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ADMISSIBILITY AND EXPONENTIAL DICHOTOMY OF

EVOLUTIONARY PROCESSES ON HALF-LINE

Abstract. In the present paper we give a new way to characterize the ex-
ponential dichotomy of evolutionary processes in terms of ”Perron-type”
theorems, without the so-called evolution semigroup.

Also, there are obtained another proofs of some results gives by Van
Minh, Räbiger and Schnaubelt.

1. Introduction

Exponential dichotomy have their origins in the work of O.Perron [13]. It has been
studied for the case of differential equations by several authors, whose results can be
found in the monographs due to Massera-Schäffer [9], Hartman [4], Daleckij-Krein
[3], Coppel [2], Chicone-Latushkin [1].

The case of general evolutionary-processes has been studied in [15] by P.Preda for
exponential stability and in [14] by P.Preda and M.Megan for exponential dichotomy.

Recently, several results about exponential stability and exponential dichotomy
which extend the result of O.Perron were obtained by N. van Minh [11], [12], F. Ra-
biger [11], Y. Latushkin [6], [7], [8], T. Randolph, R. Schnaubelt [8], [18]. Argu-
ments in these papers again illustrate the general philosophy of “autonomization” of
nonautonomous problems by passing from evolution families to associated evolution
semigroups. In contrast to this “philosophy” the present paper shows that we can char-
acterize the exponential dichotomy in terms of the admissibility of some suitable pairs
of spaces in a direct way, without the so-called evolution semigroup.

So the aim of this paper is to establish the connection between admissibility and
exponential dichotomy in a new way, more directly, without using the evolution semi-
group .

2. Preliminaries

Let X be a Banach space, B(x) the Banach algebra of all bounded linear operators
acting on X and R+ = [0,+∞).

The classical result of O.Perron stands that the differential system

(A) ẋ(t) = A(t)x(t), t ≥ 0.
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is exponential dichotomic if and only if for all continuous and bounded f : R+ → X
there exists a bounded solution of the equation

(A, f ) ẋ(t) = A(t)x(t)+ f (t), t ≥ 0,

where A is an operator valued function, locally Bochner integrable and X a finite di-
mensional space.

This result was extended to the case of infinite dimensional Banach spaces in a
natural way.

The Cauchy problem associated to the equation (A, f ) has a solution given by

x(t) = U(t, t0)x(t0)+
∫ t

t0
U(t, τ ) f (τ )dτ.

U is the evolutionary process generated by the equation (A), U(t, t0) =
8(t)8−1(t0), where 8 is the unique solution of the Cauchy Problem

{
8′(t) = A(t)8(t)
8(0) = I

The case where {A(t)}t≥0 is a family of unbounded linear operators, impose an-
other “kind” of solution for (A, f ). So we have to deal with the so-called mild solution
for (A, f ) given by

x(t) = U(t, t0)x0 +
∫ t

t0
U(t, τ ) f (τ )dτ.

DEFINITION 1. A family of bounded linear operators on X, U = {U(t, s)}t≥s≥0 is
called an evolutionary process if

1) U(t, t) = I (the identity operator on X), for all t ≥ 0;

2) U(t, s)U(s, r) = U(t, r), for all t ≥ s ≥ r ≥ 0;

3) U(·, s)x is continuous on [s,∞) for all s ≥ 0, x ∈ X;
U(t, ·)x is continuous on [0, t] for all t ≥ 0, x ∈ X;

4) there exist M, ω > 0 such that

||U(t, s)|| ≤ Meω(t−s), for all t ≥ s ≥ 0.

We use the following notations:

C = { f : R+ → X : f − continuous and bounded}

C0 = { f ∈ C : f (0) = lim
t→∞

f (t) = 0}.

We note that C and C0 are Banach spaces endowed with the norm

|| f || = sup
t≥0

|| f (t)||.
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DEFINITION 2. An application P : R+ → B(X) is said to be a dichotomy projec-
tion family if

i) P2(t) = P(t), for all t ≥ 0;

ii) P(·)x ∈ C, for all x ∈ X.

We set Q(t) = I − P(t), t ≥ 0.

DEFINITION 3. An evolutionary process U is said to be uniformly exponentially
dichotomic (u.e.d) if there exist P a dichotomy projection family and N, γ > 0 such
that

d1) U(t, s)P(s) = P(t)U(t, s), for all t ≥ s ≥ 0;

d2) U(t, s) : K er P(s) → K er P(t) is an isomorphism for all t ≥ s ≥ 0;

d3) ||U(t, s)x || ≤ Ne−γ (t−s)||x ||, for all x ∈ Im P(s) and all t ≥ s ≥ 0.

d4) ||U(t, s)x || ≥ 1

N
eγ (t−s)||x ||, for all x ∈ K er P(s) and all t ≥ s ≥ 0.

In what follows we will consider evolutionary processes U for which exists P a
dichotomy projection family such that d1) and d2) are satisfied. In that case we will
denote by

U1(t, s) = U(t, s)|I m P(s), U2(t, s) = U(t, s)|K er P(s).

Let E and F be two closed subspaces of C .

DEFINITION 4. The pair (E, F) is said to be admissible for U if for all f ∈ E the
following statements hold

i) U−1
2 (·, t)Q(·) f (·) ∈ L1

[t,∞)(X), for all t ≥ 0;

ii) x f : R+ → X, x f (t) =
∫ t

0
U1(t, s)P(s) f (s)ds −

∫ ∞

t
U−1

2 (s, t)Q(s) f (s)ds,

lies in F.

LEMMA 1. With our assumption we have that U −1
2 (·, t0)Q(·)x is continuous on

[t0,∞), for all (t0, x) ∈ R+ × X.

Proof. Let t ≥ t0 ≥ 0, h ∈ (0, 1), x ∈ X . Then
U2(t + 1, t0) = U2(t + 1, r)U2(r, t0), for all r ∈ [t, t + 1], and so
U−1

2 (t + h, t0) = U−1
2 (t + 1, t0)U2(t + 1, t + h)

U−1
2 (t, t0) = U−1

2 (t + 1, t0)U2(t + 1, t).

It results that

||U−1
2 (t + h, t0)Q(t + h)x − U−1

2 (t, t0)Q(t)x || =
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= ||U−1
2 (t + 1, t0)[U2(t + 1, t + h)Q(t + h)x − U2(t + 1, t)Q(t)x]||

≤ ||U−1
2 (t + 1, t0)|| ||U2(t + 1, t + h)Q(t + h)x − U2(t + 1, t)Q(t)x ||

= ||U−1
2 (t + 1, t0)|| ||U(t + 1, t + h)Q(t + h)x − U(t + 1, t)Q(t)x ||

≤ ||U−1
2 (t + 1, t0)|| [||U(t + 1, t + h)(Q(t + h)x − Q(t)x)||

+||U(t + 1, t + h)Q(t)x − U(t + 1, t)Q(t)x ||]

≤ ||U−1
2 (t + 1, t0)||[Meω(1−h)||Q(t + h)x − Q(t)x ||

+||U(t + 1, t + h)Q(t)x − U(t + 1, t)Q(t)x ||]

It’s easy to see that U−1
2 (·, t0)Q(·)x is right-handed continuous on [t0,∞).

Consider now t > t0 ≥ 0, h ∈ (0, t − t0), x ∈ X . Then

U2(t, t0) = U2(t, t − h)U2(t − h, t0)

and so

U−1
2 (t − h, t0) = U−1

2 (t, t0)U2(t, t − h)

It results that

||U−1
2 (t − h, t0)Q(t − h)x − U−1

2 (t, t0)Q(t)x ||

= ||U−1
2 (t, t0)U2(t, t − h)Q(t − h)x − U−1

2 (t, t0)Q(t)x ||

≤ ||U−1
2 (t, t0)|| ||U2(t, t − h)Q(t − h)x − Q(t)x ||

= ||U−1
2 (t, t0)|| ||U(t, t − h)Q(t − h)x − Q(t)x ||

≤ ||U−1
2 (t, t0)|| ||U(t, t − h)(Q(t − h)x − Q(t)x)||

+||U(t, t − h)Q(t)x − Q(t)x ||]

≤ ||U−1
2 (t, t0)||[Meωh||Q(t − h)x − Q(t)x ||

+||U(t, t − h)Q(t)x − Q(t)x ||]

It’s clear that U−1
2 (·, t0)Q(·)x is left-handed continuous on [t0,∞) and so conti-

nuous on [t0,∞).



Admissibility and exponential dichotomy 465

3. The main result

LEMMA 2. If the pair (C0,C) is admissible to U then there exists K > 0 such that

||x f || ≤ K || f ||, for all f ∈ C0.

Proof. Let us define ∧t : C0 → L1
[t,∞)(X),

∧t f = U−1
2 (·, t)Q(·) f (·)

for any t ≥ 0. It is obvious that ∧t is a linear operator for all t ≥ 0.

Consider t ≥ 0, { fn}n≥1 ⊂ C0, f ∈ C0, g ∈ L1
[t,∞)(X) such that

fn
C0−→ f , ∧t fn

L1

−→ g.

Then there exist a subsequence { fnk }k≥1 of { fn}n≥1 such that

∧t fnk −−−→
k→∞ g a.e.

But
||(∧t fnk )(s)− (∧t f )(s)|| ≤ ||U−1

2 (s, t)Q(s)|| || fnk − f ||
for all k ≥ 1 and all s ≥ t , and so

∧t fnk −→ ∧t f a.e.

It follows easily that ∧t is a closed operator for all t ≥ 0 and hence using the Closed-
Graph principle it is bounded.

Let T : C0 → C be the linear operator defined by

(T f )(t) =
∫ t

0
U1(t, s)P(s) f (s)ds −

∫ ∞

t
U−1

2 (s, t)Q(s) f (s)ds

If
{gn}n≥1 ⊂ C0, g ∈ C0, h ∈ C, gn → g in C0, T gn → h in C

then

||(T gn)(t)− (T g)(t)|| ≤ ||
∫ t

0
U1(t, s)P(s)(gn(s)− g(s))ds||

+ ||
∫ ∞

t
U−1

t (s, t)Q(s)(gn(s)− g(s))ds||

≤
∫ t

0
||U1(t, s)|| ||P(s)|| ||gn(s)− g(s)||ds

+ || ∧t (gn − g)||
≤ t Meωt sup

s≥0
||P(s)|| ||gn − g|| + || ∧t (gn − g)||,
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for all t ≥ 0 and all n ∈ N∗.
It follows that T g = h, and hence T is closed, so by closed-graph principle it is also
bounded.
So

||x f || = ||T f || ≤ ||T || || f ||, for all f ∈ C0.

LEMMA 3. Let f : {(t, t0) ∈ R
2 : t ≥ t0 ≥ 0} → R+, a > 0 such that

i) f (t, t0) ≤ f (t, s) f (s, t0) for all t ≥ s ≥ t0 ≥ 0;

ii) f (t, t0) ≤ L, for all t0 ≥ 0 and all t ∈ [t0, t0 + a];

iii) f (t0 + a, t0) ≤ 1

e
for all t0 ≥ 0,

then there exist N, γ > 0 such that

f (t, t0) ≤ Ne−γ (t−t0) for all t ≥ t0 ≥ 0.

Proof. Let t ≥ t0 ≥ 0 and n =
[

t − t0
a

]
. Then

f (t, t0) ≤ f (t, na + t0) f (na + t0, t0)

≤ Le−n

≤ Lee− t−t0
a

For N = Le, and γ = 1

a
it follows that

f (t, t0) ≤ Ne−γ (t−t0), for all t ≥ t0 ≥ 0.

LEMMA 4. If there exists L > 0 such that

∫ ∞

t

ds

||U2(s, t0)x || ≤ L

||U2(t, t0)x || ,

for all t ≥ t0 ≥ 0, x ∈ K er P(t0) \ {0} then the condition d4) is satisfied.

Proof. Let us fix t0 ≥ 0 and x ∈ K er P(t0) \ {0} and to define

ϕ : [t0,∞) → R+, ϕ(t) =
∫ ∞

t

ds

||U2(s, t0)x || .
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It is easy to see that ϕ is differentiable and

1

L
≤ −ϕ

′(t)

ϕ(t)
, for all t ≥ t0.

By a simple integration we obtain that

ϕ(t)e
1
L (t−r) ≤ ϕ(r), for all t ≥ r ≥ t0.

Hence ∫ ∞

t

ds

||U2(s, t0)x ||e
1
L (t−r) ≤ L

||U2(r, t0)x || , for all t ≥ r ≥ t0.

Using that
||U2(s, t0)x || ≤ Meω||U2(t, t0)x ||,

for all t ≥ t0 ≥ 0 and all s ∈ [t, t + 1] we obtain that

e
1
L (t−r)

Meω||U2(t, t0)x || ≤
∫ t+1

t

ds

||U2(s, t0)x ||e
1
L (t−r)

≤ L

||U2(r, t0)x || , for all t ≥ r ≥ t0

THEOREM 1. The evolutionary process U is uniformly exponentially dichotomic if
and only if U is (C0,C) admissible.

Proof. Necessity. It follows easily from Definition 1 and Lemma 1 taking into account
that the condition d4) is in fact equivalent with

||U−1
2 (s, t)Q(s)|| ≤ Neγ (t−s)

Sufficiency. Let t0 > 0, δ ∈ (0, t0), x ∈ Im P(t0) and f : R+ → X defined by

f (t) =





0, 0 ≤ t < t0 − δ

1

δ
(t − t0 + δ)x, t0 − δ ≤ t < t0

e−2ω(t−t0)U1(t, t0)x, t ≥ t0

It’s easy to see that f ∈ C0, || f || ≤ M||x ||, f (t) ∈ Im P(t0), for all t ∈ [t0 − δ, t0],
f (t) ∈ Im P(t), for all t ≥ t0.
Then

x f (t) =
∫ t0

t0−δ

1

δ
(s − t0 + δ)U1(t, s)P(s)xds
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+
∫ t

t0
e−2ω(s−t0)U1(t, s)P(s)U1(s, t0)xds

+
∫ ∞

t
U−1

2 (s, t)Q(s) f (s)ds

= 1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds

+
∫ t

t0
e−2ω(s−t0)dsU(t, t0)x

= 1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds

+ 1

2ω
[1 − e−2ω(t−t0)]U1(t, t0)x,

for all t ≥ t0.

By Lemma 2 it results that

||x f (t)|| ≤ ||x f || ≤ K || f || ≤ M K ||x ||, for all t ≥ t0.

We observe that

1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)ds → 0, for δ → 0

which implies that

||U1(t, t0)x || 1

2ω
[1 − e−2ω(t−t0)] ≤ M K ||x ||,

for all t ≥ t0 ≥ 0 and x ∈ Im P(t0).

It’s now easy to see that there is K1 = M(1 + 2ωK ) > 0 such that

||U1(t, t0)|| ≤ K1, for all t ≥ t0 ≥ 0.

If t0 > 0, δ ∈ (0, t0), x ∈ Im P(t0), m ∈ N and g : R+ → X given by

g(t) =





0, 0 ≤ t < t0 − δ

1

δ
(t − t0 + δ)x, t0 − δ ≤ t < t0

U1(t, t0)x, t0 ≤ t < t0 + n

(t0 + n + 1 − t)U1(t, t0)x, t0 + n ≤ t < t0 + n + 1

0, t ≥ t0 + n + 1
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then g ∈ C0, ||g|| ≤ K1||x || and

g(t) ∈ Im P(t0) , for all t ∈ [t0 − δ, t0],

g(t) ∈ Im P(t) , for all t ∈ [t0, t0 + n],

It follows that

xg(t) =
∫ t0

t0−δ

1

δ
(s − t0 + δ)U1(t, s)P(s)ds

+
∫ t

t0
U1(t, s)P(s)U1(s, t0)xds +

∫ ∞

t
U−1

2 (s, t)Q(s)g(s)ds

= 1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds + (t − t0)U1(t, t0)x,

for all t ∈ [t0, t0 + n].

By Lemma 2 it results that

||xg(t)|| ≤ ||xg|| ≤ K ||g|| ≤ K K1||x ||, for all t ∈ [t0, t0 + n]

As we previously noticed

1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds → 0, for all δ → 0

which implies that
(t − t0)||U1(t, t0)x || ≤ K K1||x ||,

for all t0 > 0, n ∈ N, t ∈ [t0, t0+n], x ∈ Im P(t0). Hence (t−t0)||U1(t, t0)|| ≤ K K1,
for all t ≥ t0 ≥ 0. By Lemma 3 it results d3).

Let us consider again t0 > 0, δ ∈ (0, t0), x ∈ K er P(t0) \ {0}, h : R+ → X given
by

h(t) =





0, 0 ≤ t ≤ t0 − δ

(t − t0 + δ)

δ||x || x, t0 − δ < t < t0

1

||U2(t, t0)x ||U2(t, t0)x, t0 ≤ t ≤ t0 + n

(t0 + n + 1 − t)

||U2(t, t0)x || U2(t, t0)x, t0 + n ≤ t ≤ t0 + n + 1

0, t ≥ t0 + n + 1

Then h ∈ C0, ||h|| ≤ 1 and

h(t) ∈ K er P(t0), for all t ∈ [0, t0],

h(t) ∈ K er P(t), for all t ∈ [t0,∞).
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It follows that

xh(t) =
∫ t

0
U1(t, s)P(s)h(s)ds −

∫ ∞

t
U−1

2 (s, t)Q(s)h(s)ds

=
∫ t0

t0−δ
U(t, s)P(s)

(
s − t0 + δ

δ||x || x

)
ds

−
∫ t0+n

t
U−1

2 (s, t)

(
1

||U2(s, t0)x ||U2(s, t0)x

)
ds

−
∫ t0+n+1

t0+n
U−1

2 (s, t)

(
t0 + n + 1 − s

||U2(s, t0)x || U2(s, t0)x

)
ds

= 1

δ||x ||

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds

−
(∫ t0+n

t

ds

||U2(s, t0)x || +
∫ t0+n+1

t0+n

(t0 + n + 1 − s)ds

||U2(s, t0)x ||

)
U2(t, t0)x,

for all t ∈ [t0, t0 + n]

By Lemma 2 it results that

||xh(t)|| ≤ ||xh|| ≤ K ||h|| ≤ K , for all t ∈ [t0, t0 + n].

Using again the fact that

1

δ

∫ t0

t0−δ
(s − t0 + δ)U(t, s)P(s)xds → 0 for δ → 0

we obtain that
∫ t0+n

t

ds

||U2(s, t0)x || +
∫ t0+n+1

t0+n

(t0 + n + 1 − s)

||U2(s, t0)x || ds||U2(t, t0)x || ≤ K ,

for all t0 > 0, n ∈ N, x ∈ K er P(t0) \ {0}, t ∈ [t0, t0 + n] which implies that
∫ ∞

t

ds

||U2(s, t0)x || ≤ K

||U2(t, t0)x || ,

for all t ≥ t0 ≥ 0, and all x ∈ K er P(t0) \ {0}. By Lemma 4. we have that condition
d4) is satisfied.

COROLLARY 1. The following assertions are equivalent

i) U is u.e.d.

ii) U is (C,C) admissible
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iii) U is (C0,C) admissible.

Proof. i) ⇒ ii)It follows from Definition 4 and Lemma 1.
ii) ⇒ iii) It is obvious.
iii) ⇒ iv) It is the sufficiency of Theorem 1.

COROLLARY 2. The following results hold:

i) If U is (C0,C0) admissible then U is u.e.d.

ii) If U is (C,C0) admissible then U is u.e.d.

The following example shows that there exists an evolutionary process which is
exponentially dichotomic but it is not (C0,C0) or (C,C0) admissible.

EXAMPLE 1. Consider

X = R
2, U(t, s)(x1, x2) = (e−(t−s)x1, e(t−s)x2), P(t)(x1, x2) = (x1, 0)

Then for f = ( f1, f2) where

f1(t) = f2(t) =





0, t ∈ [0, 1)
t − 1, t ∈ [1, 2)
1, t ∈ [2, 3)
4 − t, t ∈ [3, 4)
0, t ≥ 4

we have that

(x f )(0) = (0,−
∫ ∞

0
e−s f2(s)ds) and

∫ ∞

0
e−s f2(s)ds ≥

∫ 3

2
e−sds > 0.
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