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Abstract. Given a closed, orientable surface M of genus ≥ 2, one seeks an extremal
isosystolic metric on M : this is a Riemannian metric that induces on M the smallest

possible area, subject to the constraint that the corresponding systole, or shortest length

of any non-contractible closed curve, is a fixed, positive number. The geometric problem

is rendered into an analytic one by reducing it to solving a nonlinear, partial differential

equation with free boundaries. Examples are shown, to illustrate some possible candidates

for solutions of the problem in special cases.

Résumé. Sur une surface M compacte orientable de genre ≥ 2, on cherche une métrique

isosystolique extrémale : c’est une métrique riemannienne d’aire la plus petite possible sous

la contrainte que la systole, i.e. la courbe fermée lisse non contractible de longueur minimale,

soit un nombre positif fixé. Le problème géométrique est transformé en un problème ana-

lytique en le réduisant à la résolution d’une équation aux dérivées partielles non-linéaire

à frontière libre. Des exemples sont donnés pour illustrer des candidats possibles à être

solution du problème dans des cas particuliers.
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1. INTRODUCTION

Given a compact Riemannian or Finslerian manifold (M, g), where g denotes the

Riemannian (respectively, Finsler) metric, a base point x0 ∈ M , and an element γ

in the fundamental group π1(M,x0), the local systole Sysγ(M,x0, g) is defined to be

the minimum length of any loop path through x0 in the homotopy class γ. Denote by

γ the conjugacy class of γ in π1(M,x0) ; then the free local systole of (M, g) at γ is

defined to be the minimum length of any closed path representing the free homotopy

class γ, and is denoted by Sysγ(M, g) = Infx0∈M (Sysγ(M,x0, g)). The systole (with

no added qualifier) Sys(M, g) is understood to be the least value of Sysγ(M) as γ

ranges over all non-trivial free homotopy classes.

In the terminology of M. Gromov [6], an n-dimensional, differentiable manifold

M is called essential, if, for all Riemannian (respectively, Finsler) metrics g inM , the

isosystolic ratio 1 V ol(M, g)/(Sys(M, g))n has a positive lower bound depending only

on the topology of M . Gromov’s compactness theorem asserts that, if M is essential,

then for any positive constant c the function space of all metrics g in M , normalized

by a positive factor so that Sys(M, g) = 1 and satisfying the volume inequality

V ol(M, g) ≤ c, is compact in the Fréchet-Hausdorff topology. In particular, all closed,

2-dimensional surfaces except for the 2-sphere are essential. With these facts in mind,

it is natural to raise the question of estimating the minimum isosystolic ratio for any

closed surface, orientable or not, in terms of its genus. Many variants of this question

have been studied, some of them formulated to include more general spaces, such as

manifolds with boundary, others dealing with restricted classes of metrics, such as

Riemannian metrics with non-positive, or constant, negative curvature, or metrics

in a given, conformal class, to name a few. While some statements in this paper

apply to surfaces with boundary, we shall limit our consideration almost exclusively

to Riemannian metrics in closed, orientable surfaces, leaving other cases for another

occasion. The only types of closed surfaces for which one knows an explicit, extremal

1 In Gromov’s definition the isosystolic ratio is expressed by Sys(M,g)/(V ol(M,g))1/n.
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isosystolic metric, i.e. a Riemannian metric minimizing the isosystolic ratio, are the

projective plane (P.M. Pu, [7]), the torus (C. Loewner, unpublished, cf. M. Berger,

[3,4]) and the Klein Bottle (C. Bavard, [1,2]). For each of the other types of surfaces

(i.e. for surfaces with negative Euler characteristic) there is a very wide gap between

the best available estimates of upper and of lower bounds for the extremal isosystolic

ratio. The main purpose of the paper is to reduce the problem of extremal isosystolic

metric to a variational problem that may be studied by the methods of classical

calculus of variations. At the end of this paper we shall exhibit for the record two

explicit examples of metrics in an orientable surface of genus 3: both metrics attain

locally minimum values of the isosystolic ratio, relative to small deformations of the

metric in its function space, the second metric having an isosystolic ratio about 1.5%

lower than the first ; it is believed that the value achieved by the second metric

((7
√
3)/8 ≈ 1, 51554) is very close to, if not actually equal to the absolute minimum

value for surfaces of genus 3. The two examples consist of piecewise flat metrics in

the surface, each one constructed in terms of a corresponding, explicit, well known

triangulation, with a large group of symmetries.

No similar construction has been found to yield an extremal isosystolic metric

in surfaces of any genus g = 2, or ≥ 4, suggesting that the genera of surfaces whose

extremal isosystolic metrics are piecewise flat may be quite sparse: it is this particular

observation that has motivated the present study ; its ultimate goal is that of studying

the general local properties of extremal isosystolic metrics, especially when they are

not piecewise flat. Unfortunately the partial differential equations obtained have

not yielded methods to construct any non-trivial, explicit solutions. However it is

shown in Sections 6 and 7 that, merely by using the maximum principle, one can

obtain some fairly close a priori estimates of the minimum isosystolic ratio in two

examples, that illustrate also a useful generalization of the isosystolic problem. The

first example consists of seeking a Riemannian metric in a 2-disk, admitting the group

of symmetries of a regular hexagon, that minimizes the area subject to the condition

that the least distance between each of the three pairs of opposite “sides” equals 2;

the second example deals with the extremal isosystolic metrics in a torus with one

open disc deleted: in this case the “systole” consists of two independent, positive,

real numbers, representing, respectively, the “boundary systole” and the least length
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of any closed path representing a non-trivial homology class of cycles. Both of these

examples illustrate some of the singularities that extremal isosystolic metrics may

exhibit in general.

2. STRUCTURE OF k-REGULAR DOMAINS

Let M be a closed, orientable surface of genus g ≥ 2 and consider the complete

function space G of singular, generalized Riemannian (respectively, Finsler) metrics

g on M , such that:

(i) g is bounded, locally, from above and below, by smooth Riemannian metrics ;

(ii) the g-length functional on the space of rectifiable arcs (the latter with the Fréchet

topology) is lower semicontinuous.

This class of metrics is invariant under homeomorphisms ofM of Lipschitz class;

its definition ensures the compactness of any set of paths of bounded length, in

any compact domain. In particular, the g-distance d(x, y) between any two points

x, y ∈ M is achieved by a compact (non-empty) set of shortest paths. The func-

tion space G has the topology of uniform Lipschitz convergence of d(x, y) in each

compact subset of M : this topology ensures both the equivalence of the area func-

tional V ol(D) = V olg(D) 2 with the Lebesgue measure of any Borel set D ⊂ M

and its continuity with respect to the metric g ∈ G. Given any element γ in the

set π∗
1(M) of non-trivial, homotopy classes of free, closed paths in M , the (free) lo-

cal systole Sysγ(M, g) is achieved by a compact family of oriented, closed paths of

length Sysγ(M, g), representing the class γ: such closed paths will be referred to

as systole-long paths ; for any given, positive real number A, the set ΓA ⊂ π∗
1(M)

consisting of all classes γ such that Sysγ(M, g) ≤ A is a finite set. The metrics in

the class G may be discontinuous: for example, they may include isolated “short-

cut” (or “fast-track”) curves ; however it is a complete function space, to which an

2 In the case of a Finsler metric g, the volume element form dV olg in terms of local parameters (u,v) is

defined to be π−1σ(u,v)|du∧dv|, where σ(u,v) denotes the area of the unit g∗-disc in the cotangent bundle

of M , with respect to the dual Finsler form g∗ of g.
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extremal isosystolic metric may be reasonably expected to belong, by a process of

convergence of metrics whose isosystolic ratio approaches the lower bound, avoiding

the full generality of the Fréchet-Hausdorff-Gromov topology.

Throughout the paper we shall tacitly assume that every metric g ∈ G in M is

normalized by the condition Sys(M, g) = 1, with possible exceptions explicitly stated.

Given any (M, g) with g ∈ G and any real constant A ≥ 1, consider the set

ΓA ⊂ π∗
1(M) consisting of all classes γ such that Sysγ(M, g) ≤ A and, for each

γ ∈ ΓA, the union Kγ,A ⊂ M of all oriented, systole-long paths representing the

free homotopy class γ. Let γ−1 denote the free homotopy class of the closed, ori-

ented paths, whose reversal of orientation yields a path representing γ: obviously

Sysγ−1(M, g) = Sysγ(M, g), so that ΓA is a finite, symmetric set, andKγ−1,A = Kγ,A.

For any subset S ⊂ ΓA the subset BS = ∪γ∈S(Kγ,A) ⊂ M is compact, and therefore

for any integer k ≥ 0, the subset UA,k ⊂ M consisting of all points that are included

in Kγ,A for exactly 2k elements γ ∈ π∗
1(M) (counting γ and γ−1 separately) is rela-

tively open in the subset of points that are covered by at least 2k of the sets Kγ,A.

For any A ≥ 1, any non-empty, open subdomain U ⊂ M , contained in UA,k is called

a k-regular domain in M .

Now assume that the metric g is an extremal isosystolic one ; we shall examine

the possible open k-regular domains UA,1 ⊂ M for small values of k.

Lemma 2.1. — If g is an extremal isosystolic metric in M , then, for any constant

A ≥ 1, the subsets UA,0 and UA,1 of M are empty, and consequently UA,2 is an open

subdomain of M .

Proof. The set UA,0 is open. Hence, if it is not empty, there is a non-empty, open

subdomain V such that its closure V is compact and ⊂ UA,0. In addition there is a

positive ε such that, for every point x ∈ V , the least length of any homotopically non-

trivial loop based at x is ≥ A + ε. Replace the metric g by a conformally equivalent

one g′ = g · exp(−δφ), where φ is a non-negative, non-zero function with support in
V , and δ is a positive constant. Then the volume of M in terms of the metric g′ is

strictly smaller than the original one in terms of g ; at the same time, for δ sufficiently

small, the systole Sys(M, g′) would remain identical with Sys(M, g). This shows that
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g could not be an extremal isosystolic metric, and consequently UA,1 is an open subset

of M .

Assume, as before, that there is a non-empty, simply connected, open set V

such that V ⊂ UA,1 is compact, so that, for each point x ∈ V , there is at least

one non-oriented, systole-long, closed curve passing through x ; any such curve with

its two opposite orientations represents a unique, non-oriented, free homotopy class

γ±1 ∈ π∗
1(M). While V is not necessarily foliated by its intersections with the covering

family of systole-long paths, it is foliated by their orthogonal trajectories. From this

foliation and a choice of orientation, say the one defined by γ, one constructs a function

u, that is constant along each orthogonal trajectory, and whose restriction to each of

the systole-long paths provides its parametrization by its oriented arc length ; these

properties determine u uniquely up to an added constant ; we shall refer to u as a

potential function in V ; the formal definition follows this proof.

Given the potential function u in V , one chooses a second function v of Lipschitz

class, such that (u, v) is a system of local parameters for M ; then the metric g may

be represented almost everywhere as a quadratic form on the cotangent bundle, so

that the norm |α|g of a Pfaffian form α = ξdu + ηdv is given by |α|2g = η2 + 2 ·
f(u, v)dudv+ g(u, v)η2 with g(u, v) > (f(u, v))2 almost everywhere. Thus the metric

is determined by the two functions f(u, v), g(u, v). The corresponding volume form

is dV ol = (g(u, v)− (f(u, v))2)−12 |du∧dv|. As in the previous case, one could replace
the metric g with another metric g′, identical with g outside V and, inside V , defined

by a quadratic form |ξdu + ηdv|2g′ = ξ2 + 2 · f(u, v)dudv + g′(u, v)η2 with g′(u, v)

slightly larger than g(u, v) in a set of positive measure ; the resulting metric g′ then

would have an isosystolic ratio strictly smaller than that of g. This fact shows that,

if g is an extremal isosystolic metric, then UA,1 is empty as well as UA,0. It follows

that, for any extremal g and for any constant A ≥ 1, UA,2 is an open subdomain of

M .

Definition 2.2. — Given, in a surface (M, g), a family of oriented paths of shortest

length, filling an open, simply connected domain U ⊂ M , and such that no two of the

paths cross each other, a (local) geodesic potential function for the family of paths in

U is a function u : U → R, that is constant along an orthogonal trajectory of the paths
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of the given family, and whose restriction to each path provides a parametrization of

that path by its oriented arc length.

It is well known that the choice of orthogonal trajectory in the above definition

is immaterial, so that a local geodesic potential function for a given family of short-

est paths is unique up to an additive constant. From a local viewpoint, a geodesic

potential u is a function of Lipschitz class, with Lipschitz coefficient identically equal

to 1 everywhere in V and no topological critical points (this second property must

be added, since u is not necessarily differentiable) ; any function with these two

properties has a gradient flow, whose orbits are shortest paths in V .

Lemma 2.3. — If g is an extremal isosystolic metric in M , then the open subset

UA,2 ⊂ M is locally flat, and the systole-long paths belonging to the two distinct

homotopy classes that meet at each point of UA,2 intersect each other orthogonally

almost everywhere.

Proof. Let U be a simply connected subdomain of UA,2, let γ1, γ2 be two distinct,

non opposite homotopy classes of closed paths, among the four that are representable

by systole-long paths of length ≤ A, that meet U , and let u, v be potential functions

in U , as in Definition 2.2, for the two respective families of systole-long paths in U .

One deduces from Lemma 2.1 , after replacing U , if necessary, by a smaller domain,

that the paths of the two families passing through any given point x ∈ U cross each

other transversally ; hence the pair of local potential functions (u, v) forms a system

of local parameters. In any set where the angles between the paths are bounded

away from zero, the Riemannian distance function, expressed in terms of (u, v) is of

Lipschitz class ; it follows from Rademacher’s theorem that (u, v) is differentiable

almost everywhere in U . Therefore one may represent almost everywhere the Rie-

mannian metric, as before, as a quadratic form on the cotangent bundle in U . The

norm |α|g of any given Pfaffian form α = ξdu + ηdv in U is now defined by the

quadratic form

(2.1) |α|2g = |ξdu+ ηdv|2g = ξ2 + 2f(u, v)ξη + η2 ,

where f(u, v) is a measurable function satisfying |f(u, v)| < 1 almost everywhere, and

the corresponding volume element is

(2.2) dV ol = (1− (f(u, v))2)−
1
2 |du ∧ dv| ;
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the statement of Lemma 2.2 is therefore reduced to showing that f(u, v) = 0 almost

everywhere in U .

Suppose that f(u, v) is not identically zero in a subset V ⊂ U of positive measure.

One could then alter the metric g in V , as in the proof of Lemma 2.1, by replacing

f(u, v) by its product with a smooth function slightly smaller than 1, so that the

value of the systole of M with respect to the new metric would be unchanged ; at the

same time the resulting total volume of M would be decreased. Therefore the given

metric g could be an extremal isosystolic one in M , only if the local functions f(u, v)

defined in UA,2 were identically zero almost everywhere. This concludes the proof of

Lemma 2.2.

The lemma just proved does not exclude the possibility that UA,2 may contain a

set of measure zero of singular points.

The next lemma generalizes the last one in the case of domains UA,k with k ≥ 3.

In order to state it, we must recall the notion of generalized angle, adapted from

A.D. Aleksandrov, between two paths of shortest length with a common point of

origin x, when the metric may be singular and the paths may fail to be differentiable

at x.

In the first place, even if the point x is not an isolated point of intersection, one

may assume without loss of generality that the two paths do not cross each other (in

the topological sense) anywhere else in a neighborhood of x. In fact, if they meet

and cross at any point y �= x, the segments between x and y along the two paths

have obviously equal length ; if one then redefines the two paths by interchanging

their traces along the segments between x and y, the new paths are again length

minimizing and have “fewer” crossings, since they now meet at y without crossing

each other. By applying Zorn’s lemma, for any pair of shortest paths (or rays) issued

from a common origin x, one may replace it with another pair of rays, respectively

of equal lengths and jointly tracing the same continuum as the original pair, and not

crossing each other anywhere in a neighborhood U of x ; then there exists a simply

connected, compact neighborhood V ⊂ U of x, such that the union Γ of the two

rays splits V into two compact, pathwise connected subsets V ′ ∪ V ”, with Γ as their

common boundary.
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Let δ0 > 0 be sufficiently small, so that the closed metric ball B(x, δ0) of radius δ0

and center x is contained in V , let V ′ be one of the two “halves” of V that are bounded

by Γ and, for any δ(0 < δ ≤ δ0), let E′(δ) = V ′ ∩ B(x, δ). Then the angle spanned

by V ′ is defined to be number 2 · lim
δ→0

(V ol(B(x, δ))/δ2), if the limit exists, or, if the

limit does not exist, the generalized angle is defined to be the set of accummulation

values of 2 · lim
δ→0

(V ol(B(x, δ))/δ2. If the metric is continuous and non-degenerate at

x, the angle just defined coincides with the elementary notion ; in the singular case,

the sum of the two opposite angles spanned by two rays does not necessarily equal

2π. However, if x is an interior point of a path of least length, then the total angle

spanned by the two resulting rays from x is necessarily ≥ 2π.

Lemma 2.4. — Let g be an extremal isosystolic metric in a closed, orientable

surface M and let U ⊂ M be any k-regular domain (k ≥ 2). Introduce, for each point

x ∈ U , a family of k unoriented, systole-long, closed curves passing through x, with

the property that the 2k free homotopy classes, represented by each of the k curves

with its two orientations, constitute a complete list of the 2k homotopy classes thus

obtainable. Consider, locally at x, the corresponding family of 2k segments of these

paths, originating at x (rays), ordered in their natural, counterclockwise cyclic order

in terms of an orientation of M . Then, for almost all x ∈ U , the total of the angles

at x from each of these 2k rays to the next equals 2π, the two angles formed by any

two opposite pairs of paths are equal and, most importantly, the angle at x between

any two consecutive paths is ≤ π/2.

Proof. In the first place we recall from the proof of Lemma 2.3 that, choosing as local

coordinates the geodesic potential functions (u, v) corresponding to two of the families

of systole-long paths in U , the coordinates are differentiable almost everywhere and

the Riemannian metric form (2.1) is determined by the measurable function f(u, v) ;

f has the property that |f(u, v)| < 1 almost everywhere and (1 − (f(u, v))2)−
1
2 is

integrable. The function f(u, v) represents almost everywhere in U the cosine of the

interior angle between the oriented, systole-long paths chosen to define u and v: this

proves the first two, more elementary, assertions. Suppose that the main conclusion

failed: this would mean that, on choosing (u, v) corresponding to a consecutive pair
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among the 2k oriented, systole-long paths, the resulting function f(u, v) would be

strictly positive in a set V ⊂ U of positive measure, and, in V , the remaining k − 2

unoriented, systole-long paths would be representable as graphs of monotone decreas-

ing functions, either expressing v in terms of u or vice-versa. The remainder of the

proof would be similar to the corresponding arguments in Lemma 2.3. Choosing a

bounded, positive function φ(u, v) with support in V , one could construct a metric g′ε
from g by replacing the function f(u, v) by fε(u, v) = f(u, v) ·exp(−ε ·φ(u, v)) for any
constant ε > 0. The change could only leave unchanged or decrease the norms of the

geodesic potential functions of the original 2k families of systole long paths meeting

V . As a result, the length of these paths could not decrease under the change of

metric ; for ε sufficiently small, no additional systole-long paths, representing homo-

topy classes other than the 2k original ones could appear, and the total area of M

would decrease. The combined effect would be that the substitute metric g′ε would

have an isosystolic ratio smaller than that of g, contrary to the assumption. This

completes the proof of Lemma 2.4.

The proofs of the two last lemmas demonstrate the importance of the geodesic

potential functions ; indeed they play an essential role in what follows. The first task

is to extend the notion of these potential functions, so that they are defined, in some

sense, globally, rather than just in the union of the respective systolic paths ; this is

the topic of the next section.

3. SYSTOLIC BANDS AND POTENTIAL FUNCTIONS

Let M be a closed, oriented surface of genus g ≥ 2, and let g be any Riemannian

metric onM in the class G defined at the beginning of Section 2. Let M∼ denote the

universal covering surface ofM with Π :M∼ → M denoting the covering map, choose

an arbitrary point x∼0 ∈ M∼ as a base point, and let x0 = Π(x∼0 ) be the corresponding

base point for M . The group π1(M,x0) operates freely by translation on M∼ and
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the covering map Π : M∼ → M induces in M∼ the “pull-back” metric g∼ = Π∗(g),

which is invariant under the action of π1(M,x0). Thus, for any non-trivial element

γ ∈ π1(M,x0) and any x∼ ∈ M∼ with x = Π(x0) ∈ M , the Riemannian distance

dg∼(x∼, γ(x∼)) describes the least length of any x-based loop in M , representing the

homotopy class ψ−1ϕψ, where ψ = Π(ψ∼), ψ∼ is a path in M∼ from x∼0 to x∼, and

ϕ is any loop in M based at x0, representing the homotopy class γ. Then the free

local systole, Sysγ(M, g), is the value of Infx∼∈M∼(d(x∼, γ(x∼))).

Given any non-trivial γ ∈ π1(M,x0), choose any x∼ ∈ M∼ that minimizes the

distance d(x∼, γ(x∼)) = Sysγ(M, g) and any path ϕ∼ from x∼ to γ(x∼) that achieves

that distance as its own length. It is not hard to verify that, since M is an orientable

surface, for any integer n one has the identity Sysγn(M, g) = |n|Sysγ(M, g) ; thus,

if one takes the union of the following translations of that path, U−∞<n<∞(γn(ϕ∼)),

one obtains a complete path (i.e. a complete geodesic, in the smooth case), that

achieves the minimum distance between any two of its points. To any non-trivial,

cyclic subgroup 〈γ〉 ⊂ π1(M,x0) generated by γ, one associates the family Σγ of all

complete, unbounded “geodesics” U−∞<n<∞(γn(ϕ∼)) generated by all possible paths

ϕ∼ of length Sysγ(M, g), connecting any suitable x∼ with γ(x∼). One calls the paths

of the family Σγ the systolic band directed by γ, and its trace Bγ∼ ⊂ M∼ is the union

of all the paths belonging to Σγ .

Given a non-trivial element γ ∈ π1(M,x0), and the corresponding systolic band

Σγ of paths in M∼, one may define a (global) potential function uγ axiomatically as

follows.

Definition 3.1. —Given a closed, orientable surfaceM of genus≥ 2 with a Riemann-

ian metric g, a non-trivial element γ ∈ π1(M,x0) and the corresponding systolic band

Σγ of complete, shortest-length paths inM∼ directed by γ, a global potential function

uγ :M∼ → R directed by γ is a function that satisfies the following axioms.

(1) For each x∼ ∈ M∼, the function uγ satisfies the relation

uγ(γ(x∼)) = uγ(x∼) + Sysγ(M, g) .
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(2) The function uγ is of Lipschitz class everywhere in M∼, its Lipschitz constant

satisfies 0 < Lip(uγ , x∼) ≤ 1 at each x∼ ∈ M∼ ; in the complement of the

trace Bγ∼ of Σγ , the function uγ is of class C1,1 and its differential duγ(x∼)

has norm ≤ 1 with respect to g, while if x∼ lies in the trace Bγ∼ of Σγ , then

Lip(uγ , x∼) = 1, and the directional derivatives of uγ take the value 1 precisely

in the direction of any path in Σγ that passes through x∼.

(3) For any given constant δ with 0 < δ ≤ 1, there exists a positive constant C such

that, for each point x∼ ∈ M∼ at a distance ≥ C from the nearest path in Σγ the

function uγ satisfies Lip(uγ , x∼) ≤ δ.

(4) The function uγ has no critical points, in the sense that each level set of uγ is a

rectifiable, connected, properly imbedded curve in M∼, and for each x∼ ∈ M∼,

the image in Mγ under Π′
γ of each path of steepest ascent (respectively, descent)

of uγ from x∼ with γ(x∼) (respectively, γ−1(x∼)) is contained in a compact set,

invariant under the translation by γ.

Since addition of constants to potential functions does not affect the properties

that characterize them as such, one may include an additional requirement that they

vanish at a designated base point x∼0 ∈ M∼. To any potential function uγ inM∼ one

associates the corresponding reduced potential function uγ :Mγ → R/(Sysγ(M, g)Z),

(3.1) uγ(Π′
γ(x

∼)) = uγ(x∼)mod · (Sysγ(M, g)Z) .

The proof of the existence of a potential function uγ for each non-trivial γ ∈
π1(M,x0) when the metric has the required full generality is too long and technical

to be fully included in the present paper ; however the initial step of a construction

of these functions is easy and achieves the purpose, if the metric of (M, g) is smooth,

at least of class C1,1, and if the geodesics in M∼ have no conjugate points. This part

of the proof is included for heuristic reasons.

Let (M, g) be an arbitrary closed, oriented surface of genus g ≥ 2 with a metric g

of class G ; let M∼, g∼, x∼0 , and γ be as before, and consider the systolic band Σγ of

paths of shortest length inM∼ directed by γ. For any given path ϕ∼ ∈ Σγ , choose an

auxiliary base point y∼0 ∈ ϕ∼ as its initial point and parametrize ϕ∼ by its oriented
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arc length s from y∼0 ; thus, for any real number s, we denote by y
∼(s) the point of ϕ∼

at an oriented distance s from y∼0 . Denoting by d(x∼, y∼) the Riemannian distance

between x∼ and y∼, the Busemann functions v+ and v− determined by the data of

γ, x∼0 , ϕ
∼, and y∼0 , are the real valued functions on M

∼ defined by

(3.2) v+(x∼) = lim
s→+∞

(d(x∼, y∼(s))− s) ,

v−(x∼) = lim
s→−∞

(d(x∼, y∼(s)) + s) .

By means of these functions, one introduces the functions uγ and hγ,ϕ∼ , described

respectively as the preliminary potential and stream functions, defined as follows:

(3.3) uγ(x∼) =
1

2
(v−(x∼)− v−(x∼0 )− v+(x∼) + v+(x∼0 )) ,

(3.4) hγ,ϕ∼(x∼) =
1

2
(v−(x∼) + v+(x∼)) .

The following list of properties of the functions just introduced are either ele-

mentary, so that their proofs may be omitted.

1. The Busemann functions v± satisfy the Lipschitz condition Lip(v±) = 1 and

the functional identities

v+(γ(x∼)) = v+(x∼)− Sysγ(M, g) ,

v−(γ(x∼)) = v−(x∼) + Sysγ(M, g) ;

furthermore, if the metric is smooth and if geodesics have no conjugate points, the

Busemann functions are of class C1, with |�V±| = 1 and �V− �= −�V+ everywhere.

2. For any fixed γ and under different choices of x∼0 ∈ M∼, ϕ∼ ∈ Σγ , and

y∼0 ∈ ϕ∼, the resulting functions v+, v−, uγ , and hγ,ϕ∼ are modified by additive

constants.

3. The preliminary stream function hγ,ϕ∼ is invariant under the action of γ ; it

vanishes identically on the path ϕ∼ and takes values ≥ 0 everywhere else in M∼ ;

furthermore it satisfies everywhere the Lipschitz condition Lip(hγ,ϕ∼) ≤ 1. If the
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metric is smooth and if there are no conjugate points, then �hγ,ϕ∼ exists everywhere,

is continuous, and | � hγ,ϕ∼ | < 1.

4. The preliminary potential function uγ satisfies the Lipschitz condition

Lip(uγ) ≤ 1 everywhere in M∼ ; in addition it satisfies the relation uγ(γ(x∼)) =

uγ(x∼) + Sysγ(M, g) ; it is normalized additively so that it vanishes at x∼0 , and de-

pends only on γ, not on the particular choice of path ϕ∼ ∈ Σγ . If the metric is smooth

and if there are no conjugate points, then �uγ exists everywhere, is continuous, and

is nowhere zero.

If the metric g is sufficiently smooth and if the geodesics in M∼ have no conju-

gate points, then the gradient flow of the function uγ constitutes a foliation of M∼,

including each of the paths ϕ∼ ∈ Σγ . The dynamical system of this flow is invariant

under the translation group generated by γ and the preliminary stream function hγ,ϕ

is constant along each orbit. In addition, since �hγ,ϕ∼ = 0 only along complete

geodesics of the systolic band Σγ , it follows that, under the special assumptions on g,

the preliminary stream functions hγ,ϕ∼ are actual stream functions, constant along,

and locally separating, the orbits of the gradient flow of uγ , so that each of these

orbits is invariant under the translation of γ. This shows that, if the metric g is of

class at least C1,1 and if there are no conjugate points, the function uγ satisfies all the

four properties characterizing a global potential function directed by γ. In the general

case, the potential functions can be obtained similarly from formulas (3.3), (3.4), in

which the Busemann functions V± are replaced by corresponding functions with sim-

ilar properties, but constructed by a process yielding functions better suited to our

purposes. An important fact, applied in that construction is the uniform exponential

growth property of π1(M,x0) in terms of its generators.

Given a non-trivial γ ∈ π1(M,x0), consider the covering surface Mγ of M the

cyclic subgroup of π1(M,x0) generated by γ with the metric induced by the covering

map from g. The surface Mγ is homeomorphic to a cylinder, with M∼ as its uni-

versal covering surface. The family Σγ of paths of least length in M∼ directed by γ

corresponds to the family of systole-long paths in Mγ, also denoted by Σγ . Since the

genus g of M is assumed to be ≥ 2, the family Σγ is compact ; if it consists of more

than one essential closed path in Mγ , there are two such paths, bounding a retract
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of Mγ , that contains all the systole-long paths in Mγ . This retract will be called the

systolic strip of γ, denoted by Yγ ; if γ is a “simple” element of π1(M,x0), meaning

that γ is representable by a simple loop in M , then the covering map Πγ of M by

Mγ is a one-to-one isometry of Yγ onto its image in M ; the latter will likewise be

denoted by Yγ , despite the small risk of ambiguity. This is the case, in particular,

if γ is a critical, free homotopy class for the systole of (M, g). We observe that, for

general metrics g, the systolic strips Yγ , whether considered in Mγ or in M , are not

necessarily covered by the paths of the systolic band Σγ .

4. THE PRELIMINARY VARIATIONAL PROCESS

We shall consider now the problem of characterizing extremal isosystolic metrics

in a closed, orientable surface M of genus g ≥ 2 in terms of local properties such as,

for instance, solutions of partial differential equations. The surface M is assumed to

be polarized, meaning that the fundamental group π1(M,x0), regarded as the group

of homotopy classes of x0-based loops, is identified with its standard presentation as

an abstract group, by an explicit choice of 2g generators pi, qi(1 ≤ i ≤ g), satisfying

the relation

(4.1) p1q1p
−1
1 q−11 · · · pgqgp−1g q−1g = e ,

in the usual way, first by orienting M , then by assigning to each of the 2g abstract

generators pi, qi a corresponding system of 2g x0-based, simple, oriented loops, that

are pairwise disjunct away from x0, chosen in such a way that, if one cuts M along

these 2g loops, one obtains a simply connected domain D. In addition, the loops are

constructed, so that one may read the oriented boundary of D as a sequence of 4g

oriented loops in M corresponding to the left-hand side of the relation (4.1).

The first question that arises in considering the extremal isosystolic problem is

that of characterizing the subsets S = Sg ⊂ π1(M,x0) that may possibly occur as
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the critical subsets for some extremal isosystolic metric g: the sets Sg consist of the

elements γ ∈ π1(M,x0), whose conjugacy classes γ are represented by its systole-long

paths. The question is somewhat ambiguous as posed, because extremal isosystolic

metrics are not necessarily continuous in M . In fact, consider a surface M with an

extremal isosystolic metric g, normalized under the condition Sys(M, g) = 1: there

may be (cf. the second example in Section 6) a sufficiently small constant δ > 0 and

a non-empty family of non-critical homotopy classes γ, whose corresponding local

systoles Sysγ(M, g) lie in the interval 1 < Sysγ(M, g) ≤ 1 + δ, and are achieved by

closed paths ϕγ . Choosing one (or a finite set) of such paths ϕγ , one may replace

the metric g with a discontinuous metric g′, identical with g outside the trace of the

chosen path(s) ϕγ , and uniformly smaller than g along each ϕγ , that reduces the

length of ϕγ to unity, thereby rendering it of systole length: if δ is sufficiently small,

the change of metric will not affect the length-minimizing property of the paths that

are systole-long in terms of g. The metric g′ then is again an extremal isosystolic

one, having the same systole and total area as g, but its critical set S′, interpreted

literally, would include S together with all the homotopy classes γ affected by the

change. The following definition is proposed in order to clarify the ambiguity.

Definition 4.1. — Let (M, g) be a closed surface of genus g ≥ 2 with a Riemannian

metric g that is extremal isosystolic. Then the essential critical set with respect to

g is the subset S = Sg ⊂ π1(M,x0) consisting of the homotopy classes γ, such that

the conjugacy classes γ of each γ ∈ S are represented each by a band of systole-long

paths, whose trace in M has positive measure. A maximal critical set with respect to

g is a set S′ = S′
g, Sg ⊆ S′

g ⊂ π1(M,x0), that is maximal with respect to the property

of being representable by systole-long paths in terms of any metric g′ such that g′ = g

almost everywhere and each systolic band of g is also a systolic band of g′, so that

the values of both the area of M with respect to either metric coincide.

One observes that any extremal isosystolic metric g in M may be represented as

the limit, almost everywhere, of an increasing sequence (gn) of smooth Riemannian

metrics, such that the isosystolic critical set of free homotopy classes of each gn is,

for instance, a maximal critical set (or else, trivially, an essential one) of classes

with respect to g. The following proposition describes some general properties of
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the subsets S ⊂ π1(M,x0) that may occur as the set of critical classes (essential or

maximal) with respect to an extremal isosystolic metric.

Proposition 4.2. — If g is an extremal isosystolic metric in M , then the following

assertions are valid.

(i) The essential critical subset S = Sg ⊂ π1(M,x0) with respect to g is necessar-

ily the union of a finite family of non-trivial conjugacy classes, symmetric with

respect to inversion.

(ii) Each element of S is representable by a simple, closed path.

(iii) Any two elements of S may be represented by two simple, closed paths of least

length, that either cross each (transversally) at exactly one point, or are disjunct,

or may be approximated uniformly by two disjunct, simple, closed paths.

(iv) For each element of S there is at least one other element of S, such that any pair

of simple, closed curves representing the two respective classes have a non-empty

intersection.

(v) (conjectured) The canonical image of S in the homology groupH1(M,Z) includes

a family of 2g elements constituting an integral basis of H1(M,Z).

Proof. The finiteness and symmetry properties (i) of S are trivial. The intersection

properties (ii) and (iii) are well known, elementary properties, that are verifiable by

suitable, smooth approximations of length minimizing paths in surfaces with path-

length metrics (and by the geodesic paths themselves, if the metric is smooth). The

symplectic property (iv) is a consequence of Lemma 2.1 and Property (iii).

Property (v), the conjectured property of homology fullness of the set S, is the

only one that requires some comment. Even though it may seem intuitively obvious,

in actual fact it is essentially equivalent to the strict monotonicity of the minimum

isosystolic ratio as a function of the genus of the surfaceM . Current attempts to prove

the strict monotonicity of the minimum isosystolic ratio depend on sharp numerical

estimates of the “systole relative to the boundary” for surfaces with boundary, with

an extremal isosystolic metric gc (0 < c < 3), in which the homology systole is unity,

and c is the minimum length of any curve homotopic to the boundary. A numerical

computation of these estimates is now in progress (cf. the first example in Section 6).
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A consequence of Gromov’s compactness theorem [5] is that, for any given value

g ≥ 2 of the genus of M , there can be at most finitely many subsets S ⊂ π1(M,x0),

pairwise inequivalent under the action of the automorphism group of π1(M,x0), such

that each is the set of critical homotopy classes for some extremal isosystolic metric

in M . On the other hand the properties on the sets S stated in Lemma 4.1 do not

appear to be even sufficient to deduce that there are finitely many sets S, up to

equivalence, that verify these properties. The problem of characterizing a priori the

sets of critical homotopy classes, either essential or maximal, of extremal isosystolic

metrics for surfaces of genus ≥ 2 is open and probably very difficult. For the present

purposes it is sufficient to remark that, given any set S0 ⊂ π1(M,x0) with the five

properties listed in Proposition 4.2, there are at most finitely many sets S′ with

S0 ⊆ S′ ⊂ π1(M,x0), verifying the same properties.

The “variational search” for an extremal isosystolic metric in M consists of two

“processes”, performed alternately infinitely many times, where each process replaces

a given, non-extremal metric with another metric, exhibiting a lower isosystolic ratio.

The present section outlines the first process, while Section 5 is devoted to describing

the second one.

The first process consists by itself of an infinite iteration of two alternating steps,

Steps 1 and 2, described below.

Step 1. Given any admissible metric g0 in M (a smooth one, to begin with),

normalized by the condition Sys(M, g0) = 1, one introduces the infinite dimensional

numerical torus T = Πγ∈π1(M,x0)\{e}(R/Z), whose components are indexed by the

non-trivial elements of the fundamental group of π1(M,x0). One then considers the

mapping F :M∼ → T, where M∼ is the universal covering surface of M , defined by

(4.2) yγ(x∼) = {(Sysγ(M, g0))−1uγ(Π′
γ(x

∼))}modZ ; F = (yγ)γ∈π1(M,x0)\{e} ,

In this equation, for each γ ∈ π1(M,x0)\{e}, the function uγ :Mγ → R is a potential

function directed by γ, as in definition (3.1). Clearly each component function yγ of

F is of Lipschitz class, with a Lipschitz ratio ≤ (Sysγ(M, g0))−1 ≤ 1 at each point.

The mapping F is equivariant under the diagonal action of π1(M,x0) on M∼ × T

as a transformation group, acting simultaneously by translation on M∼, and on T
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by permuting the components according to the adjoint action of the group on itself.

Therefore (see the lemma that follows) there exists a unique Riemannian metric g∼1
on M∼, determined at each point x∼ by the property of having the least possible

element of volume, subject to the constraint that, for each γ, the weak differential 3

dyγ(x∼) has a norm ≤ 1 with respect to g∼1 ; since this metric is obviously invariant

under translations of M∼ by π1(M,x0), it induces a metric g1 in M with stystole

≥ 1 and area no larger than the original one with respect to g0. It is precisely this

step that would be carried out more naturally in the context of Finsler metrics, while

the restriction to Riemannian metrics introduces some complications. The preference

given here to Riemannian metrics is due to the greater familiarity with Riemannian

geometry by most people.

The result of the change of metric just described may alter, in general, the set of

isosystolic critical classes, by either addition or deletion ; furthermore the potential

functions with respect to g0 for each γ ∈ π1(M,x0)\{e} need not satisfy the axioms
set in Definition 3.1 in terms of g1: in particular the condition |dyγ(x∼)|g1 = 1 is no

longer equivalent, in general, to the property of x∼ lying in the trace of the systolic

band directed by an essential critical class γ.

Step 2. The second step of the process consists of replacing the family of potential

functions uγ with respect to of the original metric g0 with a corresponding family in

terms of g1, thereby altering the mapping F :M∼ → T.

One then repeats this two-step operation. It follows once more from the com-

pactness theorem for the isosystolic problem, that, after a finite number of iterations,

the operation first stabilizes the set of critical classes of paths, and leads to a sequence

of metrics, converging to a metric g, such that neither of the two steps just outlined

necessarily lead to any further change. Such a metric g is characterized by the three

following properties:

3 A Lipschitz-continuous function f is said to be non-critical at an interior point x∈M , if every

neighborhood of x contains an open neighborhood U of x, within which both subsets {y:f(y)>f(x)} and
{y:f(y)<f(x)} are non-empty and contractible. The differentials of two such functions f and g are said

to be weakly linearly independent at x, if, for each pair of constants (a,b)�=(0,0), the function af+bg is

non-critical at x. The weak differential df(x) of f at x is the closure of the set of all differentials at x of

smooth functions g, such that f−g is critical at x. It follows that the set df(x) is non-empty and is tightly

contained in the euclidean ball of radius Lip(f,x).
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(i) the metric g is uniquely determined by the mapping F : M∼ → T defined in

(4.2), under the property of minimizing almost everywhere the element of area,

subject to the constraint |duγ(Π′
γ(x

∼))|g ≤ 1 for every x∼ ∈ M∼ and every γ ;

(ii) for any given x∼ and γ, |duγ(Π′
γ(x

∼))|g = 1, if, and only if x∼ lies in the systolic

band in M∼ directed by γ ;

(iii) The systolic strips cover M in such a way that almost every point x ∈ M is a

transversal intersection point of at least two systole-long paths, and the angles

between the successive, oriented, systole-long paths meeting at x are each ≤ π/2

intersection, with a total angle ≥ 2π (the proof essentially the same as in Lemmas

2.1, 2.2 and 2.4).

Recall now the definition of the systolic strips, given in the closing paragraph

of Section 3: for each non-trivial homotopy class γ ∈ π1(M,x0) the systolic strip Yγ

directed by γ is a compact retract of Mγ (the covering space of M corresponding to

the cyclic subgroup 〈γ〉 ⊂ π1(M,x0)), obtained by “filling in” the compact subdomain

between the two outermost systole-long paths inMγ. Restricting γ now to the critical

isosystolic classes of M , the corresponding systolic strips may be identified with the

corresponding images in M under the covering map, one sees that M is covered

(more descriptively, “bandaged”) by this finite family of critical systolic strips, so

that each point is covered by at least one pair of mutually transversal strips, and

every tangent vector makes an angle ≤ π/4 with a gradient vector of the potential

function at least one critical class. The total surface M is thus decomposed into a

finite number of compact, convex, geodesic polygons, partially ordered by inclusion,

each one determined by some interior point x, and defined as the component of x in

the intersection of all the critical systolic strips containing x in their interior. Each

of these geodesic polygons, determined by the intersection of k unoriented systolic

strips (or 2k oriented ones), is completely described by the corresponding k pairs of

mutually opposite potential functions, and is handled in the next section in a way

that generalizes the treatment of k-regular domains in Section 2.
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5. THE EULER-LAGRANGE EQUATIONS

Let M be a closed, orientable surface with a geodesic Riemannian metric g, such

that the critical systolic strips cover M with the conditions described at the end of

Section 4, and let D be a geodesic polygon inM , determined by a finite intersection of

k unoriented, critical systolic strips, and such that there exists some interior point of

D that is not interior to any additional, critical systolic strip. Let ±u1,±u2, · · · ,±uk
denote the corresponding potential functions and

u = (u1, u2, · · · , uk) : D → Rk

the mapping that they define, where the choice of orientation of each component

uj is immaterial. The Riemannian metric in D, by assumption, is the one which,

at almost every point x ∈ D, has the least area density form under the condition

|dij(x)|g ≤ 1 for each j (1 ≤ j ≤ k) ; in particular the metric at x is controlled by

the subset among the functions uj such that |duj(x)|g = 1. If two of these functions

(let us say u1 and u2) suffice to determine g in an open subset U ⊂ D, then du1

and du2 are mutually orthogonal (by Lemma 2.3) ; otherwise, for almost all x there

is a neighborhood U of x, where three of them, say u1, u2 and u3 determine g by

themselves under the condition |duj(x)|g = 1 (j = 1, 2, 3), and the six disjunct angles

in terms of g formed by the six differentials ±duj in the cotangent space of x are
all < π/2 (cf. Lemma 2.4). In any case the mapping u of equation (5.1) is almost

everywhere an immersion of D, inducing a metric, that is determined at each point

by the direction of the tangent plane. This situation is precisely one considered by

É. Cartan in his 1933 monograph [5] for the purpose of studying invariants attached to

variational problems. What makes the isosystolic problem difficult from the viewpoint

of Cartan’s treatment is that the area functional is not of class C2 in terms of the

direction parameters of the tangent plane. For instance, if k = 3, suppose that the

image u(D) in R
3 is represented locally as the graph of a function, u3 = f (u1, u2), or,

more briefly, z = f(x, y), and denote by (u, v, w) the homogeneous direction numbers

of any plane at the point (x, y, z) ; then the tangent plane of u(D) at (x, y, z) has
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direction numbers proportional to (p, q,−1), where p = ∂f/∂x and q = ∂f/∂y). It

follows from the assumptions |dx|g = |dy|g = 1 that the area functional dV olg is

expressed by (2.1), (2.2). In order to account for the alternative possibilities that the

least-area metric be controlled by all three of the potential functions or just two of

them, it is best to express the area density function in terms of the three homogeneous

direction numbers ξ = (ξ1, ξ2, ξ3) of the tangent plane, by means of a function L(ξ),

defined to be positively homogeneous of degree one, such that dV olg = L(p, q,−1).
Introduce the function (Heron’s function)

∆(ξ1, ξ2, ξ3) = Re{(2(ξ22ξ23 + ξ23ξ
2
1 + ξ21ξ

2
2)− (ξ41 + ξ42 + ξ43))

1
2 } ,

representing, when it is positive valued, twice the area of the euclidean triangle with

sides of length |ξ1|, |ξ2|, |ξ3| ; then direct computation leads to the following expression
for L(ξ) :

L(ξ) =
{
2|ξ1ξ2ξ3|/∆(ξ1, ξ2, ξ3) , if Max{ξ21 , ξ22 , ξ23} < 1

2
(ξ21 + ξ22 + ξ23)

Max{|ξ1|, |ξ2|, |ξ3|}, if Max{ξ21 , ξ22 , ξ23 ≥ 1
2 (ξ

2
1 + ξ22 + ξ23)

The two alternative analytic expressions given above for L(ξ) reflect the two respective

possibilities, whether the metric is controlled by all three of the potential functions

or by just two of them. The global function L(ξ) represents geometrically the least

diameter of any disk that contains a triangle with sides of length |ξ1|, |ξ2|, |ξ3|, and
is the lower convex envelope of the one expressed by the algebraic function in the top

line.

Consider now a small variation of the immersion u in a compact subdomain of D,

reflected by a corresponding variation of the functional relation between x, y, z in a

compact subdomain of its domain of definition. Such a change induces a corresponding

change in the metric in the global surface M , that generally leaves all critical local

systoles unchanged, and, if the change is sufficiently small, does not introduce any new

critical homotopy classes. Thus the isosystolic variational problem is reduced, locally,

to that of finding functions z = f(x, y) with prescribed boundary values in a compact

domain D ⊂ R
2, that minimize the integral

∫
D
L((∂f/∂x, ∂f/∂y,−1)|dx ∧ dy|. A

routine calculation yields readily the Euler-Lagrange equation for this problem, in

non-parametric form:

(5.3)
∂2L(p,q,−1)

∂p2

∂2f(x,y)

∂x2
+2

∂2L

∂p∂q

∂2f(x,y)

∂x∂y
+

∂2L

∂q2

∂2f(x,y)

∂y2
= 0 .
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The convexity of the homogeneous function L(ξ) guarantees that the local boundary

value problem has a unique, weak solution of class C1,1, that assumes the assigned

boundary values, provided that the domain is strictly convex. On the other hand

L(ξ), in contrast with the classical analogue L0(ξ) = ((Lξ21 + ξ22 + ξ23))
1
2 arising

from Plateau’s problem, is not strictly convex in every non-homogeneous plane in R
3.

Indeed it is strictly convex, locally, only in non-homogeneous planes at points where

the top-line formula of (5.2) holds, i.e. in the open domain Ω ⊂ R
3, where ξ21 , ξ

2
2

and ξ23 satisfy the triangle inequality. For any solution f(x, y) of the Euler-Lagrange

equation (5.3), the solution is of elliptic type, and hence real analytic, at any point

of D for which ξ ∈ Ω.

As the point for which ξ ∈ Ω approaches a point (x, y, z) for which ξ lies on a

regular part of the boundary of Ω (consisting of all lines through the origin, mak-

ing an angle of 45◦ with exactly one of the three coordinate axes), the solution of

(5.3) becomes a degenerate elliptic solution, approaching a parabolic point, where the

bicharacteristics are tangent to the curve of parabolic points, Hence, if the analytic

solution of the elliptic equation admits an analytic continuation across such a transi-

tion curve, it provides an example of solution of a non-linear differential equation of

Tricomi type. However, the coefficients of the actual equation (5.3) and the disconti-

nuity of the second derivatives of L at the boundary of Ω imply that, when ξ lies in

the interior of the complement of Ω (consisting of six disjunct, convex, open, quadric

cones), then the function f(x, y) is not restricted by the Euler-Lagrange equation at

all ; indeed two of the three potential functions constitute a local cartesian chart for

a flat metric g, and the third one is only required to have a Lipschitz constant ≤ 1 in

terms of g. We summarize the main results of preceding discussion in the statement

of the following theorem.

Theorem 5.1. — Let (M, g) be a closed surface with an extremal isosystolic metric

g, and let γ±1j (j = 1, 2, 3) be six distinct, critical free homotopy classes of closed paths

in M , admitting an open, simply connected region D ⊂ M that does not meet any

critical isosystolic strip other than the six strips directed by γ±1j . Let uj : D → R be

local potential functions inD directed by each γj : then the combined map (u1, u2, u3):

D → R
3 is an immersion, that may be described locally in non-parametric form as
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the graph of a function z = f(x, y) as (x, y, z) traces the image (u1, u2, u3)(D) ⊂ R
3.

In addition the function f satisfies the Euler-Lagrange equation (5.3). The latter

equation is vacuous in the interior of any subdomain of D, whose image in R
3 has

the property that each of its tangent planes makes an euclidean angle < 45◦ with any

one of the three coordinate planes. In the interior of any region for which the tangent

planes make angles > 45◦ with each of the three coordinate planes, the equation (5.3)

is elliptic.

One distinguishes, among the elliptic solutions of the Euler-Lagrange equation

(5.3), the trivial class, consisting of potential functions that are related by linear

equations: the metric that they induce is obviously flat. Conversely, it is not hard to

verify that, if an extremal isosystolic metric, determined by three potential functions

related by an elliptic solution of (5.3), is locally flat, then the functions must be

linearly related.

In order to complete the variational analysis, one must still consider the domains

ofM , where an extremal isosystolic metric may be controlled by four or more overlap-

ping, unoriented isosystolic bands. Clearly, the functional relation between any three

local potential functions (directed by pairwise transversal critical isosystolic bands)

may be expressed locally by choosing two of them as local parameters, so that the

third one is represented as a function of two variables, namely z = f(x, y), in the

discussion leading to Theorem 5.1. If f(x, y) satisfies the Euler-Lagrange equation

(5.3) in a domain D, then the local potential functions directed by any number of

additional critical isosystolic classes could conceivably enter the local picture with-

out disturbing the equilibrium condition implied by the Euler-Lagrange equation: in

fact, given any smooth Riemannian metric in D, any smooth curve in D is locally

an orthogonal trajectory of a uniquely determined, local geodesic foliation, that may

generate such a potential function. One can prove that it is not possible to have two

functions f1(x, y) and f2(x, y) that are simultaneously elliptic solutions of (5.3), in-

ducing the same volume form (and hence the same metric), unless f1 and f2 are being

either both linear functions of x and y, or else differ from each other by an additive

constant, or have a constant value for their sum. It seems plausible to conjecture that

the interior extremality condition in the domain D of intersection of four or more
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isosystolic strips should lead to a decomposition of D into compact sub-regions, in

each of which only three of the potential functions would be related by (5.3). In ad-

dition, it still seems very hard to investigate the regularity (or non-regularity) of the

interface curves between the resulting triple intersections of systolic bands of strips.

The next section is the result of an attempt to determine the free boundary that arises

between subdomains where a solution of (5.3) is of elliptic type on one side, while, on

the opposite side, the extremal metric is controlled by just two potential functions.

6. A SPECIAL FREE BOUNDARY PROBLEM

The following boundary value problem related to the extremal isosystolic met-

ric problem leads to a special, non-elementary, local solution of the Euler-Lagrange

equation (5.3) ; there is some hope that this solution may be evaluated explicitly (in

the sense of classical function theory), thus providing a useful comparison barrier for

estimates of more general solutions.

Problem. — Given a closed, regular euclidean hexagon Ω, find a Riemannian metric

in Ω that minimizes its total area, subject to the constraint that each point of each

side of Ω has least Riemannian distance equal to 2 from the diametrically opposite

side.

We postulate the following two additional properties of the metric sought in this

problem, with the hope that at least one of them may be deduced as consequences of

the other data.

(i) Opposite pairs of sides of the hexagon Ω have a one-to-one correspondence, so

that each point of any one side of Ω is the only one that has distance = 2 from

the corresponding point on the opposite side ;

(ii) the metric achieving the minimum area in the problem is unique, and hence

admits the dihedral group D6 of symmetries of the hexagon as its own group of

isometries.
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Figure 1.
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Figure 1a.
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To begin with, we label and orient the six sides of Ω (see Figure 1) by orienting

and tracing its boundary, starting and ending at a vertex P0 = P6, and denote each

successive, oriented side by lj (j = 1, · · · , 6 modulo 6), in the order in which it is

traced, so that lj runs from Pj−1 to Pj . According to the results of Section 4, the

problem is equivalent to the following one. Consider any family (uj)j∈Z/6Z of six real

valued functions of Lipschitz class in Ω, such that uj+3 = −uj , and satisfying the
following four conditions.

(i) Each uj ranges in the interval [−1, 1], taking the values −1 and 1 respectively
and exclusively on the sides lj and lj+3.

(ii) The functions u1, u3 and u5, also renamed u, v and w, define an imbedding of

class C1,1

(u, v, w) : Ω→ K3 = {(x, y, z) ∈ R
3 : max{|x|, |y|, |z|} ≤ 1}

into the cube K3 of edge length = 2.

(iii) The image surface is transversal to the direction of all three coordinate axes at

each of its points.

(iv) The image surface Σ = (u, v, w)(Ω) is invariant under the group (D6D3) of

rotations and reflections of R
3 that map the cube K3 and the line {x = y = z}

onto themselves.

Under these conditions, in particular, the image surface is the graph of a function

w = f(u, v) in a certain (as yet undetermined) subdomain Θ ⊂ {(u, v) ∈ R
2 : |u| ≤

1, |v| ≤ 1}, with both first order partial derivatives p = ∂f
∂u
, q = ∂f

∂v
strictly negative

everywhere. The main problem is to find a function f(u, v) that satisfies the partial

differential equation (5.3), with L(p, q− 1) defined in (5.2), such that its graph in K3

satisfies the symmetry and the boundary conditions described above.

In the next few paragraphs we refer directly to Figure 1 and 1a ; the latter is

a schematic representation of the hexagon Ω, indicating next to each labeled point

the local values taken by the triple values taken by the triple (u, v, w) of potential

functions. The thick, shaded arrows indicate the gradient flow of the indicated func-

tions u, v and w near the center of the respective systolic bands, while the thin lines

suggest the web of shortest paths connecting opposite sides.
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Consider first the possible configuration of the six shortest paths (ϕj)j∈Z/6Z in Ω

where ϕj is the shortest path from the vertex Pj−1 to the vertex Pj+1. Each of these

six paths constitutes one of the two boundary paths of the corresponding “systolic

band” of shortest paths from the side lj−1 to the side lj+2, and is also an orbit of

the gradient flow of uj−1. One sees that the union of these six “boundary” shortest

paths must cover the whole boundary of the hexagon Ω, because otherwise there

would be open sets in Ω, meeting at most one systolic band, contradicting Lemma

2.1. Recalling the postulated hexagonal symmetry of the solution of the problem, it

is easily seen that, for each jmod.6, an initial segment of the path ϕj must trace at

least the initial “half” of the side lj (see Fig.1, i.e. the segment of lj from Pj−1 to the

midpoint Qj . By symmetry, a terminal segment of the path ϕj traces the terminal

half of lj+1, from Qj+1 to Pj+1.

On the other hand the paths ϕj cannot lie totally in the boundary of Ω . In fact,

suppose that one of the paths ϕj , and hence all six, were to be entirely contained

in ∂Ω ; in other words, suppose that each ϕj were to just trace the two sides lj
and lj+1: this would mean that since each ϕj has length 2 and describes a shortest

path between any two of its points, and because of the symmetry of Ω, the function

u1 + u3 + u5 = u+ v +w would be identically zero on the whole boundary ∂Ω. Note

that u+ v+w satisfies the same linearized form of the second order equation (4.8) as

w, in terms of the four variables u, v, p and q and the equation would have to be of

elliptic type everywhere in the interior of Ω ; hence u+v+w satisfies the conditions for

the maximum-minimum principle and, since it vanishes identically of the boundary

of Ω, it follows that u+v+w = 0 identically in Ω. Therefore the gradient flows of the

functions uj would all be straight lines, contrary to the assumption. This argument

shows that each vertex Pj has a neighborhood Uj in Ω, bounded by a segment ψj in

the middle of the path ϕj , such that Uj is 2-regular (in the sense of Section 2). By the

same token, the interior Ω0 of Ω\(∪1≤j≤6w(Uj)), bounded by a part of ∪1≤j≤6(ϕj), is

3-regular, and the functional relation w = w(u, v) in Ω0 makes w(u, v) a non-trivial,

elliptic solution of (4.8), with parabolic degeneration in the interior of each of the

boundary arcs ψj . It is likely, but has not been proved, that the remainder of ∂Ω0,

consisting of ∪j(ϕj−1 ∩ ϕj) reduces to the six points Qj , as suggested in Fig. 1 and

1a.
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The intrinsic geometry of the closed neighborhoods U j of each Pj is locally

euclidean, with a cartesian frame consisting of the functions (uj, uj+1), while uj−1

becomes essentially irrelevant, subject only to the conditions of symmetry and the

inequality Lip(uj−1) ≤ 1. The shape of each U j is better suggested by Figure 1a. In

terms of this geometry, the boundary arc ψj is a concave curve ; on the other hand,

ψj is a geodesic in the intrinsic geometry of Ω0 ; therefore Ω0 is a simply connected

disk, bounded by a closed geodesic curve: denote by a the length of one twelfth of

its circumference. The intrinsic geometry of the whole hexagon Ω then looks like the

visible surface of a fried egg, with Ω0 representing the yolk, and the albumen repre-

sented by six isosceles, right triangles with right angle sides of length 1 − a, with a

neighborhood of the hypotenuse hallowed out, leaving in its place a concave curve of

length 2a.

The length of each side of the hexagon Ω is 2 − 2a. The geometry of the flat

domains Uj implies that the positive constant a satisfies the inequalities

(6.1)
√
2− 1 < a <

1

2
.

A preliminary calculation leads to a fairly accurate estimate of the area A of (Ω, g)

of about 2.48, slightly less than the area 1.5 ·
√
3 of the flat hexagon with apothem of

unit length. These estimates will be applied in the next example.

7. OTHER EXAMPLES

We shall apply the example of the hexagon of the last section as a “building

block” to estimate the case of an extremal isosystolic metric in a once punctured

torusM . Even though this is somewhat outside of the announced scope of this paper,

the complete solution of this case is important in comparing the extremal isosystolic

ratios for closed surfaces of genera g and g + 1. At this point we shall outline the
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example only in the case of a torus with a “sufficiently large” hole. If (M, g) is a once

punctured torus, M , including its boundary circle ∂M , with a Riemannian metric

g, let β(M, g) denote the least length of any closed path in M freely homotopic to

∂M , and introduce the parameter c = β(M, g)/Sys(M, g) to indicate the “relative

size” of the puncture. Using isoperimetric inequalities of Minkowski and Mahler, one

sees that the area (V ol(M, g) has a positive lower bound in the space of allowable

metrics, if and only if c < 3: the limit case, c = 3, yields a degenerate metric g on M ,

attained as a limit of metrics on the flat torus with Loewner’s metric (the quotient

of R
2 by the translation lattice of a regular hexagonal tiling) by deleting increasingly

large, convex, open sets from the interior of each hexagonal tile. If c is in some open

interval ]c0, 3[, any metric g in M with relative size of the puncture equal to c and

sufficiently small isosystolic ratio is an approximation of the collapsed metric of the

1-skeleton of the regular hexagonal tiling of R
2. One can identify therefore (M, g)

as the union of six narrow corridors of comparable length, each corridor meeting

both others at each end, so that all three corridors intersect in two “nodes” , whose

closures are disjunct ; each node meets ∂M along three disjunct arcs. Without loss of

generality, we may assume that each node minimizes the total length of its boundary,

subject to the constraint of meeting ∂M in three components. Then each systole-

long, closed path in M runs through two corridors and both nodes. If the metric g

is an extremal isosystolic one, there must be exactly three pairs of mutually opposite

homotopy classes of closed paths, within which systole-long paths may occur, so that

each corridor is traversed by systolic bands belonging to pairs of opposite homotopy

classes. From the results of Section 2, it follows that the interior of each corridor

(unless it is collapsed to a segment) is locally flat. Therefore the gradient flows of

the respective potential functions must impact the boundary of the corridor at angles

45◦. In fact, the two gradients are mutually perpendicular at each interior point so

that at least one is transversal to the boundary of the corridor, making an angle

α �= 0 with the generalized normal (wherever such a normal exists). In order for a

systole-long path to hit the boundary of M and continue beyond as a shortest length

path, it follows from Snell’s laws of geometrical optics that the metric g must be

discontinuous on ∂M , so that the length of any small segment σ of ∂M , each of

whose points is a point of impact by some systole-long path from the interior, with a
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EXTREMAL ISOSYSTOLIC METRICS FOR COMPACT SURFACES 199

mean incidence angle α, compared to the lower limit of arc length of smooth, interior

paths approaching σ from the interior of M , has ratio approaching sin α. Therefore

the two systolic bands in each corridor, being mutually orthogonal in the interior of

M , hit ∂M at any point where there is a normal, making equal opposite angles of

45◦, as claimed.

It follows from the above description that the nodes, when the metric is lo-

cally an extremal isosystolic one, may be obtained from the metric of the hexagon Ω

described in the last section, with the following modifications. First one deletes an

open neighborhood of each of the vertices P1, P3, P5, in the shape of an isosceles,

right triangle, with short sides of length 2 − 4a ; next, one rescales the arc length

of the hypotenuse (where the triangle has been cut away from the hexagon Ω) by

dividing it uniformly by
√
2, so that it too then has length 2−4a and becomes part of

the boundary of an enneagon (polygon with nine sides) ; the intrinsic, extremal area

of the resulting “fried egg” is now A − 6(1 − 2a)2, or about 2.31 ; three of its sides

have, as arranged, length 2− 4a, while the other six are segments of length 2a in the
original sides of Ω. Then one attaches to each of these last six sides of the enneagon

an isosceles, right triangle with hypotenuse of the same length 2a, so that one of its

shorter sides becomes a straight continuation of the side of the enneagon, previously

shortened to length 2−4a: this continuation too becomes shortened by the factor
√
2,

so that its new length is a. The new perimeter now consists of six straight segments,

alternating each one of three sides of length 2a
√
2 (consistent with length of nearby

paths in the interior) with a side of length 2 − 2a, representing a “fast track”, rela-

tive to the interior, by the uniform factor 1/
√
2. The resulting configuration of the

albumen surrounding the yolk of the fried egg is now connected in the interior. This

describes each of the two nodes of the surface (M, g) with the extremal isosystolic

metric. The total area of each node is now A+ 6a(1− a)(3a− 1).

Finally one builds the punctured torus (M, g) by connecting the two nodes with

three equal corridors, each with the following description. The interior of each cor-

ridor is isometric to a euclidean rectangle of width 2a
√
2 and length b

√
2 for some

arbitrary constant b. One shortens first the two sides of length b
√
2 of each of the

three rectangles, again uniformly by the factor
√
2, reducing their length to b ; then

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



200 E. CALABI

one attaches one of the remaining sides of each rectangle, of length 2a
√
2, to each of

the three sides of the same length, on one of the two nodes, and the opposite, free

sides similarly to the other node, matching the sides attached in such a way that the

resulting surface M is orientable, and has a connected, “fast track” boundary of total

length B(M, g) = 6b+ 12(1− a), representing its boundary systole. As a result, the

manifold (M, g) has total area V ol(M, g), and systole Sys(M, g) expressed by the

following formulas:

(7.1)
V ol(M, g) = 2A+ 12(1− a)(3a− 1),

Sys(M, g) = 2b+ 4 .

If the boundary systole β(M, g)/Sys(M, g) = 3−6a/(b+2) is prescribed and equal
to a constant c ∈ ]0, 3[, this determines b uniquely in terms of the numerical constant
a estimated in (6.1), at the end of the last section. This leads to a fairly accurate

estimate for the extremal isosystolic ratio for M in terms of the relative length c of

the boundary, provided that c is sufficently close to 3 (roughly, c > 2.5). While the

formulas for the estimate, eventually sharpened by numerical analysis, describe what

is believed to be the extremal isosystolic ratio for the punctured torus, possibly as

long as b ≥ 0 the formula cannot remain valid as c decreases indefinitely ; there must

indeed be a lower limit for c for the present model of the metric to remain extremal

isosystolic ; to prescribe the relative boundary systole at smaller levels would bring

the nodes relatively closer to one another, until a catastrophe occurs, and the two

yolks get scrambled.

The next two examples, with which we will conclude this paper, are easier: they

consist of two different metrics in a closed surface M of genus 3, that are locally

flat, generated by linear solutions of the Euler-Lagrange equations (5.3) for extremal

isosystolic metrics ; it seems likely that they attain, locally in the function space of

metrics, relative minimum values for the isosystolic ratio. Despite a careful search,

no other examples of piecewise flat, extremal isosystolic metrics have been found, for

surfaces of any genus ≥ 2 ; indeed there may not exist any. In both examples, the

metrics admit a large, finite group of isometries ; this makes them much easier to

describe.
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Figure 2.

Figure 3.
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The first of the two examples is a metric on a surface M of genus 3 with a

symmetry group of order 96 ; its conformal type is that of the Fermat quartic, defined

in the complex projective plane by the homogeneous polynomial equation x4 + y4 +

z4 = 0. The hyperbolic model of the abstract Riemann surface is decomposed into

32 equilateral hyperbolic triangles with all angles equal to π/4, fitting eight triangles

around each vertex ; each of the 12 vertices corresponds to one of the points (x, y, z),

where one of the coordinates is zero, and the ratio of the other two is a primitive

eighth root of unity. If each of the hyperbolic equilateral triangles is replaced by a

euclidean equilateral triangle, for instance with sides of unit length, then the resulting

metric is intrinsically singular only at the 12 vertices, and locally flat everywhere else.

Any geodesic in the interior of one of the triangles and parallel to any side admits a

unique extension as a geodesic, passing through a sequence of successive triangles, and

closes after crossing six of them. Figure 2 illustrates the decomposition just described

ofM into 32 triangles: the latter are outlined in thin, black lines ; each of the shaded,

grey stripes, criss-crossing each other pairwise near the mid-point of each edge of each

triangle, represents the central portion of each systolic band, and the matching pairs

of letters labelling the outer edges of the diagram indicate which pairs of those edges

are to be identified (preserving, of course, the orientation). The surface with this

metric has a systole equal to 3, total area equal to 8 ·
√
3, and hence the systolic ratio

is (8
√
3)/9 ∼ 1.5396. The surface M is completely covered (generically 3 times) by

the traces of 16 unoriented systolic bands.

In addition there are 24 additional, isolated, unoriented, simple, closed curves

of length 2
√
3 (not shown in the figure), that represent exclusively the next smallest

value attained by local systoles. Each of them consists of a cyclic sequence of four

altitudes of adjoining triangles, alternately bisecting a side and the singular vertex

angle (the total angle at each vertes measures 480◦). One may modify the metric in

M by shrinking these 24 curves uniformly by the factor 1
2

√
3, giving it the length

3 = Sys(M, g), while leaving g unchanged elsewhere. The resulting metric, despite its

24 “fast tracks”, does not alter the property of the original systolic bands achieving

the minimum length within their homotopy classes. No other non contractible curve

in M may be shrunk to one of length 3 without causing some of the original systole-

long curves to cease being length-minimizing in their class. Therefore M , with the
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metric described above, and altered by shrinking the 24 curves down to length 3 has

a maximal set of critical isosystolic classes consisting of 80 free homotopy classes, out

of which 32 make up the essential critical classes, while the other 48 classes systolic

bands consisting of just one curve each.

The second example is conformally equivalent to Felix Klein’s sextic curve and

has a symmetry group isomorphic to PSL (2,Z/7Z), of order 168 (it is the well known

example achieving A. Hurwitz’s upper bound for the order of the group of symmetries

of such a surface). It corresponds, as a Riemann surface, to the compactification of the

quotient of Poincaré’s upper half-plane by the free action of the congruence subgroup

Γy −Ker{(PSL(2,Z)→ PSLL(2,Z/7Z)} ⊂ PSL(2,Z) ;

the compactification involves adjoining 24 points, to form a compact Riemann surface

of genus 3. The hyperbolic metric in the resulting, compact surface consists of 56

hyperbolic, equilateral triangles with angles measuring 2π/7, whose vertices are the

24 points adjoined in the compactification. As before, each of these 56 triangles is

replaced by a euclidean equilateral triangle of unit side length. The resulting surface,

illustrated diagrammatically in Figure 3, if locally flat, like the one in the previous

example, except for the 24 singular points. The systole is achieved by any geodesic

path parallel to any side of any triangle ; its completion as a geodesic always closes

after crossing 8 triangles (see Fig. 3). Thus the area of M with this metric is 14 ·
√
3,

the systole has length 4, and therefore the systolic ratio is (7
√
3)/8 ∼ 1.5155, or about

1.5% lower than the one for the previous metric. It seems very likely that the systolic

ratio (7
√
3)/8 achieved by this metric is the absolute minimum value for a surface

of genus 3, or else is probably very close to the minimum. With this metric, the

surface is covered almost everywhere three times by 21 bands of unoriented systole-

long paths. The next smallest value of a local systole is 3
√
3, achieved by 28 bands

of unoriented closed curves (not shown in the figure), also covering M , generically

3 times: The excess of this “second” systole over the principal value 4 is too great,

to permit any “fast track” shrinking of curves in any other non-trivial, free homotopy

class down to length 4, without destroying the minimal length property of the original

systole-long curves.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



204 E. CALABI

It may be interesting to note that the conformal equivalence classes of the metrics

described in the two above examples are quite far apart in the space of moduli of

surfaces of genus 3. Assuming that both metrics represent relative minimizing points

for the isosystolic ratio, this indicates that the isosystolic ratio, as a functional on the

space of all metrics in a surface M , is not a convex variational functional.

It was mentioned in the introduction that it seems unlikely that, for surfaces of

genus g ≥ 2 and �= 3, the extremal isosystolic metrics may be piecewise flat, as it

is in the last two examples ; in the case g = 2 the non-existence of a piecewise flat,

extremal isosystolic metric may be shown by a reduction to a symmetry argument.

Some attempts, so far without success, have been made in the case g = 4, using

metrics with a symmetry group of order 120.

In conclusion, I wish to recall that a great deal of what I originally learned

about the isosystolic problem has been from lectures by Marcel Berger. For this and

for many other fruitful ideas that conversations with him have suggested, I wish to

express my appreciation, and thereby end this exposé.
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