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conforme tout entier. Ceci répond à une question posée par Lichnerowicz.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 3. The classical

Yamabe problem can be stated as follows: “prove that there exists a metric conformal

to g with constant scalar curvature”. As is well known, it is equivalent to proving the

existence of a positive solution u ∈ C∞(X) of the equation

(E) ∆u+
n− 2
4(n− 1)Scal(g)u = Cu

(n+2)/(n−2)

where ∆u = −gij(∂iju − Γkij∂ku) in a local chart, and where Scal(g) is the scalar

curvature of g.

Let J denote the functional defined on W 1,2(X)/{0} by

J(u) =

∫
X
|∇u|2 dv(g) + n−2

4(n−1)

∫
X
Scal(g) u2 dv(g)(∫

X
|u|2n/(n−2)

dv(g)
)(n−2)/n

.

The positive critical points of J are smooth solutions of (E). We denote by ωn the

volume of the standard unit sphere Sn and µ(Sn) = 1
4n(n− 2)ω

2/n
n .

A positive answer to the problem was given by Yamabe [Y] in 1960, but his

demonstration was incomplete as Trudinger [T] pointed out in 1968. Nevertheless :

(i) Trudinger [T] proved in 1968 that, if InfJ ≤ 0, then InfJ = MinJ and there

exists a unique positive solution to (E) ;

(ii) T. Aubin [A1] proved in 1976 that, if InfJ < µ(Sn), then again InfJ = MinJ

and there exists a positive solution to (E). (When InfJ > 0, many solutions may

exist. See for instance [HV3] and [S2]). In addition, he proved that we always have

InfJ < µ(Sn) if (X, g) is a non locally conformally flat manifold of dimension n ≥ 6.

(iii) Schoen [S1] proved in 1984 that InfJ < µ(Sn) if (X, [g]) 
= (Sn, [st.]) and

n = 3, 4, 5 or (X, g) locally conformally flat. (Here, st. denotes the standard metric

of Sn). As a consequence, the classical Yamabe problem is completely solved.

Let us now turn our attention to the equivariant Yamabe problem. Since we know

that every compact Riemannian manifold has a conformal metric of constant scalar
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380 E. HEBEY

curvature, we will try to get some more precise geometric informations. As a matter

of fact, we will ask to have a conformal metric with constant scalar curvature and

prescribed isometry group. This new problem was first brought to our attention by

Bérard-Bergery (UCLA, 1990). The precise statement of the problem is the following.

“Given (X, g) a compact Riemannian manifold of dimension n ≥ 3 and G a compact

subgroup of the conformal group C(X, g) of g, prove that there exists a conformal

G-invariant metric to g which is of constant scalar curvature”. We solved the problem

in [HV2], namely

Theorem 1 (Hebey-Vaugon [HV2]). — Let (X, g) be a compact Riemannian man-

ifold and G a compact subgroup of C(X, g). Then, there always exists a conformal

G-invariant metric g′ to g which is of constant scalar curvature. In addition, g′ can

be chosen such that it realizes the infimum of Vol(g̃)(n−2)/n
∫
X
Scal(g̃)dv(g̃) over the

G-invariant metrics conformal to g.

In fact, we just have to prove the second point of the theorem, which can be

restated as follows. Given (X, g) a compact Riemannian manifold and G a compact

subgroup of I(X, g), there exists u ∈ C∞(X), u > 0 and G-invariant, which realizes

InfJ(u) where the infimum is taken over the G-invariant functions of W 1,2(X)/{0}.
Let us denote by InfGJ(u) this infimum. A generalization of Aubin’s result is needed

here. Let [g] be the conformal class of g and OG(x) be the G-orbit of x ∈ X . This
generalization can be stated as follows.

Theorem 2 (Hebey-Vaugon [HV2]). — If InfGJ(u) < µ(Sn) (Infx∈X�OG(x))2/n (∗),
then the infimum InfGJ(u) is achieved and [g] carries a G-invariant metric of constant

scalar curvature. In addition, the non strict inequality always holds.

(�OG(x) ∈ N
∗ ∪ {∞} denotes the cardinal number of OG(x)). As a consequence,

the proof of Theorem 1 is straightforward if all the orbits of G are infinite. If not, the

proof proceeds by choosing appropriate test functions.

This improvement of the classical Yamabe problem allows us to cover a conjecture

of Lichnerowicz. This conjecture can be stated as follows: “Io(X, g) = Co(X, g) as

soon as Scal(g) is constant and (X, [g]) 
= (Sn, [st.])” (where Io(X, g) and Co(X, g) are
the connected components of the identity in the isometry group I(X, g) of g and in

the conformal group C(X, g) of g). This statement is true when Scal(g) is nonpositive
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(since the metric of constant scalar curvature is unique), but can be false when Scal(g)

is positive. One sees this by considering S1(T ) × Sn−1 as Io(S1(T )) × Io(Sn−1)

acts transitively on the product, which for T large possesses many conformal metrics

of constant scalar curvature (see [HV3] and [S2]). In fact, the conjecture should

be restated as follows: “ Given (X, g) a compact Riemannian manifold, (X, [g]) 
=
(Sn, [st.]), there exists at least one g′ in [g] which has constant scalar curvature and

which satisfies I(X, g′) = C(X, g)”. This is the best result possible and was proved in

Hebey-Vaugon [HV2]. Using the work of Lelong-Ferrand [LF] (see also Schoen [S2]),

this result can be seen as a corollary of Theorem 1. (Lelong-Ferrand proved that

for any compact Riemannian manifold (X, g) distinct from the sphere, there exists

g′ ∈ [g] such that I(X, g′) = C(X, g).)

Theorem 3 (Hebey-Vaugon [HV2]). — Every compact Riemannian manifold (X, g),

distinct from the sphere, possesses a conformal metric of constant scalar curvature

which has C(X, g) as isometry group.

In the following, R(g) denotes the Riemann curvature tensor of g, Weyl(g) de-

notes the Weyl tensor of g and Ric(g) denotes the Ricci tensor of g.

2. SOME WORDS ABOUT THE CLASSICAL YAMABE PROBLEM

We give here a new solution of the classical Yamabe problem which unifies the

works of Aubin [A1] and Schoen [S1]. For completeness, we mention that other proofs

have also been presented in [Ba], [BB], [LP], [S2] and [S3].

Proposition 4 (Hebey-Vaugon [HV1]). — When (X, [g]) 
= (Sn, [st.]), the test func-
tions {

uε,x = (ε+ r2)1−n/2 if r ≤ δ, δ > 0
uε,x = (ε+ δ2)1−n/2 if r ≥ δ

give the strict inequality InfJ < µ(Sn). (Here, r is the distance from x fixed in

X, δ and ε are small).Therefore, InfJ(u) is achieved and every compact Riemannian

manifold carries, in its conformal class, a metric of constant scalar curvature.
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When the manifold is not locally conformally flat, the calculation of J(uε,x) is

the same as that of Aubin [A1]. If Ric(g)(x) = 0 (which is always possible to achieve

by a conformal change of the metric), we get

J(uε,x) = µ(Sn)
(
1− ε2

12n(n− 4)(n− 6) |Weyl(g)(x)|
2 + o(ε2))

)
when n > 6 ,

J(uε,x) = µ(Sn)+
(n− 2)(n− 1)ωn−1

60n(n+ 2)ω1−2/n
n

|Weyl(g)(x)|2 ε2Logε+o(ε2Logε) when n = 6 .

The strict inequality J(uε,x) < µ(Sn) is then a consequence of the non nullity of

the Weyl tensor at some point of X . When the manifold is locally conformally flat,

with g Euclidean near x, we get for n ≥ 6

J(uε,x) = µ(Sn) + Cεn/2−1

(
n− 2
4(n− 1)

∫
X

Scal(g) dv(g)− (n− 2)ωn−1δ
n

ε+ δ2
+ o(ε)

)
where C > 0 is independent of ε. The functional characterization of the mass (FCM1)

(see §4) then shows that we can choose g such that J(uε,x) < µ(Sn) for ε << 1.

In dimensions 3, 4, 5 the argument works identically. If g is such that, in geodesic

normal coordinates at x, det(g) = 1 +O(rm), with m >> 1, we get

J(uε,x) ≤ µ(Sn) + C(ε, δ) εn/2−1[∫
X

Scal(g)dv(g)− 4(n− 1)ωn−1δ
n

ε+δ2
+Kδ6−n(ε+ δ2)n−2

]
where K is a positive constant independent of ε and d, and where C(ε, δ) is always

positive. Since α(x) > 0 (see §4), the functional characterization (FCM2) then shows

that we can choose g such that J(uε,x) < µ(Sn) for ε, δ << 1. This ends the proof of

the proposition.

3. SOME WORDS ABOUT THE PROOF OF THEOREM 1

As already mentioned, the proof of Theorem 1, which is based on Theorem 2, is

straightforward if all orbits of G are infinite. If not, the proof proceeds by choosing
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appropriate test functions. In dimensions 3, 4, 5 and in the locally conformally flat

case, the difficulties are essentially technical. They come from the fact that we have

to consider only G-invariant test functions. But the aim of the demonstration is quite

the same as the one of the classical Yamabe problem.

Essential difficulties appear when we consider the non locally conformally flat

case. The problem comes from the fact that the concentration points are points

where �OG(x) is minimal. Test functions we consider should then be centered on the

minimal orbits of G, and although the manifold is not locally conformally flat, the

Weyl tensor can vanish at those points. Thus, there is no chance to proceed as in the

proof of the classical Yamabe problem.

In fact, if there exists a point x in a minimal G-orbit where Weyl(g)(x) 
= 0, then
we can conclude as in the classical Yamabe problem. If not, the Weyl tensor vanishes

all along minimal G-orbits. Our test functions will then have to recover the first

derivative of the Weyl tensor. We prove that, if Weyl(g)(x) = 0 and ∇Weyl(g)(x) 
= 0
at a point of minimal G-orbit, then (∗) is true again. In the next step we prove that
if Weyl(g)(x) = 0,∇Weyl(g)(x) = 0 and ∇2Weyl(g)(x) 
= 0 at a point of minimal

G-orbit, then (∗) is true once more.

On the other hand, if the Weyl tensor and its derivatives vanish up to order

Λ =
[
n−6

2

]
(the integral part of (n − 6)/2), we are able to recover the mass of the

asymptotically flat manifold (X−{x}, G4/(n−2)
x g), where Gx is the Green function at

x of the conformal laplacian. So, here, the strong form of the positive mass theorem

will be used (which was not the case for the classical Yamabe problem where only

the weak form is used). The point is that if ∇iWeyl(g)(x) = 0, for all 0 ≤ i ≤ Λ,

at a point of a minimal G-orbit, then positivity of the mass of the asymptotically

flat manifold (X −{x}, G4/(n−2)
x g), which comes from the strong form of the positive

mass theorem, gives the strict inequality (∗). (For more details on the positive mass
theorems, see §4).

Here, it is essential to use at each step the geometric information given by the

negation of the precedent step. The theorem which enables us to do this can be stated

as follows.
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Theorem 5 (Hebey-Vaugon [HV2]). — Let (X, g) be a compact Riemannian man-

ifold, G a subgroup of I(X, g), xo a point of X on a finite G-orbit, and ω ∈ N such

that ∇iWeyl(g)(x0) = 0, for all i < ω. (ω = 0 ifWeyl(g)(xo) 
= 0). Then, there exists
a conformal G-invariant metric g′ to g such that in g′-geodesic normal coordinates at

one of any x ∈ OG(xo):

(1) det g′ = 1 +O(rs), s >> 1 (given in advance and arbitrary large) ;

(2) g′ij = δij +
2ω+5∑
m=ω+4

2(m− 3)
(m− 1)!

∑
pj

(
∇p3···pm−2R(g

′)(xo)ip1p2j
)
xp1 · · ·xpm−2+

+

4(ω + 3)(2ω + 3)
(2ω + 6)!

∑
pj

(
∇p3···p2ω+4R(g

′)(xo)
)
ip1p2j

xp1 · · ·xp2ω+4

+
(
1 +

ω + 3
2ω + 5

)
(ω + 1)2

(ω + 3)!2 n∑
q=1

∑
pj

(
∇p3···pω+2R(g

′)(xo)
)
ip1p2q

(
∇pω+5···p2ω+4R(g

′)(xo)
)
jpω+3pω+4q


xp1 · · ·xp2ω+4 +O(r2ω+5).

(3) ∇iR(g′)(x) = 0, ∀i < ω ;

(4) ∇αR(g′)(x) = ∂αR(g′)(x), ∇αRic(g′)(x) = ∂αRic(g′)(x) and ∇αScal(g′)(x) =
∂αScal(g′)(x) for any multi-index a such that |α| ≤ 2ω + 1.

(5) Symp1···pm
(∇p3···pm

Ric(g′)(x))p1p2 = 0 for any ω + 2 ≤ m ≤ 2ω + 3

and Symp1···p2ω+4

(
∇p3···p2ω+4Ric(g

′)(x)
)
p1p2

= −C(ω) Symp1···p2ω+4

∑
1≤i,j≤n(

∇p3···pω+2R(g
′)(x)

)
ip1p2j

(
∇pω+5···p2ω+4R(g

′)(x)
)
ipω+3pω+4j

where C(ω) =
(ω+1)2(ω+2)2(2(ω+1))!

(ω+3)!2 .

(6) C(2, 2)(Symα∇αScal(g′)(x)) = 0 for any multi-index α such that |α| ≤ 2ω + 1.
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Here: Symp1···pm
Tp1···pm

= Σ{σpermutation of (1,···,m)}Tpσ(1)···pσ(m) , C(2, 2)Tp1···p2m
=

Σpj
Tp1p1···pmpm

, (C(2, 2)Tp1···p2mk)k = Σpj
Tp1p1···pmpmk and∇iT = ∇ · · ·∇T (i times).

As an example, C(2, 2)Tijk� = Σi,jTiijj and (C(2, 2)Tijklm)m = Σi,jTiijjm.

4. WEAK AND STRONG FORMS OF THE POSITIVE MASS THEOREM

The main references of this section are Bartnik [B], Lee-Parker [LP], Parker-

Taubes [PT], Schoen [S], Schoen-Yau [SY 1,2,3] and Witten [W].

First of all, we need to define what we mean when we speak of asymptotically flat

manifolds. These manifolds were originally introduced by physicists. They arose first

in general relativity as solutions of the Einstein field equation Ric(g)− 1
2
Scal(g)g = T

(T an energy momentum tensor). This is the case for the Schwarzschild metric, a

(singular) Lorentz metric on R
4 which, when restricted to any constant-time three-

plane, is asymptotically flat of order τ .

Definition 6. — Let (X, g) be a Riemannian manifold. (X, g) is asymptotically flat

of order 1, if there exists a decomposition X = Xo ∪ X∞, with Xo compact, and if

there exists a diffeomorphism from X∞ to R
n − B0(R), for some R > 0, the metric

satisfying in the coordinates {zi} induced on X∞ by the diffeomorphism

gij = δij +O(r−τ ), ∂kgij = O(r−τ−1), ∂kmgij = O(r−τ−2) .

The {zi} are called asymptotic coordinates.

This definition apparently depends on the choice of asymptotic coordinates. How-

ever, Bartnik [B] proved that the asymptotically flat structure is determined by the

metric alone when τ > (n− 2)/2.

An important and simple remark one has to do here is that if (X, g) is a compact

Riemannian manifold, if x is a point of X and if {xi} are normal coordinates at x,
then (X − {x}, r−4g) is an asymptotically flat manifold with asymptotic coordinates

zi = xi/r2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



386 E. HEBEY

Physicists were then led to introduce the following geometric invariant.

Definition 7. — Let (X, g) be an asymptotically flat manifold with asymptotic

coordinates {zi} . The mass m(g) of (X, g) is defined by

m(g) = lim
R→∞

1
ωn−1

∫
∂B0(R)

(H�dz) (� the interior product)

where H is the mass-density vector field defined on X∞ by H = Σi,j(∂igij−∂jgii)∂j .

Here again, it is possible to prove that if Scal(g) is a non negative function of

L1(X) and if τ > (n− 2)/2, then m(g) exists and depends only on the metric g.

Arnowitt, Deser and Misner then conjectured that in dimension 3, if Scal(g) ≥ 0,

m(g) is always non negative with equality to zero if and only if (X, g) is isometric

to R
3 with its Euclidean metric. The same conjecture was made in dimension 4,

when Scal(g) = 0, by Gibbons, Hawking and Perry. The natural generalization

of these conjectures (the strong form of the positive mass conjecture) is that an

asymptotically flat manifold (X, g) of dimension n ≥ 3 with non negative scalar

curvature has m(g) ≥ 0, with equality if and only if X is isometric to R
n.

This conjecture was solved by Schoen-Yau and by Witten in the spinorial case.

In fact, we have the following theorem.

Theorem 8. (Schoen-Yau. Strong form of the positive mass theorem.) — Let (X, g)

be an asymptotically flat manifold of dimension n ≥ 3 and order τ > (n − 2)/2,

with non negative scalar curvature belonging to L1(X). Its mass m(g) is then non

negative, and we have m(g) = 0 if and only if (X, g) is isometric to R
n with its

Euclidean metric.

From now on, let (X, g) be a compact locally conformally flat Riemannian man-

ifold of dimension n ≥ 3 and scalar curvature satisfying
∫
X
Scal(g)dv(g) > 0 (this is

equivalent to saying that [g] posseses a metric of positive scalar curvature).

We define the conformal Laplacian, acting on functions, by

L(u) = ∆u+ n−2
4(n−1)Scal(g)u.
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It is then easy to prove that L posseses a unique Green function G, and that if

g′ = u4/(n−2)g is conformal to g, we have G′(P,Q) = G(P,Q)
u(P )u(Q) . Moreover, if x ∈ X

and if g is Euclidean near x, the Green function Gx at x of L can be written (near x)

Gx =
Cte
rn−2

+ α,where α is a smooth function of C∞(X) .

Here again, if g′ = u4/(n−2)g is Euclidean near x, we get α′(x) = α(x)
u(x)2

.

Now, the weak form of the positive mass conjecture states that α(x) is always

non negative, with equality to zero if and only if X is isometric to the standard unit

sphere of R
n+1. This weak form was proved by Schoen-Yau in [SY2].

Theorem 9 (Schoen-Yau). — Suppose g is locally conformally flat and Euclidean

near x, and let Gx = Cr−n+2 + α, α ∈ C∞(X), be the Green function at x of the

conformal Laplacian. Then, α(x) is always non negative, and we have α(x) = 0 if

and only if (X, g) is isometric to the standard unit sphere Sn.

As a matter of fact, this theorem can be seen as a corollary of the strong

form of the positive mass theorem, since it is possible to prove that α(x) is pro-

portional (with positive coefficient) to the mass of the asymptotically flat manifold

(X − {x}, G4/(n−2)
x g). This remark was first made by Schoen [S1]. Of course, the

proof presented in [SY2] does not make use of this fact.

For our purpose, we need another characterization of α(x). In [HV1], we obtain

the following result.

Proposition 10 (Hebey-Vaugon). — If (X, g) is a compact locally conformally flat

Riemannian manifold of dimension n ≥ 6, with g Euclidean near x, then:

(FCM1) α(x) = Sup
4(n− 1)
(n− 2)

(
1∫

X
Scal(g′)dv(g′)

− 1
4(n− 1)ωn−1ρn−2

)
the supremum being taken over ρ << 1 and g′ ∈ [g], Euclidean on Bx(ρ), which satisfy

the normalization condition g′(x) = g(x).

In dimensions 3, 4 and 5, for an arbitrary compact Riemannian manifold, one

may also define α(x). In fact, if x ∈ X and if, in geodesic normal coordinates at

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



388 E. HEBEY

x, det(g) = 1 + O(rm), with m >> 1, the Green function at x of the conformal

Laplacian has a good development and it is then possible to define the mass α(x).

Here again, we can show that

(FCM2) α(x) =lim
ρ→0

(
Sup

4(n− 1)
(n− 2)

[
1∫

X
Scal(g′)dv(g′)

− 1
4(n− 1)ωn−1ρn−2

])
where the supremum is taken over the g′ ∈ [g] which satisfy g′ = g on Bx(ρ).

The proof is the same as the the one done in [HV1] to prove Proposition 10.

In the locally conformally flat case, the two characterizations coincide. Moreover,

since α(x) is proportional (with positive coefficient) to the mass of the manifold

(X − {x}, G4/(n−2)
x g), it is always positive, unless (X, g) is isometric to the standard

unit sphere of R
n+1.

5. THE EQUIVARIANT APPROACH. PROOF OF THEOREM 2

The proof of Theorem 2 is based on a detailed analysis of the concentration

phenomena which may occur for minimizing subcritical sequences.

To be more precise, we first prove that for 1 < q < N = 2n/(n− 2), there exists
a G-invariant smooth function uq ∈ C∞(X) and there exists λq > 0 such that:

a) ∆uq + n−2
4(n−1)Scal(g)uq = λqu

q−1
q ,

b)
∫
X
uqqdv(g) = 1 ,

c) lim
q→N

λq ≤ InfGJ(u) .

The existence of uq is not difficult to obtain since the imbedding W 1,2(X) ⊂
Lq(X) is compact for 1 < q < N .

We then prove that if a subsequence of (uq) converges as q → N to some u 
= 0
in L2(X), then J(u) = InfGJ(u) and, therefore, g′ = u4/(n−2)g is a G-invariant

metric of constant scalar curvature. As a matter of fact, we may suppose that this

subsequence converges to u strongly in L2(X) ∩ LN−1(X), almost everywhere and
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weakly in W 1,2(X), with lim
q→N

λq = λ ≤ InfGJ(u) that exists. Classical arguments

then prove that u is a smooth positive function of C∞(X) which satisfies

(1) ∆u+
n− 2
4(n− 1)Scal(g)u = λu

(n+2)/(n−2) .

Now, we have to prove that InfGJ(u) and that
∫
X
uNdv(g) = 1. But,∫

X

uNdv(g) = lim
q→N

∫
X

uN−1
q udv(g)

≤ lim
q→N

(∫
X

uqqdv(g)
)(N−1)/q (∫

X

uq/(1+q−N)dv(g)
)(1+q−N)/q

≤
(∫

X

uNdv(g)
)1/N

and, therefore,
∫
X
uNdv(g) ≤ 1. Independently, if we multiply (1) by u and if we

integrate, we obtain InfGJ(u) ≤ λ
(∫
X
uNdv(g)

)2/n
. Since λ ≤ InfGJ(u), we get

what we wanted to prove, namely λ = InfGJ(u) and
∫
X
uNdv(g) = 1.

Now, we have to study the situation where all the subsequences of (uq) which

converge in a Lp(X), p ≥ 2, converge to zero. In this situation, it is possible to prove

that there exists a finite number {x1, ..., xk} of points of X such that:

d) InfGJ(u)
(
lim
q→N

∫
Bxi

(δ)
uqqdv(g)

)2/n

≥ µ(Sn), for all i = 1, ..., k and all δ > 0 ,

e) for all p ∈ N and all compact K ⊂ X − {x1, ..., xk}, (uq) converges to zero in
Cp(K).

We now use the fact that (uq) is G-invariant and that
∫
X
uqqdv(g) = 1. First

of all, we notice that �OG(xi) < ∞, for all i = 1, ..., k. If not, for all ε > 0, we

will find a δ > 0 such that
∫
Bxi

(δ)
uqqdv(g) ≤ ε. But if ε is small enough, this

is in contradiction with d). In the same way, if �OG(xi) < ∞, we can choose δ
small enough such that

∫
Bxi

(δ)
uqqdv(g) ≤ 1

�OG(xi)
. Therefore, according to d), we

obtain InGJ(u) ≥ (�OG(xi))2/nµ(Sn), ∀i. But this is impossible if InfGJ(u) < µ(Sn)
(Infx∈X�OG(x))2/n.

As a consequence, under the hypothesis of theorem 2, the {x1, ..., xk} do not
exist. Therefore, there exists a subsequence of (uq) which converges to u 
= 0 in

L2(X). This ends the proof of the first part of the theorem.
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Now, we have to prove that InfGJ(u) ≤ µ(Sn)(Infx∈X�OG(x))2/n. We may

suppose that Infx∈X�OG(x) < ∞. Let x1 be a point of X of minimal G-orbit. If

OG(x1) = {x1, ..., xk} and if δ > 0 is such that Bxi
(δ) ∩ Bxj

(δ) = ∅ for i 
= j, we let
(as in Aubin [A1]),

ui,ε(x) = (ε+ d(xi, x)2)1−n/2 − (ε+ δ2)1−n/2 if d(xi, x) ≤ δ

ui,ε(x) = 0 if d(xi, x) ≥ δ .

If uε =
∑
i ui,ε, uε is G-invariant and we have J(uε) = k

2/nJ(u1,ε). Indepen-

dently, it is possible to prove (cf. Aubin [A1]) that lim
ε→0

J(u1,ε) = µ(Sn).

Therefore, InfGJ(u) ≤ lim
ε→0

J(uε) = µ(Sn) (Infx∈X�OG(x))2/n. This ends the

proof of the theorem.

6. THE LOCALLY CONFORMALLY FLAT CASE

Let us start with the following two results (for details see [HV2]).

Lemma 1. — Let (Sn, st.) be the standard unit sphere of R
n+1. If x ∈ Sn, we let

Cx(Sn, st.) = {σ ∈ C(Sn, st.)/σ(x) = x} and Ix(Sn, st.) = {σ ∈ I(Sn, st.)/σ(x) = x}.
If g is a metric on Sn which is conformal to st., then there exists τ ∈ Cx(Sn, st.) such
that τ−1Ix(Sn, g)τ ⊂ Ix(Sn, st.), where Ix(Sn, g) = {σ ∈ I(Sn, g)/σ(x) = x}.

Lemma 2. — Let (X, g) be a compact locally conformally flat manifold of dimension

n ≥ 3 and let G be a compact subgroup of I(X, g). Then, for all x ∈ X which

has a finite G-orbit, there exists g′ ∈ [g] which is G-invariant and Euclidean in a

neighbourhood of each y ∈ OG(x).

Now, let (X, g) be a compact locally conformally flat manifold of dimension n ≥ 3

and let G be a compact subgroup of I(X, g). According to Theorem 2, we may restrict

ourselves to the case where G posseses finite orbits.
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Let {x1, ..., xk} be a minimal G-orbit. With Lemma 2, we may suppose that
g is Euclidean in a neighbourhood of each xi. The Green function Gi at xi of the

conformal Laplacian can then be written (near xi)

Gi(x) =
1

(n− 2)ωn−1r
n−2
i

+ A+ αi(x) ,

where A is a constant and where αi ∈ C∞(X) satisfies αi(xi) = 0. (ri = d(xi, x)).

According to the weak form of the positive mass theorem, we have A > 0 if (X, [g]) 
=
(Sn, [st.]). Now, we consider (as Schoen in [S1]), the test functions uiδ,ε defined by

uiδ,ε(x) =
(

ε

ε2 + r2i

)(n−2)/2

if ri ≤ δ

= ε0(Gi(x)− η(x)αi(x)) if δ ≤ ri ≤ 2δ

= ε0Gi(x) if ri ≥ 2δ ,

where δ > 0 is chosen small enough that g is Euclidean on Bxi
(2δ) and such that

Bxi
(2δ) ∩ Bxj

(2δ) = ∅ if i 
= j, where η is a smooth radial function which satisfies
0 ≤ η ≤ 1, η(x) = 1 if ri ≤ δ, η(x) = 0 if ri ≥ 2δ and |∇η| ≤ 2

δ , and where ε0 satisfies(
ε

ε2 + δ2

)(n−2)/2

= ε0

(
A+

1
(n− 2)ωn−1δn−2

)
.

We let uδ,ε =
∑k
i=1 u

i
δ,ε. The function uδ,ε is G-invariant and it is possible to prove

that

J(uδ,ε) ≤ k2/nµ(Sn)− ε20(C0A+ C1(k − 1)) + terms in δε20 and o(ε
2
0) .

(We do not develop the calculations here. For more details, see [HV2]. The term

C1(k − 1), which does not appear in [S1], comes from the symmetrisation).

In fact, the same result holds also for manifolds of dimensions 3, 4 and 5, since

for such manifolds we can choose g such that Gi still has a good development. (Here

again, see [HV2].) In particular, according to this last inequality, we can find ε, δ

small enough that J(uδ,ε) < k2/nµ(Sn), if C0A+ C1(k − 1) > 0. Therefore, with the
weak form of the positive mass theorem, the strict inequality of Theorem 2 is satisfied

by locally conformally flat manifolds and by manifolds of dimensions 3, 4 and 5, which
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are not conformally diffeomorphic to the standard sphere Sn. As already mentioned,

this ends the proof of the theorems for such manifolds.

Moreover, the strict inequality of Theorem 2 is also satisfied by Sn when

Infx∈X�OG(x) ≥ 2 (as k − 1 > 0). Now, we have to deal with the case (X, [g]) =

(Sn, [st.]), Infx∈X�OG(x) = 1. Let x be such that �OG(x) = 1. We then have

G ⊂ Ix(Sn, g) and, with Lemma 1, there exists τ ∈ Cx(Sn, st) such that G ⊂
τ−1Ix(Sn, st)τ .

If f > 0 is such that (τ−1)∗st = f4/(n−2)st, and if φ > 0 is such that g =

φ4/(n−2)st, we let

u(y) =
1

φ(y)f(τ(y))
, y ∈ Sn .

u is G-invariant. To see this, we consider σ ∈ G and i ∈ Ix(Sn, st) such that σ =
τ−1iτ . We then have

σ∗g = τ∗i∗(τ−1)∗g

= (τ∗i∗)
(
(ϕ ◦ τ−1)4/(n−2)f4/(n−2)st

)
= ((ϕ ◦ σ)(f ◦ i ◦ τ))4/(n−2) (f ◦ τ)−4/(n−2)st .

Independently, σ∗g = g implies (ϕ◦σ) ((f ◦ τ) ◦ σ) = ϕ(f ◦τ). Therefore, u◦σ =
u, for all σ ∈ G.

Moreover, J(u) = µ(Sn) since φu = 1
f◦τ with τ

∗st = (f ◦ τ)−4/(n−2)st. But, on

Sn, InfJ(u) = µ(Sn). Therefore u realizes InfGJ(u). This ends the proof of Theorem

1 when ([X, [g]) = (Sn, [st.]).

7. CHOOSING AN APPROPRIATE REFERENCE METRIC

Let us start with the following result. This is the equivariant version of conformal

normal coordinates. For more details on its proof, see [HV2].

Lemma 3. — Let (X, g) be a compact Riemannian manifold of dimension n ≥ 3 and

let G be a compact subgroup of I(X, g). If x ∈ X is of finite G-orbit, then, for all
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FROM THE YAMABE PROBLEM TO THE EQUIVARIANT YAMABE PROBLEM 393

m ∈ N, there exists a G-invariant metric g′, conformal to g, such that in g′-geodesic

normal coordinates at each y ∈ OG(x), detg′ = 1 + O(rm) (where r = d(y, ·), d the

distance for g′).

Now, we suppose that ∇iR(g′)(xo) = 0, ∀i < ω. We will then prove that,

in geodesic normal coordinates at xo, g′ can be written as in the relation (2) of

Theorem 5. In fact, the exponential map at xo allows us to study the problem in a

neighbourhood of 0 ∈ R
n. Now, for τ, ξ ∈ R

n, we let γ : R×R→R
n be the map defined

by γs(t) = t(τ+sξ). In the same way, we let T = γ′s(t) and X(γs(t)) = ∂/∂sγs(t) = tξ.

If we derive the Jacobi relation ∇2
TX = R(g)(T,X)T , we obtain for r ≥ 2

∇rTX =
r−2∑
i=0

Cir−2

(
∇r−2−i
T R(g)

)
(T,∇iTX)T (as∇TT = 0) .

Therefore,

∇rTX(0) = 0 for 2 ≤ r ≤ ω + 2, and X(0) = 0, ∇X(0) = ξ .

Thus,

∇rTX(0) = (r − 2)(∇r−3
τ R(g)(0))(I, ξ)I for ω + 3 ≤ r ≤ 2ω + 4 ,

and

∇2ω+5
T X(0) = (2ω + 3)(∇2ω+2

τ R(g)(0))(τ, ξ)τ + Cω2ω+3(∇ωτR(g)(0))(τ,∇ω+3
τ X)τ

= (2ω+3)(∇2(ω+1)
τ R(g)(0))(τ, ξ)τ+(ω+1)Cω2ω+3(∇ωτR(g)(0))(τ,∇ωτR(g)(0)(τ, ξ)τ)τ .

Independently, if f(t) = |X(γo(t))|2,

f (r)(0) = (∇rT f)(0) = ∇rT g(X,X)(0) =
r∑
i=0

Cirg(0)(∇r−iT X,∇(i, T )X) ,

and, therefore, f(0) = 0, f ′(0) = 0, f ′′(0) = 2g(0)(ξ, ξ) and

f (r)(0) = 0 for 3 ≤ r ≤ ω + 3

= 2r(r − 3)g(0)(∇r−4
τ R(g)(0))(τ, ξ)τ, ξ) for ω + 4 ≤ r ≤ 2ω + 5

= 4(ω + 3)(2ω + 3)g(0)(∇2(ω+1)
τ R(g)(τ,∇ωτR(g)(τ, ξ)τ, ξ)

+ 4(ω + 3)(ω + 1)Cω2ω+3g(0)(∇ωτR(g)(τ,∇ωτR(g)(τ, ξ)τ)τ, ξ)

+ (ω + 1)2Cω+3
2ω+6g(0)(∇ωτR(g)(τ, ξ)τ,∇ωτR(g)(τ, ξ)τ) for r = 2ω + 6 .
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We then obtain

g(tτ)(ξ, ξ) = t−2f(t) = g(0)(ξ, ξ) +
2ω+5∑
r=4

2r(r − 3)
r!

tr−2g(0)(∇r−4
τ R(g)(0))(τ, ξ)τ , ξ)

+
1

(2ω + 6)!
f (2ω+6)(0)t2ω+4 +O(t2ω+5) .

But, if

τ = τ i∂i,∇rτR(g)(τ, ∂p)τ = (∇i1···irRimnp(g)∂i)τmτnτ i1 · · · τ ir ,

and, therefore,

g(tτ)(∂i, ∂j) = δij +
2ω+5∑
m=ω+4

2(m− 3)
(m− 1)! t

m−2(∇p3···pm−2R(g)(0)ip1p2j)τ
p1 · · · τpm−2

+
[
4(ω + 3)(2ω + 3)

(2ω + 6)!
t2ω+4

(
∇p3···p2ω+4R(g)(0)ip1p2j

)]
τp1 · · · τp2ω+4

+(1 +
ω + 3
2ω + 5

)
(ω + 1)2

(ω + 3)!2

t2ω+4

[
n∑
q=1

(
∇p3···pω+2R(g)(0)ip1p2q

) (
∇pω+5···p2ω+4R(g)(0)jpω+3pω+4q

)]
τp1 · · · τp2ω+4

+O(t2ω+5) .

We then obtain the conclusion, i.e. relation (2) of Theorem 5, when we let x = tτ .

From this relation, we get ∂βΓkij = 0 for all |β| ≤ ω. Since ∇iR(g)(xo) = 0 for

i ≤ ω − 1, we obtain easily the point (4) of Theorem 5. To prove Point (5), we let

(Aij) be defined by gij = exp(Aij). We then obtain, since exp(A) = I+A+ 1
2A

2+· · · ,

Aij =
2ω+5∑
m=ω+4

2(m− 3)
(m− 1)!

(
∇p3···pm−2R(g)(x1)

)
ip1p2j

xp1 · · ·xpm−2

+
[
4(ω + 3)(2ω + 3)

(2ω + 6)!
(
∇p3···p2ω+4R(g)(x1)

)
ip1p2j

]
xp1 · · ·xp2ω+4 − (ω + 1)2(ω + 2)

(2ω + 5)(ω + 3)!2 n∑
q=1

∑
pj

(
∇p3...pω+2R(g)(x1)ip1p2q

) (
∇pω+5···p2ω+4R(g)(x1)jpω+3pω+4q

)
xp1 . . . xp2ω+4 +O(r2ω+5) .
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Point (5) of Theorem 5 is then a direct consequence of this relation, since

det(gij) = exp (trace(Aij)). Moreover, the contraction of the first relations of this

point (5), gives the point (6) of the theorem (i.e C(2, 2) Symα∇αScal(g)(xo) = 0, for
|α| ≤ 2ω + 1).

Finally, we have to prove that the two relations “detg = 1 + O(rm), m >> 1”

and “∇iWeyl(g)(x0) = 0, ∀i < ω” lead to “∇iR(g)(x0) = 0, ∀i < ω”. Here, the proof
is by induction. If ω = 0 or 1, the result is easily obtained. Thus, we have to prove

that “detg = 1 + O(rm), m >> 1” and “∇iWeyl(g)(x0) = 0, ∀i < ω + 1” lead to
“∇ωR(g)(x0) = 0”. If |α| = ω − 1, we have (at the point x0):

(a)

∇mαR(g)ijkl −
1

(n− 2)(∇mαRic(g)ikgj� −∇mαRic(g)i�gjk +∇mαRic(g)j�gik

−∇mαRic(g)jkgi�) +
1

(n− 1)(n− 2)(∇mαScal(g))(gikgj� − gi�gjk) = 0 .

If we contract j and m, we then obtain

(b)

(n− 3)
(n− 2)(∇�αRic(g)ik −∇kαRic(g)i�) =

(n− 3)
2(n− 1)(n− 2)(∇kαScal(g)gi� −∇�αScal(g)gik) .

Now, if α = mβ, |β| = ω − 2, contraction of B and m in (b) leads to

(c)

(n− 3)
(n− 2)∇mmβRic(g)ik =

(n− 3)
2(n− 1)∇ikβScal(g)−

(n− 3)
2(n− 1)(n− 2)∇mmβScal(g)gik

and the relation Symik�mβ∇�mβRic(g)(x0)ikj = 0 (point (6) of the theorem) then

allows us to prove that ∇ikβScal(g)(x0) = 0.
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According to (b) we then have ∇�αRic(g)(x0)ik = ∇kαRic(g)(x0)i�, and, there-

fore, we obtain (ω + 2)!∇�αRic(g)(x0) = 0 since Symik�α∇�αRic(g)(x0)ik = 0. Thus,

according to (a), ∇mαR(g)(x0)ijk� = 0. This ends the proof of the theorem.

8. THE NON LOCALLY CONFORMALLY FLAT CASE, n ≥ 6

Let Λ =
[
n−6

2

]
. G denotes a compact subgroup of I(X, g) which possesses finite

orbits and {x1, ..., xk} is a minimal G-orbit.

8.1. Let us first suppose that there exists ω ≤ Λ such that ∇iWeyl(g)(x1) = 0,

∀i < ω, with ∇ωWeyl(g)(x1) 
= 0. In fact, we do not need to study this situation.

A recent result of Schoen states that the concentration points of the sequence (uq)

introduced in Section 4 are points where the Weyl tensor and its derivatives vanish

up to order Λ. According to this result we can directly study the situation described

in the following subsection: there exists a minimal G-orbit {x1, · · · , xk} such that
∇iWeyl(g)(x1) = 0, ∀i ≤ Λ. But we will loose strict inequality InfGJ(u) < µ(Sn)

(Infx∈X�OG(x))2/n. Nevertheless, it is possible to prove that this strict inequality is

true, at least when ω = 0, 1 or 2. Therefore, according to what we have said before

and according to the result of the next subsection, strict inequality will be satisfied by

any manifold of dimension n ≤ 11 (since 3 ≤ Λ =⇒ n ≥ 12). To summarize: we use

Schoen’s result, so that we just have to study the situation described in Subsection

8.2, when the manifolds are of dimension n ≥ 12 and satisfy: for all x in a minimal

G-orbit, ∃ 3 ≤ ω ≤ Λ/∇iWeyl(g)(x) = 0, ∀i ≤ ω with ∇ωWeyl(g)(x) 
= 0. We have

our own proof when ω = 0, 1 or 2, and therefore, when the manifolds are of dimension

n ≤ 11. (In fact, this proof should work in all cases but we face important technical

difficulties).

We treat here the cases ω = 0 and ω = 1. For details on the case ω = 2, see

[HV2]. If ω = 0, i.e., if Weyl(g)(x1) 
= 0, according to Theorem 5 we may suppose

that Ric(g)(x1) = 0. Here, we easily obtain the strict inequality (∗) of Theorem 2.
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We proceed as in Aubin [A1]. We let uε =
∑k
i=1 ui,ε where

ui,ε =
(
ε+ r2i

)1−n/2 − (ε+ δ2)1−n/2 if ri ≤ δ
ui,ε = 0 if ri ≥ δ, δ > 0, ri = d(xi, .) .

We then have (when δ is small enough), J(uε) = k2/nJ(u1,ε) and

J(u1,ε) = µ(Sn)
(
1− ε2

12n(n− 4)(n− 6) |Weyl(g)(x)|
2 + o(ε2)

)
if n > 6

J(u1,ε) = µ(Sn) +
(n− 2)(n− 1)ωn−1

60n(n+ 2)ω1−2/n
n

|Weyl(g)(x)|2ε2Logε+ o(ε2Logε) if n = 6 .

Therefore, we can choose ε small enough such that J(uε) < k2/nµ(Sn). We then

obtain the strict inequality case (∗) of Theorem 2.

Now, let us study the case ω = 1, i.e the case where Weyl(g)(x1) = 0,

∇Weyl(g)(x1) 
= 0 (and n ≥ 8). Here again, we may suppose that g satisfies all

points (1) to (6) of Theorem 5 (with ω = 1). If the uε are defined as before, it is then

possible to prove (see [HV2]), that

J(u1,ε) ≤ µ(Sn) + Cε(n/2)−1 + CAε3 + Cε4 if n > 8

J(u1,ε) ≤ µ(Sn)− CA(Logε)ε(n/2)−1 + Cε(n/2)−1 if n = 8 ,

where C is a positive constant and where A = C(2, 2) Symijk�∇ijk�Scal(g)(x1).

Therefore, we will obtain the strict inequality case (∗) of Theorem 2, i.e., we will

find ε small enough such that J(uε) < k2/nµ(Sn), if C(2, 2) Symijk�∇ijk�Scal(g)(x1) <

0. But we have (Point (5) of Theorem 5)

Symijk�mn∇ijk�Ric(g)(x1)mn+
3
2
Symijk�mn

∑
pq

(∇mR(g)(x1)pijq)(∇nR(g)(x1)pk�q)= 0 ,

and if we take the C(2, 2) term of this relation, we obtain

C(2, 2)Symijk�∇ijk�Scal(g)(x1) + 12
∑
ijk�m

(∇mR(g)(x1)ijk�)(∇mR(g)(x1)ijk�) = 0 .

The calculation is quite simple. One must just use carefully the two Bianchi’s

identities and the relation
∑
k∇kkRic(g)(x1)ij = −3∇ijScal(g)(x1) (which comes

from the contraction of the first relation of Point (5) of Theorem 5).
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Therefore, since ∇R(g)(x1) 
= 0, we obtain

C(2, 2)Symijk�∇ijk�Scal(g)(x1) = −12|∇R(g)(x1)|2 < 0 .

The strict inequality case (∗) of Theorem 2 is then also satisfied when ω = 1.

8.2. Let us now study the case where ∇iWeyl(g)(x1) = 0, ∀i ≤ Λ, X 
= Sn. This
includes the locally conformally flat case, where we were able to recover the weak

form of the positive mass theorem. Here, in the general case, we recover the strong

form of the positive mass theorem.

From now on, when we write f = O′′(rs), we mean that f = O(rs), ∂if =

O(rs−1) and ∂ijf = O(rs−2). According to Theorem 5, we may suppose that g

satisfies (in geodesic normal coordinates at each xi) :

(A) detg = 1 +O(rmi ), m >> 1, ∀i = 1, · · · , k.

(B) ∇sR(g)(xi) = 0, ∀s ≤ Λ, ∀i = 1, · · · , k. (In particular, Scal(g) = O(rΛ+1
i )).

(C) gij = δij+
∑2(Λ+1)+1

Λ+1 Cα(∇αR(g)(xs))ik�jxkx�xα+O′′(r2(Λ+3)
s ), ∀s = 1, · · · , k.

(In particular, gij = δij +O(r
(Λ+3)
s )).

(D) ∇αR(g)(xi) = ∂αR(g)(xi), ∇αRic(g)(xi) = ∂αRic(g)(xi) and ∇αScal(g)(xi) =
∂αScal(g)(xi), ∀i = 1, · · · , k, ∀|α| ≤ 2(Λ + 1) + 1.

(E) C(2, 2)Symα∇αScal(g)(xi) = 0, ∀i = 1, · · · , k, ∀|α| ≤ 2(Λ + 1) + 1.

It is then possible to prove that the Green function Gi at xi of the conformal

Laplacian can be written (near xi)

(F) Gi =
1

(n− 2)ωn−1r
n−2
i

(
1 +

n∑
p=1

Ψp

)
+O′′(1) ,

where the Ψp are homogeneous polynomials of order p, which are identically null for

1 ≤ p ≤ Λ + 2, and which satisfy for p ≤ n− 3 and r > 0,
∫
Sn−1(r)

Ψp(x)dσr(x) = 0.

(For details on this expension, see [HV2]).

Now, let γ = rn−2
1 G1, g̃ = G

4/(n−2)
1 g, and if {yi} is a geodesic normal coordinate

system at x1, let zi = r−2
1 y

i and ρ1 = |z| = r−1
1 . In the coordinate system {zi} we
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then have g̃ij(z) = γ(z)4/(n−2)(δij +O′′(ρ−Λ−3
1 )). Therefore, according to the nullity

of the Ψp for p ≤ Λ + 2, (X − {x1}, g̃) is an asymptotically flat manifold of order
Λ + 3. Its mass m(g̃) is then well defined and always positive (since Λ + 3 > (n−2)

2 ).

We let Θ =
∑k
i=1Gi, γi = r

(n−2)
i Θ and K =

∑k
i=2Gi(x1). Moreover, (as in

Lee-Parker [LP]), we define the test functions vε,δ by

vε,δ = Θrn−2
i

(
ε

ε2 + r2i

)(n−2)/2

if ri ≤ δ

vε,δ = Θδn−2

(
ε

ε2 + δ2

)(n−2)/2

if ri ≥ δ, δ > 0 .

It is then possible to prove (see [HV2]) that∫
X

|∇vε,δ|2dv(g) +
n− 2
4(n− 1)

∫
X

Scal(g)v2ε,δdv(g)

≤ k2/nµ(Sn)
(∫

X

v
2n/(n−2)
ε,δ dv(g)

)(n−2)/n

− Cµ̃εn−2 + εn−2O(δ) +O(εn−1) ,

where C is a positive constant and where

µ̃ = − lim
ρ1→∞

1
ω

n−1

∫
∂B(x1;ρ1)

(∂ρ1γ1)dσρ1 = − lim
ρ1→∞

ρn−1
1

1
ωρ1

∫
∂B(x1;ρ1)

(∂ρ1γ1)dσρ1 .

(According to (F), µ̃ is well defined since γ1 = γ + (K +O′′(ρ−1
1 ))ρ−n+2

1 .)

Therefore, the strict inequality case (∗) of Theorem 2 will be satisfied if µ̃ > 0.

(i.e, we will find ε, δ small enough such that J(vε,δ) < k2/nµ(Sn) if µ̃ > 0). But, we

have

m(g̃) = lim
ρ1→∞

1
ωn−1

∫
∂B(x1;ρ1)

∑
m

(
ρ−2
1 z

izj∂mg̃mi − ∂j g̃mm
)
∂j�dz

= lim
ρ1→∞

1
ωn−1

∫
∂B(x1;ρ1)

∑
m

(∂ρ1(g̃ρ1ρ1 − g̃mm) + ρ−1
1 (ng̃ρ1ρ1 − g̃mm)) dσρ1 ,

with, according to (C),

g̃ρ1ρ1 = g̃(∂ρ1 , ∂ρ1) = ρ
−2
1 z

izj g̃ij = ρ−2
1 z

izjγ(z)4/(n−2) .

Moreover, with (D), (E) and Bianchi, we get∫
∂B(x1,ρ1)

∇αR(g)ik�j(x1)zizjzkz�zαdσρ1 ≈
∫
∂B(x1,ρ1)

∇αRic(g)ij(x1)zizjzαdσρ1 = 0
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for |α| ≤ 2(Λ + 1) + 1, while, according to (F),

γ(z) =
1

(n− 2)ωn−1
+

n∑
p=Λ+3

Ψp(z) +O′′(ρ−n+2
1 )

where the Ψp are O′′(ρ−p1 ) which satisfy
∫
∂B(x1;ρ1)

Ψpdσρ1 = 0 for p ≤ n− 3.

Therefore (remember that 2(Λ + 3) ≥ n− 1), we obtain

m(g̃) = −4(n− 1)
n− 2 C

−(n−6)/(n−2)
1 lim

ρ1→∞
ω−1
n−1

[∫
∂B(x1,ρ1)

(∂ρ1γ)dσρ1 + ωρ1o(ρ
−n+1
2 )

]

= −4(n− 1)
n− 2 C

(n−6)/(n−2)
1 lim

ρ1→∞
ω−1
n−1

∫
∂B(x1,ρ1)

(∂ρ1γ)dσρ1 ,

where C1 = 1
(n−2)ωn−1

.

Since γ = γ1−Kρ−n+2
1 +O′′(ρ−n+1

1 ), we finally get µ̃ = C2m(g̃)+(n−2)K, where
C2 is a positive constant. The constant µ̃ is then positive, and the strict inequality

case of Theorem 2 is established.
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SÉMINAIRES & CONGRÈS 1
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SÉMINAIRES & CONGRÈS 1


