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Abstract. We try to convince geometers that it is worth using Control Theory in the

framework of sub-Riemannian structures, not only to get necessary conditions for length-

minimizing curves, but also, from the very beginning, to give a description of sub-Riemannian

structures by means of a global control vector bundle. This method is particularly efficient

in characterizing admissible metrics with rank singularities. Some examples are developed.

Résumé. Notre but est d’essayer de convaincre les géomètres que cela vaut la peine

d’appliquer les méthodes de la Théorie du Contrôle dans le contexte de structures sous-

riemanniennes, non seulement pour obtenir des conditions nécessaires concernant les courbes

minimisant la longueur, mais aussi, dès l’origine de la théorie, afin de définir globalement

les structures sous-riemanniennes par des fibrés vectoriels dits de contrôle. Cette méthode

est particulièrement efficace dans la caractérisation des métriques admissibles présentant des

singularités de rang ; nous donnons des exemples.
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INTRODUCTION

1. Description of main results.

The main motivation for my talking here is to convince geometers that the Con-

trol Theory framework is providing a better understanding and an adapted tool in

sub-Riemannian geometry. Our original presentation permits to associate to a sin-

gular plane distribution a family of natural sub-Riemannian metrics, with respect to

which the regular case results are extendible to the singular one (section 4).

Another motivation is to give a really intrinsic definition in this context of a

sub-Riemannian derivation (generalization of [S], section 8).

And the last motivation is to give an alternate proof that the abnormal horizontal

helix in the Montgomery-Kupka example is length minimizing (section 9, [V], [V-P]).

This method allows, as we know now, a generalization to any sub-Riemannian metric

on a “generic” two distribution in IR3.

Though looking far from the main concerns of Marcel Berger, the subject of this

lecture has something to do with what has been a good deal of his own work ; namely,

one of his successes has been the interpretation, in terms of Riemannian geometric

invariants, of the asymptotic development of the heat kernel of the Laplace operator.

In a parallel direction, G. Ben Arous [B-A], R. Léandre [L], G. Besson, (see also [A],

[Bi], [G]) working on the asymptotic expansion of the Green kernel in the theory of

hypo-elliptic operators, have pointed out the essential link between this expansion

and the distance and geodesic notions in an associated regular or non regular plane

distribution endowed with a Carnot-Carathéodory metric. The alternate name for

such a framework is “sub-Riemannian geometry”.

Anyway, geometers should be interested in sub-Riemannian structures for them-

selves, as did R.W. Brockett, R.S. Strichartz, C. Bär, U. Hamenstädt and also

M. Gromov, P. Pansu, J. Mitchell, because they are nice particular examples of non
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456 F. PELLETIER L. VALERE BOUCHE

integrable distributions on manifolds, besides the expansion of the Green kernel of

hypo-elliptic operators.

One way of describing a regular or singular sub-Riemannian manifold M is pro-

viding M with a locally free, finite, constant rank p, bracket generating submodule E
of the module of vector fields χ(M). An absolutely continuous (a.c.) curve is called

horizontal if its velocity vector lies a.e. in E .
Chow’s theorem [C], using the bracket generating condition, says that the space

of horizontal piecewise C1-curves joining two fixed points x0 and x1 is not empty.

The two main problems are then,

(i) among the a.c. horizontal curves joining x0 and x1, does there exist some length

minimizing curve ?

(ii) if yes, how to characterize these curves ?

Now, provided the Riemannian manifold (M, g) is complete, it is well-known, in

the regular case, that the minimum exists and that standard variational methods of

Riemannian Geometry do not solve the sub-Riemannian minimization problem. In

contrast to the Riemannian case, where the energy minimizing curves are character-

ized as solution of a differential system (G), here, both notions can be generalized but

they are no longer equivalent [S]. The Maximum Principle of Control Theory was al-

ready known as a very good tool giving account of “abnormal” geodesics, i.e., curves

minimizing the energy between two given points but not verifying the differential

“geodesic” equation (G), generalizing the Riemannian geodesic equation obtained by

a classical variational principle (this was already realized in the regular case, see [Br],

[S], see also [Gr], [Mi]).

Here, we are using Control Theory from the very beginning of the definition of

singular, i.e., not constant rank, plane-distribution. This last setting out is original

and allows plenty of sub-Riemannian metrics on a given plane distribution. The main

result is showing the link between metric and distribution in the neighbourhood of

singularities through the Control space ; in the regular case, any sub-Riemannian met-

ric can be seen as the restriction to the plane distribution of some (actually infinetely

many) Riemannian metrics on M , whereas in the singular case, given any sub-

Riemannian metric, there exists no Riemannian metric on M, such that

its restriction to the plane distribution could be the given one.
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In section 2, we give an account of what is known about regular sub-Riemannian

manifolds M (the plane distribution is then of constant rank).

In section 3, we do our best to give a quick survey of the main ideas explaining

how the maximum principle works, following the inventors of the theory, see [P].

In section 4, we use, from the beginning, ideas of Optimal Control Theory and

describe the framework of a singular sub-Riemannian geometry, where the “horizon-

tal” singular distribution is generated by a module of vector fields, locally free of finite

rank p (definition (4-6)) ; possible metrics on such a plane distribution have to be

chosen carefully, otherwise the distance between two given distinct points of

the singular set in M could be zero or never be achieved by any horizontal

curve, as illustrated by means of the very simple Example (4-1).

In section 5, we merely prove that, even in this context, looking for a horizontal

length minimizing curve among horizontal a.c. curves γ : I −→ M joining two fixed

points x0 and x1, is equivalent to looking for a horizontal energy minimizing curve

between x0 and x1. The first one is defined up to a.c. reparametrizations. One of

these provides the curve with a velocity vector of constant norm and is then energy

minimizing.

In section 6, we prove, applying Belläıche’s method to this context [Bel], that

between two distinct points, within a compact cell K, the minimum of energy is finite

and is actually achieved on some curve.

In section 7, we use the Maximum Principle, knowing that the minimum of energy

is achieved on some curve to display necessary conditions in the form of differential

equations or conditions involving derivatives which are to be defined carefully in this

case. The result is that there exist three kinds of minimizing curves, either normal (N)

or strictly abnormal (SAN), or both (NAN), exactly as in regular sub-Riemannian

geometry. Conversely, a curve satisfying the (N) or (NAN) condition are locally

energy minimizing curves, but as far as we know, there does not exist criteria to

tell when a (SAN)-curve is locally length minimizing or not. Actually, we have

now (1993) examples of a non length-minimizing (SAN)-curve for some codimension

one distributions in IR2p (see [P-V-2]). Since the end of 1993 we know also that,

in dimension 3, the Montgomery example is a generic local model : the abnormal

horizontal curves drawn on the singular surface are (NAN) or (SAN), always C1-

rigid, and locally minimizing, whatever the sub-Riemannian metric [V-P]. Finally,
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we illustrate the method, in the singular case, by resuming the Example (4-1) and

constructing some special normal geodesics.

In section 8, we produce an intrinsic derivationDξη defined on the cotangent fiber

bundle with values in the tangent bundle. It is an extension to the whole (T ∗M)2 of

the projected (∇sym)ξξ initiated by C. Bär [B], (its “derivation” was defined only on

the diagonal of (T ∗M)2, ours verifies Dξξ = g ◦ (∇sym)ξξ). Our intrinsic derivation

allows a new way of writing the equations of normal geodesics (N) in the regular or

singular context as well.

In section 9, we go back to the regular case and give a new proof of the fact

that the example exhibited by R. Montgomery and simplified by I. Kupka (see also

[Mo], [K], [L-S]) of an abnormal (SAN)-extremal of the maximum principle is actually

a globally minimizing curve between two of its not too far away points, and is C1-

rigid, i.e., isolated with respect to the C1-topology, though evidently not isolated with

respect to the H1-topology.

2. REGULAR SUB-RIEMANNIAN STRUCTURES

In this section we merely sum up what is already known about geodesics in

sub-Riemannian geometry. Let us call sub-Riemannian manifold (M, E, G) an n-

dimensional manifold M , with TM its tangent bundle, T ∗M its cotangent bundle,

provided with a C∞ p-plane distribution (p ≤ n) of vectors termed as “horizontal”

vectors (Ex ⊂ TxM), verifying the so-called Hörmander condition, that all the iterated

Lie derivatives of local horizontal vector fields by local horizontal vector fields above

a point x of M generate TxM. Let Xx be an element of the fiber Ex, and X any local

horizontal vector field extending Xx ; then, let us denote by E1(X)x = Ex , E2(X)x =

Ex+[X, E]x , Ek(X)x = Ex+[X, Ek−1(X)]x, and pk(X)x the dimension of Ek(X)x.

The non-decreasing sequence (
p1(X)x, . . . , pk(X)x, . . .

)

SÉMINAIRES & CONGRÈS 1
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is such that for k ≥ 2, pk(X) : M −→ IN is lower semi-continuous. The vector

space E2(X)x does not depend on the choice of the locally extending fields X in E,

but only on the distribution E and the value of Xx above x. Let us denote now by

(E1)x = Ex, (Ek)x = Ex+
∑

X∈Ex

[X, Ek−1]x, and pk(x) the dimension of (Ek)x. The

Hörmander condition merely means that

∀x ∈M, ∃r0(x) / pr0−1(x) < n, and ∀r ≥ r0(x), pr(x) = n .

The map r0 :M −→ IN is upper semi-continuous.

Further, every Ex is provided with a positive definite quadratic form, Gx de-

pending smoothly on x. To the quadratic form G is canonically associated a linear

fiber bundle morphism g : T ∗M −→ TM, above the identity, and related to G by

G(X, Y )x =< ξ, Y >x=< η, X >x=< ξ, gη >x=< η, gξ >x ,

where Xx and Yx are two horizontal vectors above x, ξx ∈ g−1(Xx) and ηx ∈ g−1(Yx),

are one of their respective inverse image by gx, and < , >x is the duality product

above x.

Let γ : [a, b] −→M, [a, b] ⊂ IR be any continuous piecewise C1 curve ; the curve

γ is called “horizontal” if its tangent vector γ̇(t) at almost every point t, t ∈ [a, b], is

in Eγ(t). As a matter of fact, a well known theorem due to W. L.Chow [Ch] says that

any two points of M can be joined by a continuous piecewise C1 horizontal curve,

provided that the Hörmander condition is fulfilled. Then, it has been proved that the

definition of G permits to define a distance on M, called the Carnot-Carathéodory

distance.

Let x0 and x1 be any two points inM, let Cx0,x1 be the set of continuous piecewise

C1 horizontal curves γ such that γ(a) = x0 , γ(b) = x1, we get the definition of the

G-length for such a curve γ as

lG(γ) =
∫ b

a

√
G(γ̇, γ̇) dt .

Then, it is known that

dG(x0, x1) = inf
{

lG(γ) / γ ∈ Cx0,x1

}
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exists and is achieved on some horizontal curve γ ([S-1], [H]).

R. Strichartz showed also that, for some of these locally length minimizing curves,

one of the lifts ξ in g−1(γ̇) of their tangent vector verifies a differential equation (G)

which is a generalization of the classical one in the Riemannian case (p = n), namely,

in a coordinate chart

(G)
(
ξ̇α +

1
2

∂gλµ

∂xα
ξλξµ

)
x(t)
= 0 .

In the case of the two steps strong generating Hörmander condition (i.e., ∀X, p2(X) =

n), it is easy to prove that p is even and all local length minimizing curves verify (G),

and reciprocally. In other cases there exist examples of curves which are length mini-

mizing, but do not verify (G), see [Mo], and section 10 below. R.S. Strichartz pointed

out this difficulty and showed, as already did R.W. Brockett, that the constraint for

curves being horizontal could be translated in terms of commands in the framework

of Control Theory, and that this kind of curves is known and called “abnormal” ex-

tremals in Control Theory. These abnormal locally minimizing curves which are not

solution of the classical Euler-Lagrange equations had been already detected by C.

Carathéodory [C], Mayer [Ma], and R. Hermann [He-1], [He-2].

3. OPTIMAL CONTROL FRAMEWORK

In order to formulate the basic problem of Optimal Control, which we shall have

to solve in the sections following this one, we recall the definitions and results of the

theory which will be of some use for us. One first needs the definition of a system S,

which will be given by the following data :

- a differential equation

(C) ẋ = f(x, u) ;
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- x belongs to a phase space M, which is an open subset of a Euclidean space IRn

or the closure of an open subset of IRn ;

- u belongs to a control space domain U, bounded closure of an open subset of a

Euclidean space IRp ;

- the map f :M ×U −→ IRn is a smooth field over M, Ck (k ≥ 1, ) C∞ or Cω .

Let I = [a, b] be any closed interval in IR ; we shall denote by M(I;U) the
set of measurable curves :

{
ũ : [a, b] −→ U

}
. So, as soon as an initial point

x(a) = x0 is chosen, to any such control curve ũ are associated a uniquely determined

maximum real value t̃1 ∈ [a, b], depending smoothly on x0 and ũ, t̃1(x0, ũ), and a

unique absolutely continuous curve, integral of (C),

x̃ : [a, t̃1] −→M ,

called a C-path. We then give the following

3.1. Definition. — Let ũ ∈M(I;U) ; let x0 be any point in M and t̃1, a ≤ t̃1 ≤ b,

be the maximum real values such that

∀t ∈ [a, t̃1], x̃(t) = x0 +
∫ t

a

f(x̃(t), ũ(t)) dt exists ,

the pair of functions

(x̃, ũ) : [a, t̃1] −→M ×U

is called “trajectory of the controlled system S” •

Let us denote by Tx0 the set of trajectories such that x(a) = x0.

From now on we shall often use the terms “almost everywhere”, or “for almost

every t”, this will be equivalent to saying “for every regular value of t”, with respect

to the control maps, thanks to the hypothesis of measurability. Let us then define

what it is.

3.2. Definition. — A real value θ, θ ∈ [a, b] is called regular with respect to the

admissible control ũ, if for any neighbourhood U ⊂ U of ũ(θ),

lim
µ(I)→0

µ(ũ−1(U) ∩ I)
µ(I)

= 1 ,
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where µ is the Borel measure •

In the following, the first problem will be to study the effects of variations of

controls onto the paths in M, and to manage to get any possible path x̃∗ close to

an original one x̃, through a class of variations in M(I;U), with nice properties.
The class used by L. Pontryagin and coll. is the class of Mac Shane variations, i.e.,

the admissible controls different from the original one ũ, only on a finite number

of small intervals, but such that ũ∗ − ũ is an arbitrary constant on each of these

intervals. So, let (x̃, ũ) be a trajectory in Tx0 , and let us consider Mac Shane variations,

ũ∗ : [0, t+ δt] −→ U of ũ : [0, t] −→ U, where δt is any real number (see [P] for more

precisions) ; then, it can be proved that, in Tx̃(t) = IR
n, the set of vectors

K(t) =
{

x̃∗(t+ δt)− x̃(t) / (x̃∗(t), ũ∗(t)) ∈ Tx0

}

describes a cone. Reciprocally, for any X in K(t), there exists a real number ε > 0

and a conic ε-neighbourhood of X ,

Kε(X) =
{

εX + εY / Y ∈ X⊥, ||Y || = 1
}

such that any point inside the ε-cone Kε(X) is the end point x̃∗(t+εδt) of a “pushed”

path through a Mac Shane variation ũ∗.

The previous tools and notions take place in IRn but can easily be interpreted

in an n-dimensional Riemannian manifold (M, g), by means of the exponential map

and the theory of differential equations, or simpler, by means of the Nash isometric

imbedding theorem.

Now, in IRn, let t and t′, t < t′ be two regular values ; then, the differential

equation

(3-3)
dXα

dt
=

∂fα

∂xβ
Xβ

permits to define a translation of Tx̃(t)M to Tx̃(t′)M , called At′t , which translates

K(t) to K(t′). Then, we call “limit cone K(t1)” the limit of the following set

K(t1) =
∑

regular t′s

At1tK(t) .
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Now, if x0 and x1 are two given distincts points of M , we denote by

Tx0,x1 =
{
(x̃, ũ) ∈ Tx0 / ∃t̃1(x0, ũ) ∈ [a, b], ∃ũ : [a, b[−→ U ; x̃(t̃1) = x1

}

and by Ux0,x1 , the projection of Tx0,x1 on IR
p.

Besides this, we define a positive density cost function along a trajectory (x̃, ũ),

f0
(
x̃(t), ũ(t)

)
, and a positive functional, called the “cost” of the system (S)

ỹ0
(
x̃(t), ũ(t)

)
=

∫ t̃1

a

f0
(
x̃(t), ũ(t)

)
dt .

The last definition implies that y0 is the solution of the differential equation

(C0) ẏ0 = f0(x, u) .

Now, let y denote the points of IR ×M,

{
y = (y0, x)

}
,

where y0 is the cost functional, the value of which being considered as a new inde-

pendent coordinate. Now we can transform the definition (3-1) into (3-4).

3.4. Definition. — Let [a, b] be any closed interval in IR, ũ : [a, b] −→ U, a

measurable map, let x0 be any point in M. Let t̃1, a ≤ t̃1 ≤ b, be the maximum real

value such that

∀t ∈ [a, t̃1], ỹ(t) = (0, x0) +
∫ t

a

f(x̃(t), ũ(t)) dt exists ;

the pair of functions

(ỹ, ũ) : [a, t̃1] −→ (IR ×M)×U

is called “Trajectory” (with a capital T) of the controlled system S, with cost density

function f0 •

Of course, as soon as an initial point x̃(a) = x0 ∈ M is chosen, to any control

ũ(t) : [a, b] −→ U is associated a uniquely determined Trajectory

(ỹ(t), ũ(t)) : [a, t̃1] −→ (IR ×M)×U
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because of the differential equation (C,C0).

Let us call accessible set from x0 the set of all ỹ(t) that we just defined, for

any t and through any measurable map ũ : [a, b] −→ U. The problem of Optimal

Control is then :

3.5. Problem. — Let x0, x1 be two given distincts points of M, find at least one

control curve ū : [a, b] −→ U, such that

(x̄, ū) ∈ Tx0,x1 ,

and

ȳ0(t̄1) = inf
{

ỹ0(t̃1) / (x̃, ũ) ∈ Tx0,x1

}
•

3.6. Notation and Definition. — A Trajectory as just defined (ȳ, ū) is called an

“optimal Trajectory”, x̄, ū, ȳ0 are respectively called “optimal path” from x0 to x1,

“Optimal Control”, and “optimal cost” •

In many technical problems of Optimal Control, U is a polyhedron, and the

Optimal Control because of the Maximum Principle (see Theorem (3-11) below) jumps

from a vertex to another one ; this is why the class of functions ũ must contain at least

piecewise C0 ones ; it is even possible to deal with measurable functions. The various

controls in action are not necessarily in the neighbourhood of one of them ; this is

the reason why the proof of the Maximum Principle is not simple, but at the same

time, more powerful than the classical Lagrange calculus of variations (which becomes

a particular case of Optimal Control theory), as was pointed out by L. Pontryagin

himself ([P] chap. 5).

The idea is the following. When the controlled system is not linear, the set of

accessible points ỹ(t) obtained as points of the integral curves of (C) through all

controls in U, is non-convex and infinite. The Trajectory (ȳ(t), ū(t)) is optimal if and

only if the zero component ȳ0(t1) =
∫ t1
a

f0(x̄(t), ū(t)) dt is minimum compared to the

other ỹ0(t1)′s, and then the end point of the optimal Trajectory lies on the boundary

of the accessible set in IRn+1. Moreover, if one of the Trajectories which goes from
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(0, x0) to (y0, x1) is optimal, the only controls ũ ∈ U, which will be chosen in order

to be compared with the Optimal Control ū are Mac Shane variations.

For almost every t, t ∈ [a, t̃1], the set of accessible points from {y(a)} by trajec-
tories generated by means of Mac Shane perturbations on controls is the cone K(t),

and it can be proved ([P] Lemma 4, p. 90) that the half-line with ȳ(t) as origin and

oriented towards negative y0’s has an empty intersection with the interior of the cone

K(t). Then, there exists at least a supporting hyperplane Pȳ(t) passing through ȳ(t),

and a perpendicular vector λ̄(t) to Pȳ(t), which can be seen better as a non-zero ele-

ment of T ∗
ȳ(t)(M×IR) = IR

n+1 with Pȳ(t) as its kernel. Thus, the half line [ȳ0(t),−∞[,
oriented towards negative y0’s, is either outside the cone, or at most lies on its bound-

ary. The 1-form λ̄(t) is determined up to a multiplicative factor, usually it is chosen

in order to make the function < λ̄(t), X > negative for any X inside the cone K(t),

and such that

H
(
ȳ(t), ū(t), λ̄(t)

)
=< λ̄(t), f

(
ȳ(t), ū(t)

)
>= 0 ;

then, intuitively,

H
(
ȳ(t), v, λ̄(t)

)
=< λ̄(t), f

(
ȳ(t), v

)
>≤ 0 ,

for any control v in U. Furthermore, when u = ū(t), the 1-form λ̄(t) is also proved to

satisfy the following adjoint equation of the translation (3-3)

(3-7) λ̇α = −
∂H
∂xα

.

These properties are proved to be realized for almost every t and also necessarily for

t1, thanks to the limit cone K(t1). This, intuitively, leads to the contention of the

Maximum Principle.

Let λ0, λ1, . . . , λn be introduced as auxiliary functions, namely the (n+1) components

of a 1-form over IR × M, λ : [a, b] −→ IR × M, supposed to be solutions of the

differential equation (3-7) for almost all t, t ∈ [a, b]. Again, as soon as x(a) and

an admissible ũ are chosen, the Trajectory (ỹ, ũ) is completely determined and then

λ̃ : [a, b] −→ IRn+1, up to a positive multiplicative factor, as well. The solution λ̃ of
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the linear equation (3-7) is also absolutely continuous with measurable derivatives.

Let us denote by T ∗
x0,x1

, and call lifted Trajectories the corresponding triplets

T ∗
x0,x1

=
{
(ỹ, ũ, λ̃) / (ỹ, ũ) ∈ Tx0,x1

}
.

Now it is possible to give the following

3.8. Definition. — Let us call Hamiltonian of Control Theory, the C∞-function

H : (IR ×M)×U× IRn+1 −→ IR such that

H(y, u, λ) =< λ, f(y, u) > •

Then, the differential equations (C) and (3-7) can be reformulated as

(3-H)



(3−H− 1) ẏα =

∂H
∂λα

(3−H− 2) λ̇α = − ∂H
∂yα

with α = 0, 1, . . . , n.

3.9. Notation. — Let us denote by T ∗
H the set of lifted Trajectories satisfying

(3-H) •

3.10. Remark. — The map H does not depend on y0, so that the zero coordinate

equation implies immediately the following result : along any lifted Trajectory,

λ̇0 = −
∂H
∂y0

= 0 ;

then, λ̃0 remains constant all along a lifted Trajectory, and furthermore constant and

non-positive all along a lifted optimal Trajectory, because of the chosen sign of λ̄ •

3.11. Maximum Principle. — Let ū : [a, b] −→ U be a measurable control, such

that the associated lifted Trajectory (ȳ, ū, λ̄) lies in T ∗
x0,x1

. Then, if (ȳ, ū, λ̄) is optimal

on [a, t̄1] ⊂ [a, b],

1◦) (ȳ, ū, λ̄) lies in T ∗
H, λ̄ �= 0 ;
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2◦) there exists a real non-negative constant B, such that, for almost every t, t ∈
[a, t1]

(3-M)



(i) H

(
ȳ(t), ū(t), λ̄(t)

)
= sup

v∈U
H

(
ȳ(t), v, λ̄(t)

)
= M

(
ȳ(t), λ̄(t)

)

(ii) λ̄0(t) = −B ≤ 0 , M
(
ȳ(t), λ̄(t)

)
= 0 •

3.12. Remark. — In case it would be specified that t1 is fixed and equal to b, the

maximum principle is unchanged except the very last conclusion : there exists a real

non negative constant B, such that, for almost every t, t ∈ [a, b],

(3-M-b)
{
(ii) λ̄0(t) = −B ≤ 0 , M

(
ȳ(t), λ̄(t)

)
is constant •

4. THE SINGULAR CASE : AN EXAMPLE

In this section, we show how the formalism of Control Theory has to be used

from the very beginning of the theory of singular sub-Riemannian structures in order

to give a meaning to the quadratic form G. The new formalism leads us to claim that,

in the neighbourhood of singular points,

(i) the singular sub-Riemannian metric has to be chosen carefully ;

(ii) it is impossible to extend the metric Gx, defined on Ex, to any Riemannian metric

G̃x, defined on TxM (Theorem (4-8)).

4.1. Example. — To point out the difficulties which could occur in the singular

case with respect to the sub-Riemannian metric, if not chosen carefully, we will have
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a look at the very simple following example. On M = IR2, let us consider the module

E generated by

(4-1)




ε1 =
∂

∂x

ε2 = x
∂

∂y
.

Let us suppose that each fiber E(x,y) of E is provided with a scalar product G(x,y)

such that, for any C∞-vector fields X and Y in E , the map G(·,·)(X, Y ) : IR2 −→ IR
is C∞. Then, whatever the curve γ : [a, b] −→ IR2, horizontal, i.e., γ̇(t) ∈ Eγ(t) a.e.,

and of class H1 (see section 6), we can define its energy

EG(γ; [a, b]; t) =
1
2

∫ b

a

Gγ(t) (γ̇(t), γ̇(t)) dt

and its length

lG(γ) =
∫ b

a

√
Gγ(t) (γ̇(t), γ̇(t)) dt .

The generating Hörmander condition is verified ; then, any two points in IR2 can

be joined by a horizontal H1-curve, and it is then possible to define a map with

non-negative values

δG
(
(x0, y0), (x1, y1)

)
= inf

{
l(γ) / γ : [0, 1] −→ IR2, γ ∈ H1

γ(0) = (x0, y0), γ(1) = (x1, y1)
}

.

The question is “what are the sufficient conditions on G in order to make δ a dis-

tance ?” Let us develop two distinct simple examples.

(4-1-i) - If G is the induced metric on E(x,y) by the canonical metric ofM = IR2.

Let us consider the broken lines γn : [0,
n+ 2

n
] −→ IR2, such that A = γn(0) = (0, 0),

γn(
1
n
) = (

1
n

, 0) , γn(
n+ 1

n
) = (

1
n

, 1) , B = γn(
n+ 2

n
) = (0, 1). These curves, γn, are

horizontal and their length is
n+ 2

n
, thus δg(A, B) ≤ 1. But if γ̄ is any horizontal

path joining A to B, there exists n such that

lG(γn) < lG(γ̄) .
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Thus δG(A,B) = 1, and there does not exist any horizontal length minimizing

path joining A to B.

(4-1-ii) - If G is the metric induced by the quadratic form

ds2 = dx2 + x2dy2 ,

let us consider the same sequence of paths joining A to B. Then, here

lG(γn) =
√
3

n
and inf lG(γn) = 0 ,

implies that

δG(A, B) = 0 .

These examples show that G cannot be chosen without caution, in some sense it

has to be bounded from below. This result is justifying the way we shall define G in

this section.

We shall give now a particular notion of a singular sub-Riemannian man-

ifold. Let (M, g, E , g) be an n-dimensional, paracompact C∞-manifold M, g its

Riemannian metric, TM its tangent bundle, T ∗M its cotangent bundle, E a rank
p, locally free C∞-module of vector fields, (p ≤ n). Similarly to the regular case,

let us call “horizontal” the vector fields in E (Ex ⊂ TxM x ∈ M), the dimension

of Ex, p(x) is a lower semi-continuous function of maximum value p. Furthermore,

gx : T ∗
xM −→ TxM, is a C∞-field of linear maps, positive and symmetric in the sense

that for all X, Y ∈ TxM and for all ξx ∈ g−1
x (Xx), for all ηx ∈ g−1

x (Yx),

< gxξx, Yx >=< gxηx, Xx >, and < gxξx, Xx > ≥ 0 ,

and such that

Im gx = Ex .

The module E is verifying the so-called Hörmander condition, i.e., all the iterated Lie
derivatives of local horizontal vector fields by local horizontal vector fields, above a

point x of M, generate TxM.
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Now, let Xx be the value of a horizontal vector field above x, and X any local

horizontal vector field extending Xx ; let us use the same notations as in the regular

case E1(X)x = Ex , E2(X)x = Ex+[X, E ]x , Ek(X)x = Ex+[X, Ek−1(X)]x, and pk(X)x

the dimension of Ek(X)x. The vector space E2(X)x does not depend on the choice of
the locally extending fields X in E , but only on the module E and on the value of Xx

at x ; more generally, the vector space Ek(X)x depends only on the (k− 2)-jet of the
field X in E . The non-decreasing sequence

(
p1(X)x, . . . , pk(X)x, . . .

)

is such that, for any k ≥ 1, pk(X) :M −→ IN is lower semi-continuous. Let us denote
now by

(E1)x = Ex, (Ek)x = Ex +
∑

X∈Ex

[X, Ek−1(X)]x

and, as before, in the regular case, by pk(x) the dimension of (Ek)x, and the lower

semi-continuous non-decreasing sequence, by

(
p1(x), . . . , pk(x), . . .

)
,

called growth vector at x of the module E . The Hörmander condition merely means
that

∀x ∈M, ∃r0(x) ∈ IN / pr0−1(x) < n, ∀r ≥ r0(x), pr(x) = n .

The map r0 : M −→ IN is upper semi-continuous. If p(x) were a constant p, the

structure would be regular as the one described in section 2.

The following two propositions will help us to use Control formalism in our own

definition of singular sub-Riemannian geometry (see [Os] pp. 122–123).

4.2. Proposition. — For any smooth manifold M and any integer p ≥ 0 there is a

one-to-one correspondence between smooth real vector bundles U of rank p over M

and isomorphism classes of locally free C∞(M)-modules E of rank p •

4.3. Proposition. — For any smooth manifold M, let E be a locally free C∞(M)-

module of fixed rank p > 0, and let E∗ be the dual. Then E and E∗ are modules of
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smooth sections of smooth coordinate bundles representing the same smooth p-plane

bundle over M, say U •

In order to translate the constraint of being horizontal for vector fields, we shall

consider the real vector space IRp in which lie the controls, as the model Euclidean

space for the fiber space of rank p, U, the one described in proposition (4-3).

Let us denote h any Riemannian metric on the vector bundle U, and h� : U∗ −→ U,

the canonical isomorphism associated to h. One gets the following diagram

(4-4)

U∗ H∗
←−−−−− T ∗M

h�

� �
� g

U H−−−→ TM

π

�
� P

M
id−−−→ M

where H is a singular vector fiber bundle homomorphism above the identity, and E is
the pushforward by H of the space of sections of U. Let P be the natural projection

P : TM −→M.

4.5. Notation. — Let us denote by H(x) · s(x), or Hx · s(x), the image through H

of a local section s of U, above the point x ∈M •

The existence of H is guaranteed thanks to proposition (4-3), evidently the rank

of the linear operator H(x) is p(x).

Then it is natural to choose as quadratic form Gx on Ex the one corresponding to the
vector bundle morphism g = H ◦ h� ◦ H∗, making the diagram (4-4) commutative.

So, Gx is completely determined above each point x, and we get the following

4.6. Definition and notation. — Let us denote by (M, E , g), and call “sub-

Riemannian manifold”, an n-manifold M, provided with

(i) a locally free rank p, p < n, submodule of the module of vector fields on M ,

denoted by E , which can be seen as the pushforward by some C∞ fiber bundle
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homomorphism H : U −→ TM of the space of sections of some rank p fiber

space on M : U,

(ii) a linear fiber bundle homomorphism g : T ∗M −→ TM, such that g = H ◦h�◦H∗,

where h is any fiber metric on U, h� : U∗ −→ U is the associated canonical fiber

isomorphism between the dual fiber space of U∗ and U.

A manifold provided with such a structure (M, E , g) will be called “regular” if

Im g is a subbundle of TM, of (constant) rank p, singular, if Im g is not of con-

stant rank •

Actually, the definition of (M, E , g) is stable with respect to the fiber bundle

isometries ϕ : U′ −→ U for

g′ = H ′ ◦ h′� ◦H ′∗ = H ◦ ϕ ◦ h′� ◦ ϕ∗ ◦H∗ = H ◦ h� ◦H∗ = g .

Now, because of the regularity of h�
x, we get the following

4.7. Proposition. — For any x ∈M, there is a one-to-one correspondence between

horizontal vectors Xx in Im Hx and “control vectors” sx such that

sx ∈ (Ker Hx)⊥h ⊂ Ux .

Furthermore, for any ξx ∈ g−1
x (Xx), h�

x ◦H∗
x(ξx) = sx, and it is possible to define a

unique quadratic form Gx on Im Hx by setting

Gx(Xx, Xx) = hx

(
s(x), s(x)

)
= inf

{
hx

(
σ(x), σ(x)

)
/ Hx · σ(x) = Xx

}
.

Then, Gx is a positive non-degenerate quadratic form on Im Hx, and, for any two

horizontal vectors Xx and Yx of Ex, ξx ∈ g−1
x (Xx) and ηx ∈ g−1

x (Yx), s1(x) =

h�
x ◦H∗

x · ξx and s2(x) = h�
x ◦H∗

x · ηx.

Gx(Xx, Yx) =< ξx, Yx >=< ηx, Xx >=< ξx, gxηx >

=< ηx, gxξx >= hx

(
s1(x), s2(x)

)
•
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Let N be the annihilator of E in T ∗M ; then, at each point x,

Ker gx ⊃ KerH∗
x ⊃ Nx ,

they are equal if and only if p(x) = p = const.

Proof. Let ξx, ηx, be any two 1-forms of T ∗
xM, h−1

x be the quadratic form induced by

hx on U∗
x ; then,

< ξx , gxηx >=< ξx , (Hx ◦ h�
x ◦H∗

x) · ηx >=< H∗
x · ξx , (h�

x ◦H∗
x) · ηx >

= h−1
x (H

∗
x · ξx , H∗

x · ηx) .

Then, < ξx , gxηx > is symmetric, and < ξx , gxξx > is zero if and only if ξx ∈ KerH∗
x ;

we also get

Ker gx = KerH∗
x .

Furthermore, it is a well known result of linear algebra and the theory of quadratic

forms that

Im
(
h� ◦H∗)

x
= (KerHx)⊥h ,

and, for all σx in Ux, there exists sx ∈ (KerHx)⊥h , such that

σx = sx + τx with τx ∈ Ker Hx ,

and then,

hx(σx, σx) = hx(sx, sx) + hx(τx, τx) ≥ hx(sx, sx) .

Our next remark will make obvious the essential difference between the singular case

and the regular one. Let x be a point such that Ker H(x) �= {0}. Let Vx be a

coordinate open cell ofM, g-neighbourhood for x, trivializing both the vector bundle

TM andU. As E is locally free, there exists a sequence (xj) ∈ Vx converging to x with

respect to the topology induced by the metric g, such that H(xj) is of maximal rank

p. Thus, there exists a control u in Ker (H(x)), such that hx(u, u) = 1, and a sequence

of controls (uj), uj ∈
(
Ker Hxj

)⊥h

⊂ Uxj
= (IRp, hxj

), such that hxj
(uj , uj) = 1,

converging in the sense of the product (g × h)-topology to u. Then, to the sequence
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(xj , uj) ∈ U is associated through H, a sequence of horizontal vectors
(
xj , H(xj)·uj

)
converging necessarily to (x, 0) in TM, with respect to the regular metric g, because

of the smoothness of H, but such that

∀j, G
(
Hxj
· uj , Hxj

· uj

)
= h(uj , uj) = 1 ,

because of the definition of G, (4-7), though of course

lim g
(
Hxj
· uj , Hxj

· uj

)
= 0 .

Thus, we get the following

4.8. Theorem. — In singular sub-Riemannian geometry, if Ker H(x) �= {0},
for some x, in any g-neighbourhood of x, there exists a sequence of points (xj),

g-converging to x, and a sequence of non-zero controls
(
uj ∈ π−1(xj)

)
such that

lim
gxj

(
Hxj
· uj , Hxj

· uj

)
Gxj

(
Hxj
· uj , Hxj

· uj

) = 0 .

So, it is impossible to extend the metric Gx, defined on Ex, to any Riemannian metric

G̃x, defined on TxM •

Actually, let g, G be given, let K be a compact cell of M , and denote by Σ the

set of singular points of H inside K and

UgM =
{

X ∈ TM / g(X, X) = 1
}

.

Then, there exists δ > 0 and a horizontal thickening δ-strip of Σ with respect to g,

namely

HStripδΣ =
{
(expg)x tX / 0 ≤ t ≤ δ , x ∈ Σ , X ∈ UgΣ ∩ E

}

such that, for any horizontal vector field such that g(X, X) = 1, inside HStripδΣ,

G(X, X) ≥ 1, and, outside HStripδΣ, there exist positive constants A and B such

that A < G(X, X) < B. Thus we get the following theorem
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4.9. Theorem. — Let K be a compact cell in M and UgK be the unitary fiber

bundle with respect to the metric g. Then, there exist two strictly positive constants,

a and A, such that

∀X ∈ UgK, a < G(X, X) < A ,

if and only if all points in K are regular •

We get also the following

4.10. Corollary. — For any positive numbers δ and ε, it is possible to choose a

Riemannian metric g on M such that, for any horizontal vector field Y �= 0,

G(Y, Y ) > g(Y, Y ) inside HStripδΣ ,

and

G(Y, Y ) = g(Y, Y ) outside HStripδ+εΣ •

4.11. Definition. — From now on, we suppose that g is chosen in order to have

everywhere in K

∀Y ∈ E , Y �= 0, G(Y, Y ) ≥ g(Y, Y ) •

4.12. Example (4-1) revisited. —We go back to Example (4-1), and now, we shall

use one of these metrics described in this section, with necessarily U = TM = IR4,

choosing as h, the canonical metric on each U(x,y) = IR
2. Then, the matrices of g and

H, in the frames { ∂

∂x
,

∂

∂y
}, and { dx, dy } are such that

(4-1-iii) g = H ◦ h� ◦H∗ =
(
1 0
0 x2

)
.

Let us choose g as the canonical metric, then

lim
x→0

g(ε2, ε2)/G(ε2, ε2) = 0 .
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The horizontal curve γ : [0, 1] −→ IR2, given by
{

γ(t) = (1− t, 1− t)/ t ∈ [0, 1[
}

, has

g-length
√
2, whereas its G-length is infinite. A horizontal curve going to the y-axis

has finite G-length if and only if the vertical component of the velocity goes to zero

faster than x on the curve.

As a matter of fact, the horizontal curves
{

γ(t) =
(
1−t, (1−t)α

)
/ t ∈ [0, 1[

}
have

finite G-length as soon as α ≥ 1, as soon as they arrive to the origin perpendicularly
to the y-axis, in the horizontal direction, otherwise naturally the vertical part of the

tangent vector tends to a non-horizontal vector of infinite G-norm.

We shall resume Example (4-1) in section 7, illustrating the construction of

geodesics by the application of the Maximum Principle.

5. HORIZONTAL CURVES, LENGTH AND ENERGY

In this section we will show that, to any horizontal path γ : I −→M, where I is

an interval [a, b] ∈ IR, can be associated a unique control s : I −→ γ∗C and a unique

1-form ξ : I −→ γ∗(T ∗M) with nice properties. Then, among the horizontal curves

joining two given points of M, as in Riemannian geometry, seeking the minimum

of G-length is equivalent to seeking the minimum of the G-energy. Let us consider

σ : I −→ C, a measurable map, such that π ◦ σ(t) = γ(t) is an absolutely continuous

curve in M, i.e., necessarily π ◦σ is an injective map. Then, (H ◦π ◦σ) ·σ is a section
of TM above the curve, using the following notations

H ◦ σ(t) = H
(
π ◦ σ(t)

)
· σ(t) ,

where · is the matrix multiplication.

5.1. Definition. — A curve, γ : [a, b] −→ M, is called “horizontal”, if there exists

above γ(t) a measurable section of C, σ(t), such that

∀t ∈ [a, b], γ(t) = π ◦ σ(t) = π ◦ σ(a) +
∫ t

a

(H ◦ π ◦ σ) · σ (t) dt ,
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or equivalently

(5-2)
{

γ̇ = (H ◦ γ) · σ a.e.
γ = π ◦ σ •

Thus, the curve γ is absolutely continuous, its tangent vector exists a.e., and when it

exists, it belongs to Im (H).

Now, we want to prove the following theorem

5.3. Theorem. — Let γ be a horizontal curve defined as above. Then, above γ,

there exists a unique control s : I −→ γ∗C, and a unique 1-form ξ : I −→ γ∗(T ∗M),

modulo g, and modulo a set of t′s of measure zero such that

s(t) ∈
(
Ker Hγ(t)

)⊥h

a.e. ,

ξ(t) ∈
(
Ker (H∗

γ(t)

)⊥g

a.e. •

Proof. In order to do this, let us consider a covering of I by means of sets Ak , 0 ≤
k ≤ p, where

Ak =
{

t ∈ I / dim Im Hγ(t) = k
}

.

Let us call p(t) the rank of Hγ(t) . The function p : I −→ IN is well defined for any t

and is lower semi-continuous ; then,

⋃
l>k

Al = p−1 ]k,+∞[

is open in I, and is, then, a union of open intervals, then it is measurable. For any

k ∈ IN, the set Ak is given by

Ak = p−1 ]k − 1,+∞[ \ p−1 ]k,+∞[ .

The set Ak is then measurable as difference of two measurable sets. Further it is the

disjoint union of semi-open intervals and single points. Let us call them Ik,µk
/ µk ∈

Mk. Then,
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I =
⋃

0≤k≤p

⋃
µk∈M

Ik,µk
where M =

⋃
0≤k≤p

Mk .

The setM could be any huge index set, and the union is a disjoint union. The

measure of the subset of I, union of Ik,µk
which are single points, is not necessarily

zero.

The curve γ is supposed to be absolutely continuous. Then, the set of points

where its tangent vector is not well defined is of measure zero. The set of points which

are boundaries of Ik,µk
on the whole of I could be of measure not zero, then necessarily

in this case, the curve γ goes through the “main part” of the set of boundary points

with a well defined velocity vector. We have just seen that the total measure of the

set of those points, with no velocity vector, either because of the curve itself at a

regular point of H or because of the singularities of H is necessarily zero. There is

an illustration of some of these situations associated to the singularities of H in the

example of the section 8.

Above each Ik,µk
the fiber spaces γ∗(C) and γ∗(T ∗M) are trivial fiber spaces.

Then there exists a trivialization such that

γ∗(C)/Ik,µk
= Ik,µk

×
(
Ker H

)⊥h ×Ker H = Ik,µk
× IRk × IRp−k ,

γ∗(T ∗M)/Ik,αk
= Ik,µk

×
(
Ker H∗)⊥g ×Ker H∗ = Ik,µk

× IRk × IRn−k .

The trivialization fiber frames above each Ik,µk
can be made orthonormal with respect

to h in (C), and with respect to g−1 in γ∗(T ∗M), where g−1 is the non-degenerate

positive quadratic form induced by g on T ∗M . This makes the matrix of the restric-

tion of h� ◦H∗ to Ik,µk
from IRk to IRk diagonal and non-degenerate.

Then, if we come back to σ, the control given in the definition of the horizontal

curve γ, on each Ik,µk
, the restriction of σ, in the previous trivialization, can be

written

σk,µk
(t) =

(
γk,µk

(t), sk,µk
(t), uk,µk

(t)
)

.

Then, on each Ik,µk
,

π ◦ s (t) = π ◦ σ (t)
H ◦ s (t) = H ◦ σ (t) .
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And

γ(t) = γ(a) +
∑ ∫

Ik,µk
∩ [0,t]

(
(H ◦ γ) · sk,µk

)
(t) dt

and, as a consequence, the section s of γ∗C, defined by these restrictions on each

Ik,µk
, is a measurable section. The associated 1-form, ξ , in

(
KerH∗)⊥g

, is defined

modulo g .

Furthermore, for every t in I, we get

hγ(t)(s(t), s(t)) = inf
{

hγ(t)

(
σ(t), σ(t)

)
/ γ = π ◦ σ

}

because of the definition of G, through the proposition (4-7). It is possible to define

formally the following positive functionals on horizontal curves, but in the singular

case they are not necessarily finite, even if the g-distance of the two points is finite

(Example (4-1-iii)).

5.4. Definition. — Let us denote by

lG(γ) =
∫ b

a

√
G(γ̇, γ̇)t dt =

∫ b

a

√
hγ(t)

(
s(t), s(t)

)
dt

and call it, when it exists, the G-length of the curve γ.

Let us denote by

EG(γ; t) =
1
2

∫ b

a

G(γ̇, γ̇) dt =
1
2

∫ b

a

hγ(t)

(
s(t), s(t)

)
dt

and call it the G-energy of the t-parametrized curve γ •

But, we know that

lG(γ) =
∫ b

a

√
G(γ̇, γ̇)t dt =

∫ b

a

√
hγ(t)

(
s(t), s(t)

)
dt =

∫ b

a

√
< ξ(t), γ̇(t) > dt .

Similarly,

EG(γ; t) =
1
2

∫ b

a

G(γ̇, γ̇) dt =
1
2

∫ b

a

hγ(t)

(
s(t), s(t)

)
dt =

1
2

∫ b

a

< ξ(t), γ̇(t) > dt

where s, ξ are the ones just defined in Theorem (5-3). In both cases, the last integral

does not depend on the chosen metric g, and, as soon as one of these three integrals

exist, necessarily, the other two do too.
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Moreover, it is well known that, because of the Schwarz inequality,

(∫ b

a

|γ̇(t)|G dt
)2

≤ (b− a)
∫ b

a

|γ̇(t)|2G dt

a horizontal parametrized, absolutely continuous curve which realizes the minimum

for the energy, if it ever exists, has necessarily its parameter proportional to the G-arc

length such that

|γ̇(t)|G = lG(γ)/(b− a) = constant

(see [L-S] for the existence of such reparametrizing of horizontal curves). It is then

also a minimum for the length. Conversely, if a horizontal parametrized a.c. curve

realizes the minimum of the length, among the reparametrized curves defined on

the same interval [a, b], the one with its parameter proportional to the G-arc length

realizes the minimum for the energy. Then, when looking for the minimum of length,

among curves which are defined on a given interval [a, b], we are led to look for energy

minimizing curves among those horizontal a.c. curves which are defined on the same

interval [a, b].

6. DISTANCE AND ENERGY

In this section, we suppose the Riemannian manifold (M, g) (definition (4-11))

connected and complete as before. Let x0 and x1 be any two points inM, and we want

to prove that the sub-Riemannian distance is achieved on some horizontal absolutely

continuous curve, even in the singular case. The proof will be adaptated from the

proof used by A. Belläıche [Bel].

Thanks to the Hörmander condition and the theorem of Chow [Ch] the two

distinct points x0 and x1 can be joined, at least, by one horizontal piecewise C1-curve

γ̃ : I = [a, b] −→ M, with G-energy EG(γ̃) = A > 0. Let us consider the set of
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parametrized absolutely continuous curves

Cx0,x1(I; A) =
{

γ : I −→M / γ(a) = x0 , γ(b) = x1 , Eg(γ) ≤ A
}

provided with the topology of uniform convergence associated to g such that

∀X ∈ E , g(X, X) ≤ G(X, X) =⇒ ∀γ ∈ Cx0,x1(I; A), Eg(γ) ≤ EG(γ) .

Thanks (4-7), it is still possible to define the energy of these horizontal curves.

Let us denote by

Hx0,x1(I; A) =
{

γ : I −→M / γ(a) = x0 , γ(b) = x1 , γ̇ ∈ E , EG(γ) ≤ A
}

.

Clearly, Hx0,x1(I; A) ⊂ Cx0,x1(I;A), because of (4-11).

The set K =
⋃

Eg (γ)≤A Im γ is a compact subset ofM with respect to the metric

g. Moreover, x0, x1, and the images of the curves in Hx0,x1(I; A) lie in K.

The set Hx0,x1(I; A) can be provided with the H1 topology, i.e., the topology

induced by the H1-distance, defined as follows

d2
H1(γ1, γ2) = d2

g

(
γ1(a), γ2(a)

)
+

∫ b

a

h
(
s1(t)− s2(t), s1(t)− s2(t)

)
dt ,

where γ1 and γ2 are two curves of Hx0,x1(I; A), s1 and s2 are the associated unique

sections of Theorem (5-3), and the integral is computed on the union of disjoint

intervals Ik1,µk1
∩ Ik2,µk2

. It is worth paying attention to the fact that C1 horizontal

curves are dense inHx0,x1(I;K; A) with respect to theH1-topology, (Süssman, private

communication).

We shall prove the following

6.1. Theorem. — Let (M, E , g) be a singular sub-Riemannian manifold of class

at least C1, complete with respect to some Riemannian metric. Let x0, x1, I,A be

defined as above, then, among the curves of Hx0,x1(I; A), there exists at least one

horizontal curve γ, such that the infimum of the energy is achieved on γ •

As we have seen in section 5, the infimum of length is also achieved on γ.
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6.2. Definition. — Let (M, E , g) be a singular sub-Riemannian manifold of class at

least C1. Let x0, x1, I, K,A be defined as above, we shall call “horizontal distance”

between x0 and x1, and denote dG(x0, x1),

dG(x0, x1) = inf
{ √

2 (b− a) EG(γ; t) / γ ∈ Hx0,x1(I;K; A)
}
•

It is well known that the infimum of a lower semi-continuous function on a com-

pact set is achieved. So Theorem (6-1) will follow from the following lemma

6.3. Lemma. — Inside the functional space C(I;M) provided with the topology of

uniform convergence

(i) Hx0,x1(I; A) is compact in Cx0,x1(I; A) ;

(ii) EG is lower semi− continuous on Hx0,x1(I; A) •

Proof (of Lemma 6-3). We have to first prove that for all t, t ∈ [a, b], Hx0,x1

(I; A)(t) is compact in K, and second that Hx0,x1(I; A) is equicontinuous. Then,

Ascoli’s theorem implies (i). On the way, it will be necessary to prove (ii).

Consider a sequence (γj = π◦sj) in Hx0,x1(I; A) converging uniformly to a continuous

curve γ in Cx0,x1(I; A), with respect to the metric g. For every j, for every t ∈ [a, b],

we have

γj(t) = γj(a) +
∫ t

a

H(γj(τ)) · uj(τ)dτ .

We already know that Im (γ) lies in K which is g-compact by definition.

The sequence EG(γj) of strictly positive real numbers is bounded by A, and it

is possible to extract from (γj) a subsequence (indexed by the same letter) such that

EG(γj) converges to lim inf EG(γj) = E0 ≤ A.

Let us create a finite subdivision

a = t0 < t1 < . . . < tk < . . . < tm = b , Ik = [tk−1, tk]

such that, for any j, γj([tk−1, tk]) ⊂ V̄k ⊂ Uk, where Uk’s are TM and C trivializing

coordinate open sets, and V̄k is a compact cell. Now, because of the trivialization of
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C above Uk, to every γj/Ik is bijectively associated a control vector sj/Ik : Ik −→ IRp

such that sj(t) ∈ (KerHγj(t))
⊥h , and

γj(t) = γj(tk−1) +
∫ t

tk−1

(H ◦ γj) · sj dτ .

Then,

EG(γj) =
m∑

k=1

1
2

∫ tk

tk−1

hπ◦sj(τ)(sj(τ), sj(τ))dτ ≤ A .

The spaces

Wk =
{

u : Ik −→ IRp
}

, ∀k , 0 ≤ k ≤ m

provided with the L2 norm ∫ tk

tk−1

h(u(t), u(t))dt

are Hilbert spaces.

In the Hilbert space Wk, the closed ball

B(0, 2A)

is a weakly compact subset ofWk. Thus, there exists a control function vk : Ik −→ IRp

and a subsequence (ujk
) of (uj,k) = (sj/Ik) such that vk is the weak limit of (ujk

).

As

∀t ∈ Ik, γ(t) = lim
j→+∞

γj(t) ,

γ(t) = lim
j→+∞

(
γj(tk−1) +

∫ t

tk−1

(H ◦ γj) · uj,k dt
)

,

or, γ(t) = γ(tk−1) + lim
j→+∞

( ∫ t

tk−1

(H ◦ γj) · uj,k dt
)

.

But, whatever w : Ik −→ IRp, and t ∈ Ik, there exist strictly positive numbers B, C

such that

∣∣∣
∫ t

tk−1

(H ◦ γj −H ◦ γ) · w dτ
∣∣∣2
g
≤ B

∣∣∣
∫ t

tk−1

(H ◦ γj −H ◦ γ) ·w dτ
∣∣∣2
(eucl)
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≤ B (tk − tk−1)
∫ t

tk−1

| (H ◦ γj −H ◦ γ) ·w |2(eucl) dτ

≤ B C (tk − tk−1)
∫ t

tk−1

| (H ◦ γj −H ◦ γ) · w |2g dτ ,

thanks to Schwarz inequality and the equivalence above V̄k between g and the Eu-

clidean metric on fibers of TM/U = IRn.

Further, we can consider H as a section of the local trivial fiber bundle U × IRp⊗ IRn

provided with the fiber metric h−1⊗ g, smooth on V̄k, and lim γj = γ uniformly with

respect to the g topology. Then,

lim
jk→∞

∫ t

tk−1

| (H ◦ γj −H ◦ γ) ·w |2g dτ = 0 .

Moreover,

γ(t) = γ(tk−1) + lim
j→+∞

(∫ tk

tk−1

1[tk−1,t]

(
(H ◦ γ) · sj

)
(τ) dτ

)
,

= γ(tk−1) +
∫ tk

tk−1

1[tk−1,t]

(
(H ◦ γ) · vk

)
dτ .

So we get

(6-4) ∀t ∈ Ik , γ(t) = γ(tk−1) +
∫ t

tk−1

(
(H ◦ γ) · vk

)
(τ) dτ .

Now, we begin with the sub-sequence (uj1), such that the restriction to I1 converges

weakly to the measurable function v1 : I −→ IRp. Then on I1,

∀t ∈ I1 , γ(t) = γ(a) +
∫ t

a

(
(H ◦ γ) · v1

)
(τ) dτ = lim(γj1(t)) ,

because of the weak convergence. Now, starting from the previous global sequence

(γj1(t)), we extract from the associated (uj1/I2) a new sub-sequence (uj2), weakly

converging on I2 to v2, such that

∀t ∈ I2, γ(t) = γ(t1) +
∫ t

t1

(
(H ◦ γ) · v2

)
(τ) dτ .

SÉMINAIRES & CONGRÈS 1
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Finally, collecting the results step by step, from 1 to m, the last extracted subse-

quences (γjm
(t)) and the associated (ujm

) are well defined on the whole interval I, and

(ujm
) admits as weak limit the measurable map v, such that v/Ik = vk, 1 ≤ k ≤ m.

One gets, globally,

(6-5) γ(t) = γ(0) +
∫ t

0

(
(H ◦ γ) · v

)
(τ) dτ .

This relation means that the limit curve γ is absolutely continuous and horizontal

for, since H, though singular, is a fiber bundle homomorphism, vk(t) belongs to

π−1(γ(t))/Ik a.e. and there exists a measurable section of C locally described by vk

such that
dγ

dt
(t) = (H ◦ γ) · v(t)

and γ(t) = P ◦ dγ

dt
(t) = π ◦ v(t), where P is the canonical projection TM −→M.

Furthermore, to prove the relative compactness of Hx0,x1(I; A) with regard to Cx0,x1

(I; A), it remains to prove EG(γ) < A, but the lower semi-continuity will imply

EG(γ) ≤ lim inf EG(γj) ≤ A ,

and the proof is over.

To prove that EG is lower semi-continuous, let us remark that for any wk, and

any w∗
k ∈ IR

p, and (γj) being the extracted sub-sequence of the last step

lim
j→+∞

(
hγj(t)(wk, w∗

k)− hγ(t)(wk, w∗
k)

)
= 0 ,

but

lim
j→+∞

(
hγj
(t)(sj − v, sj − v)

)
≥ 0

implies, in restriction to Ik,

lim
j→+∞

(
EG(γj)−

∫ b

a

hγj(t)(sj , v) dt+
1
2

∫ b

a

hγj
(t)(v, v) dt

)
≥ 0 .

Then, for the restrictions to I ′
ks,

lim inf EG(γj) + EG(γ) ≥ lim
j→+∞

( ∫ b

a

hγ(t)(sj, v) dt
)

,
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but v is the weak limit of sj along Ik, and

lim
j→+∞

( ∫ b

a

hγ(t)(sj, v) dt
)
= 2 EG(γ) ;

so

lim inf EG(γj) ≥ EG(γ) .

Then, EG(γ) ≤ A and Hx0,x1(I; A) is closed. Now

d2
g

(
γj(t), γj(t′)

)
≤

( ∫ t′

t

√
gγj(τ)(γ̇j, γ̇j) dτ

)2

≤ |t− t′|
∫ t′

t

gγj(τ)(γ̇j, γ̇j) dτ

and, because of (4-10) and (4-11), the relations

d2
g

(
γj(t), γj(t′)

)
≤ |t− t′|

∫ t′

t

Gγj(τ)(γ̇j , γ̇j) dτ

≤ 2 |t− t′|EG(γj; t) ≤ 2 |t− t′|A

imply the equicontinuity of Hx0,x1(I; A) in Cx0,x1(I; A).

6.6. Remark. — The G-length minimizing curve between x0 and x1 does not need

to be even piecewise C1, it could a priori be only absolutely continuous.

7. MAXIMUM PRINCIPLE AND HORIZONTAL GEODESICS

From now on, we will term geodesic a G-energy minimizing curve called either

normal or abnormal, or both, according to the different cases pointed out by the

Maximum Principle. In this section, we show how the Maximum Principle is providing

necessary conditions involving a lift of the velocity vector in g−1( ˙̄γ) of a G-energy
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minimizing curve γ̄, even in the singular case, the abnormal geodesics appear as a

limit case, when λ0 goes to zero (7-G-1), (7-G-2).

Let, as above, (M, E , g) = (M, Ũ, H̃, h̃) (see (4-6)) be a singular sub-Riemannian

manifold,with H of class Ck, (1 ≤ k), K a compact subset of M, x0 and x1 be any

two points in K, I = [0, 1].

We know that the length of a curve does not depend on the bijective absolutely

continuous changes of parameter, and that the minimum of length is particularly

achieved on a parametrized curve which realizes as well the minimum with respect to

the energy with a velocity vector of constant G-norm, c almost everywhere. As, in

this section, the interval of definition of the curves is chosen to be [0, 1], the velocity

vector constant G-norm is

| ˙̄γ(t)|G = lG(γ̄) = c , a.e. .

Under these conditions, any curve in Hx0x1(I;K;A), whatever its parametrization,

has its energy larger than

EG(γ̄) =
1
2

∫ 1

0

lG(γ̄)2 dt =
1
2

lG(γ̄)2 .

Let x̃ be any curve in Hx0x1(I;K;A) such that its image lies in K and its energy

E(x̃; I; t) ≥ 1
2

lG(x̃)2 is finite. Then, if we choose any positive constant A larger than

E(x̃; I; t), we know that there exists at least one horizontal curve γ̄ ∈ Hx0x1(I;K;A)

with
1
2

lG(γ̄)2 < A, such that the minimum of G-energy is achieved on this curve

between x0 and x1 (see section 6). We will look via the Maximum Principle for the

necessary conditions verified by such a curve γ̄. In order to do so, we want first to

specify the domain of controls in IRp.

Evidently, if a trajectory is optimal between x0 and x1, it will be optimal between

x0 and γ̄(t), for any t, 0 ≤ t ≤ 1. For if it were not, there would exist a new a.c.
horizontal minimizing curve γ1 ∈ Hx0γ̄(t)([0, t];K;A) between x0 and γ̄(t), strictly

shorter than the previous one γ̄/[0, t], with |γ̇1(τ)|G < lG(γ̄) and the curve

γ ∈ Hx0x1([0, 1];K;A) ,
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such that γ/[0, t] = γ1/[0, t] , γ/[t, 1] = γ̄/[t, 1] would be strictly G-shorter than γ̄,

with velocity norm

t |γ̇1|G + (1− t) lG(γ̄) < lG(γ̄) .

So the problem of seeking necessary conditions for a curve being an energy mini-

mizer has become a local problem around a regular value t (definition (3-2)). In order

to do so, we will choose a domain of controls W ∈ U (see (4-6)), the bounded and
close tubular neighbourhood of the null section in C, so that

Wx =
{

s(x) ∈ Ux / l2G(γ̄) ≤ h(s, s)x ≤ 2A
}

.

The cost density function that we consider is then the energy density. A minimum

with respect to the energy is exactly a minimum with respect to the length, among

the curves γ parametrized a.e. by t = lG(γ) σ, where σ is the G-arc length.

Let us create a finite subdivision as in section 6.

(7-1) 0 = t0 < t1 < . . . < tl < . . . < tm = 1 , Il = [tl−1, tl]

such that, for any l, x̄([tl−1, tl]) ⊂ W̄l ⊂ Vl, where Vl is a TM and U (see (4-6))

trivializing coordinate open set, and W̄l is a compact cell. Let {ei / 1 ≤ i ≤ p} be
an h-orthonormal frame on IRp $ U / Vl. Further, let (xα) be local coordinates on

Vl. The greek indices will be running from now on, between 1 and n, the latin ones

will be running between 1 and p. We will use the Einstein sommation convention on

the greek indices only. Above this trivialized open set Vl, H becomes identified with

the (n× p)-matrix H = (Hα
i ), and, if γ is a horizontal path, in Hx0x1(I;K;A), there

exists a unique control s(t) (Theorem (5-3)) such that

(
(H ◦ γ) · s

)
(t) = γ̇(t), s(t) ⊂

(
KerHγ(t)

)⊥h ∩ U .

And then we get

EG(γ; Il; t) =
1
2

∫ tl

tl−1

p∑
i,j=1

(
hγ(t)

)
ij

si(t)sj(t) dt .
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Now, we are in a position to write for any t the “Hamiltonian function” of the

Maximum Principle (see definition (3-8))

H : (IR × Vl)×W × IRn+1 −→ IR ,

such that, with an opposite λ0 with respect to the paragraph 3,

H(y, u, λ) =< λ, f(y, u) >=
n∑

α=1

λαfα(x, u) − λ0f0(x, u)

with

(7-2) fα =
p∑

i=1

(Hx)αi ui, and f0 =
1
2

p∑
i,j=1

(hx)ij uiuj .

Let, as above, the curve γ̄ be G-length minimizing. Then, it satisfies the Maximum

Principle on Vl. Thus, there exists one 1-form λ̄ : Il −→ T ∗M such that, x(t) = γ̄(t)

and λ̄(t) are solutions a.e. of the Hamiltonian system (see section 3) :

(H)



(H− 1) ẋα =

∂H
∂λα

(H− 2) λ̇α = − ∂H
∂xα

,

and verify

H
(

γ̄(t), s̄(t), λ̄(t))
)
= sup

u∈U
H

(
γ̄(t), u , λ̄(t))

)
,

with

H
(

γ̄(t), u , λ̄(t))
)
=

p∑
i=1

λ̄α(t)
(
Hγ̄(t)

)α
i

ui − 1
2

λ̄0

p∑
i,j=1

(
hγ̄(t)

)
ij

uiuj .

Then, here
∂H
∂ui

(
γ̄(t) , u , λ̄(t))

)
= 0, 1 ≤ i ≤ p .

Thus, because of (7-2),

(7-M-P) λ̄α

(
Hγ̄(t)

)α
i
= λ̄0

(
hγ̄(t)

)
ij

s̄j .
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We have then to distinguish two cases :

λ̄0 �= 0, and λ̄0 = 0 .

I - Case λ̄0 �= 0.

We get, if λ̄0 �= 0 on Vl,

H = 1
2λ̄0

p∑
i,j=1

hijHα
i Hβ

j λ̄αλ̄β =
1
2λ̄0

gαβλ̄αλ̄β .

Hamilton equations (H−1, 2) in section 3 become almost everywhere (denoting γ̄(t) =

x(t), and λ̄(t) = λ(t))

(7-H)



(7−H− 1) ẋα =

∂H
∂λα

= gαβλβ/λ0

(7−H− 2) λ̇α = − ∂H
∂xα

= −∂gρσ

∂xα
λρλσ/λ0 .

For λ0 = 1, the previous system of differential equations is well known as the

Hamiltonian system associated to the function g̃ : T ∗M / Vl −→ IR such that

g̃(ξ) =< ξ, gξ >= G(ẋ, ẋ). Then, above V1, there exists a solution of class Ck of

the system (7-H) with the same initial conditions as (γ̄, λ̄), and as the derivatives

of this smooth solution are a.e. equal to the derivatives of (γ̄, λ̄), they are the same

everywhere ; thus, (γ̄, λ̄) is of class Ck, on V1. The same argument works on V2 with

initial conditions (γ̄(t1), λ̄(t1)). Furthermore, as V1∩V2 �= 0, by a connexity argument,
(γ̄, λ̄) is also an integral curve of the Hamiltonian system associated to g̃, of class Ck,

on V2 and so on, step by step, until tm = 1 in Vm. Then, (γ̄, λ̄) / Vl satisfies also the

Maximum Principle with the same λ̄0 �= 0 on any Vl. Thus, λ̄ being determined up to

a multiplicative constant, we could suppose λ̄0 = 1 all along γ̄, and λ̄ is of class Ck.

Now, if ξ ∈ g−1( ˙̄γ) is any lift in T ∗M of the velocity vector field along γ̄, (such a

lift exists after the results of section 5), there exists a field of 1-forms ν along γ̄, such

that ν(t) belongs to Ker gγ̄(t) = Ker H∗
γ̄(t) and satisfies the following relation

λ̄α = λ̄0ξα + να .

Furthermore, the condition that H is a constant along γ̄ implies that

gαβξαξβ = 2λ̄0C = G( ˙̄γ, ˙̄γ) .
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Anyhow, whatever the field η of absolutely continuous 1-forms along any abso-

lutely continuous curve γ, it is possible to give a definition of the “Lie” derivative of

η along the curve γ.

7.3. Definition. — Let η be a field of absolutely continuous 1-forms along a hori-

zontal absolutely continuous curve γ, such that

γ̇(t) =
(
H ◦ γ(t)

)
· s(t), s(t) ∈ (KerHγ(t))⊥h .

Then, let us call “Lie derivative” of η along the curve γ, the 1-form above γ(t) given

by

< Lγ̇(t)ηγ(t) , Zγ(t) > =
d

dt
< η, Z >γ(t) −

p∑
i=1

< η, [γ̇(t) , Z] >γ(t) ,

for any absolutely continuous vector field Z along γ •

It is easy to verify that this definition does not depend on the choice of fields η̃

extending η, and Z̃ extending Z.

The previous necessary conditions can now be written in the following way.

7.4. Proposition. — Let a G-energy minimizing curve γ̄ : I −→ M and a subdi-

vision of I as the one defined by (7-1). If there exists an integer l0 ∈ {1, 2, . . . , m},
such that in the chart Vl0 , (γ̄, s̄, λ̄) is an extremal lifted Trajectory of the Maximum

Principle, with a constant non-zero λ̄0, then, it is again true in the chart Vl for any

integer l, l ∈ {1, 2, . . . , m}, with the same λ̄0. This situation occurs if and only if

there exists a lift ξ ∈ g−1( ˙̄γ) and a 1-form ν in Ker H∗
γ̄(t), such that

( 7-G-1)




G( ˙̄γ, ˙̄γ) = 2 λ̄0 C = < ξ, ˙̄γ >

Lẋ (ξ +
ν

λ̄0
) = 0 ,

with

(7-G-2)



˙̄γ = gξ

λ̄ = λ̄0ξ + ν .

And γ̄ is Ck •
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This last equation shows then how it can happen that λ̄ lies in Ker H∗ when λ̄0

goes to zero. By the way we get also the following

7.5. Proposition. — The path γ̄ is the projection of the Hamiltonian integral (γ̄, λ̄)

of the Hamiltonian system of g̃ similarly as the solution of the classical Riemannian

variational problem •

II - Case λ̄0 = 0.

The first remark to do is that, as γ̄ is absolutely continuous, if λ̄0 was not zero on

some measurable set of positive measure, it would be not zero on the whole interval I,

as we have seen in (7-I), so it must be zero, all along γ̄. We recall that the restriction

above Vl of the control “Hamiltonian” of a lifted optimal Trajectory (definition (3-8))

can be written

Ht = λ̄α(t)
p∑

i=1

(
Hγ̄(t)

)α
i

s̄i(t)− 1
2

λ̄0

p∑
i=1

µi

(
γ̄(t)

)
(s̄i)2 = λ̄α(t)

p∑
i=1

(
Hγ̄(t)

)α
i

ūi(t) ,

if λ̄0 = 0, and ūi(t) can be any possible Trajectory control such that ūi(t) − s̄i(t) ∈
Ker Hγ̄(t), as the energy is no more involved in the equation, ūi(t) satisfies the Max-

imum Principle as well.

With λ̄0 = 0, the control Hamiltonian function

H : (IR × Vl)×W × IRn+1 −→ IR ,

becomes linear with respect to v ; it can be constant and maximum with respect to

the controls v along the lifted minimizing Trajectory (γ̄, ū, λ̄) if and only if it is equal

to zero for almost every t, thus for any t. This is the same as saying that, above Vl,

λ̄α(t) ∈ Ker gγ̄(t) = KerH∗
γ̄(t) .

Then,

H(t) =
p∑

i=1

λ̄α(t)
(
Hγ̄(t)

)α

i
vi = 0 ∀v ∈ Uγ̄(t) ⊂ IRp ,

in other words

< λ̄(t) , Eγ̄(t) >= Constant = 0
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CONTROL THEORY AND GEODESICS IN SUB-RIEMANNIAN GEOMETRY 493

all along the minimizing curve, and its derivatives of any order with respect to t are

zero everywhere, whatever the control v.

So let us set from now on in this section (7-II), λ̄ := ν̄.

Hamilton’s equations are still valid a.e.

(H)



(II −H− 1) ˙̄γα =

∂H
∂λα

= Hα
i ūi

(II −H− 2) ˙̄να = − ∂H
∂xα

= −ν̄β
∂Hβ

i

∂xα
ūi ,

and

(II-M-P) ∀i, 1 ≤ i ≤ p, ∀k, k ∈ IN




ν̄α(t)
(
Hγ̄(t)

)α
i

= 0
dk

dtk

(
ν̄α(t)

(
Hγ̄(t)

)α
i

)
= 0 .

As ν̄ is solution of the differential equation (II-H-2), it is a.c., and we can use the
definition (7-3) to write the “Lie derivative” of ν̄γ̄(t) with respect to ˙̄γ(t) for almost

every t, locally, as

L ˙̄γ(t)ν̄(t) = ˙̄να(t) + ν̄β

p∑
i=1

∂Hβ
i

∂xα
ūi = 0 a.e. .

Now, we are able to prove the following

7.6. Lemma. — Let ν̄(t) be the a.c. lift λ̄(t) in T ∗M of an optimal lifted Trajectory

(γ̄, s̄, λ̄) of the Maximum Principle with λ̄0 = 0. Let t0 be a regular value of t. Then,

for any vector field Z, along γ̄, such that < ν̄, Z >γ̄(t)= 0,

< ν , [ ˙̄γ(t), Z] >γ̄(t)

is tensorial in Z, above γ̄(t), and is zero everywhere •

Proof. The lemma is obtained by a straightforward calculation, assuming that along

the curve, for almost every t, L ˙̄γ ν̄ = 0 and
d

dt
< ν̄, Z >= 0. Furthermore, if we define

< ν̄, [ ˙̄γ(t), Z] > as

< ν̄, [ ˙̄γ(t), Z] >=< L ˙̄γ ν̄, Z > − d

dt
< ν̄, Z > ,
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the result is tensorial in ˙̄γ(t) and in Z, because of the hypothesis that Zt belongs to

Ker ν̄t for any t. Under these conditions < ν̄, [ ˙̄γ(t), Z] > is well defined, even if Zt and

˙̄γ(t) are not continuous.

If we recall that E1( ˙̄γ) = E , and Ej+1( ˙̄γ) = E + [ ˙̄γ, Ej( ˙̄γ)], as in section 4. This
leads to the following

7.7. Theorem. — If a singular or regular sub-Riemannian manifold admits an

optimal lifted Trajectory (γ̄, s̄, λ̄) satisfying the Maximum Principle with λ̄0 = 0, on

some set of positive measure, then, λ̄0 is zero all along γ̄, the 1-form λ̄ := ν̄ (ν̄ �= 0) is
absolutely continuous and such that, for all regular t,

∀j ∈ IN < ν , Ej( ˙̄γ) >γ̄(t)= 0 .

Then, necessarily, along this curve, γ̄ : [0, 1] −→M,

∞⋃
j=1

Ej( ˙̄γ)γ̄(t) ⊂
�=

Tγ̄(t)M

and

∀j ∈ IN , < L ˙̃xν̃, Ej( ˙̃x) >= 0, a.e. •

That is the reason why it never happens that λ̄0 = 0 when the strong Hörmander

generating condition is verified, i.e., for every horizontal vector Xx,
(
E2(X)

)
x
= TxM.

R. Hermann found already this condition in a different context (see [He]).

Proof. Because of the Maximum Principle, < ν̄ , E >γ̄(t)=< ν̄ , E1( ˙̄γ) >γ̄(t)= 0 all

along the curve. Then, we have to apply lemma (7-6) to any Z ∈ γ̄∗E and recall that
E2( ˙̄γ) = E + [ ˙̄γ, E ] in γ̄∗(TM)t is tensorial in ˙̄γ(t), and depends only on its value at

the point γ̄(t). Thus, < ν̄ , E2( ˙̄γ) >γ̄(t)= 0, for every t. Then, we have to apply again

lemma (7-6) to any vector Z in γ̄∗E2( ˙̄γ), at t. Thus, < ν̄ , E3( ˙̄γ) >γ̄(t)= 0, for every

t, and so on, step by step.

SÉMINAIRES & CONGRÈS 1
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III - Statement of the results.

Let us give a more precise definition.

7.8. Definition. — Let x̃ be a curve in Hx0x1(I;K;A). Let ξ̃ : I −→ T ∗M be any

“lift” 1-form such that ξ̃(t) ∈ g−1
( ˙̃x(t)), x̃ is called a

1◦) normal extremal satisfying the Maximum Principle if there exists a 1-form

ν̃ : t −→ Ker H∗
x̃(t) such that

(N)

{
L ˙̃x(ξ̃ + ν̃) = 0
d < ξ̃, ˙̃x > = 0 ;

2◦) strictly abnormal extremal satisfying the Maximum Principle if

(SAN)

{
∀µ̃ : I −→ Ker H∗ L ˙̃x(ξ̃ + µ̃) �= 0
∀k ∈ IN pk( ˙̃x) < n ;

3◦) non-strictly abnormal extremal satisfying the Maximum Principle if

(NAN)

{
(N) is verified

∀k ∈ IN pk( ˙̃x) < n •

Finally, we get the following

7.9. Theorem. — Let (M, E , g) be a regular or singular sub-Riemannian manifold,

letHx0x1(I;K;A) be defined as above, with H of class Ck. Then, a G-length minimiz-

ing curve x̃ ∈ Hx0x1(I;K;A) is an extremal satisfying the Maximum Principle of one

of the three kinds. Moreover, if it is an (N)- or (NAN)-extremal, then it is of class

Ck and G-length minimizing. In this case, the extremal is the projection of the sub-

Riemannian Hamiltonian trajectory of g̃. Furthermore, if it is an (SAN)-extremal,

then there exists an a.c. curve ν̃ : t −→ Ker g∗
x̃(t), such that

∀j ∈ IN , < L ˙̃xν̃, Ej( ˙̃x) >= 0 , a.e. •

To our knowledge there does not exist, up to now, a simple criteria telling in

which cases a strictly abnormal (SAN)-extremal is locally G-length minimizing.
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R. Montgomery [Mo] has exhibited a regular three-dimensional sub-Riemannian

manifold (p = 2)M verifying the strong two steps Hörmander generating condition

p2(x) = 3 everywhere but on a cylinder C, where p2/C = 2 = p < 3, and p3/C =

3 = n. The manifold M is provided with a helicoidal vector field, along C, verifying

(SAN). It has not been so easy to prove that the integral curves of this vector field

are even locally length minimizing. I. Kupka ([K]) has shown that, up to a certain

distance of the initial point, there exists no cut-point. We chose another method and

we develop this last proof in section 10. See also [L-S] for a local proof.

7.10. Example (4-1-iii) continued. — Now, we shall take up again Example

(4-1) to illustrate the previous method in the singular case. We shall use the metric

described in section 4, with U = TM = IR4, and h the canonical metric on each

U(x,y) = IR
2. Then the matrices of g and H, in the frames { ∂

∂x
,

∂

∂y
} and { dx, dy },

are such that

g = H ◦ h� ◦H∗ =
(
1 0
0 x2

)
.

The control fiber bundle is the trivial bundle M × IR2. Let its canonical basis

{e1, e2} be an h-orthonormal moving frame, such that H(e1) =
∂

∂x
and H(e2) =

x
∂

∂y
, so that, applying Control Theory, we get

H = λ1 s1 + λ2 x s2 −
1
2
(s2

1 + s2
2) .

Here, we take λ0 = 1, because the strong two steps generating Hörmander condition

is satisfied, and no abnormal geodesic can appear. The maximum principle implies




∂H
∂s1

= λ1 − s1 = 0

∂H
∂s2

= λ2 x− s2 = 0 .

Then, H = 1
2
(λ2

1 + λ2
2 x2), and both Hamilton’s equations (H− 1, 2) imply




ẋ = λ1 , ẏ = λ2 x2,

λ̇1 = −λ2
2 x , λ̇2 = 0 .
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Writing the first integral H = B = constant, we get

ẋ2 + aẏ = 2 B .

A very easy computation gives the “horizontal” geodesics joining A = (0, 0) to

B = (0, 1). Namely, with k ∈ ZZ,



x =
√
2
|kπ| sin kπ t

y = t− sin 2kπ t

2kπ

.

Their G-length is equal to

lG(γ) =
∫ 1

0

√
ẋ2 +

ẏ2

x2
dt = 2|k|π ,

the shortest are both obtained for k = ±1. The result is that the G-distance between

(0, 0) and (0, 1) is 2π. Furthermore, it is obvious that any point on the y-axis can be

joined to A by two minimizing curves. Then, all points (0, y) are cut points for the

origin, whatever y.

8. NORMAL GEODESICS AND G-DERIVATION

In the framework of regular or singular sub-Riemannian geometry it is possi-

ble to define an intrinsic derivative generalizing the Levi-Civita connection of the

Riemannian geometry. It will take the shape of an intrinsic bilinear form on T ∗M,

with values in TM, the restriction of which to the diagonal of T ∗M × T ∗M is merely

the projection of the ∇sym of C. Bär [B]. This connection will allow us to introduce

the idea of G-parallel translation along a horizontal curve, without enlarging G to the

whole of TM, for this extension is impossible in the singular case, as we have seen

(4-8).
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Namely, if χ(M) (resp. ∧M) are spaces of local sections of TM (of T ∗M resp.),

and g = H ◦ h� ◦H∗, as above.

8.1. Definition. — Let us call G-derivative and denote by

D : (∧M)2 −→ χ(M) ,

the map such that, for all α, β, γ ∈ ∧M ,

< γ, Dαβ >= 1
2

{
gα < β, gγ > + gβ < γ, gα > − gγ < α, gβ >

− < α, [gβ, gγ] > + < β, [gγ, gα] > + < γ, [gα, gβ] >
}
•

The following proposition (8-2) (i) to (iv) implies that D is actually an actual

global derivation, (v) implies that the D-connection is a generalization of a symmetric

Levi-Civita connection. The remaining results and definitions of (8-2), (8-3), and (8-4)

constitute a practical formulary about D.

8.2. Proposition. — Let f be any function of class C1 on M , then, for all α, β, γ ∈
∧M and for all µ, ν ∈ Ker H∗

(i) Dα β is IR−linear with respect to α and β
(ii) D(fα) β = f(Dα β)
(iii) Dα (fβ) = f(Dα β) + ((gα)f).gβ
(iv) (gα) < β, gγ > = < β, Dα γ > + < γ, Dα β >
(v) Dα β − Dβ α = [ gα, gβ ]

particularly Dαν = Dνα = 1
2
(Dαν +Dνα)

(vi) < ν, Dα β + Dβ α > = 0
particularly Dα α ∈ E and Dαν = Dνα ∈ E

(vii) Dµ ν = 0
(viii) < ν, Dα β > = < α, Dν β > = − < β, Dν α >

= 1
2 < ν, [gα, gβ] > •

ThisG-derivation allows a very nice intrinsic formalism to translate the R.S. Strichartz

map Γ ([S] p. 227), namely, let us define the map

F : Ker H∗ × E −→ E and < η, F (ν, X) >= 2 Γ(ξ, ν)η .
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8.3. Definition. — For any ξ and η in ∧M, and any ν in Ker H∗, let us consider

X = gξ, Y = gη in χ(M). Then,

< η, F (ν, X) > = < ν, [X, Y ] > •

These scalar quantities give an idea of how the first order brackets leave E .

8.4. Proposition. — Using the preceding notations

< η, F (ν , X) > = < ν, (Dξη −Dηξ ) > = 2 < ν, Dξη >
= 2 < ξ, Dην > = 2 < ξ, Dνη >
= −2 < η, Dξν > = −2 < η, Dνξ >
= < ν, [X, Y ] > = −dν(X, Y ) .

Furthermore, Dξν = Dνξ = −1
2
F (ν , X) •

Then, we get the following characterization for the normal geodesic flow.

8.5. Theorem. — A vector field X of χ(M) is the vector field of a “normal

geodesic” flow if and only if there exists at least one 1-form ξ ∈ g−1(X), and one

1-form ν ∈ Ker H∗ such that

(8-G-1)
{

Dξξ = F (ν, X) = −2Dνξ
LX(ξ) = −LX(ν) •

As ξ + ν is still a “lift” of X, the Theorem (8-5) is equivalent to the following

8.6. Theorem. — A vector field X of χ(M) is the vector field of a “normal geodesic”

flow if and only if there exists at least one 1-form ξ ∈ g−1(X), such that

(8-G-2)
{

Dξξ = 0
LX(ξ) = 0 •

The first equation Dξξ = 0, here, is stronger than the previous first integral in

(7-G-1), < ξ, X >= Constant.
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9. THE ABNORMAL GEODESIC OF MONTGOMERY-KUPKA

The purpose in this section is to set a new proof of the length minimizing prop-

erty of the Montgomery-Kupka abnormal extremal, using the measurable proper-

ties of a.c. curves, contrary to the nice simple simultaneous proof due to Liu and

Süssmann [L-S]. Actually, we now know that our method leads to a generalization to

any “generic” 2-distribution in IR3 with a growth vector (2,2,3) on some hypersurface,

whatever the metric [P-V-2]. Let M be the manifold M = IR3 \ (0, 0, IR) provided
with the following regular sub-Riemannian structure. Using systematically cylinder

coordinates, let us consider in E the convenient moving frame denoted by (e)

(e)




e1 =
∂

∂r
. . . θ1 = dr

e2 =
1
r

( ∂

∂θ
+ A(r)

∂

∂z

)
. . . θ2 = rdθ

e3 =
∂

∂z
. . . θ3 = dz − A(r)dθ

where ei = gθi, i = 1, 2, 3, and the A(r) simplified by I. Kupka is given by

A(r) = 1− (1− r)2 , A′(r) = 2(1− r) , A′′(r) = −2 .

The horizontal planes generated by e1 and e2, above the points x of M, are denoted

by Ex and generate the fiber space E.

The Montgomery positive non-degenerate quadratic form on the horizontal planes

G is then well defined by the following matrix

g = H =


 1 0 0
0 1 0
0 0 0


 ,

where IRθ3 = IR (dz − A(r)dθ) is Ker H∗ = Ker g.
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All over M except on the cylinder C (C = { r = 1}), the plane distribution satisfies
the strong generating Hörmander condition, i.e.,

∀X ∈ E, ∀x ∈M\C, (E + [X, E])x = TxM

for we have

[e1, e2] = −
1
r

e2 +
A′(r)

r
e3 .

Nevertheless, everywhere

[e1, [e1, e2]] =
2
r2

e2 −
2
r

e3 − 2
A′(r)

r2
e3 ,

which becomes 2(e2−e3) on the cylinder C. Thus, the Hörmander condition is satisfied

everywhere.

But, on the cylinder C, [e2, [e2, [e2, e1]]] = 0 = [e2, [e2, e1]] = 0 = [e2, e1], and so

on. Thus, e2 / C satisfies condition (8-SAN) and C is an abnormal extremal of the

Maximum Principle. We do not yet know if it satisfies (8-NAN), i.e., the condition

for a normal automatically length minimizing geodesic.

We shall prove the following

9.1. Theorem. — Let Hx0,x1 =
{
(1, t, t) ∈ IR3 / x0 = (1, 0, 0) , x1 = (1, θ1, θ1) ,

0 < θ1 < 2
}

be the Montgomery-Kupka helix. Then, the length of any horizontal

a.c. curve joining x0 to x1 is bigger than the length of Hx0,x1 , i.e., θ1 •

Let us write F : Ker g ×E −→ E, such that

F (θ3, ei) =
∑
j �=i

< θ3, [ei, ej] > ej ;

here F (θ3, e1) =< θ3, [e1, e2] > e2 =
A′(r)

r e2, and F (θ3, e2) =< θ3, [e2, e1] > e1 =

−A′(r)
r e1. Now, using the G-derivative just defined in section 8, we see that the

flow e2 is a geodesic flow on M\C, because the characterizing conditions (8-G-1),

equations of normal geodesics, are verified. These conditions are equivalent to

(8-G-1) ∃ξ ∈ ∧M such that




gξ = X
Dξξ = 0
LX(ξ) = 0 .
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The integral flow of the vector field e2 is a normal geodesic flow onM\C, because the

Hamilton-Jacobi equations for the energy minimizing geodesics are satisfied ([S-1])

and the intrinsic characterizing conditions (8-G-1) are verified.

A - H does not verify the normal geodesic equation.

As a matter of fact, between any two points on an integral curve of the field e2

outside C, we have

Dθ2θ2 = −1
r

e1 =
1

A′(r)
F (θ3, e2) = −2Dθ2

θ3

A′(r)
;

then,

D(θ2+ν) (θ2 + ν) = 0, with ν =
θ3

A′(r)

and

Le2(θ
2) = ie2

θ1 ∧ θ2

r
= −θ1

r
,

Le2(
θ3

A′(r)
) = ie2

( dθ3

A′(r)
)
=

θ1

r
.

The helix H =
{
(1, t, t) / t ∈ IR

}
is the integral curve of the vector field e2, restricted

to the cylinder C, and

9.2. Remark. — On C, ν =
θ3

A′(r)
, is not defined. This is the reason why the helix

H, integral curve of e2 on C, cannot verify (8-G-1), and then cannot be considered

as a normal geodesic •

But ν =
θ3

A′(r)
gives an idea of how the geodesic conditions (G) could perhaps

be extended to infinity.

Now, let x0 be the point such that r = 1, θ = 0, z = 0, and x1 be the point such

that r = 1, θ = θ1 > 0, z = θ1. These two points lie in the helix H.

I. Kupka [K] proved that in a tubular neighbourhood of the helix, and for θ1 <
√
2, there could not exist any normal geodesic joining x0 to x1, for the normal geodesic

local equation is not integrable taking account of the end points condition.

So, knowing that the distance is achieved on some curve among the extremal

curves deduced from the Maximum Principle, we can conclude that, necessarily, the
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CONTROL THEORY AND GEODESICS IN SUB-RIEMANNIAN GEOMETRY 503

abnormal arc of helix Hx0,x1 is G-length minimizing and has no intersection with the

“cut-locus” of x0.

Here, what we are showing is that this abnormal helix is globally minimizing

among a.c. curves joining x0 and x1, as soon as

dG(x0, x1) = θ1 < 2 ,

the proof is constructive and very simple.

B - The set of horizontal curves joining any two points of H, x0 and x1.

Let x0 be the point such that 


r = 1
θ = 0
z = 0 .

Let x1 be the point such that


r = 1
θ = θ1, 0 < θ1 < 2π
z = θ1 .

These two points are joined by the helix H

(H)
{

r = 1
z = θ, 0 < θ < θ1 .

9.3. Remark. — If r(t) ≥ 2, for some t in ]0, t1[, any horizontal curve joining x0

and x1 through (r(t), θ(t), z(t)) has length larger than 2 whatever z(t).

Define

∀t ∈ [0, t1] , ρ(t) = 1− r(t) 0 < r(t) < 2 .

The set of all such horizontal absolutely continuous curves joining x0 to x1 can be

described by the following conditions, with |ρ| < 1

x : [0, t1] −→
(
ρ(t), θ(t), z(t)

)

and

z(t) =
∫ t

0

A
(
r(t)

)dθ

dt
dt ,
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and the end point conditions give

(9-I) θ(0) = 0 θ(t1) = θ1 + 2kπ (k ∈ ZZ) ,
(9-II) z(0) = 0 z(t1) = θ1 ,
(9-III) ρ(0) = 0 ρ(t1) = 0 .

9.4. Remark. — If a curve γ : [0, t1] −→
(

ρ(t), θ(t), z(t)
)

is absolutely continuous

on [0, 1], then, the subsets of [0, t1] where
dθ

dt
, (or

dρ

dt
) is either zero or negative, or

positive, are measurable. Furthermore, |θ̇|dt is a measure density on [0, t1] •

Let Σ0 be the subset of [0, t1] where
dθ

dt
= 0. Let Σ− be the subset of [0, t1] where

dθ

dt
< 0, and, σ− =

∫
Σ−
|θ̇|dt. Let Σ+ be the subset of [0, t1] where

dθ

dt
> 0 and

σ+ =
∫
Σ+

θ̇dt. The first endpoint condition becomes

(9-I) σ+ = σ− + θ1 + 2kπ .

Let us denote again by (9-II) the second end point condition

(9-II) z(t1) = θ1 =
∫ t1

0

A
(
r(t)

)dθ

dt
dt ,

which becomes

(9-II) z(t1) = θ1 = θ1 + 2kπ −
∫

Σ−

ρ2 dθ

dt
dt−

∫
Σ+

ρ2 dθ

dt
dt .

Thus, the horizontal absolutely continuous curves have the same endpoints asH, only

if

(9-II) D2 =
∫

Σ−

ρ2|θ̇|dt =
∫

Σ+

ρ2|θ̇|dt− 2kπ .

Let us denote by

ρ̄2
− =

1
σ−

∫
Σ−

ρ2|θ̇|dt , ρ̄2
+ =

1
σ+

∫
Σ+

ρ2|θ̇|dt .

So, the second end point condition becomes

(9-II) ρ̄2
−σ− = ρ̄2

+σ+ − 2kπ .
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The third endpoint condition is

(9-III)
∫ t1

0

ρ̇(t)dt = 0 .

9.5. Proposition. — Any horizontal curve joining x0 to x1 with 0 < θ1 < 2π and

k not zero in condition (9-I) has length larger than 2 •

Proof. The a.c. function θ(t) goes from 0 to θ1+2kπ, and then goes through the value
θ1

2
+ kπ.

If k > 0, 0 < θ1/2 + π ≤ θ1/2 + kπ < θ1 + 2kπ ;
if k < 0, θ1 + 2kπ ≤ θ1 − 2π < θ1/2− π < 0 .

In both cases there exists a value of t, tπ such that

θ(tπ) =
θ1

2
± π with 0 ≤ ρ(tπ) < 1 ;

the point γ(tπ) = (ρ(tπ), θ(tπ)) is equidistant from (1, 0) and (1, θ1) over the origin,

then, necessarily, a curve with k �= 0 has length larger than twice the radius of the
cylinder, i.e, 2.

Because of (9-3) and (9-4) from now on we will be interested only in curves γ

such that

0 < θ1 ≤ 2, ∀t ∈ [0, t1], −1 < ρ(t) < 1, k = 0 .

So, the second endpoint condition becomes

(9-II) ρ̄2
−σ− = ρ̄2

+σ+ .

9.6. Proposition. — Let x0 = (1, 0, 0), x1 = (1, θ1, θ1) with θ1 < 2. If there is no

return in the x0y plane, i.e., if θ̇ ≥ 0, a.e., then, the only ways to go from x0 to x1 are

either H or H with radial horizontal “there and back” segments starting from points

of a subset of H of measure zero. The lengths of these last curves, say of “T1-type”

are larger than the length of H, namely θ1 •
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Proof. The condition σ− = 0 implies

D2 =
∫

Σ−

ρ2(t) |θ̇(t)| dt = 0 .

Then, the condition

(9-II) D2 =
∫

Σ−

ρ2(t) |θ̇(t)|(t) dt =
∫

Σ+

ρ2(t) θ̇(t) dt

implies ∫
Σ+

ρ2 θ̇(t) dt = 0 ,

then ρ/Σ+ = 0 a.e., and

(9-III) =⇒
∫

Σ0

ρ̇(t) dt = 0 .

The result follows.

So, if the curve is not of the previous type, there must exist some set of positive

measure on which θ̇ < 0, and then, either ρ/Σ2
− = 0 a.e., and (9-II) implies ρ2

+ = 0

a.e., or ρ̄2
− is necessarily > 0 along a curve candidate to be shorter than H, and then

there is some positive measure subset of Σ− where ρ̇ is necessarily > 0. In the first

case, the curves said of “T2-type” coincide geometrically with H, but they cover some

positive measure subset of it more than once and have then, length larger than H ;

in the second case, the necessary loops in the x0y plane of these curves imply that

H is C1-rigid, for θ̇(t) = 1 on H, and is necessarily ≤ 0 on some positive measure
measurable subset of T1-type and T2-type curves.

C - Horizontal curves joining x0 to x1, such that θ1 < 2 and 0 < r, if they

ever exist, have length greater than H.

From now on, let us examine only the cases where

(9-7) D2 =
∫

Σ−

ρ2(t) θ̇(t) dt > 0 .

Condition (9-7) implies that ρ2 must be positive on some set of positive measure.
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9.8. Lemma. — For the comparison of lengths between H and the curves γx0,x1 ,

with r < 2, it is sufficient to study curves γx0,x1 which lie inside the cylinder C •

Proof. Let γ : [0, t1] −→ IR3 be a horizontal curve γ(t) =
(
ρ1(t), θ(t), z(t)

)
joining

x0 = (0, 0, 0) to x1 = (0, θ1, θ1) with θ1 < 2. For any absolutely continuous function

ρ1(t), if there exists a subset A of [0, t1] where

−1 < ρ1(t) < 0⇐⇒ 1 < r1(t) = 1− ρ1(t) < 2 ,

the subset A is necessarily measurable, and we can change ρ1 to ρ2 on A such that

0 < −ρ1(t) = ρ2(t)⇐⇒ 0 < r2(t) = 1− ρ2(t) < 1 , t ∈ A ,

and the vertical defect integral is unchanged

∫
A

ρ2
1(t)θ̇dt =

∫
A

ρ2
2(t)θ̇dt

the endpoint condition (9-II) is yet fulfilled and

l(γ1)/A =
∫
A

√
(1 + |ρ1|)2θ̇2 + ρ̇2

1 dt > l(γ2)/A =
∫
A

√
(1− |ρ2|)2)θ̇2 + ρ̇2

2 dt ,

the new curve, inside the cylinder C is shorter than the one outside.

From now on, without lack of generality, we can suppose that the curve

γ is parametrized by arc length, and 0 ≤ ρ(s) < 1. We also assume σ− > 0.

9.9. Lemma. — Let R+ (resp. R−) be the subset of [0, l(γ)] where ρ̇ > 0 (resp.

ρ̇ < 0). Then, the end point condition (9-III) implies

(9-IV)
∫
R+

ρ̇ ds =
∫
R−

|ρ̇| ds ≥ sup |ρ| •

Proof. We have

(9-III) ρ(0) = 0,
∫ l(γ)

0

ρ̇ ds = 0 .
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The function ρ(s) is absolutely continuous. Thus, there exists a value sM , sM ∈
]0, l(γ)[ such that

sup |ρ| = |ρ(sM)| = |
∫ sM

0

ρ̇ ds | .

Then, (9-III) becomes

(9-III)
∫
R+

ρ̇ ds =
∫
R−

|ρ̇| ds .

If sup |ρ| = sup ρ > 0,

sup ρ =
∫

[0,sM ]∩(R+∪R−)

ρ̇ ds =
∫

[0,sM ]∩R+

ρ̇ ds −
∫

[0,sM ]∩R−

|ρ̇| ds ,

∫
R+

ρ̇ ds ≥
∫
R+∩[0,sM ]

ρ̇ ds =
∫ sM

0

ρ̇ ds +
∫

[0,sM ]∩R−

|ρ̇| ds

= sup ρ +
∫

[0,sM ]∩R−

|ρ̇| ds ≥ sup ρ > 0 .

If sup |ρ| = sup(−ρ) = − inf ρ > 0. This case, of no use here, will be useful in the

generalization [V-P],

inf ρ =
∫

[0,sM ]∩(R+∪R−)

ρ̇ ds =
∫

[0,sM ]∩R+

ρ̇ ds −
∫

[0,sM ]∩R−

|ρ̇| ds < 0 ,

∫
R−

|ρ̇| ds ≥
∫
R−∩[0,sM ]

|ρ̇| ds = −
∫ sM

0

ρ̇ ds +
∫

[0,sM ]∩R+

ρ̇ ds > 0

= sup |ρ| +
∫

[0,sM ]∩R+

ρ̇ ds ≥ sup |ρ| > 0 .

Let us now write the length of γx0x1

l(γ) = 2E(γ) =
∫ l(γ)

0

(
(1− ρ)2θ̇2 + ρ̇2

)
ds

=
∫

Σ+∪Σ−

(1− ρ)2θ̇2 ds+
∫
R+∪R−

ρ̇2 ds ,

using Schwarz inequality

≥ 1
l(γ)

( ∫
R+∪R−

|ρ̇| ds
)2

+
1

l(γ)

( ∫
Σ+∪Σ−

(1− ρ)|θ̇| ds
)2

,
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CONTROL THEORY AND GEODESICS IN SUB-RIEMANNIAN GEOMETRY 509

using the end point conditions (9-I) and lemma (9-9) (end point conditions (9-IV)),

l(γ)2 ≥ 4 sup ρ2 +
(
θ1 + 2σ− −

∫
Σ+∪Σ−

ρ|θ̇| ds
)2

.

We recall that

0 < |ρ| < 1 .

Now, using Schwarz inequality again with respect to the measure density |θ̇| ds,

l(γ)2 ≥ 4 sup ρ2 +
(

θ1 + 2σ− −
√

θ1 + σ− D − √σ− D
)2

,

for, because of the first and second end point conditions, with k = 0,

(9-I) σ+ = θ1 + σ− and (9-II) ρ̄2
−σ− = ρ̄2

+σ+ = D2 .

Thus,

l(γ)2 ≥ 4 sup ρ2 +
(

θ1 + 2σ− −
√

θ1 + σ−
√

σ− (ρ̄+ + ρ̄−)
)2

,

but

θ1 + 2σ− −
√

θ1 + σ−
√

σ− (ρ̄+ + ρ̄−) > 0

for

θ1 + 2σ− −
√

θ1 + σ−
√

σ− (ρ̄+ + ρ̄−) ≥ θ1 + 2σ− − 2
√

θ1 + σ−
√

σ− sup |ρ|

=
√

θ1 + σ−
2
+
√

σ−
2 − 2

√
θ1 + σ−

√
σ− sup |ρ|

=
(√

θ1 + σ− −
√

σ−
)2 + 2

√
θ1 + σ−

√
σ−

(
1− sup |ρ|

)
> 0 .

Then,

l(γ)2 ≥ 4 sup ρ2 +
(

θ1 + 2σ− − 2
√

θ1 + σ−
√

σ− sup |ρ|
)2

,

and

l(γ)2 ≥ θ2
1 + 4σ− (θ1 + σ−)

+ 4 sup ρ2
(
1 + (θ1 + σ−) σ−

)
− 4

√
θ1 + σ−

√
σ− (θ1 + 2σ−) sup |ρ| .
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Finally, the horizontal curve γx0,x1 is longer than H as soon as

(1 + (θ1 + σ−)σ−) sup ρ2 −
√

θ1 + σ−
√

σ− (θ1 + 2σ−) sup ρ + σ−(θ1 + σ−) > 0 .

It is easy to see that the polynomial in sup ρ has a strictly positive minimum as soon

as

θ2
1 < 4 .

Then, for θ1 < 2, if there exist horizontal a.c. curves other than those of T1-type and

T2-type, joining x0 to x1, and for any ρ their lengths are greater than the length of

H as well as the length of those of T1-type and T2-type. Furthermore, σ− �= 0 implies
that H is C1-rigid, as we have already seen. So we have proved Theorem (9-1).

Furthermore, on the way of the proof of this global result we showed that, as any

curve is either of T1-type or σ− �= 0, the only C1-curves in a C1-neighbourhood of H

are reparametrizations of H. This is the actual definition of C1-rigidity. We saw also

the way of constructing horizontal C1-curves γx0,x1 close to H with respect to the

topology of the uniform convergence, even in the sense of the H1-topology. Thus, H

is not H1-rigid. We now know that in dimensions greater than 3 there are examples

of codimension 1 distributions with horizontal non-minimizing abnormal, non C1-

rigid C1-curves [P-V-2], and, in dimension 3, the Montgomery example is a generic

local model for the 2-plane distributions with growth vector (2,3) on a dense subset of

M, and (2,2,3) on a local hypersurface, whatever the sub-Riemannian metric [P-V-2].
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