly chosen node set of size |4| = 4446 and (b)
initial node distribution comprising |4| = 1484 nodes.

The adaptive distribution of the initial node set is shown in Figure 5 (b). Recall
that the construction of this node set is done by applying the adaption rules of Subsec-
tion 4.4 on a randomly chosen node set in �. To this end, we first selected the node set
4 displayed in Figure 5 (a), of size |4| = 4446, by random, before the significances
η(ξ) at the nodes in4 are used in order to compute the initial node set4 ≡ 4(0) of the
simulation, shown in Figure 5 (b). Observe that the adaptive distribution of the nodes
in Figure 5 (b) manages to localize the support of the initial condition u0 very well.
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Moreover, in this simulation, a constant time step size τ = 0.004 is selected, and
we let I = [0, 330τ ]. A plot of the numerical solution u at the three time steps t110 =
110τ , t220 = 220τ , and t330 = 330τ is shown in Figure 8, along with the corresponding
distribution of the nodes. Observe that the adaptive node distribution continues to
localize the support of the solution u very well. This helps, on the one hand, to reduce
the resulting computational costs of the simulation. On the other hand, the shock front
propagation is well-resolved by the high density of the nodes around the shock, see
Figure 8. Altogether, the adaptive node distribution manages to capture the evolution
of the flow very effectively. This confirms the utility of the customized adaption rules
yet once more.
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Figure 6: The slotted cylinder. 3D view on the solution u (left column) and the corre-
sponding node distribution (right column) at time t16 = 16τ , t32 = 32τ , and t47 = 47τ .
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Figure 7: The slotted cylinder. 3D view and node distribution of the initial condition
(top row), where t = 0, after five revolutions (middle row), at time t315 = 315τ , and
after ten revolutions (bottom row), at time t629 = 629τ .
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Figure 8: Burgers equation. Evolution of the solution u at three different time steps,
t110 = 110τ , t220 = 220τ , and t330 = 330τ (left column), and the corresponding node
distribution (right column).
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ABOUT THE DEFICIENT SPLINE COLLOCATION METHOD

FOR PARTICULAR DIFFERENTIAL AND INTEGRAL

EQUATIONS WITH DELAY

Abstract. The aim of this paper is to present the application of a particu-
lar collocation method (recently developed by the authors) to numerically
solve some differential and Volterra integral equations with constant delay.
The unknown function is approximated by using deficient spline functions.
The existence and uniqueness of the numerical solution are studied; some
aspects of the problem related to the estimation of the errors as well as the
convergence properties are presented. Numerical examples are provided.

1. Introduction

In recent years a great deal of dynamical processes has been described and investi-
gated by differential and integral equations with deviating arguments. It is well known
that the versatility of such equations in modelling processes in various applications,
especially in physics, engineering, biomathematics, medical sciences, economics, etc.,
provides the best, and sometimes the only, realistic simulation of observed phenomena.

Since solutions of such equations in general are not found explicitly, methods for
their approximate solutions reveal very useful.

Recently we have proposed a deficient spline collocation method to approximate
the solution of the first and second order delay differential equations (DDEs) [2] also
in the neutral case (NDDEs) [3], [4], [5] and the solution of Volterra integral equations
with delay (VDIEs) [6].

More precisely, we deal with the numerical solutions by combining two classic
Numerical Analysis methodologies: approximation through the spline functional class
and determination of the approximating function by a collocation method. In literature
the two techniques are frequently used separately, but they are rarely combined to solve
delay differential and integral equations. For instance in [1] they are applied in the
numerical solution of first order delay differential equation, in [8] they are extended in
the numerical solution of second order differential equations with delay, in [10] they are
proposed in the case of Volterra integral equations. In all those works some advantages
of that technique are outlined.

In any case, from those works one can draw the conclusion that spline methods
are characterized by a large application spectrum, thanks to their weak convergence
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requirements, but they are affected by serious stability problems when their order in-
creases. This explains why spline collocation techniques are not so often used.

In our works [2], [3], [4], [5], [6] taking into account that the phenomena described
by the delay equations are very irregular, we proposed the following ideas:

i) the use of low order splines, in order to guarantee stability;

ii) the weakness of the continuity requirements at connecting points, so that lowly
regular functions can be satisfactorily dealt with.

Therefore we propose the collocation using deficient splines (as defined in the next
section), namely splines pertaining to class Cm−2 (deficiency 1), where m ∈ N, m ≥ 2,
is the spline degree.

Consequently we can use the advantages of the two (collocation and deficient
spline) aspects.

The collocation methods provide the global spline expression, therefore they are
selected:

i) in the case of DDE and NDDE, to eliminate the problems due to high-order
interpolation, in the continuous extension

ii) in the case of VDIE, to use the expression of the spline in the evaluation of
integrals in intervals preceding the current one

iii) to allow the use of variable intervals and spline degrees

iv) to state numerical models such that existence and unicity of the solution can be
proved

v) to implement a simple and efficient algorithm.

About the deficient spline of polynomial degree m ≥ 2 :

i) we choose a classical convenient expression of the spline

ii) we choose low polynomial degree spline to maintain stability of the method and
to deal with weakly regular solution

iii) weakening the spline regularity in the linking points, we can adapt the continuity
class of the spline approximating to solutions at very low regularity.

As the equations with delay argument concerning the modelling processes are very
often linear and with constant delay, in this paper we study the application of the nu-
merical method proposed to these cases. We refer to works [2] to [6] for non linear
cases.

In the second section we study the numerical model both for differential and
Volterra integral equations. In the third section we give some numerical examples.
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2. The description of spline collocation method

In this section we study the application of the numerical method to some linear DDE,
NDDE and VDIE with constant delay.

2.1. The case of delay differential equations

We consider the following second order delay differential equation (DDE):

(1)
y′′(x) = k1y(x)+ k2y′(x)+ f (x, y(g(x)), y ′(g(x))), x ∈ [a, b]

y(x) = ϕ(x), y ′(x) = ϕ′(x), x ∈ [α, a], α ≤ a, α = In f (g(x))
x∈[a,b]

α ≤ g(x) ≤ x, x ∈ [α, b], ϕ ∈ Cm−2[α, a], m > 2, k1, k2 ∈ R

f : [a, b] × C1[α, b] × C[α, b] → R.

We suppose verified the hypotheses so that the problem (1) has a unique solution
y ∈ C2[a, b] ∩ C1[α, b] (see [7]).

As it is known (see [7]) jump discontinuities can occur in various higher order
derivatives of the solution y even if f, g, ϕ are analytic in their arguments. Such jump
discontinuities are caused by the delay function g and propagate from the point a,
moving ahead with the increasing order of derivatives.

If we denote the jump discontinuities by {ξ j }, it is also known that ξ j are the roots of
equation g(ξ j ) = ξ j−1 [7]; ξ0 = a is a jump discontinuity of ϕ (or of its derivatives).
Since in (1) the delay function g does not depend on y (no state depending argument),
we can consider the jump discontinuities for sufficiently high order derivatives to be
such that ξ0 < ξ1 < ... < ξk−1 < ξk < ... < ξM .

In the following we will consider g(x) := x−τ (τ ∈ R, τ > 0 ) so that ξ j = a+ jτ
( j = 0, 1, ...,M) and α = a − τ.

We shall construct for the problem (1) a deficient polynomial spline approximating
function of degree m ≥ 3, denoted by s : [a, b] → R, s ∈ Sm, s ∈ Cm−2, which
will be defined on each interval [ξ j , ξ j+1] ( j = 0, 1, ...,M − 1). For this construction
we shall use successively the collocation methods as in [8]. Let us consider the first
interval [ξ0, ξ1] which is [a, ξ1]. Let us define a uniform partition ξ0 = t0 < t1 < ... <

tk−1 < tk < ... < tN = ξ1 where t j := t0 + jh ( j = 0, 1, ..., N), h = (ξ1 − ξ0)/N .
On the first interval [t0, t1] the spline component is defined by

s0(t) : = ϕ(t0)+ ϕ′(t0)(t − t0)+ ϕ′′(t0)(t − t0)
2/2 + ...+(2)

+ϕ(m−2)(t0)(t − t0)
m−2/(m − 2)! +

+a0/(m − 1)!(t − t0)
m−1 + b0/m!(t − t0)

m

with a0, b0 to be determined by the following system of collocation conditions:




s′′
0 (t0 + h/2) = k1s0(t0 + h/2)+ k2s′

0(t0 + h/2)+
+ f (t0 + h/2, ϕ(t0 + h/2 − τ), ϕ′(t0 + h/2 − τ))

s′′
0 (t1) = k1s0(t1)+ k2s′

0(t1)+ f (t1, ϕ(t1 − τ), ϕ′(t1 − τ))
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Once determined the polynomial (2), on the next interval [t1, t2], we define

(3) s1(t) :=
m−2∑

j=0

s( j)
0 (t1)(t − t1)

j/j ! + a1/(m − 1)!(t − t1)
m−1 + b1/m!(t − t1)

m

where s( j)
0 (t1), 0 ≤ j ≤ m − 2, are left-hand limits of derivative as t → t1 of the seg-

ment of s defined on [t0, t1] and a1, b1 are determined from the following collocation
conditions:





s′′
1 (t1 + h/2) = k1s1(t1 + h/2)+ k2s′

1(t1 + h/2)+
+ f (t1 + h/2, ϕ(t1 + h/2 − τ), ϕ′(t1 + h/2 − τ))

s′′
1 (t2) = k1s1(t2)+ k2s′

1(t2)+ f (t2, ϕ(t2 − τ), ϕ′(t2 − τ))

We remark that the peculiarity of these collocation conditions is the fact that they take
into account the historical behaviour of the approximating spline, which is relevant for
the delay nature of the considered equation.

Analogously for t ∈ [tk, tk+1] we have

(4) sk(t) :=
m−2∑

j=0

s( j)
k−1(tk)(t − tk)

j/j ! + ak/(m − 1)!(t − tk)
m−1 + bk/m!(t − tk)

m

where s( j)
k−1(tk) = lim

t→tk
s( j)

k−1(t), t ∈ [tk−1, tk ] and ak, bk are determined from

(5)





s′′
k (tk + h

2 ) = k1sk(tk + h/2)+ k2s′
k(tk + h/2)+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

s′′
k (tk+1) = k1sk(tk+1)+ k2s′

k(tk+1)+
+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

In general the spline function s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) approximating
the solution of (1) on the interval Ii := [ξi , ξi+1] (i = 0, 1, ...,M − 1) is defined in
[tk, tk+1] where tk := t0 + kh, k = 0, 1, ..., N − 1; t0 := ξi , tN = ξi+1, h := ξi+1−ξi

N
as:

(6) sk/Ii (t) :=
m−2∑

j=0

s( j)
k−1/Ii

(tk)(t − tk)
j/j ! + ak

(m − 1)!
(t − tk)

m−1 + bk

m!
(t − tk)

m

with ak, bk determined, as in (5) by

(7)





s′′
k/Ii
(tk + h

2 ) = k1sk/Ii (tk + h/2)+ k2s′
k/Ii
(tk + h/2)+

+ f (tk + h
2 , sIi−1 (tk + h

2 − τ), s ′
Ii−1
(tk + h

2 − τ))

s′′
k/Ii
(tk+1) = k1sk/Ii (tk+1)+ k2s′

k/Ii
(tk+1)+

+ f (tk+1, sIi−1 (tk+1 − τ), s ′
Ii−1
(tk+1 − τ))

where sIi−1 ∈ Sm, sIi−1 ∈ Cm−2 is the spline approximating the solution of (1) on the
interval Ii−1.
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In the following, to simplify the notations, the theoretical results will be related
only to (5); their generalization to (7) is immediate.

If we set

(8) Ak(t) =
m−2∑

j=0

s( j)
k−1(tk)(t − tk)

j/j !

then (5) becomes:

(9)





ak
(m−3)!

(
1 − h

2(m−2)

(
k1

h
2(m−1) + k2

)) ( h
2

)m−3 +
+ bk
(m−2)!

(
1 − h

2(m−1)

(
k1

h
2m + k2

))
( h

2 )
m−2 =

−A′′
k (tk + h

2 )+ k1 Ak(tk + h
2 )+ k2 A′

k(tk + h
2 )+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

ak
(m−3)!

(
1 − h

m−2

(
k1

h
m−1 + k2

))
hm−3+

+ bk
(m−2)!

(
1 − h

m−1

(
k1

h
m + k2

))
hm−2 =

−A′′
k (tk+1)+ k1 Ak(tk+1)+ k2 A′

k(tk+1)+
+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

It remains to find under what conditions on h, the parameters ak, bk , 0 ≤ k ≤ N − 1
can be uniquely determined from (9).

It is easy to prove the following:

THEOREM 1. Let us consider the delay differential problems in (1). Under the
hypotheses of existence and uniqueness of the analytic solution, there exists a unique
spline approximation solution s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) of (1) given by the
above construction for h 6= 0 if and only if the following condition is satisfied:

∣∣∣∣∣∣
1 − h

2(m−2)

(
k1

h
2(m−1) + k2

)
1
2

(
1 − h

2(m−1)

(
k1

h
2m + k2

))

1 − h
m−2

(
k1

h
m−1 + k2

)
1 − h

m−1

(
k1

h
m + k2

)

∣∣∣∣∣∣
6= 0

COROLLARY 1. If k1 = k2 = 0 and m ≥ 3 the condition is satisfied ∀h (h 6= 0).

COROLLARY 2. If k1 = 0 , k2 6= 0 and 3 ≤ m < 10 the condition is satisfied ∀h
(h 6= 0).

COROLLARY 3. If k1 6= 0, k2 = 0 and 3 ≤ m < 10 the condition is satisfied ∀h
(h 6= 0).

We can tackle by the same method also the following neutral delay differential
equation (NDDE):

(10)

y′(x) = k1y(x)+ f (x, y(g(x)), y ′(g(x))), x ∈ [a, b]
y(x) = ϕ(x), x ∈ [α, a], α ≤ a, α = In f (g(x))

x∈[a,b]

α ≤ g(x) ≤ x , x ∈ [α, b]
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Let us assume that: f : [a, b]×C1[α, b]×C[α, b] → R, g ∈ C[α, b], α ≤ g(x) ≤
x, x ∈ [α, b], ϕ ∈ Cm−1[α, a], m ≥ 1, m ∈ N , k1 ∈ R.

We suppose verified the hypotheses so that the problem (10) has a unique solution
y ∈ C1[a, b] ∩ C[α, b] (see [7]).

Analogously to (1), we consider g(x) := x − τ ( τ ∈ R, τ > 0) and the jump
discontinuities ξ j = a + jτ ( j = 0, 1, ...,M), α = a − τ . In each interval Ii =
[ξi , ξi+1] (i = 0, 1, ...,M − 1) we shall construct for the problem (10) a polynomial
spline approximating function (6) of degree m ≥ 2 and deficiency 1 and we determine
the coefficients ak, bk through the following collocation system:





s′
k/Ii
(tk + h

2 ) = k1sk/Ii (tk + h/2)+
+ f (tk + h

2 , sIi−1 (tk + h
2 − τ), s ′

Ii−1
(tk + h

2 − τ))

s′
k/Ii
(tk+1) = k1sk/Ii (tk+1)+

+ f (tk+1, sIi−1 (tk+1 − τ), s ′
Ii−1
(tk+1 − τ))

It follows that in the first interval [ξ0, ξ1] (the generalization to Ii , i = 1, ...,M −1
is immediate) assuming Ak(t) as in (8):

(11)





ak
(m−2)!

(
1 − k1

h
2(m−1)

) ( h
2

)m−2 + bk
(m−1)!

(
1 − k1

h
2m

)
( h

2 )
m−1 =

−A′
k(tk + h

2 )+ k1 Ak(tk + h
2 )+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

ak
(m−2)!

(
1 − k1

h
m−1

)
hm−2 + bk

(m−1)!

(
1 − k1

h
m

)
hm−1 =

−A′
k(tk+1)+ k1 Ak(tk+1)+

+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

It is easy to prove the following:

THEOREM 2. Let us consider the delay neutral differential problems in (10). Un-
der the hypotheses of existence and uniqueness of the analytic solution, there exists a
unique spline approximation solution s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) of (10)
given by the above construction for h 6= 0, if and only if the following condition is
satisfied: ∣∣∣∣∣

1 − k1
h

2(m−1)
1
2

(
1 − k1

h
2m

)

1 − k1
h

m−1 1 − k1
h
m

∣∣∣∣∣ 6= 0

COROLLARY 4. If k1 = 0 and m ≥ 2 the condition is satisfied ∀h (h 6= 0).

COROLLARY 5. If k1 6= 0 and 2 ≤ m < 9 the condition is satisfied ∀h (h 6= 0).

REMARK 1. As the condition of the Theorem provides the non singularity of the
coefficient matrix of system (11), its extension to a linear system of n delay differential
equations of first order is immediate.
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REMARK 2. For the consistency and convergence of the numerical solutions of
(1) and (10) we can take into account the results obtained in more general cases. In
[2] , [5] it is shown that the spline collocation method appears as (m–1)step-method.
Consequently for m = 3 and m = 4 the cubic and quartic approximating splines yield
the same values of the solution of (1) in the knots as discrete 2-step and 3-step method
respectively. Analogously for m = 2 and m = 3 the trapezoidal and the Simpson’s
rule give the same discrete solutions of (10) as quadratic and cubic spline respectively.
Consequently it is possible to prove consistency and convergence of the method. The
numerical stability of the method is not guaranteed (see [2], [5]) when m > 4 for (1)
and when m > 3 for (10).

2.2. The case of Volterra integral equations

Let us use the same method for the following Volterra integral equation with positive
and constant delay (VDIE):

(12) y(x) =
∫ x

0
k1 y(t)dt +

∫ x−τ

0
K2(x, t, y(t))dt + g(x), x ∈ J = [0, T ]

with k1 ∈ R, the delay τ ∈ R, τ > 0, y(x) = φ(x) for x ∈ [−τ, 0).

We assume that the given functions φ : [−τ, 0] → R, g : J → R, K2 :
�τ × R → R (�τ := J × [−τ, T − τ ]) are at least continuous on their domains such
that (12) possesses a unique solution y ∈ C(J ).

If K2 = 0 equation (12) reduces to Volterra integral equation (VIE).

We suppose that T = Mτ for some M ∈ N. For N ∈ N (which satisfies N/M
∈ N), let h = T/N and r = τ/h ∈ N.

Chosen ti = ih (i = −r, ..., 0, 1, ..., N; t−r = −τ, tN = T ), the coefficients
ak, bk of sk(t) defined in [tk, tk+1] (k = 0, ..., N − 1) with τ ≤ tk < T are determined
through the following collocation system:

(13)





sk(tk + h
2 ) =

∑k−1
j=0

∫ ( j+1)h
jh k1 s j (t)dt +

∫ kh+ h
2

kh k1sk(t)dt+
+
∑k−1−r

j=0

∫ ( j+1)h
jh K2(tk + h

2 , t, s j (t))dt+

+
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, sk−r (t))dt + g(tk + h
2 )

sk(tk+1) =
∑k

j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∑k−r

j=0

∫ ( j+1)h
jh K2(tk+1, t, s j (t))dt + g(tk+1)

and if 0 ≤ tk < τ from

(14)





sk(tk + h
2 ) =

∑k−1
j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∫ kh+ h

2
kh k1sk(t)dt +

∑−1
j=k−r

∫ ( j+1)h
jh K2(tk + h

2 , t, s j (t))dt+

−
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, sk−r (t))dt + g(tk + h
2 )

sk(tk+1) =
∑k

j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∑−1

j=k−r+1

∫ ( j+1)h
jh K2(tk+1, t, s j (t))dt + g(tk+1)
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provided that sk(t) = φ(t) in [tk, tk+1] (k = −r, ...,−1).

Consequently (13), with Ak(t) as in (8), becomes:




ak
(m−1)!(

h
2 )

m−1
(
1 − k1

h
2m

)
+ bk

m! (
h
2 )

m
(

1 − k1
h

2(m+1)

)
=

−Ak(tk + h
2 )+

∫ kh+ h
2

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j(t)

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑k−1−r

j=0

∫ ( j+1)h
jh K2(tk + h

2 , t, A j (t)+ a j
(m−1)!(t − t j )

m−1+
+ b j

m! (t − t j )
m)dt+

+
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, Ak−r (t)+ ak−r
(m−1)!(t − tk−r )

m−1+
+ bk−r

m! (t − tk−r )
m)dt + g(tk + h

2 )

ak
(m−1)! hm−1

(
1 − k1

h
m

)
+ bk

m! hm
(

1 − k1
h

m+1

)
=

−Ak(tk+1)+
∫ (k+1)h

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j(t)+

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑k−r

j=0

∫ ( j+1)h
jh K2(tk+1, t, A j (t)+ a j

(m−1)!(t − t j )
m−1+

+ b j
m! (t − t j )

m)dt + g(tk+1)

Analogously (14) becomes:




ak
(m−1)!(

h
2 )

m−1
(
1 − k1

h
2m

)
+ bk

m! (
h
2 )

m
(

1 − k1
h

2(m+1)

)
=

−Ak(tk + h
2 )+

∫ kh+ h
2

kh k1 Ak(t)dt+
+
∑k−1

j=0

∫ ( j+1)h
jh k1(A j (t)+ a j

(m−1)!(t − t j )
m−1 + b j

m! (t − t j )
m)dt+

+
∑−1

j=k−r

∫ ( j+1)h
jh K2(tk + h

2 , t, A j (t)+ a j
(m−1)!(t − t j )

m−1+
+ b j

m! (t − t j )
m)dt+

−
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, Ak−r (t)+ ak−r
(m−1)!(t − tk−r )

m−1+
+ bk−r

m! (t − tk−r )
m)dt + g(tk + h

2 )

ak
(m−1)! hm−1

(
1 − k1

h
m

)
+ bk

m! hm
(

1 − k1
h

m+1

)
=

−Ak(tk+1)+
∫ (k+1)h

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j (t)+

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑−1

j=k−r+1

∫ ( j+1)h
jh K2(tk+1, t, A j (t)+ a j

(m−1)!(t − t j )
m−1+

+ b j
m! (t − t j )

m)dt + g(tk+1)

It is easy to prove the following:

THEOREM 3. Let us consider equation (12). Under the hypotheses of existence
and uniqueness of the analytic solution, there exists a unique spline approximation
solution s : [0, T ] → R, (s ∈ Sm, s ∈ Cm−2) of (12) given by the above construction
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for h 6= 0 if and only if the following condition is satisfied:

∣∣∣∣∣
1 − k1

h
2m

1
2(1 − k1

h
2(m+1))

1 − k1
h
m 1 − k1

h
m+1

∣∣∣∣∣ 6= 0

COROLLARY 6. If k1 = 0 and m ≥ 2 the condition is satisfied ∀h (h 6= 0).

COROLLARY 7. If k1 6= 0 and 2 ≤ m < 8 the condition is satisfied ∀h (h 6= 0).

REMARK 3. About the convergence and the numerical stability of the method ap-
plied to (12) we refer to [9].

3. Numerical examples

In the following we present some numerical results to enlighten the features of the pre-
sented numerical method. We emphasize that we will show examples just for cases
with exact solutions belonging to a low regularity class, because our method is ded-
icated just to these cases. In all the examples the existence and uniqueness of the
numerical solution is guaranteed for any value of the integration step h.

Our computer programs are written in MATLAB5.3, which has a machine precision
ε ' 10−16.

Our first example refers to the following second order DDE

y′′(t) =
∣∣∣∣t − 1

2

∣∣∣∣+ y ′(t − 1)

which is to be solved on [0, 1] with history y(t) = 1 for t ≤ 0.
The analytical solution is y(t) = − 1

6 t3 + 1
4 t2 + 1 in [0, 1/2], and y(t) = 1

6 t3 −
1
4 t2 + 1

4 t + 23
24 in [1/2, 1]; therefore the solution y(t) ∈ C2, so using m = 4, our

approximating deficient spline function belongs exactly to the same class of regularity
of the analytical solution. We remark that this problem is smooth, as at t = 1/2 the left
third derivative slightly differs from the right third derivative. We chose a quite large
value h = 0.1 and we get a comparison with an analogous collocation method using
classical splines. The following Table 1 reports the errors esd and esc we obtained
respectively using deficient spline sd ∈ S4, sd ∈ C2 and classical spline sc ∈ S4,
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sc ∈ C3.

t esd esc

0.1 1.0E-4 1.4E-4
0.2 3.1E-5 9.4E-5
0.3 2.7E-5 2.9E-4
0.4 6.8E-5 1.0E-3
0.5 9.1E-5 2.0E-3
0.6 1.0E-4 3.3E-3
0.7 1.4E-4 4.3E-3
0.8 1.9E-4 5.0E-3
0.9 2.5E-4 5.4E-3
1.0 3.3E-4 5.5E-3

Table 1

It is clear that deficient spline behaves better than classical spline, as it exhibits the
same class of regularity as the analytical solution, even when large integration steps
are used.

As a second example, we consider the following NDDE:

y′(t) = −500
y(t − 1)

y′(t − 1)

which is to be solved on [0, 2] with history y(t) = e−t for t ≤ 0.

The analytical solution is y(t) = 500t +1 in [0, 1], and y(t) = −250t 2 +499t +252
in [1, 2]. Therefore the solution y(t) ∈ C0[0, 2] ; so using m = 2, our approximating
deficient spline function belongs exactly to the same class of regularity as the analyt-
ical solution. We emphasize that this problem is really rough, as at t = 1 the left
first derivative and the right first derivative differ significantly: indeed y ′(1)− = 500
whereas y ′(1)+ = −1. Therefore we could expect some numerical troubles. On the
contrary our method deals very well with this kind of problems, as already pointed
out. We chose a quite large value h = 0.25; at t = 1 we obtain numerically the exact
value and at t = 2 the final absolute error is 2.6E − 4. This suffices to show how our
method is accurate and efficient and cheap. Figure 1 reports the behavior of the analyt-
ical solution (solid line) together with the numerical solution (rectangles) for the case
h = 0.25.

As a third example we consider the following system of first order DDE’s suggested as
Example 1 in [11] . The equations

y′
1(t) = y1(t − 1)

y′
2(t) = y1(t − 1)+ y2(t − 0.2)

y′
3(t) = y2(t − 1)

are to be solved on [0, 1] with history y1(t) = 1, y2(t) = 1, y3(t) = 1 for t ≤ 0.
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Figure 1: h=0.25

A comparison between the solutions computed by means of dde23 (see [11]) and by
our method (with h = 0.01) show that the three solution curves coincide and the num-
ber of required flops has the same order of magnitude; in this case using our method
no advantages occur, because the solutions are very regular. However this example is
interesting in order to show that our method works efficiently also for systems of equa-
tions and moreover that different delays are allowed and can be conveniently handled.
We remark that in this case the linear system to be solved has M equations and M
unknowns, where M = 2n with n equal to the number of given first order equations;
in this case M = 6.

About the integral equations, at first we consider the following Volterra integral
equation without delay argument. This example is reported just to show that even in
this case our method works really well, when solution exhibits low regularity.

y(x) = g(x)+
∫ x

0
y(s)ds

g(x) =
{

x3

3 − x2 + 1−x
4 0 ≤ x ≤ 1

2

−
(

x3

3 − x2 + 1−x
4

)
− 1

6
1
2 ≤ x ≤ 1

The exact solution is:

y(x) =
∣∣∣∣x2 − 1

4

∣∣∣∣

We computed our solution in x = 1. Using m = 2 , we built splines s ∈ S2, s ∈
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C0[0, 1], that is of the same class of regularity of the analytical solution. Even in
this case, we obtain very good numerical results; in particular at t = 1 our error is
comparable with the machine precision, even when large integration steps are used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: h=0.5

Figure 2 refers just to the case h = 0.5 ; there solid line shows the exact solution in
[0, 1] ; rectangles show the integration points and circles show intermediate points of
our numerical solution computed by means of spline analytical expression relating to
each integration interval. It is evident that even when a large integration step is used,
our numerical solution coincides with the analytical one.

At last we consider the following integral equation with delay arguments:

y(x) = g(x)+
∫ x

0
y(s)ds −

∫ x−τ

0
y(s)ds

τ = 1, y(x) = 0 for x ∈ [−1, 0]

g(x) =
{

100x − 50x2 for x ∈ [0, 1/2]
−400(x − 1)3 + 100(x − 1)4 − 75/4 for x ∈ [1/2, 1]

The exact solution is:

y(x) =
{

100x for x ∈ [0, 1/2]
−400(x − 1)3 for x ∈ [1/2, 1]

Even in this case the solution y(x) to be approximated belongs to class C0[0, 1]. We
used a large integration step h1 = 0.5 in [0, 1/2] and a shorter step h2 in [1/2, 1],
where the solution is not linear.
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Figure 3 refers to the case h1 = 0.5 and h2 = 0.125; there solid line shows the exact
solution in [0, 1] together with the history in [−1, 0]; rectangles show the numerical
solution in the integration points and circles show the numerical solution in the inter-
mediate points (computed by means of the analytical expression of spline).

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

Figure 3: h1 = 0.5, h2 = 0.125

It is evident that even in this case results are very satisfactory.

In more details, the numerical solution in x = 1 is computed with an error equal to
1.0E − 2 when h2 = 0.25 and with an error equal to 6.6E − 4 when h2 = 0.125.
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[2] CALIÒ F., MARCHETTI E., MICULA G. AND PAVANI R., A new deficient spline
functions collocation method for the second order delay differential equations,
Pure Math. Appl. 13 1-2 (2003), 97–109.
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Splines and Radial Functions

C. Conti - L. Gori - F. Pitolli

SOME RECENT RESULTS ON A NEW CLASS OF BIVARIATE

REFINABLE FUNCTIONS

Abstract. In this paper a new class of bivariate refinable functions is pre-
sented and some of its properties are investigated. The new class is con-
structed by convolving a tensor product refinable function of special type
with χ[0,1], the characteristic function of the interval [0, 1]. As in the case
of box splines, the convolution product here used is the directional convo-
lution product.

1. Introduction

It is well know that refinable functions play a key role in different fields like, just to
mention two of the most significative, subdivision algorithms and wavelets. That is
why there is an enormous amount of literature analyzing properties and applications
of refinable functions in both the univariate and multivariate setting. In spite of their
importance in many applications, the explicit form of refinable functions known in the
literature reduces, in practice, to the two celebrated cases of B-splines and box-splines
on uniform grids and of Daubechies refinable functions (see [2], [3], [6], and [7], for
example). This is especially true in the multivariate setting where tensor product of
univariate refinable functions are mainly taken into account. The considerations above
motivated us in constructing and investigating a new family of bivariate non tensor-
product refinable functions. Thus, starting with a bivariate function which is a tensor-
product of finitely supported totally positive refinable functions, the new functions are
obtained by using the directional convolution product with the characteristic function
of the interval [0, 1]. The idea is definitely borrowed from box-splines but the bivariate
function we start with is not the characteristic function of [0, 1]2. The univariate func-
tions used to construct the tensor product belong to a large class of refinable functions
introduced in [9], [8] by the two last authors so that they will be called GP functions.
The class of GP functions contains as a particular case the cardinal B-splines with
which they share many useful properties. The differences between the B-splines and
the GP functions are mainly due to the fact that the refinement mask is characterized by
one or more extra parameters that afford additional degrees of freedom which reveals
its effectiveness in several applications.

The outline of the paper is as follows. In Section 2 we first recall the definition of
the directional convolution product of a bivariate function and a univariate function.
Then, we investigate which properties of the bivariate function are preserved after the
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directional convolution with χ[0,1], the characteristic function of [0, 1], is made. In
Section 3 the new class of bivariate refinable functions is characterized. In the closing
Section 4 a few examples are presented.

2. Directional convolution

We start this Section by recalling the definition of the directional convolution product
(see also [7] for a possible use of it).

DEFINITION 1. Let F : R2 → R, g : R → R be a bivariate and a univariate
function, respectively, and let e ∈ Z2 be a direction vector. The convolution product
between F and g along the direction e is defined as

(1) (F ∗e g)(x) :=
∫

R

F(x − et)g(t) dt, x ∈ R
2.

Next, let 8 be a bivariate refinable function that is a solution of a refinement equa-
tion of type

(2) 8(x) =
∑

α∈Z2

aα8(2x − α), x ∈ R
2,

where the set of coefficients aα forms the so called refinement mask a = {aα, α ∈
Z2}. The mask a is supposed to be of compact support and satisfying∑
α∈Z2 aα+2γ = 1 for all γ ∈ {0, 1}2. Furthermore, we assume that the Fourier trans-

form of8 satisfies 8̂(0) = 1. Here we define the Fourier transform of a given function
F as

(3) F̂(ω) :=
∫

R2
F(x)e−iω·x dx .

Using the above introduced directional convolution product we defined the bivariate
function9 : R2 → R

(4) 9(x) := (8 ∗e χ[0,1])(x) =
∫ 1

0
8(x − et) dt,

where e ∈ {−1, 0, 1}2, and χ[0,1], in the following for shortness χ , is the characteristic
function of the unit interval [0, 1].

PROPOSITION 1. Let 8 be a refinable function with refinement mask a such that∑
α∈Z2 8(· − α) = 1. Then, the function 9 defined in (4) is refinable with refinement

mask



Bivariate refinable functions 303

b = {bα = aα + aα−e

2
, α ∈ Z

2} .

Furthermore, the integer translates of9 form a partition of unity, namely
∑
α∈Z2 9(·−

α) = 1.

Proof. By the 9 definition we get

9(x) =
∫ 1

0 8(x − et) dt =
∑

α∈Z2

aα

∫ 1

0
8(2(x − et)− α)dt

= 1
2

∑

α∈Z2

aα

∫ 2

0
8(2x − et − α)dt

= 1
2

∑

α∈Z2

aα

[∫ 1

0
8(2x − et − α)dt +

∫ 1

0
8(2x − et − α − e)dt

]

= 1
2

∑

α∈Z2

aα[9(2x − α)+9(2x − α − e)]

=
∑

α∈Z2

1

2
(aα + aα−e)9(2x − α)

so that 9 is refinable with refinement mask b = {bα = aα+aα−e
2 , α ∈ Z2}.

Next, since the Fourier transform of 9 is 9̂(ω) = 8̂(ω)χ̂(e · ω) for all ω ∈ R2, from
8̂(0) = 1 it trivially follows that

∑
α∈Z2 9(· − α) = 9̂(0) = 8̂(0) = 1 which is the

partition of unity for the function9.

A theorem is now dealing with the stability of 9. We recall that the function 9 is
L2-stable if there exist two constants 0 < A ≤ B < ∞ such that

(5) 0 < A||c||2 ≤ ||
∑

α∈Z2

cα9(· − α)||2 ≤ B||c||2

for any real sequence c = {cα, α ∈ Z2} in `2(Z2).

THEOREM 1. Let {8(· − α), α ∈ Z
2} be linear independent and such that

8̂(2πk) = δ0,k , where δ0,k is the Kronecker symbol. Then, the integer translates of
9 are linearly independent. Furthermore, {9(· − α), α ∈ Z2} is a L2-stable basis.
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Proof. To prove the linear independence, it is sufficient to show that the set of the
complex periodic zeros of 9̂ is empty, that is

ZC
9 = {θ ∈ C

2|9̂(θ + 2πk) = 0, ∀k ∈ Z
2} = {∅}

(see [12] for details). Now, since

9̂(θ + 2πk) = 8̂(θ + 2πk)χ̂(e · (θ + 2πk)) ,

if θ is not a multiple of 2π , then θ + 2πk /∈ 2πZ2 and 8̂(θ + 2πk) 6= 0, χ̂(e ·
(θ + 2πk)) 6= 0, so that θ is not a periodic zero. If θ is a multiple of 2π , then
θ + 2πk ∈ 2πZ

2 and

8̂(θ + 2πk) =
{

0, if k 6= K ,
1, if k = K ,

where K := − θ
2π . Now, for k = K one has χ̂(e · (θ + 2πK )) = χ̂(0) = 1, so that θ

is not a periodic zero. It follows the set Z C
9 is empty.

We conclude with the observation that, obviously, also the set of the real periodic zeros
of 9̂ is empty, that is

Z R
9 = {θ ∈ R

2|9̂(θ + 2πk) = 0, ∀k ∈ Z
2} = {∅} ,

which implies the L2-stable stability of the system of the integer translates of 9 as
shown, again, in [12].

As a consequence of Theorem 1, the following corollary holds.

COROLLARY 1. The refinable function9 generates a multi-resolution analysis on
L2(R2).

3. A new class of bivariate refinable functions

Aim of this Section is the construction of a specific class of refinable functions having
all the properties of the 9 function discussed in the previous section. As 8 refinable
function we consider a tensor product of particular univariate functions, that is

(6) 8H1,H2(x) := ϕH1(x1)ϕ
H2(x2) ,

where H1 = (n1, h1), H2 = (n2, h2), and x = (x1, x2), and where ϕH1 , ϕH2 are uni-
variate functions belonging to the class of one parameter refinable functions introduced
in [9]. We recall that the refinement mask of a GP function of type ϕH, H = (n, h), is
supported on [0, n + 1] and has positive entries

(7) aH
α = 1

2h

[(
n + 1

α

)
+ 4(2h−n − 1)

(
n − 1

α − 1

)]
, α = 0, . . . , n + 1,
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so that, whenever n = h, the function ϕH reduces to the B-splines of degree n.

It is worthwhile to note that the real parameter h, h ≥ n ≥ 2, is an additional parameter
which turns out to be useful for getting higher flexibility in the applications.

It is easy to see that the symbol associated with the refinement mask in (7) is

(8) pH(z) = 1

2h
(1 + z)n−1(z2 + (2h−n+2 − 2)z + 1) .

For any n and h, (h ≥ n > 2), the function ϕH belongs to Cn−2(R), is centrally
symmetric and the function system {ϕH(x − α), α ∈ Z} is linearly independent, stable
and satisfies

∑
α∈Z

ϕH(x − α) = 1 for all x ∈ R. Moreover, the Fourier transform
ϕ̂H(ω) vanishes if and only if ω ∈ 2πZ \ {0}.

With the ϕH refinable functions at hand we are able to construct a new class of bivariate
refinable functions using the direction convolution product with direction e = (1, 1).
We define the function9H1,H2 as

(9)
9H1,H2(x) := (8H1,H2 ∗e χ)(x)

=
∫ 1

0 8
H1,H2(x − et) dt =

∫ 1
0 ϕ

H1(x1 − t)ϕH2(x2 − t) dt .

Note that the support of 9H1,H2 satisfies

supp(9H1,H2) ⊂ supp(8H1,H2)+ [0, 1]2 ,

where supp(8H1,H2) = [0, n1 + 1] × [0, n2 + 1]. Moreover, the function 9H1,H2 is
such that

(10) 9̂H1,H2(ω1, ω2) = ϕ̂H1(ω1)ϕ̂
H2(ω2)χ̂(ω1 + ω2) ,

and its refinement mask and associated symbol are

(11)
bH1,H2 =

{
(a

H1,H2
α +a

H1,H2
α−e )

2 , α ∈ Z2
}
,

PH1,H2(z) = pH1(z1)pH2(z2)
1
2(1 + z1z2) ,

where aH1,H2 = {aH1
α1 aH2

α2 , α = (α1, α2) ∈ Z2} is the mask of the tensor product.

Last, due to the results in Section 2, 9H1,H2 has linearly independent integer translates
and it generates a multi-resolution analysis on L2(R2).

4. Examples

In this Section we show the refinement masks and the graphs of some refinable func-
tions constructed using the directional convolution strategy.
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We start by setting H1 = H2 = (3, h), and h ≥ 3. The refinement mask a(3,h) of the
univariate refinable functions for different values of h are listed below while the graphs
of these functions, obtained by performing five steps of the subdivision algorithm, are
shown in Figure 1.

a(3,3) = 1
23 {1, 4, 6, 4, 1}, a(3,4) = 1

24 {1, 8, 14, 8, 1},

a(3,8) = 1
28 {1, 128, 254, 128, 1}.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Figure 1: Graphs of the functions ϕ(3,3)(−), ϕ(3,4)(−−) and ϕ(3,8)(.−)

Note that ϕ(3,3) is just the cubic B-spline with uniform knots.

The bivariate refinement masks corresponding to the tensor product refinable functions
8H1,H2 we construct from the previous functions for H1 = H2 = (3, 3) and H1 =
H2 = (3, 4) are

a(3,3),(3,3) = 1

26




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



,

a(3,4),(3,4) = 1

28




1 8 14 8 1
8 64 112 64 8

14 112 196 112 14
8 64 112 64 8
1 8 14 8 1
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while for H1 = H2 = (3, 8) the refinement mask is

a(3,8),(3,8) = 1

216




1 128 254 128 1
128 16384 32512 16384 128
254 32512 64516 32512 254
128 16384 32512 16384 128

1 128 254 128 1



.

The associated refinable functions obtained by three steps of the corresponding sub-
division algorithm are shown in Fig. 2, Fig. 3 and Fig. 4 where, for shortness, the
function8H1,H2 with H1 = H2 is denoted just as 8H1 .

0
1

2
3

4
5

6
7

0

2

4

6

8
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0.1

0.2

0.3

0.4

0.5

Figure 2: Graph of the function8(3,3)

Finally, the refinement mask of the convolved functions for H1 = H2 = (3, 3) and
H1 = H2 = (3, 4) are

b(3,3),(3,3) = 1

27




0 1 4 6 4 1
1 8 22 28 17 4
4 22 48 52 28 6
6 28 52 48 22 4
4 17 28 22 8 1
1 4 6 4 1 0



,

b(3,4),(3,4) = 1

29




0 1 8 14 8 1
1 16 78 120 65 8
8 78 224 260 120 14

14 120 260 224 78 8
8 65 120 78 16 1
1 8 14 8 1 0
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Figure 3: Graph of the function8(3,4)
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Figure 4: Graph of the function8(3,8)

and for H1 = H2 = (3, 8)

b(3,8),(3,8) = 1

217




0 1 128 254 128 1
1 256 16638 32640 16385 128

128 16638 65024 80900 32640 254
254 32640 80900 65024 16638 128
128 16385 32640 16638 256 1
1 128 254 128 1 0



,
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with corresponding graphs in Fig. 5, Fig. 6 and Fig. 7 (obtained, again, by three steps
of the corresponding subdivision algorithm).
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Figure 5: Graph of the function9 (3,3)
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Figure 6: Graph of the function9 (3,4)

Applications of the new refinable functions of type 9H1,H2 are presently under inves-
tigation.
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Figure 7: Graph of the function9 (3,8)
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ON OPTIMAL NODAL SPLINES AND THEIR APPLICATIONS

Abstract. We present a survey on optimal nodal splines and some their
applications. Several approximation properties and the convergence rate,
both in the univariate and bivariate case, are reported.

The application of such splines to numerical integration has been con-
sidered and a wide class of quadrature and cubature rules is presented for
the evaluation of singular integrals, Cauchy principal value and Hadamard
finite-part integrals. Convergence results and condition number are given.

Finally, a nodal spline collocation method, for the solution of Volterra
integral equations of the second kind with weakly singular kernel, is also
reported.

1. Introduction

It is well known that the polynomial spline approximation operators for real-valued
functions are of great usefulness in the applications.

In their construction, it is desirable to obtain some nice properties as in particular:

1. the operator can be applied to a wide class of functions, including, for example,
continuous or integrable functions;

2. they are local in the sense that can depend only on the values of f in a small
neighbourhood of the evaluation point x ;

3. the operators allow to approximate smooth functions f with an order of accu-
racy comparable to the best spline approximation. The key for obtaining oper-
ators with such property is to require that they reproduce appropriate class of
polynomials.

The approximating splines obtained by applying the quasi-interpolatory operator
defined in [24] satisfy the above properties and, recently, they have been widely used
in the construction of integration formulas and in the numerical solution of integral
and integro-differential equations, see, for instance, [3,4,7,10,13,22,27,23,28,30,32]
and references therein.

This review paper is concerning the optimal nodal spline operators that, besides
the properties 1., 2., 3., have the advantage of being interpolatory. These splines, in-
troduced by DeVilliers and Rohwer [17,18] and studied in [12,14,16,19], have been

313
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utilized for constructing integration rules for the evaluation of weakly and strongly
singular integrals also defined in the Hadamard finite part sense, in one or two dimen-
sions and, more recently, for a collocation method producing the numerical solution of
weakly singular Volterra integral equations.

In Section 2., after a brief outline of the construction of one-dimensional nodal
spline operators, we shall present the tensor product of optimal nodal splines, recalling
also some convergence results.

Section 3. is devoted to the application of the nodal spline operators in the approx-
imation of different kind of 1D or 2D integrals and the main convergence results of the
corresponding integration formulas are reported.

Finally, Section 4. deals with a collocation method, based on nodal splines, for the
numerical solution of linear Volterra equation with weakly singular kernel.

2. Optimal nodal splines and their tensor product

2.1. One dimensional nodal splines

Let J = [a, b] be a given finite interval of the real line R, for a fixed integer m ≥ 3 and
n ≥ m − 1, we define a partition5n of J by

5n : a = τ0 < τ1 < ... < τn = b ,

generally called “primary partition”. We insert m − 2 distinct points throughout
(τν, τν+1), ν = 0, ..., n − 1 obtaining a new partition of J

Xn : a = x0 < x1, < ... < x(m−1)n = b,

where x(m−1)i = τi , i = 0, ..., n. Let

(1) Rn = max
0 ≤ k, j ≤ n − 1

|k − j | = 1

τk+1 − τk

τ j+1 − τ j
,

we say that the sequence of partitions {5n; n = m − 1,m, ...} is locally uniform (l.u.)
if, for all n, there exists a constant A ≥ 1 such that Rn ≤ A, i.e.

(2)
1

A
≤ τk+1 − τk

τ j+1 − τ j
≤ A , k, j = 0, 1, ..., n − 1 and |k − j | = 1 .

Since the convergence results of the nodal splines we shall consider are based on the
local uniformity property of the primary partitions sequence and one of our objectives
is the use of graded meshes, the following proposition shows that a sequence of primary
graded partitions is l.u. [8]. For the definition of graded partitions see for example [2].

PROPOSITION 1. Let [a, b] be a finite interval. The sequence of partitions {5n},
obtained by using graded meshes of the form

τi = a +
(

i

n

)r

(b − a) , 0 ≤ i ≤ n ,



On optimal nodal splines 315

with grading exponent r ∈ R assumed ≥ 1, is l.u., i.e. it satisfies (2) with A = 2r − 1.

Now, after introducing two integers [16]

i0 =





1
2 (m + 1) m odd

1
2 m + 1 m even

and i1 = (m + 1)− i0

and two integer functions

pν =





0 ν = 0, 1, ..., i1 − 2
ν − i1 + 1 ν = i1 − 1, ..., n − i0
n − (m − 1) ν = n − i0 + 1, ..., n − 1

qν =





m − 1 ν = 0, 1, ..., i1 − 2
ν + i0 ν = i1 − 1, ..., n − i0
n ν = n − i0 + 1, ..., n − 1

consider the set {wi(x); i = 0, 1, ..., n} of functions defined as follows [17-19]

(3) wi(x) =





li(x) x ∈ [τ0, τi1−1], i ≤ m − 1
si(x) x ∈ (τi1−1, τn−i0+1), n ≥ m
l i(x) x ∈ [τn−i0+1, τn], i ≥ n − (m − 1)

where

li (x) =
m−1∏

k = 0
k 6= i

x − τk

τi − τk

l i (x) =
m−1∏

k = 0
k 6= n − i

x − τn−k

τi − τn−k

si (x) =
m−2∑

r=0

j1∑

j= j0

αi,r, j B(m−1)(i+ j)+r(x)

with j0 = max{−i0, i1 − 2 − i}, j1 = min{−i0 + m − 1, n − i0 − i}. The coefficients
αi,r, j are given in [19] and the B-spline sequence is constructed from the set of the
normalized B-splines for i = (m−1)(i1−2), (m−1)(i1−2)+1, ..., (m−1)(n−i0+1).
Then, the following locality property holds [17]

(4) si (x) = 0 , x 6∈ [τi−i0 , τi+i1 ].

Each wi(x) is nodal with respect to 5n , in the sense that

wi (τ j ) = δi, j , i, j = 0, 1, ..., n .
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Therefore, being det[wi(τ j )] 6= 0, the functions wi(x), i = 0, 1, . . . , n , are linearly
independent. Let S5n = span{wi(x); i = 0, 1, ..., n}, it is proved in [18] that, for all
s ∈ S5n , one has s ∈ Cm−2(J ).

For all g ∈ B(J ), where B(J ) is the set of real-valued functions on J , we consider
the spline operator Wn : B(J ) → S5n, so defined

Wng =
n∑

i=0

g(τi)wi (x) , x ∈ J .

By (4), for 0 ≤ ν < n we can write:

(5) Wng =
qν∑

i=pν

g(τi)wi(x), x ∈ [τν, τν+1] .

Moreover Wn p = p, for all p ∈ Pm , where Pm denotes the set of polynomials of
order m (degree ≤ m − 1), and Wng(τi) = g(τi), for i = 0, 1, ..., n, i.e. Wn is an
interpolatory operator [17,18].

Using the results in [17-19] we deduce that, for l.u. {5n}, Wn is a bounded projec-
tion operator in S5n . In fact, it is easy to show that

Wns = s , for all s ∈ S5n

and, if we denote:

||Wn|| = sup{||Wnh||∞ : h ∈ C(J ), ||h||∞ < 1},

with ||h||∞ = max
x∈I

|h(x)| , considering that

||Wn|| ≤ (m + 1)

[
m−1∑

λ=1

(Rn)
λ

]m−1

,

where Rn is defined in (1), from (2), if {5n} is l.u., we obtain ||Wn|| < ∞.

We remark that if we assume the (m − 2) points equally spaced throughout
(τν, τν+1), ν = 0, 1, . . . , n − 1, then the local uniformity constant of {Xn} will be
equal to that of {5n}.

Finally for all g ∈ Cs−1(J ), with 1 ≤ s ≤ m, we introduce the following quantity

Eνs =
{

Dν(g − Wn g) , 0 ≤ ν < s
DνWng , s ≤ ν < m.

If {Xn} is l.u., for 0 ≤ ν ≤ s − 1 there results [14,19]

(6) ||Eνs||∞ = O
(
H s−ν−1

n ω(Ds−1g; Hn; J )
)

where

(7) Hn = max
0≤i≤n−1

(τi+1 − τi)
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and for all f ∈ C(J ), ω( f ; δ; J ) = max
x , x + h ∈ J

0 < h ≤ δ

| f (x + h)− f (x)|.

For s ≤ ν < m in [14] a bound for |Eνs| is given.

Furthermore, for every t ⊆ J and g ∈ Cν(J ), 0 ≤ ν < m − 1 [27]

ω(DνWng; t; J ) = O
(
ω(Dνg; t; J )

)
.

2.2. Tensor product of optimal nodal splines

Let D be the R2 subset defined by [a, b] × [ã, b̃]. We consider partitions 5n and Xn

on which we construct the spline functions of order m {wi(x), i = 0, . . . , n} defined in
( 3 ).

Then we consider similar partitions of [ã, b̃], 5̃ñ and X̃ ñ and we construct the
corresponding functions of order m̃ {w̃ĩ(x̃), ĩ = 0, . . . , ñ}.

Now we may generate a set of bivariate splines

wi,ĩ (x, x̃) = wi(x)wĩ(x̃)

tensor product of the (3) ones.

Let B(D) denote the set of bounded real-valued functions on D. Then, for any
f ∈ B(D) we may define the following spline interpolating operator for (x, x̃) ∈
[τ j , τ j+1] × [τ̃ j̃ , τ̃ j̃+1],

(8) W ∗
nñ f (x, x̃) =

q j∑

i=p j

q̃ j∑

ĩ= p̃ j̃

wi,ĩ (x, x̃) f (τi , τ̃ĩ ),

with j = 0, 1, . . . , n − 1 and j̃ = 0, 1, . . . , ñ − 1.

In order to obtain the maximal order polynomial reproduction, we can assume m =
m̃, i.e. we use splines of the same order on both axes. We list in the following the main
properties of W ∗

nñ .

(a) W ∗
nñ is local, in the sense that W ∗

nñ f (x, x̃) depends only on the values of f in a
small neighbourhood of (x, x̃);

(b) W ∗
nñ interpolates f at the primary knots, i.e. W ∗

nñ f (τi , τ̃ĩ ) = f (τi , τ̃ĩ);

(c) W ∗
nñ has the optimal order polynomial reproduction property, that means W ∗

nñ p =
p, for all p ∈ P2

m , where P2
m is the set of bivariate polynomials of total order m.

For f ∈ Cs−1(D), 1 ≤ s < m we introduce the following quantity

Eνν̃s =
{

Dν,ν̃( f − W ∗
nñ f ) if 0 ≤ ν + ν̃ < s

Dν,ν̃W ∗
nñ f if s ≤ ν + ν̃ < m
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where Dν,ν̃ is the usual partial derivative operator.

Now we say that a collection of product partitions {Xn × X̃ ñ} of D is quasi uniform
(q.u.) if there exists a positive constant σ such that

1

δ̂
,
1

δ̃
,
1̃

δ̂
,
1̃

δ̃
≤ σ ,

where 1 = max1≤i≤n(m−1)(xi − xi−1), δ̂ = min1≤i≤n(m−1)(xi − xi−1) and 1̃ =
max1≤ĩ≤ñ(m−1)(x̃ ĩ − x̃ ĩ−1), δ̃ = min1≤ĩ≤ñ(m−1)(x̃ ĩ − x̃ ĩ−1).

We set

(9) H ∗ = Hn + H̃ñ and 1∗ = 1+ 1̃

where Hn is defined in ( 7 ) and likewise H̃ñ.

Assuming that f ∈ Cs−1(D) with 1 ≤ s < m and that {Wnñ f } is a q.u. sequence
of nodal splines, then for ν, ν̃ such that 0 ≤ ν + ν̃ ≤ s − 1

||Eνν̃s ||∞ = O
(
H ∗s−ν−ν̃−1ω(Ds−1 f ; H ∗; D)

)
.

In [9] local bounds of |Eνν̃s| are derived and local and global bounds of |Eνν̃s|, s ≤
ν + ν̃ < m , are also given.

Furthermore, for f ∈ Cp(D), 0 ≤ p < m − 1 , and for a q.u. sequence of nodal
splines {W ∗

nñ f }, there results for any non empty subset T of D

ω(D pW ∗
nñ f ; T ; D) = O

(
ω(D p f ; T ; D)

)
.

In the following we shall consider l.u. partitions in the one dimensional case and q.u.
partitions in the 2D one and we shall suppose always that the norm of the partitions
converges to zero as n → ∞ or n, ñ → ∞.

3. Numerical integration based on nodal spline operators

This section will deal with the numerical evaluation of some singular one-dimensional
integrals and of certain 2D singular integrals.

3.1. Product integration of singular integrands

Consider integrals of the form

(10) J (k f ) =
∫

I
k(x) f (x)dx

where k f ∈ L1(I ), but f is unbounded in I = [−1, 1].

In [26] product integration have been proposed, by substituting f by a sequence of
interpolatory nodal splines {Wn f } defined in (5), under different hypotheses on f .
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By using (6) with ν = 0, the author gets, firstly, the convergence of the quadrature
sum J (kWn f ), i.e.:

(11) J (kWn f ) → J (k f ) as n → ∞

by supposing f ∈ C(I ), k ∈ L1(I ) and Hn → 0 as n → ∞.

We recall that a computational procedure to generate the weights {vi (k) =∫
I k(x)wi(x)dx} of the above quadrature is given in [6].

Moreover in [26] the case when f ∈ PC(I ), k ∈ L1(I ) is studied and the conver-
gence of the quadrature rules sequence is proved.

We remark that in [11] the convergence (11) has been proved also for f ∈ R(I ),
the class of Riemann integrable functions on I and k ∈ L1(I ).

When the function f in (10) is singular in z ∈ [−1, 1) in [25] the author defines
the family of real valued functions Md (z; k):

(12)
Md(z; k) = { f : f ∈ PC(z, 1], ∃F : F = 0
on [−1, z], F is non negative, continuous

and nonincreasing on (z, 1), k F ∈ L1(I ) and | f | ≤ F on I }
.

He supposes that k satisfies one of the following conditions A, B:

(A) There exists δ > 0 : |k(x)| ≤ K (x), ∀x ∈ (z, z + δ], K is positive nonincreasing
in that interval and K F , F defined in (12), is a L1 function in I .

(B) Given q0 ∈ (0, 1), ∃δ, T , positive numbers (possibly depending on q0), such that
∫ c+h

c
|k(x)|dx ≤ hT |k(c + qh)|

∀q ∈ [q0, 1], ∀c and h satisfying z ≤ c < c + h ≤ z + δ. Besides |k(x) f (x)| ≤
G(x), ∀x ∈ (z, z + δ], where G is a positive non increasing L1 function in that
interval.

The following theorem can be proved.

THEOREM 1. Assume that f ∈ Md(−1; k) and k satisfies (A) or (B). If the se-
quence of partitions {5n} is l.u. and the norm converges to zero as n → ∞, then (11)
holds.

As consequence of that theorem if z = −1 the singularity can be ignored, provided
k satisfies (A) or (B).

In the case when z is an interior singularity, it must, in general, be avoided, i.e. we
must define a new integration rule

J ∗(kWn f ) =
n∑

i=J

vi (k) f (τi)
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where J is the smallest integer such that z ≤ τJ−λ, where τJ−λ is the left bound of the
support of sJ (x) and, if we assume that n is so large that J ≥ m, then wi = si and
vi (k) is given by:

vi (k) =
∫ τi+µ

τi−λ
k(x)si(x)dx ,

with λ = i0 and µ = i1.

Therefore, assuming that f ∈ Md (z; k), z > −1, and k satisfying (A) or (B). If
{5n} is locally uniform and the norm tends to zero as n → ∞, then

J ∗(kWn f ) → J (K f ) as n → ∞ .

If one wishes to use J (kWn f ) rather than J ∗(kWn f ) then k must be restricted in
[−1, z) as well as in (z, 1], for satisfying one of the following conditions ( Â) or (B̂).

(Â) : (A) holds and, in addition, |kz(x)| ≤ K (x) in (z, z + δ], where kz ∈ L1(2z −
1, 2z + 1) is defined by kz(z + y) = k(z − y).

(B̂) : (B) holds and so does (B) with k replaced by kz.

THEOREM 2. Let f ∈ Md(z; k), z > −1. Assume that k satsfies ( Â) or (B̂) and
that {5n} is l.u. and the norm converges to zero as n → ∞.

Define
Ĵ (kWn f ) = J (kWn f )− vρ f (τρ)

where τρ is the value of τi ≥ z closest to z. Then

Ĵ(kWn f ) → J (k f ) as n → ∞ .

In particular, if τρ = z then (11) holds. If z is such that for all n, τρ−z > C(τρ−τρ−1),
then (11) holds.

3.2. Cauchy principal value integrals

Consider the numerical evaluation of the Cauchy principal value (CPV) integrals

(13) J (k f ; λ) =
∫ 1

−1
− k(x)

f (x)

x − λ
dx, λ ∈ (−1, 1).

In [11] the problem has been investigated, following the “subtracting singularity” ap-
proach.

Assuming that J (k; λ) exists for λ ∈ (−1, 1), the integral (13) can be written in the
form

J (k f ; λ) =
∫ 1

−1
k(x)gλ(x)dx + f (λ)J (k; λ)

= I(kgλ)+ f (λ)J (k; λ),
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where

gλ(x) = g(x; λ) =





f (x)− f (λ)
x−λ x 6= λ

f ′(λ) x = λ and f ′(λ) exists
0 otherwise .

Therefore, approximating I(kgλ) by I(kWngλ) we can write [11]

J (k f ; λ) = Jn(k f ; λ)+ En(k f ; λ),

where
Jn(k f ; λ) = I(kWngλ)+ f (λ)J (k; λ) .

For any λ ∈ (−1, 1) we define a family of functions M̄d(z; k) = {g ∈ C(I\λ), ∃G : G
is continuous nondecreasing in [−1; λ), continuous non increasing in (λ, 1]; kG ∈
L1(I ), |g| < G in I }.

We assume
Nδ(λ) = {x : λ− δ ≤ x ≤ λ+ δ} ,

where δ > 0 is such that Nδ(λ) ⊂ I .

We denote by Hµ(I ), µ ∈ (0, 1], the set of Hölder continuous functions

Hµ(I ) = {g ∈ C(I ) : |g(x1)− g(x2)|
≤ L|x1 − x2|µ, ∀x1, x2 ∈ I, L > 0}

and by DT (I ) the set of Dini type functions

DT (I ) = {g ∈ C(I ) :
∫ l(I )

0
ω(g; t)t−1dt < ∞}

where l(I ) is the length of I and ω denotes the usual modulus of continuity.

The following convergence results for the quadrature rules Jn(k f ; λ), under differ-
ent hypotheses for the function f , are derived in [11].

THEOREM 3. For any λ ∈ (−1, 1), let f ∈ H1
(
Nδ(λ) ∩ R(I )

)
and k ∈ L1(I ).

Then, for l.u. {5n}, En(k f ; λ) → 0 as n → ∞.

THEOREM 4. Let f ∈ Hµ(I ), 0 < µ < 1, k ∈ L1(I ) ∩ C
(
Nδ(λ)

)
. Let h and p be

the greatest and the smallest integers such that τh < λ, τp > λ. We denote by τ ∗ the
node closest to λ

τ ∗ =
{
τh if λ− τh ≤ τp − λ

τp if λ− τh > τp − λ

and we suppose that there exists some positive constant C, such that

|τ ∗ − λ| > C max{(τh − τh−1), (τp+1 − τp)},

then, for l.u. {5n},
En(k f ; λ) → 0

as n → ∞.
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THEOREM 5. Let f ∈ C1(I ), k ∈ L1(I ). Then

En(k f ; λ) → 0 uniformly in λ, as n → ∞.

However, if k ∈ L1(I ) ∩ DT (−1, 1), then J (k f ; λ) exists for all λ(−1, 1). Besides

Jn(k f ; λ) → J (k f ; λ) as n → ∞

uniformly for all λ ∈ (−1, 1).

Moreover in [14] it has been proved that J (ωα,βWn; λ) → J (k f ; λ) uniformly
with respect to λ ∈ (−1, 1), for ωα,β(x) = (1 − x)α(1 + x)β, α, β > −1, and f (x) ∈
Hρ(−1, 1), 0 < ρ ≤ 1.

3.3. The Hadamard finite part integrals

We consider the evaluation of the finite part integrals of the form

(14) J̄ (ωα,β f ) =
∫

I
= ωα,β(x) f (x)

x + 1
dx,

where α > −1,−1 < β ≤ 0 and
∫
= denotes the Hadamard finite part (HFP).

It is well known that a sufficient condition so that (14) exists is

f ∈ Hµ(I ), 0 < µ ≤ 1, µ+ β > 0 .

We recall that [25]

(15) J̄ (ωα,β f ) =
∫ 1

−1
ωα,β(x)

f (x)− f (−1)

x + 1
dx + f (−1)

∫ 1

−1
= ωα,β(x)

x + 1
dx,

where, denoting c j = d j

dx j
(1−x) j

j !

∣∣∣
x=−1

, j = 0, 1, . . . , we obtain for the HFP in

(15),

∫ 1

−1
= ωα,β(x)

x + 1
dx =





log2 if α = β = 0

c0log2 +
∑∞

j=1
c j
j ! 2 j if β = 0, α 6= 0

α+β+1
β

2α+β 0(α+1)0(β+1)
0(α+β+2) if α > −1, −1 < β < 0,

where 0 is the gamma function.

Approximating f by Wn f in (14) we obtain the quadrature rule [5]:

(16) J̄(ωα,β f ) = J̄n( f )+ Ēn( f ),
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where

J̄n( f ) =
n∑

i=0

v̄i (ωα,β) f (τi)

with v̄i(ωα,β) = J̄(ωα,βwi), and

Ēn( f ) = J̄ (ωα,β( f − Wn f )).

A computational procedure for evaluating v̄i (ωα,β) is given in [6].

Denoting by Hs
µ(I ) the set of the functions f ∈ Cs(I ) having f (s) ∈ Hµ(I ), in [5]

the following theorem has been proved.

THEOREM 6. Let f ∈ Hs
µ(I ), 0 ≤ s ≤ m − 1, and µ + β > 0 if s = 0. Then, as

n → ∞:

||Ēn( f )||∞ =
{

O(H s+µ+β
n ) if β < 0

O(H s+µ
n | log Hn|) if β = 0 .

Consider now HFP integrals of the form:

(17) J ∗(ωα,β f ; λ; p) =
∫

I
= ωα,β(x)

f (x)

(x − λ)p+1 , λ ∈ [−1, 1], p ≥ 1

If f ∈ Hp
µ(I ), then J ∗(ωα,β f ; λ; p) exists.

In [20, 21] quadrature rules for the numerical evaluation of (17), based on some dif-
ferent type of spline approximation, including the optimal nodal splines, are considered
and studied.

In [29] the following theorem has been proved.

THEOREM 7. Assume that in (17) λ ∈ (−1, 1), p ∈ N and f ∈ H p
µ . Let { fn} be a

given sequence of functions such that fn ∈ Cp(I ) and

i) - ||D jrn||∞ = o(1) as n → ∞ j = 0, 1, . . . , p, where rn = f − fn

ii) - D jrn(−1) = 0 0 ≤ j ≤ p − β; D jrn(1) = 0 0 ≤ j ≤ p − α

iii) - rn ∈ Hp
σ (I ), ∀n, 0 < σ ≤ µ, σ + min(α, β) > 0.

Then

(18) J ∗(ωα,β fn; λ; p) → J ∗(ωα,β f ; λ; p) as n → ∞

uniformly for ∀λ ∈ (−1, 1).

If we consider a sequence of optimal nodal splines for approximating the function
f , in order to obtain the uniform convergence in (18) of integration rules, we must
modify the sequence {Wn} in the sequence {Ŵn f }, for which condition ii) is satified.
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Therefore, in [15], for 0 ≤ s, t ≤ p , are defined two sets of B-splines B̄i , B̄N−i

on the knot sets

{x0, . . . x0, x1, . . . , xs+1}, {xN−t−1, . . . , xN−1, xN , . . . , xN }

respectively, where N = (m − 1)n and x0, xN are repeated exactly m times.

Considering that Wn f (τi ) = f (τi), i = 0, n, one defines

gn(x) :=





∑s
i=1 di B̄i(x) x ∈ [x0, . . . , xs+1]

0 x ∈ (xs+1, . . . , xN−t−1)

∑t
i=1 d̃i B̄N−i (x) x ∈ [xN−t−1, . . . , xN ]

where di , d̃i are determined by solving two non-singular triangular systems obtained
by imposing

g( j)(τ0) = r ( j)
n (τ0) j = 1, 2, . . . , s

g( j)
n (τn) = r (s)n (τn) j = 1, 2, . . . , t

For the sequence {Ŵn f = Wn f + gn}, it is possible to prove the following:

THEOREM 8. Let {Ŵn f } be a sequence of modified optimal nodal splines and set
r̂n = f − Ŵn f , then

Ŵn f (τi) = f (τi) i = 0, . . . , n ;
D j r̂n(−1) = 0, 0 ≤ j ≤ p − β; D j r̂n(1) = 0, 0 ≤ j ≤ p − α,

Ŵng = g if g ∈ Pm .

Besides supposing f ∈ Cr(Ik), Ik = [τk, τk+1], hk = τk+1 − τk , for any x ∈ Ik there
results:

|Dν r̂n(x)| ≤ k̃νh
r−ν
k ω(Dr f ; hk; Ik), ν = 0, . . . , r

|Dr+1Ŵn f (x)| ≤ k̃r+1h−1
k ω(Dr f ; hk; Ik),

r̂n ∈ Hr
µ(I ).

Therefore all the conditions of theorem 3.3.2 being satisfied, if µ+ min(α, β) > 0,
then

J ∗(ωα,βŴn f ; λ; p) → J (ωα,β f ; λ; p) as n → ∞
uniformly for ∀λ ∈ (−1, 1).

3.4. Integration rules for 2-D CPV integrals

In this section we will consider the numerical evaluation of the following two types of
CPV integrals:

(19) J1( f ; x0, y0) =
∫

R
− ω1(x)ω2(y)

f (x, y)

(x − x0)(y − y0)
dxdy
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where R = [a, b]× [ã, b̃], x0 ∈ (a, b), y0 ∈ (ã, b̃), and we assume ω1(x) ∈ L1[a, b]∩
DT (Nδ(x0)), ω2(y) ∈ L1[ã, b̃] ∩ DT (Nδ(y0)); and

(20) J2(φ; P0) =
∫

D
−8(P0, P)d P, P0 ∈ D

where D denotes a polygonal region and 8(P0, P) is an integrable function on D
except at the point P0 where it has a second order pole.

For numerically evaluating (19), in [9] the following cubatures based on a sequence
of nodal splines ( 8 ) have been proposed:

J1(Wnñ f ; x0, y0) =
n∑

i=0

ñ∑

ı̃=0

vi(x0)ṽı̃(y0) f (τi , τ̃ı̃ ) ,

where vi (x0) =
∫ b

a
− ω1(x)

wi(x)

x − x0
dx , and ṽĩ (y0) =

∫ b̃

ã
− ω2(y)

w̃ĩ (y)

y − y0
dy.

We denote by Hp
µ,µ(R) the set of continuous functions having all partial derivatives

of order j = 0, . . . , p, p ≥ 0 continuous and each derivative of order p satisfying a
Hölder condition, i.e.:

| f (p)(x1, y1)− f (p)(x2, y2)| ≤ C(|x1 − x2|µ + |y1 − y2|µ), 0 < µ ≤ 1

for some constant C > 0, and we assume

(21) Enñ( f ; x0, y0) = J1( f ; x0, y0)− J1(Wnñ f ; x0, y0).

In [9] the following convergence theorem has been proved.

THEOREM 9. Let f ∈ Hp
µ,µ, 0 < µ ≤ 1, 0 ≤ p < m − 1. For the remainder term

in (21), there results:

Enñ( f ; x0, y0) = O
(
(1∗)p+µ−γ ),

where γ ∈ R, 0 < γ < µ, small as we like and 1∗ has been defined in (9).

In many practical applications it is necessary that rules, uniformly converging for
∀(x0, y0) ∈ (−1, 1)×(−1, 1), are available, in particular considering the Jacobi weight
type functions

ω1(x) = (1 − x)α1(1 + x)β1, ω2(y) = (1 − y)α2(1 + y)β2

with αi , βi > −1, i = 1, 2, (x, y) ∈ R = [−1, 1] × [−1, 1].

In order to obtain uniform convergence for approximating rules numerically evalu-
ating (19), can be useful to write the integral in the form

J1( f ; x0, y0) =
∫

R
− ω1(x)ω2(y)

f (x, y)− f (x0, y0)

(x − x0)(y − y0)
dxdy

+ f (x0y0)J (ω1; x0)J (ω2; y0)(22)
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where J (ω1; x0) =
∫ 1

−1
− ω1(x)

x − x0
dx, J (ω2; y0) =

∫ 1

−1
− ω2(y)

y − y0
dy.

We exploit the results in [31] where, considering a sequence of linear operators Fnñ
approximating f , the integration rule for (22):

J1(Fnñ; x0, y0) =
∫

R
− ω1(x)ω2(y)

Fnñ(x, y)− Fnñ(x0, y0)

(x − x0)(y − y0)
dxdy

+ f (x0, y0)J (ω1; x0)J (ω2; y0)

has been constructed. Denoting rnñ = f − Fnñ , and 1nñ the norm of the partition,
with lim

n → ∞
ñ → ∞

1nñ = 0, the following general theorem of uniform convergence has been

proved.

THEOREM 10. Let f ∈ H 0
µµ(R), and assume that the approximation Fnñ to f is

such that

i) rnñ(x,±1) = 0 ∀x ∈ [−1, 1], rnñ(±1, y) = 0 ∀y ∈ [−1, 1],

ii) ||rnñ||∞ = O(1νnñ), 0 < ν ≤ µ,

iii) rnñ ∈ H 0
σ (R), 0 < σ ≤ µ.

If ρ+γ − ε̄ > 0, where ρ = min(σ, ν), γ = min(α1, α2, β1, β2) and ε̄ is a positive
real number as small as we like, then, for the remainder term, Enñ = J1( f ; x0, y0) −
J1(Fnñ; x0, y0), there results:

Enñ( f ; x0.y0) → 0 as n → ∞, ñ → ∞

uniformly for ∀(x0, y0) ∈ (−1, 1)× (−1, 1).

If we consider Fnñ = Wnñ( f ; x, y) only the conditions ii), iii), with 1n,ñ = 1∗,
are satisfied, but we can modify Wnñ in the form

W̄nñ( f ; x, y) = Wnñ( f ; x, y)+ [ f (−1, y)− Wnñ( f ; −1, y)]B1−m(x)

+[ f (1, y)− Wnñ( f ; 1, y)]B(m−1)n−1(x)

+[ f (x,−1)− Wnñ( f ; x,−1)]B̃1−m(y)

+[ f (x, 1)− Wnñ( f ; x, 1)]B(m−1)ñ−1(y) .

Assuming r̄nñ(x, y) = f (x, y) − W̄nñ( f ; x, y), all the condition i) − i i i) are
verified and then

J1(W̄nñ; x0, y0) → J1( f ; x0, y0) as n, ñ → ∞

uniformly for ∀(x0, y0) ∈ (−1, 1)× (−1, 1).

Now we consider the integral (20) for which we refer to the results in [5,6]. Since
the polygon D can be thought as the union of triangles, each one with the singularity
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at one vertex, by introducing polar coordinates (r, ϑ) with origin at the singularity P0,
the evaluation of (20) can be reduced to the evaluation of

(23) J ∗
2 ( f ) =

∫ ϑ2

ϑ1

(∫ R(ϑ)

0
= f (r, ϑ)

r
dr

)
dϑ,

where
∫ R(ϑ)

0
= f (r, ϑ)

r
dϑ =

∫ R(ϑ)

0

f (r, ϑ)− f (0, ϑ)

r
dr + f (0, ϑ) log(R(ϑ));

the integration domain is a triangle (Fig. 1)

T = {(r, ϑ) : 0 ≤ r ≤ R(ϑ), ϑ1 ≤ ϑ ≤ ϑ2}
with

R(ϑ) =





d
sinϑ−cosϑ if s : y = cx + d

d
cosϑ if s : x = d .
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Figure 1. Domain of integration T .

The outer integral in (23) will be approximated by rules of the form considered in
section 3.1 with nodes5n = {τi}n

i=0 and weights {vi}n
i=0; for the inner one we consider

rules of the form (16), with α = β = 0, based on optimal nodal splines of order m̄ ≥ 3,
primary knots 5̄N = {τ̄i = ȳ(m̄−1)i}i=0,...,N corresponding to the partition

ȲN = {−1 = ȳ0 < ȳ1 · · · < ȳ(m̄−1)N = 1}
and we suppose that the norms Hn and H̄N , of 5n and 5̄N , respectively, converges to
0 as n and N → ∞.

We obtain the following rules

J ∗
2,n,N ( f ) = ϑ2 − ϑ1

2

n∑

i=0

vin

[
N∑

k=0

v̄kN f (rki , ξi )+ f (0, ξi) log

(
R(ξi )

2

)]
+Rn,N ( f ),

where 


ξi = [(ϑ2 − ϑ1)/2]τi + (ϑ2 + ϑ1)/2 i = 0, . . . , n

rki = [R(ξi )/2](τ̄kN )+ [R(ξ2)/2](τ̄kN + 1) i = 0, . . . , N .
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Let us assume R = maxϑ∈[ϑ1,ϑ2] |R(ϑ)|, R = [0, R] × [ϑ1, ϑ2] and define m∗ =
min(m, m̄).

We can prove the following theorem:

THEOREM 11. If f ∈ Hs
µ,µ(R) , 0 < µ ≤ 1 and 0 ≤ s ≤ m∗ − 1 , {5n} and

{ȲN } are sequence of locally uniform partitions, then

||Rn,N ( f )||∞ = O(H̄ s+µ
N | log(H̄N )| + H s+µ−ε

n )

where ε is a positive real as small as we like.

4. A collocation method for weakly singular Volterra equations

Consider the Volterra integral equation of the second kind

(24) y(x) = f (x)+
∫ x

0
k(x, s)y(s)ds x ∈ I ≡ [0, X]

where k is weakly singular kernel, in particular of convolution type of the form k(x−s),
where k ∈ C(0, X] ∩ L1(0, X), but k(t) can become unbounded as t → 0.

In [8], for numerically solving (24) a product collocation method, based on optimal
nodal splines, has been constructed, for which error analysis and condition number are
given.

If we consider a spline yn ∈ Sπn , written in the form

yn(x) =
n∑

j=0

α jw j (x) α j ∈ R, j = 0, . . . , n,

and we substitute such function in (24), we obtain

yn(x)−
∫ x

0
k(x, s)yn(s)ds + rn(x) = f (x)

where rn(x) is the residual term obtained in approximating y by yn.

The values α j are determined by imposing

(25) rn(τ j ) = 0 j = 0, . . . , n,

i.e. as solution of a linear system of the form

α j [1 − µ(τ j )] −
n∑

i = 0
i 6= j

µi(τ j )αi = f (τ j ) j = 0, . . . , n,

where µi(τ j ) =
∫ τ j

0
k(τ j , s)wi (s)ds.
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In the quoted paper the explicit form of µi(τ j ) for different values of i is provided.

Exploiting the properties of the operator Wn , which is a bounded interpolating pro-
jection operator, the condition (25) can be rewritten in the form

(26) (I − Wn K̃ )yn = Wn f,

where K̃ y =
∫

I
k̃(x, s)y(s)ds, with

k̃(x, s) =





k(x, s) 0 ≤ s ≤ x

0 s > x,

is a bounded compact operator on C(I ) [1]. Therefore we can deduce that equation
(26) has a unique solution and

THEOREM 12. For all n sufficiently large, say n ≥ N, the operator (I − Wn K̃ )−1

from C(I ) to C(I ) exists.

Moreover it is uniformly bounded, i.e.:

sup
n≥N

||(I − Wn K̃ )−1|| ≤ M < ∞

and
||y − yn||∞ ≤ ||(I − Wn K̃ )−1|| ||y − Wn y||∞.

This leads to ||y − yn||∞ converging to zero exactly with the same rate of the norm
of the nodal spline approximation error.
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Splines and Radial Functions

O. Davydov - R. Morandi - A. Sestini

SCATTERED DATA APPROXIMATION WITH A HYBRID

SCHEME

Abstract. A local hybrid radial–polynomial approximation scheme is in-
troduced here to modify the scattered data fitting method presented in [6],
generating C1 or C2 approximating spline surfaces. As for the original
method, neither triangulation nor derivative estimate is needed, and the
computational complexity is linear. The reported numerical experiments
relate to two well known test functions and confirm both the accuracy and
the shape recovery capability of the proposed hybrid scheme.

1. Introduction

In this paper we investigate the benefit obtainable using local hybrid radial–polynomial
approximations to modify the scattered data fitting method introduced in [6] which is
based on direct extension of local polynomials to bivariate splines. The hybrid ap-
proach here considered is motivated by the well known excellent quality of scattered
data radial basis function approximation [2]. Polynomial terms are also admitted in
order to improve the approximation in the subdomains with polynomial-like behaviour
of the data (e.g. almost flat areas).

Both the original and our hybrid scheme do not need data triangulation because
the standard four directional mesh covering the domain is used. In addition, they do
not require derivative estimates because only functional values are required. Clearly,
the hybrid approximations must be converted in local polynomials for making possible
their extension to splines. However, the additional computational cost of the conversion
phase is negligible with respect to the whole cost of the method. In addition, as well
as for the original method, the computational complexity of the scheme is linear, and
this is obviously a very important feature particularly when large data sets have to be
handled. A C1 cubic or a C2 sextic final spline approximation is produced, which is
advantageous for CAGD applications since splines are a standard tool for that purpose
[7].

In our modified approach, thanks to the usage of radial terms only in the local set-
ting, the related local hybrid approximations can be computed without using special
numerical techniques because the subset of data used for each of them is small and its
size is assumed a priori bounded, which results in avoiding large matrices completely.
In addition, for the same reason a simple and no–cost adaptation of the scaling param-
eter characterizing the radial terms of the hybrid approximations is possible. We note

333
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that local scaling adaptation is a nice feature of the scheme because, as proved by the
researches reported by various authors (e.g. [1, 13, 14]), the use of different scaling
parameters can be very proficuous in particular relating to shape recovery, but it is not
easy when global radial schemes are used.

In this paper, in order to investigate the accuracy and the shape recovery capabil-
ity of the method, we have experimented its performances by means of two reference
mathematical test functions, that is the well known Franke [9] and Nielson [15] func-
tions. For both the reported test functions the results highlight the good behaviour of
the proposed hybrid scheme.

The paper is organized as follows. In Section 2 the original bivariate spline approx-
imation method is summarized and in Section 3 the local hybrid approximation scheme
is introduced. Finally in Section 4 the numerical results related to the two considered
test functions are presented.

2. The original method

In this section we give some basic information about the original scattered data ap-
proximation scheme introduced in [6, 12] which is a two-stage method extending local
approximations to the final global spline approximating surface. In fact, our scheme
is obtained acting on the first stage of the original method, that is modifying the local
approximations. On the other hand, the philosophy of the method and its second stage,
devoted to the spline computation, are unchanged.

First, let us introduce some fundamental definitions (see for details [8]).

The Bernstein-Bézier representation of a bivariate polynomial p of total degree ≤ d
is

(1) p =
∑

i+ j+k=d

ci j k Bd
i jk ,

where Bd
i jk, i + j + k = d, i, j, k ∈ N are the Bernstein polynomials of degree d

related to the reference triangle T with vertices a , b , c.

Each coefficient ci j k , i + j + k = d in (1) is associated with the domain point
ηi j k ∈ T ,

ηi j k := i

d
a + j

d
b + k

d
c.

The set of all the domain points associated with T is denoted by Dd,T and the set of all
the domain points related to the triangles of the considered triangulation1 is denoted
by Dd,1.

A set M ⊂ Dd,1 is called a minimal determining set for the linear subspace
S of the spline space S0

d (1) if, setting the coefficients of s ∈ S associated with the
domain points in M to zero implies that all the coefficients of s vanish and no proper
subset of M exists with the same property.

We now summarize the original method we refer to, relating to [6] for a complete
description. In this approach local polynomials are extended to bivariate splines pro-
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ducing a C1 or C2 approximating surface using cubic or sextic splines respectively.
The extension to bivariate splines is done in the second stage by using the smoothness
conditions between adjacent Bézier triangular patches [8]. A uniform four directional
mesh 1 covering the domain � ⊂ R2 is used and local polynomials are computed by
discrete least squares using the stable Bernstein-Bézier representation form. The com-
putational complexity of the method grows linearly with the number N of data points
{ (Xi , fi ), i = 1, . . . , N ,Xi ∈ � ⊂ R

2 }. Thus, large data and many different data
distributions can be efficiently handled, as shown in [6]. The efficiency of the method
mainly depends on the theoretical determination of minimal determining sets M for
the spline approximating spaces which consist of all domain points belonging to a set
T of uniformly distributed triangles of 1. In fact, using this result, local polynomial
Bèzier patches can be separately computed for each triangle belonging to T and then
univocally extended to the final spline approximation.

Concerning the local polynomial approximations, it is clear that their accuracy and
shape quality heavily influences the corresponding attributes of the spline approxima-
tion. As a consequence, an important point is the selection of the data used for defining
through the least squares procedure each local polynomial pT of total degree ≤ d
(d = 3 for cubics and 6 for sextics) on each triangle T ∈ T . So, they initially cor-
respond to locations Xi inside a circle �T centered at the barycenter of T and with
radius equal to the grid size. However, if they are few, the radius is suitably increased
and if they are too many, in order to accelerate the computational process, their number
NT is decreased using a grid-type thinning algorithm. A lower and an upper bound
MMin and MMax for NT are assumed as input parameters provided by the user. An-
other important input parameter of the method is the tolerance κP used to control the
inverse of the minimal singular value σmin,d,T of the collocation matrix Md,T related
to the least-squares local polynomial approximation defined on each T ∈ T . In fact,
as proved in [4], imposing an upper bound for σ−1

min,d,T allows a direct control on the
approximation power of the least-squares scheme, besides guaranteeing its numerical
stability. An adaptive degree reduction procedure for guaranteeing this bound is used,
producing constant approximations in the worst case.

3. The local hybrid scheme

As we already said in the introduction, the idea of our hybrid method is to enhance
the approximation quality of the local approximations by using linear combinations
of polynomials and radial basis functions. Once a local hybrid approximation gT is
computed on a triangle T ∈ T , it is trasformed into a polynomial approximation of
degree d computing the discrete least squares polynomial approximation of degree d

with respect to the evaluations of gT at all the
( D + 2

2

)
domain points on T , where

it is assumed D = 2d. On this concern, we remark that the additional cost related to
this conversion phase is negligible with respect to the whole cost of the method mainly
for two reasons. First, the collocation matrix associated with each local conversion
hybrid–to–polynomial is the same for all triangles T ∈ T . Second, it has a small
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σ−1
min,d,T (2.87 for D = 6 and 21.74 for D = 12), so guaranteeing that the least squares

polynomial of degree d is a good approximation of gT [4].

Let 4T = {X1, . . . ,XNT } denote the set of locations related to the triangle T (its
definition is based on the same strategy used in the original method described in the
previous section). The local mixed approximation gT has the form

(2) gT (·) =
m∑

j=1

aT
j pT

j (·) +
nT∑

j=1

bT
j φT (‖ · −YT

j ‖2)

where span {pT
1 , . . . , pT

m} is the space 52
q of bivariate polynomials of degree q ≥ 0

and m =
( q + 2

2

)
≤ NT . The function φT : R≥0 → R can be any suitably smooth

positive definite function or a conditionally positive definite function of order at most
q + 1 on R2 (see [2]). The approximation gT is constructed minimizing the `2-norm
of the residual on 4T ,

(3)
( NT∑

i=1

( fi − gT (Xi))
2
)1/2

,

where 0 ≤ nT ≤ NT − m, and the set of knots YT = {Y j , j = 1, . . . , nT } is a subset
of 4T .

We do not consider the additional orthogonality constraints

(4)
nT∑

j=1

bT
j p(YT

j ) = 0, all p ∈ 52
q,

usually required in radial approximation ([2]), because we want to exploit in full the
approximation power of the linear space

HT := span
{

pT
1 , . . . , pT

m, φT (‖ · −YT
1 ‖2), . . . , φT (‖ · −YT

nT
‖2)
}
.

So we have to check the uniqueness of the solution of our least squares problem and
this is done requiring that

(5) σ−1
min(CT ) ≤ κH ,

where κH is a user specified tolerance and σmin(CT ) is the minimal singular value of
the collocation matrix CT defined by



pT
1 (X1) . . . pT

m(X1) φT (‖X1 − YT
1 ‖2) . . . φT (‖X1 − YT

nT
‖2

...
...

...
...

pT
1 (XNT ) . . . pT

m(XNT ) φT (‖XNT − YT
1 ‖2) . . . φT (‖XNT − YT

nT
‖2


 .

An adaptive ascending iterative strategy is used for defining nT and the related set of
knots YT . For the description of the details of such a strategy, the reader is referred to
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the forthcoming paper [5]. However here we just mention that this strategy is based on
the inequality (5). The reason why we control the unique solvability of our least squares
problem using (5) instead of a cheaper criterion avoiding the computation of σmin(CT )

([16]) is because it allows us to control also the approximation error ‖ f − gT ‖C(T ),
where we are here assuming that fi = f (Xi), i = 1, . . . , NT , being f a continuous
function. In fact, if (5) holds and NT is upper bounded, assuming that the polynomial
basis {pT

1 , . . . , pT
m} and φT are properly scaled, it can be proved that ([4, 5]) there

exists a constant cT such that

(6) ‖ f − gT ‖C(T ) ≤ cT E( f,HT )C(T ),

where E( f,HT )C(T ) is the error of the best approximation of f from HT ,

E( f,HT )C(T ) := inf
g∈HT

‖ f − g‖C(T ).

4. Numerical results

The features of our local hybrid approximation scheme are investigated incorporating
it into the two-stage scattered data fitting algorithm of [6]. More precisely, the method
RQav

2 of [6, Section 5] has been always used in the reported experiments, producing
a C2 piecewise polynomial spline of degree d = 6 with respect to the four-directional
mesh. For our experiments in (2) we have always considered

(7) φT (r) = −δdT φM Q

(
r
δdT

)
=
√
(δdT )2 + r2,

where
dT := max

1≤i, j≤NT

‖Xi − X j ‖2

is the diameter of 4T and δ is a scaling parameter. As this radial basis function is
conditionally positive definite of order 1, we take q = 0, and thus the polynomial part
in (2) is just a constant.

The input parameters to the method are the grid size nx × ny on a rectangular
domain, the inverse minimal singular value tolerance κH , the minimum and maximum
numbers Mmin ,Mmax of data points belonging to each 4T , the scaling coefficient δ
used in (7), the upper bound nmax on the knot number nT used in (2).

We consider here two tests, relating to the Franke (Test 1) and Nielson (Test 2)
reference functions reported in Figure 1. Each displayed approximation is depicted
together with the related data sample. For both considered tests a uniform 101 × 101
grid is used for the visualization and for the computation of the maximum (maxg) and

root mean square (rmsg) errors. In all experiments below nmax = 2
( d + 2

2

)
− 1

and no upper bound for NT is assigned, that is Mmax = N . The lower bound Mmin is
always 20 and the scaling parameter δ in (7) is 0.4. The tolerance κH in (5) is taken to
be equal to 105.
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Figure 1: Franke and Nielson parent surfaces on the left and on the right, respectively.
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Figure 2: On the left the locations of the 100 data points for Test 1. On the rigth the
related approximation.

In our first test, related to the Franke function, a small set of N = 100 data points
is used. It is available from [10] as ds3 and is shown on the left of Figure 2. The
approximation depicted on the right of Figure 2 has been obtained using a uniform
grid of size nx = ny = 5. The average number of knots used for the local hybrid
approximations is 23.9. The related grid errors are maxg = 1.5 · 10−2 and rmsg =
2.7 · 10−3. For comparison, using the same grid size the errors obtained with the
original method and reported in [6] are maxg = 3.8 · 10−2 and rmsg = 7.6 · 10−3 (see
Table 3 of that paper). In addition, we found in the literature the following errors for
the interpolation of this data with the global multiquadric method: maxg = 2.3 · 10−2

and rmsg = 3.6 · 10−3 in the famous Franke’s report [9], and rmsg = 2.6 · 10−3 in
[3]. (In both cases a uniform 33×33 grid was used to compute the error.) Note that the
above error from [3] corresponds to the case when a parameter value for multiquadric
was found by optimization.

Our second test relates to the Nielson function. First we have considered a small
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Figure 3: On the left the locations of the 200 data points for Test 2. On the rigth the
related approximation.
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Figure 4: On the left the locations of the 1500 data points for Test 2. On the rigth the
related approximation.
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set of 200 data points obtained evaluating this function on the locations corresponding
to the data points available from [10] as ds4. These locations are shown on the left
of Figure 3. Again a uniform grid of size nx = ny = 5 is used. In this case the
approximation shown on the right of Figure 3 is obtained using an average knot number
equal to 22 and the related grid errors are maxg = 6.9 · 10−2 and rmsg = 1.4 · 10−2.
For comparison, we mention that the same data set is used in [11] to test a least squares
approximation method based on multiquadrics and parameter domain distortion. The
best root mean square error (computed using a uniform 33×33 grid) reported in [11] is
1.3 ·10−2 (see Table 1 and Figure 6 of that paper). Even if Figure 3 clearly shows some
artifacts, we evaluate positively the results related to this first experiment for Test 2. In
fact the accuracy and the shape recovery capability of our scheme are both comparable
with those obtained in the best case reported in [11]. We would like also to say on
this concern that, even if the results given in [11] have been obtained with remarkably
few degrees of freedom, it should be taken into account that the parametric domain
distortion method may encounter difficulties when applied to real data, as the authors
admit [11, Section 4]. Finally, we get full shape recovery also for this challenging
test function when we consider a denser set of 1500 scattered data depicted on the left
of Figure 4 and use a finer spline grid by taking nx = ny = 8. The shape of the
corresponding approximation depicted on the right of Figure 4 is almost perfect now
and the related grid errors are maxg = 3.8 · 10−2 and rmsg = 1.3 · 10−3. The mean
number of knots used in this case is 22.4.
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S. De Marchi∗

ON OPTIMAL CENTER LOCATIONS FOR RADIAL BASIS

FUNCTION INTERPOLATION: COMPUTATIONAL ASPECTS

Abstract. The problem of choosing “good” nodes is a central one in poly-
nomial interpolation. Made curious from this problem, in this work we
present some results concerning the computation of optimal points sets for
interpolation by radial basis functions. Two algorithms for the construc-
tion of near-optimal set of points are considered. The first, that depends on
the radial function, compute optimal points by adding one of the maxima
of the power function with respect to the preceding set. The second, which
is independent of the radial function, is shown to generate near-optimal
sets which correspond to Leja extremal points. Both algorithms produce
point sets almost similar, in the sense of their mutual separation distances.
We then compare the interpolation errors and the growth of the Lebesgue
constants for both point sets.

1. Introduction

First some introductory material and definitions concerning the interpolation problem
with radial basis functions. Take a set X = {x1, . . . , xN } ⊆ � ⊆ Rd of N dis-
tinct points coming from a compact subset � of Rd . The points {xi} are usually re-
ferred as the data sites and the set X as the data set. Suppose further that N data
values f1, . . . , fN should be interpolated at the data sites. Fix then a basis function
φ : [0,∞) → R, a simple way to define an interpolant s f,X to f at X is by linear
combinations of the form

(1) s f,X (x) =
N∑

j=1

α jφ(‖x − x j‖)

where ‖ · ‖ is the Euclidean norm, and the coefficients {α j } are uniquely determined by
the interpolation conditions

(2) s f,X (xi) = fi , i = 1, ... , N

if the interpolation matrix Aφ,X := (φ(‖xi − x j‖)1≤i, j≤N is invertible. Furthermore,
for various reasons it is sometimes necessary to add the space Pd

m of polynomials of

∗This work has been done with the support of ex-60% funds of the University of Verona, year 2002.
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degree ≤ m in Rd to the interpolating functions. Interpolation is then uniquely possible
with the further requirement: if p ∈ Pd

m satisfies

p(xi) = 0, for all xi ∈ X ⇒ p = 0

and if φ is conditionally positive definite (shortly CPD) of order m on� (cf. e.g. [16]).
If Aφ,X is positive definite ∀ X ⊆ �, then φ is said positive definite (shortly PD),
that is conditionally positive definite of order m=0. Instead of φ, we can consider the
symmetric kernel function8(x, y) = φ(‖x − y‖), so that 8 : �×� → R, which is
the notation used later on in the paper.

In the paper we mainly focus to the case of positive definiteness, since every CPD
kernel has an associated normalized PD kernel (cf. e.g. [2, 17]).

The problem of finding good interpolation points for RBF interpolations has been
addressed only recently (cf. [3, 4, 8]). In particular, in [4] the authors showed how
difficult is the problem just in the one dimensional setting because one has to glob-
ally minimize a highly nonlinear function of Nd unknowns which is usually a hard
problem.

In our previous paper [7] we have already discussed the problem of finding good or
near-optimal interpolation points for radial basis function interpolation essentially by
minimizing the power function associated to the symmetric kernel 8. The main result
there was that those points are asymptotically uniformly distributed in the Euclidean
norm. That is why we called them near-optimal points.

The paper is organized as follows. In section 2 we essentially describe what we
consider near-optimal points for radial basis function interpolation and we introduce
the tools we shall use in the rest of the paper. In section 3 after presenting two algo-
rithms for computing near-optimal points, one depending on 8 and one independent,
i.e. data-independent, we investigate on some computational aspects and consequences
related to the problem presenting in particular for the dimension d = 2, the connec-
tion between these near-optimal points and Leja extremal sequences. In section 4 we
present numerical results: in particular we show the interpolation errors when inter-
polants are built on near-optimal point sets, and the corresponding Lebesgue constants.
In section 5 we conclude noticing that the most reliable near-optimal points are the
ones connected to the proper 8 even if the data-independent ones are proved to be
competitive.

2. Interpolation error, power function and Lebesgue constant

Given 8 : � × � → R, a positive definite kernel, the recovery of functions from
function values f (x j ) on the set X = {x1, ..., xN } ⊂ � of N different data sites, can
be done via interpolants of the form

(3) s f,X =
N∑

j=1

α j8(·, x j ) .
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This interpolant, as in classical polynomial interpolation, can also be written in terms
of cardinal functions u j ∈ VX = span{8(·, x) : x ∈ X} such that u j (xk) = δ j,k . Then,
the interpolant (3) takes the usual Lagrangian form

(4) s f,X =
N∑

j=1

f (x j)u j .

It is well-known that local error estimates for interpolation by radial basis functions
have the form (cf. e.g. [15])

(5) | f (x)− s f,X (x)| ≤ κ P8,X (x)

with κ a positive constant depending only on f and P8,X being the power function that
takes the explicit form

P2
8,X (x) = 8(x, x)− 2

N∑

j=1

u j (x)8(x, x j )+
N∑

j,k=1

u j (x)uk(x)8(x j , xk).

Moreover, letting u = (−1, u1(x), . . . , uN (x)) we have the alternative representation

(6) P2
8,X (x) = u A8,Y uT ,

as a quadratic form, where Y = X ∪ {x} and A8,Y is the interpolation matrix corre-
sponding to the set Y . This representation says immediately that the power function is
non-negative since the vector u annihilates all polynomials Pd

m due to the polynomial
reproduction property.

For positive definite kernels, given the set X where the numbering of its points
is fixed, for a second ordered set Y = {y1, ..., yN } we consider the matrix
A8,X (y1, ..., yN ) =

(
8(yi , x j )

)
1≤i, j≤N . We note that this matrix is symmetric and

has determinant that is independent of the order of the points in X . Moreover, since 8
is positive definite, the matrix is positive definite and has positive determinant that we
denote by det8,X (y1, ..., yN ) = det

(
8(yi , x j )

)
1≤i, j≤N . Thus, the cardinal functions

have the useful representation

(7) uk(x) = det8,X (x1, ..., xk−1, x, xk+1, ..., xN )

det8,X (x1, ..., xN )
,

which reminds the determinantal form of the elementary Lagrange polynomials in
polynomial interpolation. Moreover, from the representations (6) and (7), the power
function can also be rewritten as

(8) P2
8,X (x) = det8,Y (x, x1, ..., xN )

det8,X (x1, ..., xN )
.

In other words, the power function is nothing but the norm of the pointwise error func-
tional, and it can be numerically evaluated from the Lagrange basis.
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Typically, error estimates and convergence rates lead to the problem of bounding
the power function in terms of the fill distance,

hX,� = sup
x∈�

min
x j ∈X

‖x − x j‖2.

We will not discuss the details here: the interested reader can refer to [19]. Instead, we
remark that this minimization property has another consequence. Letting X and Y the
point sets above defined, then the associated power functions must necessarily satisfy

P2
8,X (x) ≥ P2

8,Y (x), x ∈ �,

due to the maximality property of the power function and the fact that the P8,X vanishes
only at the points of X (cf. [15, §4]) and this inequality holds pointwise and everywhere
in �. The above inequality will be an important ingredient for the Algorithm 1 to be
presented in the next section.

Also the separation distance

qX = 1

2
min

xi , x j ∈ X
xi 6= x j

‖xi − x j‖ ,

plays a role in finding good points for radial basis function interpolation. In fact, in [8],
the author studied point sets X ⊂ � which maximize the uniformity

ρX,� = qX

hX,�
= sup

Y∈X�
ρY,� ,

among all point sets Y ∈ X�, X� consisting of Voronoi vertices used to decompose
Rd into Voronoi tiles. The result there was that point sets that optimally balance h X,�

against qX , are optimally distributed in the domain�.

Finally, our last tool is the Lebesgue constant. As in the (univariate) polyno-
mial case, from the representation (4) we consider the Lebesgue function λN (x) :=∑N

j=1 |u j (x)| . Its maximum value,

(9) 3N := max
x∈�

λN (x) = max
x∈�

N∑

j=1

|u j (x)| ,

is referred to as the associated Lebesgue constant and gives the norm of the interpo-
lating projector Pn : C(�) → V�, with V� = span{8(·, x) : x ∈ �}, both spaces
equipped with the sup-norm. As well-known in the polynomial case, optimal points are
not known explicitly, therefore in applications we can restrict to near-optimal points,
that is, roughly speaking, points whose Lebesgue constant grows asymptotically like
the optimal one. Therefore, near-optimal points should be found among the ones that
minimize3N . In the framework of interpolation by polynomials, points that minimize
the Lebesgue constant by maximizing the Vandermonde determinant, are known as
Fekete points. Fekete points are well-known and widely studied for polynomial inter-
polation also in the multi-dimensional setting. For radial basis functions, only recently
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and only in the univariate case there were some attempts to find Fekete-like points [4].
The main conclusion of that paper was that, surprisingly w.r.t. the polynomial case
in which Fekete points have the arccosine distribution, optimal points for radial basis
function interpolation are asymptotically equidistributed. Actually, a similar conclu-
sion for 2-dimensional domains was also obtained in the paper [8]. Iske considered
perturbations of the data sites in order to improve the performance of the interpola-
tion process, showing that good points realize a balance between the quantities qX and
hX,�. Moreover, the same author in [9] has shown that the Lebesgue constant 3N

for interpolation by polyharmonic splines is indeed the condition number w.r.t. the
sup-norm of the interpolation operator and that this constant is invariant under uniform
scalings, rotations and translations of the domain.

On the basis of these arguments, using the representation by cardinal functions uk

of the interpolant s f,X , we can try to minimize the Lebesgue constant by maximizing
the denominator of each function uk in (7). Unfortunately these Vandermonde-like
matrices, which depend on 8, are not always well-conditioned.

Hence, to find near-optimal points for radial basis function interpolation we can
proceed along the following lines:

• by minimizing the power function, which depends on 8, in order to minimize
the error in (5);

• by finding a representation of the uk by well-conditioned matrices (for instance
using some kind of stable orthogonal expansions) and maximizing the corre-
sponding Vandermonde matrix, like for Fekete points, in order to minimize the
Lebesgue constant of the interpolating operator.

In this paper we have explored the first instance and in the next section we present
two methods that allow to compute near-optimal interpolation points: the first mini-
mizes the power function associated to the kernel 8; the second, based on geometric
considerations, is completely independent on8 and related to Leja extremal sequences.

3. On computing near-optimal point locations and Leja sequences

In the recent paper [7] we presented a numerical method that produces well–distributed
point sets based on a greedy algorithm that generates larger and larger point sets by
adding at each step one of the point where the power function attains its maxima with
respect to the preceding set. The algorithm steps are as follows.

Algorithm 1

1. Initial step: X1 = {x1} for some x1 ∈ � arbitrary chosen.

2. Iterative step:

(10) X j := X j−1 ∪ {x j } with P8,X j−1(x j ) = ‖P8,X j−1‖L∞(�), j ≥ 2.
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Note that practically, we maximized over some very large discrete set X ⊂ �

instead of maximizing on �. Letting P j := P8,X j , this algorithm converges in
the sense that lim j→∞ ‖Pj ‖L∞(�) = 0. In fact, since the point x j+1 is such that
Pj (x j+1) = ‖Pj ‖L∞(�) and since X j ⊆ X j+1, we have Pj (x) ≥ Pj+1(x) ≥ 0 for all
x ∈ �.

The convergence and the speed of convergence of the Algorithm 1 are stated in the
following Theorem.

THEOREM 1. (cf. [7, §4]) Suppose � ⊆ Rd is compact and satisfies an interior
cone condition. Suppose further that 8 ∈ C2(�1 × �1) is a positive definite kernel
defined on a convex and compact region �1 ⊇ �. Then, the greedy algorithm defined
in (10) converges at least like

‖Pj ‖L∞(�) ≤ C j−1/d

with a constant C > 0.

REMARKS. The Theorem holds for positive definite kernels: this is not a big re-
striction since, as already pointed out, every CPD kernel has an associated NPD kernel
(cf. Introduction). We also observe that the positive constant C is independent of j
and that the power function depress to zero quite slowly, as will appear clearer from
Examples.

3.1. A geometric greedy method

From experiments we have noted that Algorithm 1, that minimizes the power func-
tion P8,X , practically fills the currently largest hole in the data by placing a new data
point close to the center of that hole and as a surprise, independently of the function
8. Therefore, this observation suggested a new algorithm that we termed geometric
greedy algorithm since the construction of optimal points is simply based on geometric
considerations.

Algorithm 2

1. Let � be a compact set in Rd , and consider X0 = {x0} where x0 belongs to the
boundary of �.

2. If Xn ⊂ � is finite and consisting of n points, choose xn+1 ∈ � \ Xn so that its
distance to Xn is maximal. Thus, Xn+1 := X j ∪ {xn+1}.

REMARKS. As before, for numerical purposes we should consider a discretization
of � that is a finite set, say �N , with cardinality N . Then, each step of the algorithm
can be carried out in O(N) operations, since for each x ∈ �N \ Xn we should compute
the distance to its nearest neighbor within Xn . To update this array of length N , it
requires firstly computing the N − n values ‖x − xi‖2, i = 1, ..., N − n and then
taking the componentwise minimum within the i -th array of distances. The next point
xn+1 is then easily found by picking the maximum of the array of the minima.
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Defining the separation distance for points in Xn by

qn := 1

2
min

x , y ∈ Xn
x 6= y

‖x − y‖2

and the corresponding fill distance

hn := max
x∈�

min
y∈Xn

‖x − y‖2 = min
y∈Xn

‖xn+1 − y‖2 = h Xn,� .

PROPOSITION 1. Algorithm 2 produces point sets which are quasi-uniform in the
Euclidean distance, that is

hn ≥ qn ≥ 1

2
hn−1 ≥ 1

2
hn , ∀n ≥ 2.

Proof. The left–hand and right–hand sides are obvious. The remaining inequalities can
be settled by induction. Indeed, for X2 we have

q2 = 1

2
‖x2 − x1‖2 = 1

2
min
y∈X1

‖x2 − y‖2 = 1

2
h1.

Assuming that qn ≥ 1
2hn−1, then

qn+1 = min

{
qn,

1

2
min
x∈X j

‖xn+1 − x‖2

}
= min

{
qn,

1

2
hn

}
,

we get qn+1 ≥ min
{

1
2hn−1,

1
2 hn

}
≥ 1

2hn .

REMARKS.

• The above Algorithm 2 turns out to work quite well when it comes to finding
subsets of � of cardinality n with small fill distance h X,� and large separation
distance qX .

• The construction technique proposed in the Algorithm 2 is independent of the
Euclidean metric. In fact, the proof does not depend on the fact that qn and hn

are expressed by using the Euclidean metric. Hence, if µ is any metric on�, the
Algorithm 2 can be used to compute points asymptotically equidistributed in the
metric µ.

3.2. Leja sequences

Leja extremal sequences were introduced by F. Leja in his interesting paper (cf. [10])
and recently have attracted the attention of researchers for their important properties
and applications (cf. e.g. [13, 1, 6]).
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DEFINITION 1. Let λ1 be arbitrarily chosen in [a, b]. The points λs ∈ [a, b],
s = 2, ..., N , such that

(11)
s−1∏

k=1

|λs − λk | = max
x∈[a,b]

s−1∏

k=1

|x − λk | .

are called a Leja sequence for the interval [a, b] (cf. [10]).

We recall that Leja points, in the one-dimensional case, are computationally ef-
fective for polynomial interpolation in Newton form since they provide an increasing
sequence of points and they stabilize the computation of divided differences. More-
over, they can be extracted from a discretization of [a, b] in a fast way (the so-called
fast Leja points) and, like Chebyshev points, Fekete points and zeros of Jacobi orthog-
onal polynomials, they have the arccosine distribution (cf. [13, 1]).

Unfortunately the multivariate equivalent of Leja points are not yet completely ex-
plored, as it is the case for the study of near-optimal points for multivariate interpolation
(cf. [14, 6, 5]). For d = 2 something has been done.

DEFINITION 2. Let � be a compact subset of C ≈ R2 and w : � → R+ a real
positive function on � called weight function. Let z0 ∈ � be such that

(12) w(z0)‖z0‖ = max
z∈E

w(z)‖z‖ ,

and

(13) w(zn)

n−1∏

k=0

‖zn − zk‖ = max
z∈E

w(z)
n−1∏

k=0

‖z − zk‖ , zn ∈ � .

where ‖ · ‖ is any norm of R2 and z = x + i y , z = (x, y) and zn = (xn, yn), n =
1, 2, .... The sequence {zn} not-unique that satisfies (12) and (13) is called a sequence
of Leja points for �.

The distribution of Leja points so defined, depends on the choice of the weight
function w. Indeed, when w ≡ 1, for the maximum principle of analytic functions
Leja points distribute only on the boundary of � while for w 6= 1 they lye also in the
interior (cf. [14] and for more examples see [6]). A conceptually similar construction
of Leja points which is independent of the weight w, was suggested by L. Bos (private
communication to the author). The idea behind the construction is simple: find a se-
quence of points that maximize a function of distances from already computed points.
The proposed distance was simply the Euclidean distance.

DEFINITION 3. Let�N be a discretization of a compact domain� ⊂ C ≡ R2 and
let z0 be arbitrarily chosen in �N . The points zn, n = 1, 2, ....

(14) zn := max
z∈�N \{z0,...,zn−1}

min
0≤k≤n−1

‖z − zk‖2 .

are a set of Leja points for �N .
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In Figure 1 we show 60 Leja points on three classical domains computed by means
of (14).
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Figure 1: 60 Leja points on the square, the unit circle and the right triangle all dis-
cretized by 603 random points, computed by using (14).

Moreover, supported by numerical experiments, L. Bos proposed that the following
claim should be true.

CLAIM. If z0 = maxz∈� ‖z‖2, then the Leja points defined by (14) are asymptoti-
cally equidistributed w.r.t. the Euclidean metric.

REMARKS. The previous Definition 3 and the successive Claim, firstly stated in the
framework of Leja sequences, reveal the connection with near-optimal points computed
by Algorithm 2. From Proposition 1, we now know that the points constructed by (14)
are indeed the data–independent ones. Therefore, to prove the previous Claim we
simply resort to the proof of Proposition 1.

��

Thus, by Algorithms 1 and 2 (or equivalently by (14)) we have two sets of near–
optimal points for radial basis function interpolation. How close are these point sets?
Which point set is “better” for interpolation purposes? These are some of the questions
that we want to answer by numerical experiments in the next section.

4. Numerical results

In this section we present some examples of distribution of points as computed by
Algorithms 1 and 2 in the bidimensional setting. We considered the square � =
[−1, 1] × [−1, 1] on which we picked 10000 random points. We have run the Al-
gorithm 1 until the norm of the power function went below some fixed threshold η̃.
As for Algorithm 2, we computed once and for all the necessary points up to a given
number extracting them from a discretization of �. We have computed 406 points ex-
tracted from a discretization of 4063 points of �. The number 406 corresponds to the
dimension of the bivariate polynomials of degree ≤ 27 and the reason why we have
extracted N points from N3, comes from the theory of Leja sequences, as explained
in the book [14]. Moreover, we stopped to 406 because of RAM limitations of the
machine where computations where done. Consider that representing 4063 reals in
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double precisions requires 510Mb of RAM. But, this was not a big problem, since in
the following examples the points computed by Algorithm 1 were always less than 406.

In Figures 2-4 we show the distributions of the points computed both with the
greedy method, Algorithm 1, and the geometric greedy method, Algorithm 2. On
each figure we also show the separation distances among these points, making visually
clearer that Algorithm 2 generates points nearly equidistributed in the Euclidean metric
(as stated in Proposition 1).

By means of the Algorithm 1 applied to the Gaussian with scale 1, to reduce the
power function below η̃ = 2 · 10−7, we computed 65 points. For the Wendland’s
compactly supported function with scale 1, to reduce the power function below η̃ = 0.1
we computed 80 optimal points and for the inverse multiquadrics with scale 1, we
computed 90 points to depress the power function to η̃ = 2 · 10−5. The choice of
different η̃ depends on the decreasing rates of the associated power functions. Note
that, for a given N , i.e. the number of optimal points we wish to find, so far we are not
able to determine η̃8(N) corresponding to a particular8.

Furthermore, given81, let X1 be the optimal point set computed by minimizing the
associated power function, say P81,X1 , using Algorithm 1. Are these points optimal
also for another82 6= 81? If not, are the points computed by the Algorithm 2 optimal
for any given 8, instead? In what follows, we will try to give qualitative answers to
these “obvious” questions, showing in particular that the points computed by Algorithm
2 are good enough for almost all radial basis function interpolation problems.

We labeled by g-gauss-65, gg-65, g-wend-80, gg-80, g-invm-90 and gg-90 the point
sets computed by Algorithm 1 and 2, where the prefix ’g’ recalls the word greedy while
’gg’ the words geometric greedy. The labels gauss, wend, invm recall instead the type
of the radial function used in the minimization process. The ’gg’ point sets do not need
to recall the radial function since they are independent of it.

As for interpolation, we have considered two test functions: f1(x, y) = e−8(x2+y2)

and f2(x, y) =
√

x2 + y2 − xy. The first is C∞, while the second has discontinuity
of the gradient. In Tables 1-3, we show the interpolation errors in the L2-norm when
the interpolant is constructed by means of the Gaussian, Wendland’s and inverse mul-
tiquadrics, respectively. Each columns has an heading that recalls the set of points on
which interpolation took place. The errors have been computed by sampling the func-
tions on a regular grid of 30×30 points. While errors for the Gaussian are meaningless
except in some cases, essentially due to errors occurring along boundaries, the inter-
polation errors for Wendland’s and the inverse multiquadrics confirm, once again, that
the points computed by Algorithm 2 are as good as the points computed by Algorithm
1.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 5.5 10−1 ∗∗ 5.6 10−1 ∗∗ 4.9 10−1 ∗∗
f2 7.3 10−1 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table 1. Errors in L2-norm for interpolation by the Gaussian. When errors are > 1.0
we put ∗∗.
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Figure 2: 65 optimal points for the Gaussian with scale 1. Right: the points as com-
puted by the geometric greedy algorithm (*) and the greedy algorithm (+). Left: the
separation distances among them.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 2.1 10−1 1.6 10−1 1.3 10−1 1.1 10−1 1.4 10−1 1.0 10−1

f2 6.1 10−1 8.7 10−1 6.1 10−1 9.7 10−1 4.6 10−1 5.8 10−1

Table 2. Errors in L2-norm for interpolation by the Wendland’s function.

g-gauss-65 gg-65 g-wend-80 gg-80 g-invm-90 gg-90

f1 2.3 10−1 2.3 10−1 4.0 10−2 3.1 10−2 3.5 10−2 2.5 10−2

f2 5.9 10−1 6.0 10−1 3.8 10−1 4.6 10−1 3.7 10−1 3.6 10−1

Table 3. Errors in L2-norm for interpolation by the inverse multiquadrics.

We have also computed, and plotted in Figures 5-7, the Lebesgue constants asso-
ciated to these near-optimal point sets. The abscissas represent the polynomial degree
and run till the maximum polynomial degree representable with the number of points in
the sets. With the 65 points computed with the Gaussian the maximum degree is 9; for
the 80 points for the Wendland’s function and the 90 points computed for the inverse
multiquadrics the maximum polynomial degree is 11. The computations of Lebesgue
constants by means of (9) were done by discretizing the square [−1, 1]2 with a grid
of 40 × 40 points where we sampled the cardinal functions uk . The graphs show that,
except for the Gaussian, the Lebesgue constants of the optimal points computed by the
greedy method grow slower than the ones of the data-independent points. Moreover,
in all cases they grow approximately linearly in the polynomial degree (modulo some
constants). This explains once more why the errors computed with the Gaussian are
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Figure 3: 80 optimal points for the Wendland’s function. Right: the points as com-
puted by the geometric greedy algorithm (*) and the greedy algorithm (+). Left: the
separation distances among them.

meaningless. Of course, for a complete understanding of the asymptotic behavior of
the Lebesgue constants we should go further in the computations, but we were not able
due to hardware restrictions.

Concerning the computational efforts of both algorithms, we show in Table 4
the CPU time in seconds of Algorithm 1 for computing the optimal points for a
given threshold. These computational costs were determined by the Matlab function
cputime.

Gaussian scale 1, η̃ = 2 · 10−7, 65 points, 51 sec.
Gaussian scale 2, η̃ = 2 · 10−7, 32 points, 18 sec.

Wendland scale 1, η̃ = 0.1, 80 points, 76 sec.
Wendland scale 15, η̃ = 2 · 10−5, 100 points, 105 sec.

inverse multiquadrics scale 1, η̃ = 2 · 10−5, 90 points, 110 sec.
inverse multiquadrics scale 2, η̃ = 2 · 10−5, 34 points, 26 sec.

Table 4. Computational costs (cputime in seconds) of optimal points as computed by
Algorithm 1.

Algorithm 2 was run once and for all to compute at once the 406 points by means
of (14). These computations were done in about 5 minutes of CPU time on a PC
with 900MHz Athlon processor and in this case the program was written in Fortran
77. The coordinates of the points were stored in a file and used later on with the same
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Figure 4: 90 optimal points for the inverse multiquadrics with scale 1. Right: the points
as computed by the geometric greedy algorithm (*) and the greedy algorithm (+). Left:
the separation distances among them.

Matlab program that we wrote for making comparison plots, computing separation and
fill distances as well as Lebesgue constants with respect to the points computed by
Algorithm 1.

5. Conclusions

The paper essentially presented two main results.

• Optimal points for radial basis function interpolation can be computed inde-
pendently of the radial function and once for all. These points, in the two-
dimensional case, correspond to Leja points in the Euclidean metric. They are
asymptotically equidistributed with respect to the Euclidean metric (that is why
we called near-optimal). Moreover, Algorithm 2 can be used with any metric,
producing point sets asymptotically equidistributed with respect to that metric.

• From the Lebesgue constants behavior, we can conclude that data-independent
points have Lebesgue constants that grow faster than data-dependet ones. Ex-
periments on the growth of the Lebesgue constants on different nodal sets for
bivariate polynomial interpolation are currently in progress and will be presented
in the forthcoming paper [5]. From the results in that paper, here we only ob-
serve that quasi-uniformity is only a necessary condition for near-optimality of a
point set. Therefore, generally speaking, the study of the growth of the Lebesgue
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Figure 5: Lebesgue constants of the optimal points for the Gaussian (left) and the data-
independent points (right).
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Figure 6: Lebesgue constants of the optimal points for the Wendland’s function (left)
and the data-independent points (right).

constant of a point set is not a general criterion to investigate on the goodness
of a point set. In the univariate setting for polynomial interpolation on bounded
intervals, a similar conclusion was obtained in the paper [11]. Hence, we can
confirm that data-independent points should be used in radial basis function in-
terpolation because of their general and effective computational technique and
their interpolation errors which are of the same order of the near-optimal points
computed by minimizing the power function.
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Figure 7: Lebesgue constants of the optimal points for the inverse multiquadrics (left)
and the data-independent points (right).
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A COLLOCATION METHOD FOR LINEAR FOURTH ORDER

BOUNDARY VALUE PROBLEMS

Abstract. We propose and analyze a numerical method for solving fourth
order differential equations modelling two point boundary value problems.
The scheme is based on B-splines collocation. The error analysis is carried
out and convergence rates are derived.

1. Introduction

Fourth order boundary value problems are common in applied sciences, e.g. the me-
chanics of beams. For instance, the following problem is found in [3], p. 365: The
displacement u of a loaded beam of length 2L satisfies under certain assumptions the
differential equation

d2

ds2

(
E I (s)

d2u

ds2

)
+ K u = q (s) , −L ≤ s ≤ L,

u′′ (−L) = u′′′ (−L) = 0,

u′′ (L) = u′′′ (L) = 0.

Here,

I (s) = I0

(
2 −

(
s

L

2
))

, q (s) = q0

(
2 −

( s

L

)2
)
, K = 40E I0

L4
,

where E and I0 denote constants.

We wish to consider a general linear problem similar to the one just presented,
namely

LU ≡ U (iv) + a(x)U ′′ (x)+ b(x)U(x) = f (x)(1)

for 0 < x < 1, together with some suitable boundary conditions, say

(2) U (0) = U00, U ′ (0) = U01, U ′ (1) = U11, U (1) = U10.

Here we assume that a, b ∈ C0[0, 1]. In principle, the method we present could be
applied also for initial value problems, with minor changes. In such case (2) could
be replaced by suitable conditions on the function and the first three derivatives of the
unknown function at the point s = 0.

359
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The technique we propose here is a B−spline collocation method, consisting in
finding a function uN (x)

uN (x) = α181(x)+ α282(x)+ ...+ αN8N (x)

solving the N×N system of linear equations

(3) LuN (xi) ≡
N∑

j=1

α j L8 j (xi) = f (xi) , 1 ≤ i ≤ N

where x1, x2, . . . , xN are N distinct points of [0,1] at which all the terms of (3) are
defined.

In the next Section the specific method is presented. Section 3 contains its error
analysis. Finally some numerical examples are given in Section 4.

2. The method

A variety of methods for the solution of the system of differential equations exist, for
instance that are based on local Taylor expansions, see e.g. [1], [2], [6], [7], [8], [16].
These in general would however generate the solution and its derivatives only at the
nodes. For these methods then, the need would then arise to reconstruct the solution
over the whole interval. The collocation method we are about to describe avoids this
problem, as it provides immediately a formula which gives an approximation for the
solution over the entire interval where the problem is formulated.

Let us fix n, define then h = 1/n and set N = 4n+4; we can then consider the grid
over [0, 1] given by xi = ih, i = 0, ..., n. We approximate the solution of the problem
(1) as the sum of B-splines of order 8 as follows

(4) uN (x) =
4n+4∑

i=1

αi Bi (x) .

Notice that the nodes needed for the construction of the B−spline are {0, 0, 0,
0, 0, 0, 0, 0, h, h, h, h, 2h, 2h, 2h, 2h, . . . , (n−1)h, (n−1)h, (n−1)h, (n−1)h, 1, 1,
1, 1, 1, 1, 1, 1}.

Let us now consider θ j , j = 1, ..., 4, the zeros of the Legendre polynomial of
degree 4. Under the linear map

τi j = h

2
θ j + xi + xi−1

2
, i = 1, ..., n, j = 1, ..., 4

we construct their images τi j ∈ [xi−1, xi ]. This is the set of collocation nodes required
by the numerical scheme. To obtain a square system for the 4n+4 unknowns αi , the 4n
collocation equations need to be supplemented by the discretized boundary conditions
(2).
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Letting α ≡ (α1, . . . , α4n+4)
t , and setting for i = 1, ..., n, j = 1, ..., 4,

F = (U00,U01, f (τ11), f (τ12), ..., f (τi j ), ..., f (τn3), f (τn4),U11,U10)
t ,

we can write

(5) Lhα ≡ [M4 + h2M2 + h4M0]α = h4F

with Mk ∈ R(n+4)×(n+4), k = 0, 2, 4, where the index of each matrix is related to
the order of the derivative from which it stems. The system thus obtained is highly
structured, in block bidiagonal form. Indeed, for k = 0, 2, 4, T̃ (k)j ∈ R2×4, j = 0, 1,

A(k)j ∈ R4×4, j = 0, 1, B(k)j ∈ R4×4, j = 2, . . . , n, C (k)
j ∈ R4×4, j = 1, . . . , n − 1,

we have explicitly

Mk =




T̃ (k)0 O2,4 O2,4 O2,4 O2,4 O2,4 O2,4 O2,4

A(k)0 C(k)
1 O O O O O O

O B(k)2 C(k)
2 . . . O O . . . O O O

O O . . . . . . O O . . . O O O
O O O . . . O O . . . O O O

O O O . . . B(k)j C(k)
j . . . O O O

. . . . . .

O O O . . . O O . . . B(k)n−1 C(k)
n−1 O

O O O . . . O O . . . O B(k)n A(k)1
O2,4 O2,4 O2,4 . . . O2,4 O2,4 . . . O2,4 O2,4 T̃ (k)1




Unless otherwise stated, or when without a specific size index, each block is un-
derstood to be 4 by 4. Also, to emphasize the dimension of the zero matrix we write
Om ∈ Rm×m or Om,n ∈ Rm×n .

Specifically, for M4 we have for T j ∈ R2×2, j = 0, 1,

(6) T̃0 ≡ T̃ (4)0 =
[

T0 O2
]

T̃1 ≡ T̃ (4)1 =
[

O2 T1
]

with

(7) T0 =
[

h4 0
−7h3 7h3

]
, T1 =

[
−7h3 7h3

0 h4

]

Furthermore for the matrix M4 all blocks with same name are equal to each other
and we set

C ≡ C(4)
1 = C(4)

2 = ... = C (4)
n−1, B ≡ B(4)2 = B(4)3 = ... = B(4)n .

For the remaining blocks we explicitly find

A0 ≡ A(4)0 =




676.898959 −2556.080843 3466.638660 −1843.444245
252.6301981 −637.2153922 206.4343097 524.0024063
30.1896807 63.1159957 −181.0553956 −258.101801
0.281162 10.18023913 107.9824229 137.5436408


(8)
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C =




194.1150595 59.18676730 2.650495372 0.03514515003
−329.0767906 −47.64856975 27.10012948 3.773710141

499.494486 −120.6542168 −64.5675240 31.57877478
−664.532755 709.1160198 −385.1831009 84.61236994


(9)

B =




84.61236994 −385.1831008 709.1160181 −664.5327536
31.57877478 −64.56752375 −120.6542173 499.4944874
3.773710141 27.1001293 −47.648570 −329.076791

0.03514515003 2.6504944 59.186765 194.11506


(10)

A1 ≡ A(4)1 =




137.5436422 107.9824252 10.1802390 0.28116115
−258.1018004 −181.0553970 63.1159965 30.18968105
524.0024040 206.4343108 −637.2153932 252.6301982

−1843.444246 3466.638661 −2556.080843 676.8989596


(11)

Two main changes hold for the matrices M2 and M0, with respect to M4; the first
lies in the top and bottom corners, where T̃ (0)j = T̃ (2)j = O2,4, j = 0, 1. They
contain then a premultiplication by diagonal coefficient matrices. Namely letting
A0,2,C2, B2, A1,2, Di ∈ R4×4, Di = diag(ai1, ai2, ai3, ai4), with ai j ≡ a(τi j ), j =
1, 2, 3, 4, i = 1, 2, ..., n, we have

A(2)0 = D1 A0,2, A(2)1 = Dn A1,2

C(2)
i = Di C2, i = 1, 2, ..., n − 1

B(2)i = Di B2, i = 2, 3, ..., n

where

A0,2 =




29.30827273 −47.68275514 9.072282826 7.792345494
5.67012435 2.62408902 −8.50204661 −6.772789016
0.16439223 1.339974467 3.602756629 1.87349900
0.00006780 0.004406270526 0.1127212947 1.392658748




C2 =




1.450129518 0.05858914701 0.001126911401 0.8471353553 10−5

4.030419911 2.533012603 0.3966407043 0.02054903207
−9.65902448 −0.812682181 2.782318888 0.7087655468
4.07133215 −8.31463385 −0.93008649 3.663534093




B2 =




3.663534093 −0.9300864851 −8.314633880 4.071332233
0.7087655468 2.782318883 −0.812682182 −9.659024508
0.02054903207 0.396640665 2.53301254 4.0304199

0.8471353553 10−5 0.00112689 0.0585890 1.4501302




A1,2 =




1.392658814 0.112721477 0.00440599 0.000067777
1.873498986 3.602756584 1.33997443 0.164392258

−6.772789012 −8.502046610 2.62408899 5.670124369
7.792345496 9.072282833 −47.68275513 29.30827274
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Similarly, for A0,0,C0, B0, A1,0, Ei ∈ R4×4, Ei = diag(bi1, bi2, bi3, bi4), with
bi j ≡ b(τi j ), j = 1, 2, 3, 4, i = 1, 2, ..., n, we have

A(0)0 = E1 A0,0, A(0)1 = En A1,0

C(0)
i = EiC0, i = 1, 2, ..., n − 1

B(0)i = Ei B0, i = 2, 3, ..., n

with

A0,0 =




0.604278729 0.3156064435 0.07064438205 0.008784901454
0.060601115 0.2089471273 0.3087560066 0.2534672883
0.000426270 0.006057945090 0.03689680420 0.1248474545

0.10 10−7 0.7425933886 10−6 0.00002933256459 0.0006554638258




C0=




0.0006703169101 0.00001503946986 0.1853647586 10−6 0.9723461945 10−9

0.1448636180 0.02163722179 0.001674337031 0.00005328376522
0.4676572160 0.2815769859 0.07496220012 0.007575139336
0.1985435495 0.4197299375 0.3055061349 0.07553484124




B0 =




0.07553484124 0.3055061345 0.4197299367 0.1985435448
0.007575139336 0.07496219992 0.2815769862 0.4676572138

0.00005328376522 0.00167433770 0.0216372202 0.144863633
0.9723461945 10−9 0.1836 10−6 0.000015047 0.00067030




A1,0 =




0.00065546187 0.00002934342 0.72976 10−6 0.78 10−8

0.1248474495 0.03689679808 0.00605794290 0.0004262700
0.2534672892 0.3087560073 0.2089471283 0.0606011146
0.00878490146 0.07064438202 0.3156064438 0.6042787300




In the next Section also some more information on some of the above matrices will
be needed, specifically we have

‖A1‖2 ≡ a∗
1 = 0.0321095,

‖B−1‖2 ≡ b∗
1 = 0.1022680,(12)

ρ(B−1) ≡ b∗
2 = 0.0069201.

3. Error analysis

We begin by stating two Lemmas which will be needed in what follows.

LEMMA 1. The spectral radius of any permutation matrix P is ρ(P) = 1 and
‖P‖2 = 1.
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Proof. Indeed notice that it is a unitary matrix, as it is easily verified that P−1 = P∗ =
P, or that P∗ P = I , giving the second claim. Moreover, since ρ(P∗) ≡ ρ(P−1) =
ρ(P) = ρ(P)−1, we find ρ2(P) = 1, i.e. the first claim.

LEMMA 2. Let us introduce the auxiliary diagonal matrix of suitable dimension
1m = diag

(
1, δ−1, δ−2, ..., δ1−m

)
choosing δ < 1 arbitrarily small. We can consider

also the vector norm defined by ‖x‖∗ ≡ ‖1x‖2 together with the induced matrix norm
‖A‖∗. Then, denoting by ρ(A) ≡ max1≤i≤n |λ(A)i | the spectral radius of the matrix A,

where λ(A)i , i = 1(1)n represent its eigenvalues, we have

‖A‖∗ ≤ ρ(A)+ O(δ), ‖1−1‖2 = 1.

Proof. The first claim is a restatement of Theorem 3, [9] p. 13. The second one is
immediate from the definition of 1.

Let yN be the unique B-spline of order 8 interpolating to the solution U of problem
(1). If f ∈ C4([0, 1]) then U ∈ C8([0, 1]) and from standard results, [4], [15] we have

(13) ‖D j (U − yN )‖∞ ≤ c j h
8− j , j = 0, . . . , 7.

We set

(14) yN (x) =
4n+4∑

j=1

β j B j(x).

The function uN has coefficients that are obtained by solving (5); we define the
function G as the function obtained by applying the very same operator of (5) to the
spline yN , namely

(15) G ≡ h−4Lhβ ≡ h−4[M4 + h2M2 + h4M0]β.

Thus G differs from F in that it is obtained by a different combination of the very same
B-splines.

Let us introduce the discrepancy vector σi j ≡ G(τi j ) − F(τi j ), i = 1(1)n, j =
1(1)4 and the error vector e ≡ β−α, with components ei = βi −αi , i = 1, . . . , 4n+4.
Subtraction of (5), from (15) leads to

(16) [M4 + h2M2 + h4M0]e = h4σ.

We consider at first the dominant systems arising from (5), (15), i.e.

(17) M4α̃ = h4F, M4β̃ = h4G.

Subtraction of these equations gives the dominant equation corresponding to (16),
namely

(18) M4ẽ = h4σ, ẽ ≡ α̃ − β̃.
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Notice first of all, that in view of the definition of G and of the fact that yN inter-
polates on the exact data of the function, the boundary conditions are the same both for
(5) and (15). Hence σ1 = σ2 = σ4n+3 = σ4n+4 = 0. In view of the triangular structure
of T0 and T1, it follows then that ẽ1 = ẽ2 = ẽ4n+3 = ẽ4n+4 = 0, a remark which will
be confirmed more formally later.

We define the following block matrix, corresponding to block elimination per-
formed in a peculiar fashion, so as to annihilate all but the first and last element of
the second block row of M4

R̃ =




I2 O2,4 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 O2

O4,2 I4 Q Q2 ... Q j−2 ... Qn−2 Qn−1 O4,2
O4,2 O I4 O ... O ... O O O4,2

...

O4,2 O O O ... O ... I4 O O4,2
O4,2 O O O ... O ... O I4 O4,2
O2 O2,4 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 I2




where Q = −C B−1. Recall once more our convention for which the indices of the
identity and of the zero matrix denote their respective dimensions and when omitted
each block is understood to be 4 by 4. Introduce the block diagonal matrix Ã−1 =
diag(I4n, A−1

1 ). Observe then that R̃M4 Ã−1 = M̃4, with

M̃4 =




T̃0 O2,4 O2,4 O2,4 ... O2,4 O2,4 O2,4

A0 O O O ... O O Qn−1

O B C O ... O O O
O O B C ... O O O

...

O O O O ... B C O
O O O O ... O B I4

O2,4 O2,4 O2,4 O2,4 ... O2,4 O2,4 T̃1 A−1
1




Let us consider now the singular value decomposition of the matrix Q, Q =
V3U∗, [12]. Here 3 = diag(λ1, λ2, λ3, λ4) is the diagonal matrix of the singular
values of Q, ordered from the largest to the smallest. Now, premultiplication of M̃4 by
S = diag(I2, V ∗, I4n−2) and then by the block permutation matrix

P̃ =




I2 O2,4 O2,4n−4 O2,2
O4,2 I4 O4,4n−4 O4,2
O2,2 O2,4 O2,4n−4 I2

O4n−4,2 O4n−4,4 I4n−4 O4n−4,2




followed by postmultiplication by S̃ = diag(I4n,U) and then by

P̂ =




I4 O O4,4n−4
O4n−4,4 O4n−4,4 I4n−4

O I4 O4,4n−4
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gives the block matrix

(19) Ē =
[

Ẽ O8,4n−4

L̃ B̃

]
.

Here

(20) Ẽ =




T̃0 O2,4

V ∗ A0 3n−1

O2,4 T̃1 A−1
1 U




and

(21) L̃ =
[

O4n−8,4 O4n−8,4
O4 U

]

as well as

B̃ =




B C O O ... O O
O B C O ... O O
O O B C ... O O

...

O O O O ... B C
O O O O ... O B



.(22)

It is then easily seen that

(23) Ē−1 =
[

Ẽ−1 O8,4n−4

−B̃−1 L̃ Ẽ−1 B̃−1

]
.

In summary, we have obtained Ē = P̃S R̃M4 Ã−1 S̃ P̂ . It then follows M4 =
R̃−1S−1 P̃ Ē P̂ S̃−1 Ã, and in view of Lemma 1, system (18) becomes

(24) Ē P̂ S̃−1 Ãẽ = h4 P̃ S R̃σ.

To estimate the norm of Ē−1 exploiting its triangular structure (19), we concen-
trate at first on (20). Recalling the earlier remark on the boundary data, we
can partition the error from (16) and the discrepancy vectors as follows: ẽ =
(ẽ1, ẽ2, ẽt, ẽc, ẽb, ẽ4n+3, ẽ4n+4)

T , ẽt, ẽb,∈ R2, ẽc,∈ R4n−4. Define also ˜eout =
(ẽt, ẽb)

T , êout = (0, 0, ˜eout, 0, 0)T , êt = (e1, e2, ẽt)
T , êb = (ẽb, e4n+3, e4n+4)

T .

Now introduce the projections 51,52 corresponding to the top and bottom por-
tions of the matrix (19). Explicitly, they are given by the following matrices

(25) 51 =
[
I8 O8,4n−4

]
52 =

[
O4n−4,8 I4n−4

]
.

Consider now the left hand side of the system (24). It can be rewritten in the
following fashion

51 Ē P̂ S̃−1 Ãẽ = Ẽ P̂ S̃−1 Ãẽ = Ẽ

[
êt

U∗ A1êb

]
(26)
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The matrix in its right hand side Z ≡ 51 P̃ S R̃ instead becomes

(27)

Z =




I2 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 O2

O4,2 V ∗ V ∗Q ... V ∗Q j−2 ... V ∗Qn−2 V ∗Qn−1 O4,2
O2 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 I2


 .

From (26) using (20), we find

Ẽ

[
êt

U∗ A1êb

]
=




T̃0êt

V ∗ A0êt +3n−1U∗ A1êb

T̃1êb


(28)

=




T0

(
e1
e2

)

V ∗ A0êt +3n−1U∗ A1êb

T1

(
e4n+3
e4n+4

)



.

Introduce now the following matrix

H =




−96.42249156 409.2312351 λn−1
1 0

−162.6192900 738.3915192 0 λn−1
2

264.5383512 −1216.139747 0 0
645.9124120 −2179.906392 0 0


 ,

where the first two columns are the last two columns of V ∗ A0. The matrix of the
system can then be written as

Ẽ ≡ R−1
1 R1




T0 O2,4 O2
Y0 H Y1
O2 O2,4 T1



[

I4 O4
O4 U∗ A1

]

= R−1
1




T0 O2,4 O2

Y0 3̃(I + N1) Y1
O2 O2,4 T1


 P†




I2 O2,4
O2,4 [U∗ A1]1,2

I2 O2,4
O2,4 [U∗ A1]3,4


 ≡ R−1

1 3̄P† P̄ S,

where we introduced the permutation P† exchanging the first two with the last two
columns of the matrix H , its inverse producing a similar operation on the rows of the
matrix to its right; we have denoted the first two rows of such matrix by [U ∗ A1]1,2
and a similar notation has been used on the last two. R1 denotes the 8 by 8 matrix
corresponding to the elementary row operation zeroing out the element (4, 2) of H , i.e.
the element (6, 4) of Ẽ . Thus R1 H P1 is upper triangular, with main diagonal given by
3̃ ≡ diag(λn−1

1 , λn−1
2 , r, s), λ1 = 5179.993642> 1, λ2 = 11.40188637> 1. It can

then be written then as R1 H P1 = 3̃(I + N1), with N1 upper triangular and nilpotent.
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The inverse of the above matrix 3̄ is then explicitly given by

3̄−1 ≡




T −1
0 O2,4 O2

−T −1
0 (I + N1)

−13̃−1Y0 (I + N1)
−13̃−1 −T −1

1 (I + N1)
−13̃−1Y1

O2 O2,4 T −1
1




where Ñ1 denotes a nilpotent upper triangular matrix.

From (20) and the discussion on the boundary conditions the top portion of this
system gives for the right hand side h4 Zσ = h4 [0, 0, σc, 0, 0]T . Thus from 3̄−1 Zσ
gives immediately e1 = e2 = e4n+3 = e4n+4 = 0 as claimed less formally earlier. The
top part of the dominant system then simplifies by removing the two top and bottom
equations, as well as the corresponding null components of the error and right hand
side vectors. Introduce also the projection matrix 53 = diag(02, I4, 02), where 0m

denotes the null vector of dimension m. We then obtain

êout = 53êout = h4533̄
−1 Zσc = h453SP̄ P†(I + N1)

−13̃−1 R151 P̃ S R̃σc

from which letting λ† ≡ max(λ1−n
1 , λ1−n

2 , r−1, s−1) = max(r−1, s−1), the estimate
follows using Lemmas 1 and 2

‖êout‖∗ ≤ h4‖53‖∗‖S‖∗‖P̄‖∗‖P†‖∗‖(I + N)−1‖∗‖3̃−1‖∗
‖R1‖∗‖51 P̃ S11−1 R̃11−1σc‖∗

≤ h4λ†(1 + O(δ))4[ρ(S)+ O(δ)][ρ(R1)+ O(δ)]‖
51 P̃ S1‖∗‖1−1 R̃1‖∗‖1−1σc‖∗(29)

≤ h4λ†(1 + O(δ))6‖51 P̃ S1‖∗‖(I + R̃2)‖∗‖11−1σc‖2

≤ h4λ†(1 + O(δ))7‖51 P̃ S1‖∗
√

4n − 4‖σc‖∞

as R̃2 is upper triangular and nilpotent. Now observe that the product P̃ S1 =
diag(D1, V ∗D2, D3, D4), where each block is as follows

D1 = diag(1, δ−1), D2 = diag(δ−2, δ−3, δ−4, δ−5),

D3 = diag(δ−8, δ−9), D4 = diag(δ−10, . . . , δ−4n−3, δ−6, δ−7).

It follows that 51 P̃S1 = diag(D1, V ∗D2, D3, 04n−4). Hence

‖51 P̃ S14n+4‖∗ = ‖‖diag(I2, V ∗, I2) diag(D1, D2, D3)‖∗
≤ ‖diag(I2, V ∗, I2)‖∗‖diag(D1, D2, D3)‖∗
≤ [ρ(diag(I2, V ∗, I2))+ O(δ)](1 + O(δ)) ≤ (1 + O(δ))2(30)

since for the diagonal matrix ρ[diag(D1, D2, D3)] = 1 and from Lemma 1 ρ(V ∗) =
1, the matrix V being unitary. But also,

‖êout‖2
∗ = ‖14êout‖2

2 = ê∗
out1

2
4êout =

4∑

i=1

e2
i δ

2i−8 ≥ ‖êout‖2
∞
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i.e. ‖êout‖∗ ≥ ‖êout‖∞. In summary combining (29) with (30) we have

‖êout‖∞ ≤ h
7
2 2λ†(1 + O(δ))9‖σc‖∞ ≤ h

7
2 2λ†(1 + O(δ))‖σc‖∞

≡ h
7
2 η‖σ‖∞(31)

which can be restated also as h−4‖Ẽeout‖∞ ≥ [ηh
7
2 ]−1‖eout‖∞ i.e. from Thm. 4.7 of

[10], p. 88, the estimate on the inverse follows

‖Ẽ−1‖∞ ≤ ηn
1
2 .

Looking now at the remaining part of (18) with the bottom portion matrix of Ē ,
see (19), we can rewrite it as B̃ ẽc = σc − L̃ êout. We have B̃ = E B̂, with B̂ =
diag(B, . . . , B) and

E =




I −Q O O ... O O
O I −Q O ... O O
O O I −Q ... O O

...

O O O O ... I −Q
O O O O ... O I




(32)

and thus B̃−1 = B̂−1E−1. Notice that E−1 is a block upper triangular matrix, with
the block main diagonal containing only identity matrices, it can then be written as
E−1 = I4n−4 + U0, U0 being nilpotent (i.e. block upper triangular with zeros on the
main diagonal). Thus Lemma 2 can be applied once more. The system can then be
solved to give

ẽc = B̂−1E−1[h4σ − L̃ êout].

Premultiplying this system by 1−1 and taking norms, we obtain using (29),

‖1−1ẽc‖∗ ≤ h4‖1−1 B̂−1 E−1σ‖∗ + ‖1−1 B̂−1E−1 L̃ êout‖∗
≤ h4‖11−1 B̂−1E−1σ‖2 + ‖1−1‖∗‖B̂−1‖∗‖E−1‖∗‖U êout‖∗

≤ h4‖B̂−1‖2‖E−1σ‖2 + [ρ(B̂−1)+ O(δ)][1 + O(δ)]‖U‖∗‖êout‖∗

≤ h4‖B−1‖2
√

4n − 4‖E−1σ‖∞ + ρ(B−1)[1 + O(δ)]3ηh
7
2

≤ h4b∗
12

√
n‖E−1‖∞‖σ‖∞ + ρ(B−1)[1 + O(δ)]ηh

7
2 ‖σ‖∞

≤ h
7
2 2b∗

1e∗
∞‖σ‖∞ + b∗

2[1 + O(δ)]ηh
7
2 ‖σ‖∞

≤ h
7
2
[
2b∗

1e∗
∞ + b∗

2[1 + O(δ)]η
]
‖σ‖∞ ≡ h

7
2µ‖σ‖∞ .(33)

On the other hand

‖1−1ẽc‖∗ = ‖11−1ẽc‖2 = ‖ẽc‖2 ≥ ‖ẽc‖∞.

In summary, by recalling (12) and since ‖E−1‖∞ ≡ e∗
∞ = 72.4679

‖ẽc‖∞ ≤ µn− 7
2 ‖σ‖∞.
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Together with the former estimate (31) on ‖êout‖∞, we then have

‖ẽ‖∞ ≤ νn− 7
2 ‖σ‖∞,

which implies, once again from Thm. 4.7 of ([10]), h−4‖M4 ẽ‖∞ ≥ ν−1n− 1
2 ‖ẽ‖∞, i.e.

in summary we can state the result formally as follows.

THEOREM 1. The matrix M4 is nonsingular. The norm of its inverse matrix is
given by

(34) ‖M−1
4 ‖∞ ≤ νn

1
2 .

Now, upon premultiplication of (16) by the inverse of M4, letting N ≡ M−1
4 (M2 +

h2M0), we have

(35) e = h4(I + h2 N)−1 M−1
4 σ.

As the matrices M2 and M0 have entries which are bounded above, since they are built
using the coefficients a and b, which are continuous functions on [0, 1], i.e. themselves
bounded above, Banach’s lemma, [12] p. 431, taking h sufficiently small, allows an
estimate of the solution as follows.

(36) ‖e‖∞ ≤ h4‖(I + h2N)−1‖∞‖M−1
4 ‖∞‖σ‖∞ ≤ h4ν‖σ‖∞n

1
2

1 − h2‖N‖∞
≤ γ n− 7

2 ‖σ‖∞,

having applied the previous estimate (34). Observe that

‖uN − yN ‖∞ ≤ ‖e‖∞ max
0≤x≤1

4n+4∑

i=0

Bi(x) ≤ θ‖e‖∞.

Applying again (13) to σ , using the definition (5) of Lh , we find for 1 ≤ k ≤ n, j =
1(1)4, by the continuity of the functions F,G

(37) |σ4k+ j | = h4|G(τk, j )− F(τk, j )| ≤ ζk, j h
4.

It follows then ‖σ‖∞ ≤ ζh4 and from (36), ‖e‖∞ ≤ γ h
15
2 . Taking into account this

result, use now the triangular inequality as follows

‖U − uN ‖∞ ≤ ‖U − yN ‖∞ + ‖yN − uN ‖∞ ≤ c0h8 + ηγ h
15
2 ≤ c∗h

15
2

in view of (13) and (36). Hence, recalling that N = 4n + 4, we complete the error
analysis, stating in summary the convergence result as follows

THEOREM 2. If f ∈ C4([0, 1]), so that U ∈ C8([0, 1]) then the proposed B-spline
collocation method (5) converges to the solution of (1) in the Chebyshev norm; the
convergence rate is given by

(38) ‖U − uN ‖∞ ≤ c∗N− 15
2 .

REMARK 1. The estimates we have obtained are not sharp and in principle could
be improved.



A collocation method 371

4. Examples

We have tested the proposed method on several problems. In the Figures we provide
the results of the following examples. They contain the semilogarithmic plots of the
error, in all cases for n = 4, i.e. h = .25. In other words, they provide the number of
correct significant digits in the solution.

EXAMPLE 1. We consider the equation

y(4) − 3y(2) − 4y = 4 cosh(1),

with solution y = cosh(2x − 1)− cosh(1).

EXAMPLE 2. Next we consider the equation with the same operator L but with
different, variable right hand side

y(4) − 3y(2) − 4y = −6 exp(−x),

with solution y = exp(−x).

EXAMPLE 3. Finally we consider the variable coefficient equation

y(4) − xy(2) + y sin(x) = 24

(x + 3)5
− 2x

(x + 3)3
+ sin(x)

x + 3
,

with solution y = 1
x+3 .
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M.L. Sampoli

CLOSED SPLINE CURVES BOUNDING MAXIMAL AREA

Abstract. In this paper we study the problem of constructing a closed
spline curve in R2, which interpolates a given set of data points, is shape-
preserving and which, in addition, bounds the maximal area. The con-
struction is done by using the so-called Abstract Schemes (AS). The re-
sulting spline curve, expressed in its piecewise Beźier representation, has
degree 3 and continuity C1 and can be extended to a curve of degree 6 and
continuity C2, with similar properties.

1. Introduction

In the definition and development of mathematical models which could describe real
objects or real phenomena a great deal of research has been done in the field of con-
strained interpolation and approximation. Constrained interpolation indeed arises in
various applications. In industry, for instance, when we are dealing with the problem
of designing the network curves constituting the tail of an aircraft we should avoid
any oscillations which could affect the aerodynamic properties of the resulting surface.
In these cases we give additional constraints such as smoothing constraints or shape-
preserving constraints. In this context, an interesting problem, important for its appli-
cations in naval engineering and ship industry, is that of constructing a closed curve in
R2, interpolating a given set of points, shape-preserving and bounding maximal area.

Aim of the paper is indeed to present a method to solve this problem. The proposed
method is based on the application of Abstract Schemes. These schemes have been
developed to solve general constrained interpolation problems (see for instance [4],
[17], [7]).

The basic idea behind AS is given by observing that when we interpolate some data
points by a spline, and want to fulfill other requirements, we usually dispose of several
free parameters d0, d1, . . . , dN (di ∈ Rq), which are associated with the knots. If we
now express the constraints as conditions relative to each interval between two knots,
they can be rewritten as a sequence of inclusion conditions: (di , di+1) ∈ Di ⊂ R

2q ,
where the sets Di are the corresponding feasible domains. In this setting the problems
of existence, construction and selection of an optimal solution can be studied with the
help of Set Theory in a general way.

The remainder of the paper is organized as follows. In the next section the fun-
damental ideas of AS will be recalled. In order to make the paper self-contained it is
more convenient to present here the basic ideas and the main results on AS, although
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they can be found in other papers as well. In Section 3 we shall present the applica-
tion of AS for the construction of C1 cubic curves with maximal area. The C2 spline
curves will be constructed in Section 4 and the examples and the final conclusions will
be reported in Section 5.

2. Basic ideas on abstract schemes

The main idea which gave rise to abstract schemes was the observation that most
methods used in constrained interpolation have a common structure, even if, at a first
sight, they seem quite different from each other. This structure can be sketched as
follows: first a suitable set of piecewise functions is chosen and a set of parameters
(d0, d1, . . . , dN ) is selected. Then, each function piece is expressed using these param-
eters. A further step consists in rewriting the constraints in terms of these parameters
and deriving a set of admissible domains Di . This common procedure is thus exploited
to build up a general theory, in order to check the feasibility of the problem, and then
to provide a general purpose algorithm for computing a solution (given by an optimal
sequence).

The first abstract schemes were developed some years ago by Schmidt and inde-
pendently by Costantini, see for instance [16] and [3] (and the survey papers [5], [17]).
In those papers an abstract algorithm to construct univariate functions subjected to sep-
arable constraints was presented.

Let us see now a rigorous formulation. Supposing we are given the sequences of
sets Di ⊂ Rq × Rq , with Di 6= ∅, for every i = 0, 1, ..., N − 1, which define the
constraint domains, we may define the global set

D := {(d0, d1, . . . , dN ) ∈ R
q (N+1) s. t . (di , di+1) ∈ Di , i = 0, 1, . . . , N − 1}.

This is the solution set. Therefore a problem of constrained interpolation can be suit-
ably reduced to the study of set D. Indeed we shall consider the following problems

P1 Is D non empty? In other words do there exist sequences (d0, d1, ..., dN ) such that

(1) (di , di+1) ∈ Di , i = 0, 1, . . . , N − 1.

P2 If there exist sequences fulfilling (1), is it possible to build up an algorithm which
computes one among them efficiently?

Obviously, if the solution is not unique we will select the best one, that is the
sequence which will minimize or maximize some objective functional (we will see that
in our case the functional is related with the area).

We assume the problem is well posed, in the sense that the sets Di are supposed non
empty for every i ; we suppose also that Di are closed sets, for every i (not necessarily
compact). Moreover in general, as the solution is always made up piecewisely, we shall
adopt the same notation used for piecewise curves: we call i-th segment the portion of
the solution from the i -th to the i + 1-st breakpoint.
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A solution to these problems can be obtained using a two-sweep strategy ([4]),
processing the data first in one direction, for instance from left to right, through algo-
rithm A1 (forward sweep), and then in the opposite direction, through algorithm A2
(backward sweep). In more detail, let us denote with 51, 52 : Rq × Rq → Rq the
projection maps from the ”x1x2-plane” onto the ”x1-axis” and ”x2-axis” respectively,
and let us define the sets

(2) Bi := 51(Di) ; i = 0, 1, . . . , N − 1 ; BN := R
q .

Now, in the forward sweep, as we may observe that for every parameter di either the
constraint domain coming from the segment (i − 1, i), that is Di−1, or the one coming
from the segment (i, i + 1), that is Di , have to be taken into account, we determine, for
every parameter, the true admissible domain Ai . This is indeed done by algorithm A1.

Algorithm A1.

1. Set A0 := B0, J := N

2. For i = 1, . . . , N

2.1 Set Ai := 52(Di−1 ∩ {Ai−1 × Bi}).
2.2 If Ai = ∅ set J := i and stop.

3. Stop.

In this connection, we have the following result, [4].

THEOREM 1. P1 has a solution if, and only if, J = N that is Ai 6= ∅, i =
0, 1, . . . , N. If (d0, d1, . . . , dN ) is a solution then

(3) di ∈ Ai ; i = 0, 1, . . . , N .

We remark that, in general, a solution of P1 is not unique and that the necessary
condition (3) is not sufficient. Thus, if the sequence of non empty sets A0, . . . , AN

has been defined by algorithm A1, a first simple scheme for computing a sequence
(d0, d1, . . . , dN ) is provided by the following algorithm (backward sweep) whose ef-
fectiveness is guaranteed by Theorem 2 (we refer again to [4] for the proof).

Algorithm A2.

1. Choose any dN ∈ AN .

2. For i = N − 1, N − 2, . . . , 0

2.1 set Ci (di+1) := 51(Di ∩ {Ai × {di+1}})
2.2 Choose any di ∈ Ci (di+1)

3. Stop.
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THEOREM 2. Let the sequence A0, A1, . . . , AN be given by algorithm A1, with
Ai 6= ∅ ; i = 0, 1, . . . , N . Then algorithm A2 can be completed (that is the sets
C(di+1) are not empty) and any sequence (d0, d1, . . . , dN ) computed by algorithm A2
is a solution for problem P2.

i

i-1

Di-1
A

A

i

i-1

i
B

(D   )
i-1Π

2

i

i+1

Di

Ai+1

di+1

Ai

dC( i+1 )

(a) (b)

Figure 1: Algorithm 1: construction of the admissible domains Ai ,(a). Algorithm 2:
graphical sketch of step 2.1.(b).

2.1. Boundary conditions

When we are constructing closed curves the end points should be handled as the other
inner points so that the solution s(t) has to satisfy the condition s(k)(x0) = s(k)(xN )

for k = 0, 1, . . . up to the continuity order considered. This kind of conditions are
called non separable boundary conditions. In terms of abstract scheme formalization
the above conditions reduce to find a sequence (d0, d1, . . . , dN ) such that dN = β(d0),
where β is any continuous function with continuous inverse.

These conditions, giving a direct relationship between the first and last element of
the sequence (d0, d1, . . . , dN ), destroy the sequential structure of our scheme. A pos-
sible strategy would consist in considering, among all the sequences (d0, d1, . . . , dN )

which belong to D, the ones where starting with an element d0 ∈ A0, end up with
dN = β(d0). In other words we first check whether there are in the admissible domain
A0 some d0 such that β(d0) ∈ AN or, equivalently ,whether β(A0)∩ AN 6= ∅. Then, in
the backward sweep we pick up one of these dN and go back ending in d0 = β−1(dN ).

A full development of this procedure, along with the conditions under which such
sequences exist and the related constructive algorithms to determine them, would re-
quire some theory of set-valued maps whose details are beyond the scope of this paper.
We refer to [4] for theoretical aspects and to [6], [8] for an idea of some practical
applications.
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2.2. Selecting an optimal solution

It is clear from algorithms A1 and A2 that it is possible to find infinite sequences
(d0, d1, . . . , dN ) satisfying the constraints, as in algorithm A2 the admissible sets
Ci (di+1), defined in step 2.1, do not reduce, in general, to a single point. It is therefore
a natural idea to look for an optimal sequence, where the optimality criterion can be
given as the maximum or the minimum of a suitable functional F that is

(4) max
(d0,d1,...,dN )∈D

F(d0, d1, . . . , dN ) ,

and we specify the functional F according to our requirements. Although several forms
of functionals could be considered, for the sake of simplicity, we shall limit ourselves
to

(5) F(d0, d1, . . . , dN ) :=
N−1∑

i=0

gi(di , di+1),

where gi gives the local contribution to the objective function and, in shape-preserving
problems, can be connected with the shape of the resulting function (we shall consider
the area bounded by a closed curve).

To solve the optimization problem we present here an approach based on dynamic
programming (DP) [2]. As we will see later, this approach is well suited to deal with
discrete problems. Moreover DP is extremely flexible, as many functionals and any
kind of separable constraints (i.e. constraints which can be related to only one curve
segment and then whic can be expressed separately from segment to segment) can be
processed using the same algorithmic structure and, unlike other optimization meth-
ods, constraints play here a positive role, limiting the size of the decision space. In this
regard, we may observe that the functional recurrence relations of dynamic program-
ming can be very efficiently linked with the constraints in Algorithm A2. We refer to
[9] for full details on how implement dynamic programming in Algorithm A2.

Below is reported a sketch of the algorithm where we have stored in 8i the
cost associated with the i -th stage and in Ti is stored the optimal policy (therefore

max
(d0,d1,...,dN )∈D

F(d0, d1, . . . , dN ) = max
dN

8N (dN ) ). As a consequence, starting with

the optimal dN , we obtain the optimal dN−1 := TN−1(dN ) and so on.

Algorithm A2DP.

1. For any δ0 ∈ A0 set 80(δ0) := 0

2. For i = 1, 2, . . . , N

2.1 For any δi ∈ Ai compute Ci−1(δi) := 51(Di−1 ∩ {Ai−1 × {δi}})
2.2 For any δi ∈ Ai compute 8i(δi) := max

δi−1∈Ci−1(δi )
(g(δi−1, δi) +

8i−1(δi−1)) = g(Ti−1(δi), δi ) + 8i−1(Ti−1(δi)) and the corresponding
optimizing value Ti−1(δi)
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3. Compute dN such that 8N (dN ) = max
δN ∈AN

8N (δN )

4. For i = N − 1, . . . , 0

4.1. di := Ti(di+1)

5. Stop.

2.3. Multivariate case

The two-sweep scheme, given by algorithms A1 and A2 (or A2DP), has turned out to
be an effective method to solve several problems and its main attraction relies in the
fact that it is general, being applicable to a wide range of problems.

However an its closer inspection shows us that, although there is no assumption on
the subsets Di of Rq × Rq , which are the basic elements of the imposed constraints,
the practical usage of this method has been so far confined to the case Di ∈ R × R,
that means q = 1. This is due to the fact that in algorithms, either A1 or A2 we
have to compute the projection of intersections of subsets in a product space. More
precisely, we may recall, for instance, that step 2.1 of A1, which is the kernel of all
the modifications and improvements later developed, requires the computation of the
following set:

Ai := 52(Di−1 ∩ {Ai−1 × Bi}),
and this leads, even in the simplest higher dimension case, that is q = 2, to intersections
and projections of arbitrary subsets of R2 × R2. Even in the case of linear inequalities
for the constraints (Di would be a polytope of R

4), the corresponding algorithm is
extremely difficult to implement and has an unaffordable computational cost. Indeed,
in Rq , the computational cost of set intersections and their projections is given by
O(nq−1 log n), where n is the number of polytope vertices, see [15] for full details.

Thus, the practical application of abstract schemes has been for many years re-
stricted to univariate problems, where we have only one parameter associated with
every knot (two for every segment). This limitation is rather restrictive as univariate
problems suffice in general to model interpolation of functions, while are not suitable
for interpolation of parametric curves, which can represent closed curves. We may
see that usually parametric planar curve interpolation gives rise already to constraint
domains in R2 × R2.

Recent research has been therefore devoted to develop a new theory and construct
new methods suitable and applicable to multivariate constraint problems (see for in-
stance [7], [14]). It is worthwhile to repeat that the dimension q of the parameter space
is not related to the dimension of the point space we are working in.

Recently a new approach has been proposed (see [9], [8]). It is based on the ob-
servation that if we consider the union of 2q-boxes (i.e. rectangular parallelepipeds
with facets parallel to the coordinate hyperplanes) the computational cost of their in-
tersections and projections is reduced to O(n logq−1 n), [15]. The basic simple idea
of the new method is that of approximating the constraint domains Di with a union of
2q-boxes D̃i
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We refer to [9] for full details on this new approach. For the sake of completeness
we report here the main ideas on how this approximation is performed.

For every domain Di , we suppose we are able to give an estimate of a lower and/or
upper bound for each dimension. Then we may choose a step size h = (h1, h2, . . . , hq)

and, starting from the lower (upper) bound, construct a multidimensional grid in Rq ×
Rq whose dimension is assigned. We thus approximate every domain Di with the union
of those boxes whose vertices are contained in Di . By construction we have D̃i ⊆ Di

and we may easily see that, given h, for h → 0, we have meas (Di\D̃i ) → 0.

The next step consists in making a further approximation. Once we have obtained
the domains D̃i , we consider only the discrete values for the parameters (di , di+1),
corresponding to the vertices of the considered boxes. This is equivalent to working
with discrete domains, which we denote by D i . We then select the points of the grid
which are vertices of a 2q-box contained in Di . At the end of this process we obtain a
sequence of domains Di such that again approximate Di and Di ⊆ Di .

As in the continuous case, we may select an optimal solution by optimizing a suit-
able functional, using dynamic programming. The fact that the parameters di vary in
discrete domains is well suited for applying the dynamic programming in the mini-
mization process. Regarding the convergence analysis, the following result holds (we
refer to [9] for the proof).

 i

i+1 

D
i
 

h 

 i

i+1 

(a) (b)

Figure 2: (a):Every domain Di is replaced by a union of 2q-boxes.(b) only the values
at the vertices of the considered boxes are taken.

THEOREM 3. Let the domains D0, D1, . . . , DN−1 , with Di ⊂ Rq × Rq , be given.
Let D0, D1, . . . , DN−1 be the corresponding discrete domains obtained with a grid
of step size h. Let us denote now with (d∗

0, d∗
1, . . . , d∗

N ) a solution in D which max-
imizes also a continuous functional F, with a unique absolute maximum, and let
(d̄∗

0, d̄∗
1, . . . , d̄∗

N ) be a discrete counterpart. Then

lim
hmax →0

(d̄∗
0, d̄∗

1, . . . , d̄∗
N ) = (d∗

0, d∗
1, . . . , d∗

N ) , hmax := max(h1, h2, . . . , hq) .

We remark that as the parameters (di , di+1) can assume only the discrete values
corresponding to non zero elements of the i -th logical matrix, the operations of inter-
section, projection, cartesian product, etc. are easily performed on the matrix by the
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logical operators AND, OR, taking only some planes, putting together more planes and
so on. This way of proceeding has revealed to be very effective from the computational
point of view and it can be extended straightforwardly to domains in Rq × Rq (the
number of planes is in general given by 2q).

3. Interpolating spline curves maximizing the bounded area

Let us suppose we are given a set of points Ii ∈ R2 , i = 0, 1, . . . , N , along with
a parameterization ti i = 0, 1, . . . , N , (for instance chord length). Let us indicate
with Li := Ii+1 − Ii the polygonal data and set the quantities ki := ti+1 − ti , L̃i :=
(Ii+1 − Ii )/ki .

Our goal is to construct an interpolating C1 spline curve, s(t), which bounds max-
imal area. In order to obtain a curve useful for the applications we consider the addi-
tional constraint of shape preservation, i.e. we require that the resulting curve preserves
the convexity and inflections as prescribed by the given data.

To express the spline curve we use the piecewise Bézier representation so that each
spline segment is a Bézier curve

si (t) :=
n∑

j=0

b j,i Bn, j (t) , t ∈ [ti , ti+1] ,

where b j,i are called control points and form the control polygon and Bn, j (t) are the

Bernstein polynomials of degree n, defined by Bn, j (u) =
(

n
j

)
(1 − u)n− j u j , and

u = t−ti
ti+1−ti

.

From the properties of Bézier splines we have that the resulting curve will be
uniquely determined once the control polygon for every segment is constructed, see
for instance [11]. By construction we have that b0,i = Ii and bn,i = Ii+1, in this way,
as Bézier curves pass through the first and the last control points, we are guaranteed
the resulting curve interpolates the given data.

Let us consider now curves of degree three. In this case, for each segment i , the
control points to be determined are b0,i , b1,i , b2,i , and b3,i . The first and the last points
are set equal to two interpolation data points. So we have to determine the two inner
control points. From cubic Bézier polynomial properties we have that the global curve
is C1 if and only if, for every segment i , the inner control points b1,i and b2,i are taken
as follows

(6) b1,i := Ii + ki

3
Ti , b2,i := Ii+1 − ki

3
Ti+1,

where the vectors Ti and Ti+1, are respectively the curve tangent vectors at interpola-
tion points Ii and Ii+1.

If we express the tangent vectors as

(7) Ti := ui L̃i−1 + vi L̃i ; i = 0, . . . , N .
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where we set I−1 = IN−1, t−1 = tN−1, and IN+1 = I1, tN+1 = t1 , the free parameters
to be determined in order to uniquely construct the resulting curve are the values of u i

and vi , for every segment i = 0, . . . , N −1. These being two dimensional vectors, the
problem is called bivariate.

It is a standard practice to express the shape-preserving conditions through the con-
trol points. Indeed, due to the variation diminishing property of cubic Bézier polyno-
mials, a sufficient condition to locally reproduce the convexity of the polygonal data is
that the corresponding control polygon is convex as well. This condition can be given
by the following relationships

(8)
(L̃i−1 ∧ L̃i ) · ((b1,i − Ii ) ∧ (b2,i − b1,i)) ≥ 0

(L̃i ∧ L̃i+1) · ((b2,i − b1,i) ∧ (Ii+1 − b2,i)) ≥ 0 .

We have to reformulate the shape-preserving conditions in terms of parameters
ui and vi . The resulting curve should belong to the portion plane between Li and
the prolongations of Li−1 and Li+1; this can be assured imposing this condition to
the tangent vectors giving rise to the condition u i , vi ≥ 0. Moreover, a necessary
condition for (8) (which can be easily deduced from the limit case of collinear data
points) is given by

(9) 0 ≤ ui ≤ 3, 0 ≤ vi ≤ 3 .

Let us then define the quantities ρi := ‖(L̃i−1 ∧ L̃i )‖ and σi := ‖(L̃i−1 ∧ L̃i+1)‖,
for i = 0, . . . , N . Using (7) the conditions (8) can be rewritten, after straightforward
computations, as

(10)





ui(3 − ui+1)ρ
2
i − uivi+1 ρiσi − vivi+1ρiρi+1 ≥ 0

vi+1(3 − vi )ρ
2
i+1 − uivi+1 ρi+1σi − ui ui+1ρiρi+1 ≥ 0 .

From the above expressions we get immediately the form of the constraints do-
mains,

(11)

Di := { (ui , vi , ui+1, vi+1) ∈ R2 × R2 such that
ui(3 − ui+1)ρ

2
i − uivi+1 ρiσi − vivi+1ρiρi+1 ≥ 0 ;

vi+1(3 − vi )ρ
2
i+1 − uivi+1 ρi+1σi − uiui+1ρiρi+1 ≥ 0 ;

ui , vi , ui+1, vi+1 ≥ 0}.

3.1. Optimization process

Our goal is to select as optimal solution the one which maximize a suitable functional
related to the area bounded by the curve (applying Algorithm A2DP).

Therefore we have to compute the area of the region bounded by a parametric
closed curve. We observe that such a region can be divided into two parts: the region
enclosed in the polygonal line connecting the data points and the region between the
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polygonal line and the spline curve. As we consider interpolating spline curves the
region bounded by the polygonal line is fixed, therefore we may restrict our attention
to maximizing the area (which can be also negative) between the polygonal line and
the curve.

The construction of the curve is done segment by segment (piecewisely), we may
then maximize for each segment the area Si bounded by the curve s(t) for t ∈ [ti , ti+1]
and the line connecting Ii and Ii+1. Using polar coordinates we may see that the area
Si can be expressed in the following way

(12) Si :=
∫ ti+1

ti
(x(t)

dy

dt
− y(t)

dx

dt
)dt

where x(t) and y(t) are respectively the x and y components of the parametric curve
s(t). We should remark, that in this case the data points have to be ordered anti-
clockwise. The global functional we maximize is then given by

(13) F(d0, d1, . . . , dN ) :=
N−1∑

i=0

Si .

Regarding the error we make in the discretisation process, it can be proven the
following result (for the proof we refer again to [8]).

THEOREM 4. For every segment [i, i + 1], let us define the discrete and the con-
tinuous optimal solutions respectively

s̄∗
i := s̄∗

|[ti ,ti+1] ; s∗
i := s∗

|[ti ,ti+1] ,

where, the first one is computed using the discrete domains whose grid step size is h,
then, setting hmax = max(h1, h2, . . . , hq) and ki = ti+1 − ti we have

(14) ‖s̄∗
i (t)− s∗

i (t)‖∞ ≤ hmax
ki

4
.

4. C2 Continuity

We consider now the problem of constructing spline curves with C 2 continuity. The
idea is to start from a C1 piecewise curve and modify it such that it still satisfies the
imposed constraints, has maximal area, and it is also of the required continuity order
along the pieces.

Thus, once we have obtained the cubic spline curve, interpolating the data set, con-
vexity preserving and bounding maximal area, with C 1 continuity along the segments,
we raise the degree of the resulting spline up to six and work on its Bézier control poly-
gon in order to construct a shape-preserving C2 interpolating spline with again bounds
the maximal area. Following [8] this construction can be performed with the help of
abstract schemes.
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Let us consider the generic i -th interval. Taking the control polygon of the cu-
bic Bézier curve Ii , b1,i , b2,i , Ii+1 and inserting a collinear point in every polygo-
nal segment we obtain a control polygon with seven vertices, namely Ii , b∗

1,i , b∗
2,i =

b1,i , b∗
3,i , b∗

4,i = b2,i , b∗
5,i , Ii+1, corresponding to a Bézier curve of degree six. By

construction, at each end point the curve has second derivative equal to zero, giving
rise to a global C2 spline curve. Moreover, as the shape of the control polygon is not
changed the shape-preserving properties are maintained.

For the sake of simplicity the three additional points, b∗
1,i , b∗

3,i , b∗
5,i , can be taken

as midpoints of each polygonal segment.

The C1 continuity is guaranteed if we keep the points b∗
1,i and b∗

5,i fixed. On the

other hand the requirement of C2 continuity s̈i (ti+1) = s̈i+1(ti+1) can be rewritten in
terms of control points, taking into account that for curve of degree six we have (see
for instance [11])

s̈i (ti+1) = 30

k2
i

(b∗
4,i + Ii+1 − 2 b∗

5,i) ,(15)

s̈i+1(ti+1) = 30

k2
i+1

(b∗
2,i+1 + Ii+1 − 2 b∗

1,i+1) ,(16)

where, as usual, ki = ti+1 − ti . We recall that the C2 curve so far constructed corre-
sponds to the limit position b∗

2,i = b1,i and b∗
4,i = b2,i , with b1,i , b2,i control points

of the cubic curve.

In general the C2 continuity gives a linear relationship between b∗
2,i+1’s and b∗

4,i ’s.
If we keep fixed the points b∗

3,i ’s, we may choose the points b∗
2,i ’s as free parameters

for i = 1, 2, . . . , N − 1 and express the b∗
4,i ’s according to continuity relations.

(17) b∗
4,i := 2 b5,i − Ii+1 +

k2
i

k2
i+1

(
b∗

2,i+1 + Ii+1 − 2 b∗
1,i+1

)

In order to maintain shape-preserving requirements the resulting control polygon
should have the same convexity of the initial control polygon. More precisely the point
b∗

2,i should belong to the triangle whose vertices are b∗
1,i , b1,i and b∗

3,i , and equivalently
that b∗

4,i should belong to the triangle given by b∗
3,i , b2,i and b∗

5,i .

 b
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Figure 3: Starting control polygon for C2 continuity.

Using AS formalization, these requirements lead to constraint domains belonging
to R2 × R2, therefore analogously to what we have done in the previous section, we
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approximate them with a union of hyperrectangles and take only the discrete values
corresponding to the vertices.

Analogously to what we have done in the cubic case, we can now compute, for
every segment i , the area bounded by the polygonal line and the curve and maximize
it. This procedure lead to an optimal C2 spline curve.

5. Numerical results

In this section we present the performance of the proposed scheme on three examples.
In every case, in order to better comment the results obtained the curves will be depicted
along with the curvature at the normal direction (porcupine representation),

The first example is about a symmetric set of data proposed the first time by Kaklis
and Sapidis in [12]. The resulting curves are shown in Figures 4-5, where it is also
displayed the polygonal line connecting the data. More precisely in Figure 4 it is
shown the resulting C1 shape-preserving curve which interpolates the given data, and
maximize the bounded area.

  

  

  

  

  

  

  

  

  

Figure 4: C1 cubic spline curve.

In Figure 5 the spline curve with C2 continuity is shown where, again the result is
obtained though the maximization of the bounded area. We may note numerically that
in this case, having performed a second optimization process the total area is increased.

The second example concerns a set of data taken from a ship hull. The results are
displayed in Figure 6. Again we observe experimentally that the spline curve with
C2 continuity has a bounded area which is increased with respect to the area of the
corresponding C1 curve.

As a last example we consider a set of data with one inflection point (which is re-
produced in the resulting spline curve). The two resulting curves are shown in Figure 7.
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Figure 5: C2 spline curve of degree 6.
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Figure 6: Example 2: (a) resulting cubic spline curve with C 1 continuity.(b) resulting
spline of degree six with C2 continuity.
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Figure 7: Example 3:(a) resulting cubic spline curve with C 1 continuity.(b) resulting
spline of degree six with C2 continuity.
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