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Abstract. This article is a report summarizing recent progress in the geometry of negative

Ricci and scalar curvature. It describes the range of general existence results of such metrics

on manifolds of dimension ≥ 3. Moreover it explains flexibility and approximation theorems

for these curvature conditions leading to unexpected effects. For instance, we find that

“modulo homotopy” (in a specified sense) these curvatures do not have any of the typical

geometric impacts.

Résumé. Cet article est un résumé des progrès récents dans la géométrie des variétés

riemanniennes à courbure de Ricci ou scalaire négative. Il décrit le domaine de validité

des résultats généraux d’existence pour de telles métriques sur les variétés de dimension

≥ 3. De plus, il explique les théorèmes de flexibilité et d’approximation pour ces conditions

de courbure, ce qui conduit à des résultats inattendus. Par exemple, nous montrons que

“modulo homotopie” (dans un sens précis), ces conditions de courbure n’impliquent aucune

des conditions géométriques usuelles.
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INTRODUCTION

This paper reports on recent progress in understanding negative Ricci and scalar

curvature. We mainly intended to write a guide summarizing and tabulating the main

results. We also alluded to some technical (or rather philosophical) background while

this is just enough to give some orientation.

As will become clear, Ric < 0-metrics can be met quite frequently in geometry,

in a way unexpected before.

One of the insights is concerned with the contrast between positive and negative

curvatures. In the case of sectional curvature the implied topological conditions ex-

clude each others, while Ricci and scalar curvature behave quite differently. Here, one

may think of a certain maximal amount of positive curvature which could be carried

by a given manifold. Now, starting from any metric one can deform it into more

and more strongly negatively curved ones. In other words, on each manifold there

is an (individual) upper but definitely no lower bound for the spectrum of such an

“amount” of Ricci or scalar curvature.

Beside other features there is an amazing resemblance to some existence the-

ories in completely different contexts, for instance, Smale-Hirsch immersion theory.

Namely, one may say that these geometric problems can be understood “modulo ho-

motopy” from the algebraic structure of the differential relation which formalizes the

geometric condition (e.g. Ric < 0 as partial differential inequality of second order).

We will discuss these things in more details in a later chapter.

Now, in order to start our Ric < 0-story, we may notice that it was not even

known whether each manifold could admit a Ric < 0-metric. As this paper intends

to lead beyond this first order question we start with a short sketch of how to prove

that each closed manifold Mn of dimension n ≥ 3 admits a metric with Ric < 0.

First of all, we mention that it is an easier matter to get a Ric < 0-metric on

open manifolds, and thus it does not hurt to use this here. Secondly, we start only in
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dimension n ≥ 4. The case n = 3, omitted here, can be handled similarly, but needs

an extra argument.

Now, if B ⊂Mn is a ball, then B contains a closed submanifold Nn−2 admitting

a metric with Ric < 0 and whose normal bundle is trivial. This is easily done in case

n = 4 using the embedding of a hyperbolic surface in R
3 ⊂ R

4.

In higher dimensions we can use induction : Sn−2, n ≥ 5, admits a metric with

Ric < 0 and we take the usual embedding Sn−2 ↪→ R
n−1 ⊂ R

n. (Of course these

metrics are not the induced metrics coming from the embedding.)

As mentioned above, we have a metric with Ric < 0 on the open manifoldM \N ,

and, in addition, we can get a warped product metric on a tubular neighborhood U of

N such that U \N may be identified with ]0, r[×S1×N equipped with gR+f2 ·gS1+gN

for some strongly increasing f ∈ C∞(R,R>0). The manifold (]0, r[×S1, gR + f2 · gS1)

looks like the spreading open end of the pseudosphere, and we would be done if it

was possible to “close” this with a metric with Gaussian curvature K < 0. But this

is impossible by the Gauß-Bonnet theorem.

On the other hand, we can use the additional factor (N, gN ). We can take

a singular metric gsing . with K < 0 on the disk D such that the metric near the

boundary looks like (]0, r[×S1, gR + f2 gS1) with {0} × S1 = ∂D(!). Now, we can use

Ric(gN ) < 0 to smooth the singularities of gsing . getting a warped product metric

with Ric < 0 on D×N and glue it to M \U . Thus, we have closed M again and it is

equipped with a metric with Ric < 0. Details and extensions are described in [L4].

We hope that including this rough existence argument already in the introduction

motivates the search for refinements (in various directions) as treated in this paper.

In the course of describing such results we will meet some important features of how

Ric < 0-metrics are “assembled” in general.
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I. COLLECTION OF RESULTS

One of the main features of Ric < 0-geometry is that many problems can be

condensed into a local one and that, on the other hand, the local solution can be

globalized.

In this chapter we start to describe the results available using this method of

attack. It turns out that this particular interplay yields insights into the behaviour

of Ric < 0-metrics in a natural way.

I.1. General Existence Theorems.

I.1.1. Theorem. — Each manifold Mn, n ≥ 3, admits a complete metric gM with

−a(n) < r(gM) < −b(n) ,

for some constants a(n) > b(n) > 0 depending only on the dimension n.

We also have another result motivated partly by the existence of complete, finite

area metrics with K < −1 on open surfaces, partly by S.T. Yau’s theorem that each

complete non-compact manifold with Ric > 0 has infinite volume.

I.1.2. Theorem. — Each manifold Mn, n ≥ 3, admits a complete metric g′M with

r(g′M) < −1 and Vol(Mn, g′M) < +∞.

I.1.1 - I.1.2 are proved in [L2].
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I.2. Refined Results, Constrained Structures.

Riemannian embeddings and submersions are the two basic “morphisms” in

Riemannian geometry. They appear to the same extent in Ric < 0-geometry.

I.2.1. Theorem. — Let (Mn, g0), n ≥ 3, be properly embedded into (N, g) and

codimM ≥ c(n) (for some c(n) > 0 depending only on n).

Then, there is a metric g1 on Mn with Ric(g1) < 0 and a proper embedding of

(M, g1) into (N, g) which is isotopic to the embedding of (M, g0) by proper embeddings

lying inside any prescribed neighborhood of (M, g0).

The same conclusions hold for immersions instead of embeddings.

Note that I.2.1 could be proved combining Nash’s isometric embeddings and the

approximation result I.3.6 below. However, we can get the result modifying the proof

of I.1.1. leading to a geometric reinterpretation of both those constructions involved

and the value of c(n). Secondly, we get

I.2.2. Theorem. — Let π : E → Nn, n ≥ 3 be a fibre bundle with typical fibre

Fm, m ≥ 3. Then, there are metrics gE on E, gN on N and a continuous family

of fibre metrics gπ−1(x) on π
−1(x) ≈ F, x ∈ N , such that all metrics involved have

Ric < 0 and π is a Riemannian submersion.

Note that this is not done from an argument of the sort : take gF and gN with

Ric < 0 and define (something like) gE = gF + gN .

Actually, the proof uses results concerning the space of all metrics with Ric < 0,

cf. I.3.4 and I.3.6 below.

It is also interesting to see the effect of openness of the manifold.

I.2.3. Theorem. — Let (Mn, g0) be an open manifold. Then, there is a complete

metric g = e2f g0 in the conformal class of g0 with Ric(g) < 0.

Thus, Ric < 0-geometry is compatible with a lot of topological structures. But

there are geometric restrictions for the case (M, g) is closed, since Ric(g) < 0 implies

by a theorem due to Bochner that the isometry group of this metric Isom(M, g) is

finite. In this context we have
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I.2.4. Theorem. — Let Mn, n ≥ 3, be closed, G ⊂ Diff(M) a subgroup. Then,

G = Isom(M, g) for some metric g with Ric(g) < 0 ⇔ G is finite.

It is quite easy to prove the same for surfaces M2 with χ(M) < 0, while the

philosophy is quite different, as will be explained later on.

I.3. Flexibility Results.

I.3.1. Theorem. — For (Mn, g0), n ≥ 3, let S ⊂M be a closed subset and U ⊃ S
an open neighborhood, and let Ric(g0) ≤ 0 on U .

Then there is a metric g1 on M with

(i) g1 ≡ g0 on S

(ii) Ric(g1) < 0 on M \ S.

The most important special case is described in the following corollary. Actually, we

will see that, in turn, it implies the theorem.

I.3.2. Corollary. — On R
n, n ≥ 3, there is a metric gn with Ric(gn) < 0 on B1(0)

and gn ≡ gEucl. outside.

Perhaps, it is interesting to note that for each ε > 0, we can find a concrete

metric gn as in I.3.2 with Vol(B1(0), gn) < ε. We also note another consequence.

I.3.3. Corollary. — Let Mn, n ≥ 3, be compact with boundary B �= ∅ and g0 any
fixed metric on B. Then, there is a metric g on M with g ≡ g0 on B, Ric(g) < 0 on

M and such that each component of B is totally geodesic.

Up to now we considered single metrics. But it is also interesting (and sometimes

necessary) to understand the space of all such metrics.

As a motivation, recall from [LM] that the space of metrics with positive scalar

curvature on a closed manifold M S+(M) can be quite complicated :

S+(M) can be empty and/or πi(S+(M)) �= 0.

Things are very different in the negative case : Denote by Ric<α(M) the space

of metrics g with r(g) < α on M, α ∈ R (S<α(M) is defined analogously).
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I.3.4. Theorem. — The spaces Ric<α(M) and S<α(M) are highly non-convex but

contractible Fréchet-manifolds.

As already mentioned above, the fibration result I.2.2 is one of the applications

of I.3.4 (and I.3.6). Another one can be derived using some elliptic theory.

I.3.5. Corollary. — The space of metrics with constant negative scalar curvature

is contractible.

Next recall, for instance, using Bishop’s comparison theorem that metrics in

Ric>α(M) cannot “mimick” the fine geometry of negative curvature. For instance,

the C0-closure of Ric>α(M) in M(M) is contained in Ric≥α(M). On the other hand

we have

I.3.6. Theorem. — The spaces Ric<α(M) and S<α(M) are dense in M(M) for

each α ∈ R, with respect to C0- and Hausdorff-topology.

Furthermore, there is the following finer approximation result

I.3.7. Theorem. — Let (Mn, g0), n ≥ 3, be flat, then g0 can be approximated by

metrics in Ric<0(M) even in C∞-topology.

For proofs we refer to [L1], [L3] and [L5].

II. LOCALIZATION AND DISTRIBUTION OF CURVATURE

The central point in the proof of those results above is the fact that one can solve

the problem in a localized version allowing us to circumvent any global inhibition using

(additionally) a distributing-curvature-technique.

Rephrasing this in more technical terms, there are twomain steps in the argument :

the existence of a metric gn in R
n, n ≥ 3, with Ric(gn) < 0 on B1(0) and gn ≡ gEucl.
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outside and a covering argument for arbitrary manifolds giving a “compatible” cover-

ing by negatively Ricci curved balls like (B1(0), gn), which yields metrics with Ric < 0

on each manifold of dimension ≥ 3.

Thus, the first step consists in constructing local deformation in the flat case.

II.1.1. Proposition. — On R
n, n ≥ 3, there is a metric gn with r(gn) < 0 on

B1(0) and gn ≡ gEucl. outside.

We will outline a transparent (while coarse) construction easy to survey, cf. [L2]

and [L3] for refined deformations needed to understand the spaces of such metrics.

We start in dimension n = 3. It is simple to find a positive C∞-function f of R

with f ≡ id on R
≥1 which is symmetric in δ ∈]0, 1[, i.e. f(r) = f(2δ− r) and satisfies

Ric(gR + f2 · gS2) < 0 on ]2δ − 1, 1[×S2.

Now, consider instead of the Euclidean metric, the metric gR + f2 · gS2 on

R
3 \ Bδ(0). It has two symmetries : a first one under reflections RE along planes

E ⊂ R
3 with 0 ∈ E, and a second “imaginary” one along ∂Bδ(0) coming from the

symmetry of f in δ, in particular ∂Bδ(0) is totally geodesic. Now, choose one such

plane E and consider the quotient space of R
3 \ Bδ(0) under identification along

∂Bδ(0) via RE.

This can be “canonically” attached with the differentiable structure of R
3 (ac-

cording to Milnor’s “smoothing of corners”) and the metric on this R
3 is smooth

outside the geodesic curve γ corresponding to ∂Bδ(0) ∩ E has Ric < 0 on B1(0) and

is Euclidean outside.

The singularity along γ can be smoothed (with Ric < 0) providing us with a

regular metric g3 as claimed.

The case n ≥ 4 can be handled in the same way as described in the introduction.

We choose a codim 2-submanifold N ⊂ R
n with trivial normal bundle and which

admits a metric with Ric < 0. Next, we bend R
n \N “outwards” giving Ric < 0 on

B \N for some ball B ⊂ R
n and subsequently we use the same method as indicated

in the introduction in order to close R
n again (preserving Ric < 0) and obtain the

desired metric gn.

Now, we will give some ideas of how to derive the following result whose proof is

typical for many results.
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II.1.2. Proposition. — Each manifold Mn, n ≥ 3, admits a complete metric gM

with −a(n) < r(gM ) < −b(n) for constants a(n) > b(n) > 0 depending only on n.

One easily gets a metric on M such that expp : B100(0) → expp(B100(0)) is a

diffeomorphism which is arbitrarily near to an isometry independent of p ∈ M in

Ck-topology. (In case M is compact, just scale any given metric.)

Indeed, we may presently assume M = (Rn, gEucl.).

Consider a covering of R
n by closed balls B5(pi), pi ∈ A ⊂ R

n satisfying the

following conditions :

(i) d(p, q) > 5 for p �= q ∈ A ,

(ii) #{p ∈ A | z ∈ B10(p)} ≤ c(n), c(n) independent of z ∈ R
n ,

and define g(A, d, s) :=
∏

p∈A exp(2Fd,s h(10 − d(p, id))) gA with gA = gEucl. on

R
n \

⋃

p∈A

B1(p), gA = f∗p (gn) on B1(p) for fp(x) = x− p .

Furthermore, Fd,s := s · exp(−d/idR), h ∈ C∞(R, [0, 1]), h ≡ 0 on R
≥9,6, h ≡ 1

on R
≤9,4.

While the rigorous proof is not quite immediate, it should be conceivable that

one can find d, s > 0 such that −a < r(g(A, d, s))< −b holds at each point of R
n and

each direction for constants a > b > 0.

As noted above, we can find a nearly flat metric g(M) on each manifold. Fur-

thermore we can construct a covering satisfying the same conditions on each of these

manifolds (a “Besicovitch covering”).

It is not hard to visualize that (almost) the same d, s > 0 and pinching constants

a > b > 0 can be obtained for the Ricci curvature of an analogously defined metric

g(A, d, s) on an arbitrary manifold starting from g(M).

The covering argument above can be used to produce as much negative curvature

as is necessary to “hide” each metric of some compact family of metrics behind a “veil”

of negative Ricci curvature.

This observation leads to a suggestive argument for the contractibility of Ric<α(M)

and S<α(M). We just explain the idea of how to prove that Ric<0(M) is connected.
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Thus, start with two metrics g0, g1 ∈ Ric<0(M), and take any path between

g0, g1, for instance, γt := t · g0 +(1− t) · g1, t ∈ [0, 1]. As will be shown below, γt does

not stay in Ric<0(M) in general.

However, we can “produce Ric < 0” in such a way that γt continuously shifts

into Ric<0(M). Thus, the edge-paths fit together to a path in Ric<0(M) joining g0
and g1.

The reader might have noticed an analogy between the contractibility of

Ric<0(Mn) for n ≥ 3 and the well-known result that the space of metrics with K < 0

on surfaces with χ(F ) < 0 is also contractible. But this latter fact is based on a dif-

ferent philosophy. Namely, on surfaces we have an unambigious and fixed “amount”

of curvature, the integral curvature, which is determined uniquely from the topology

via the Gauß-Bonnet formula.

Thus, in our terminology, we could say we can neither produce nor lose curvature.

Given any path γt between two such K < 0-metrics, we observe (as above) that γt

need not stay in the space of K < 0-metrics. But the integral curvature remains

negative and, as an additional extra structure on surfaces, each such metric γt can

be deformed into a K < 0-metric (i.e., one may distribute the integral curvature

uniformly) leading to the result for surfaces.

Finally, we will justify the claim that these spaces of metrics are “highly” non-

convex. For notational simplicity, we restrict to S<0(M).

II.1.3. Lemma. — For any g ∈ S<0(M) and each ball B ⊂ M there is a diffeo-

morphism ϕ with ϕ ≡ id on M \ B and t · g + (1 − t) · ϕ∗(g) /∈ S<0(M) for some

t ∈]0, 1[.

Using scaling arguments we can reduce to the case R
n ⊃ B1(0) ≡ B. Here,

we can take ϕ with ϕ(t, x) = (f(t), x), (t, x) ∈ R
+ × Sn−1 ≡ R

n \ {0} for some

diffeomorphism f : R
+ → R

+ with f ≡ id on ]0, 1
10

[∪] 9
10
,+∞[ and f ≡ id + 1

10
on

] 3
10 ,

7
10 [.

Now, it is not hard to check using warped product formulas that

1
2
gEucl. +

1
2
ϕ∗(gEucl.) /∈ S≤0(Rn) .
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III. RELATIONS MODULO HOMOTOPY

We resume listing results (or rather interpretations of results) on Ric < 0 and

S < 0. In particular, we describe some relations of the results presented above and

“homotopy principles” (abb. h-principles), a conceptual language introduced in a

broad context by M. Gromov, cf. his monograph on this subject [G].

We start with some definitions. Let π : X → M be a smooth fibration f over

some manifold M , and denote by Xκ the space of κ-jets of germs of smooth sections

of π and the induced fibration of M by πκ, πκ : Xκ →M .

A section ϕ of πκ is called holonomic if there is a section f of π whose κ-jet is ϕ.

A differential relation R of order κ imposed on sections of π is just a subset

R ⊂ Xκ, and a section f of π is called a solution of R if its κ-jet lies in R.

Finally, let πκ,m denote the canonical projection πκ,m : Xκ → Xm for 0 ≤ m ≤ κ.
Hence a holonomic section ϕ lying in R projects to a solution πκ,0(ϕ) of R.

The concept of h-principle relies on the following (idea of) solving strategy : first,

construct a (possibly non holonomic) section of Xκ lying in R. This is basically a

problem in Algebraic Topology. Then, (try to) pass inside of R to a holonomic one.

This allows to make sure that a resulting holonomic section is really a solution and

that we do not lose information we already had.

Now, denote by Sol R the set of all solutions of R, C(R) the space of all sections

of Xκ lying in R and by Jκ : Sol R → C(R) the map Jκ(ϕ) = κ-jet of ϕ.

III.1.1. Definition. — The relation R fulfils the h-principle if Jκ is a weak homo-

topy equivalence.

(Recall that a map f : X → Y is called a weak homotopy equivalence if all the

induced maps between homotopy groups fn : πn(X) → πn(Y ) are isomorphisms.)
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Now, in our context of curvature conditions, we specify X = the bundle of

pointwise positive definite symmetric (2,0)-tensors (i.e., whose sections are metrics)

and we consider differential relations R ⊂ X2 which simply restricts the curvature of

a section π : X →M . For instance,

R = {ϕ ∈ X2 | Ric(ϕ) < 0} ≡ Ric < 0 .

Next, we want to see that some of the flexibility results of I.3 can be reinterpreted

using the h-principle language. Therefore we must have a look at C(R) and check

the following result (cf. also [G]) :

III.1.2. Lemma. — The fibers of the fibrations Sec < α,Ric < α, and S < α are

non-empty and contractible. The same holds in case “> α ”.

We have to show contractibility for the space of 2-jets of germs of metrics near

0 ∈ R
n with Sec < α etc. These curvature relations contain the first two derivatives

of the metric. Now, there are two easily verified features :

- for each 1-jet ϕ1 of metric, there is 2-jet ϕ2 with π2,1(ϕ2) = ϕ1 and Sec(ϕ2) < α

etc.,

- secondly the curvature depends linearly on the second derivatives.

This implies the fiber over each 1-jet ϕ1 is non-empty and convex. Furthermore

the space of all 1-jets is contractible, hence the whole space is contractible

It is a well-known result from elementary obstruction theory that fibrations with

contractible fibers always have a section and the space of sections is also (weakly)

contractible.

III.1.3. Corollary. — The spaces C(Sec < α) etc. are (weakly) contractible.

Hence, we can reformulate I.3.4 as follows :

III.1.4. Theorem. — On each manifold Mn, n ≥ 3, the differential relations

Ric < α and S < α fulfil the h-principle.

In contrast to III.1.4 we have an at first sight “converse” approach due to Gromov

[G] which starts from Topology and arrives at Geometry.
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III.1.5. Theorem. — Each open, diffeomorphism invariant differential relation R
on an open manifold satisfies the h-principle.

It is obvious that Sec < α, etc. are open and diffeomorphism invariant. Hence,

we get

III.1.6. Corollary. — The spaces Sec < α (resp. > α) etc. satisfy the h-principle

on each open manifold and, in particular, each open manifold carries a (non-complete)

metric with Sec < α as well as one with Sec > α.

In order to explain this apparent interplay, we note that the h-principle for open

manifolds III.1.5 originated from Smale-Hirsch theory for topological immersions of

open manifolds. In other words, III.1.5 is the abstracted version of an h-principle

derived in a very concrete setting and leads, in this general form and language, to

many new conclusions. Actually, many other h-principles for abstract problems had

been obtained similarly.

Thus, besides its purely philosophical meaning the Ric < 0-h-principles might be

used in the same fashion exploiting those concrete methods to get new applications

from abstraction.
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