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Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important
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SÉMINAIRES & CONGRÈS 1



0. INTRODUCTION

An Alexandrov space is a metric space with length structure and with a notion

of curvature. In the present paper we study Alexandrov spaces whose curvatures are

bounded below. Such a space occurs for instance as the Hausdorff limit of a sequence

of Riemannian manifolds with curvature bounded below. Understanding such a limit

space is significant in the study of structure of Riemannian manifolds themselves

also, and it is a common sense nowadays that there is interplay between Riemannian

geometry and the geometry of Alexandrov spaces through Hausdorff convergence.

Recently Burago, Gromov and Perelman [BGP] have made important progress

in understanding the geometry of Alexandrov spaces whose curvatures are bounded

below. Especially, they proved that the Hausdorff dimension of such a space X is

an integer if it is finite and that X contains an open dense set which is a Lipschitz

manifold. A recent result in the revised version [BGP2] and also Otsu and Shioya

[OS] has extended the later result by showing that such a regular set actually has

full measure. Since the notion of Alexandrov space is a generalization of Riemannian

manifold, it seems natural to consider the problem : what extent can one extend

results in Riemannian geometry to Alexandrov spaces ?

The notion of Hausdorff distance introduced by Gromov [GLP] has brought a

number of fruitful results in Riemannian geometry. For instance, the convergence

theorems and their extension, the fibration theorems, or other related methods have

played important roles in the study of global structure of Riemannian manifolds. The

main motivation of this paper is to extend the fibration theorem ([Y]) to Alexandrov

spaces. In the Riemannian case we assumed that the limit space is a Riemannian

manifold. Here, we employ an Alexandrov space as the limit whose singularities are

quite nice in the following sense.

Let X be an n-dimensional complete Alexandrov space with curvature bounded

below. In [BGP], it was proved that the space of directions Σp at any point p ∈ X

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



604 T. YAMAGUCHI

is an (n − 1)-dimensional Alexandrov space with curvature ≥ 1, and that if Σp is

Hausdorff close to the unit (n − 1)-sphere Sn−1, then a neighborhood of p is bi-

Lipschitz homeomorphic to an open set in Rn . This fact is also characterized by

the existence of (n, δ)-strainer. (For details, see Section 1). For δ > 0, we now define

the δ-strain radius at p ∈ X as the supremum of r > 0 such that there exists an

(n, δ)-strainer at p with length r, and the δ-strain radius of X by

δ-str. rad (X) = inf
p∈X

δ-strain radius at p .

For instance, X has a positive δ-strain radius if X is compact and if Σp is Hausdorff

close to Sn−1 for each p ∈ X .

For every two points x, y in X , a minimal geodesic joining x to y is denoted by

xy, and the distance between them by |xy|. The angle between minimal geodesics

xy and xz is denoted by � yxz. Under this notaton, we say that a surjective map

f :M → X between Alexandrov spaces is an ε-almost Lipschitz submersion if

(0.1.1) — it is an ε-Hausdorff approximation.

(0.1.2) — For every p, q ∈ M if θ is the infimum of � qpx when x runs over

f−1(f(p)), then ∣∣∣∣ |f(p)f(q)||pq| − sin θ
∣∣∣∣ < ε .

Remark that the notion of ε-almost Lipschitz submersion is a generalization of ε-

almost Riemannian submersion. Our main result in this paper is as follows.

Theorem 0.2. — For a given positive integer n and µ0 > 0, there exist positive

numbers δ = δn and ε = εn(µ0) satisfying the following. Let X be an n-dimensional

complete Alexandrov space with curvature≥ −1 and with δ-str.rad(X) > µ0. Then, if

the Hausdorff distance betweenX and a complete Alexandrov spaceM with curvature

≥ −1 is less than ε, then there exists a τ(δ, ε)-almost Lipschitz submersion f :M → X .

Here, τ(δ, σ) denotes a positive constant depending on n, µ0 and δ, ε and satisfying

limδ,ε→0 τ(δ, ε) = 0.

Because of the lack of differentiability in X , it is unclear at present if the map f

is actually a locally trivial fiber bundle. The author conjectures that this is true. In
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fact, in the case when both X and M have natural differentiable structures of class

C1, we can take a locally trivial fibre bundle as the map f . (See Remark 4.20).

Remark 0.3. — Under the same assumption as in Theorem 0.2, for any x ∈ X

let ∆x denote the diameter of f−1(x). Then, there exists a compact nonnegatively

curved Alexandrov space N such that the Hausdorff distance between N and f−1(x)

having the metric multiplied by 1/∆x is less than τ(δ, ε) for every x ∈ X . (See the

proof of Theorem 5.1 in §5.)

In Theorem 0.2, if dimM = dimX it turns out that

Corollary 0.4. — Under the same assumptions as in Theorem 0.2, if dimM = n,

then the map f is τ(δ, σ)-almost isometric in the sense that for every x, y ∈M∣∣∣∣ |f(x)f(y)||xy| − 1
∣∣∣∣ < τ(δ, σ) .

Remark 0.5. — In [BGP2], Burago, Gromov and Perelman have proved Corollary

0.4 independently. And Wilhelm [W] has obtained Theorem 0.2 under stronger as-

sumptions. He assumed a positive lower bound on the injectivity radius of X and that

M is an almost Riamannian space. His constant ε in the result depends on the partic-

ular choice of X . It should also be noted that Perelman [Pr1] has obtained a version

of Corollary 0.4 in the general situation. He proved that any compact Alexandrov

space X with curvature ≥ −1 has a small neighborhood with respect to the Hausdorff

distance such that every Alexandrov space of the same dimension as X with curvature

≥ −1 which lies in the neighborhood is homeomorphic to X .

By using Corollary 0.4, one can prove the volume convergence.

Corollary 0.6. ([Pr2]) — Suppose that a sequence (Mi) of n-dimensional compact

Alexandrov spaces with curvature ≥ −1 converges to an n-dimensional one, say M ,

with respect to the Hausdorff distance. Then, the Hausdorff n-measure of Mi con-

verges to that of M .

As in the Riemannian case, Theorem 0.2 has a number of applications. The

results in Riemannian geometry which essentially follow from the splitting theorem

([T],[CG],[GP1],[Y]) and the fibration theorem are still valid for Alexandrov spaces.
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For instance, we have the following generalization of the main result in Fukaya and

Yamaguchi [FY1].

Theorem 0.7. — There exists a positive number εn such that if X is an n-

dimensional compact Alexandrov space with curvature ≥ −1 and diam(X) < εn,

then its fundamental group contains a nilpotent subgroup of finite index.

The basic idea of the proof of Theorem 0.2 and the organization of the present

paper is as follows. In section 1, after recalling some basic results in [BGP], we study

a neighborhood of a point with singularities of small size. Such a neighborhood has

nice properties similar to those of a small neighborhood in a Riemannian manifold.

The proof of Theorem 0.2 starts from Section 2. We construct an embedding fX :

X → L2(X) and a map fM : M → L2(X) by using distance functions, where L2(X)

is the Hilbert space consisting of all L2-functions on X . Similar constructions were

made in [GLP],[K],[Fu1,2] and [Y] in the case where both X and M are smooth

Riemannian manifolds. However, in our case, there appear some difficulties in proving

the existence of a tubular neighborhood of fX(X) in L2(X) because fX(X) is just a

Lipschitz manifold. Of course a tubular neighborhood of fX(X) does not exist in the

exact sense because of singularities of X . To overcome this difficulty, we generalize

the notion of tubular neighborhood. First, we show that the image of the directional

derivative dfX of fX at each point p ∈ X can be approximated by an n-dimensional

subspace Πp in L2(X) because of the small size of singularities of X . Thus, a small

neighborhood of fX(p) in fX(X) is approximated by the n-plane fX(p) + Πp. This

fact is used in Section 3, a main part of the paper, to construct a smooth map ν of

a neighborhood of fX(X) into the Grassmann manifold consisting of all subspaces in

L2(X) of codimension n such that ν is almost perpendicular to fX(X). The point is

to evaluate the norm of the gradient of ν in terms of apriori constants, which makes

it possible to prove that ν actually provides a tubular neighborhood of fX(X) in the

generalized sense, and to estimate the radius of the tubular neighborhood in terms of

given constants. This idea is also effective in studying the projection π : fM (M) →
fX(X) along ν. It turns out that π is locally Lipschitz continuous with Lipschitz

constant close to one and that it is almost isometric in the directions almost parallel

to fX(X). In Section 4, we show that the composed map f = f−1
X ◦ π ◦ fM :M → X

is an almost Lipschitz submersion as required. The proof of Theorem 0.7 is given
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in section 5. Its machinery is the same as that in [FY1] except for the induction

procedure, which is carried out after deriving the property of the “fibre” of f as

described in Remark 0.3. In the Appendix, we discuss the relative volume comparison

for Alexandrov spaces that is of Bishop and Gromov type.

The author would like to thank K. Fukaya, G. Perelman and U. Abresch for

helpful discussions.
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1. PROPERTIES OF A NEIGHBORHOOD OF A STRAINED POINT

First of all, we recall some basic facts on Alexandrov spaces. We refer the reader

to [BGP] for details.

Let X be a locally compact complete Alexandrov space with curvature ≥ k. For
x, y, z ∈ X , let ∆(x, y, z) denote a geodesic triangle with sides xy, yz and zx. We also

denote by ∆̃(x, y, z) a geodesic triangle in the simply connected surface M(k) with

constant curvature k, with the same side lengths as ∆(x, y, z). The angle between

xy and xz is denoted by � yxz, and the corresponding angle of ∆̃(x, y, z) by ˜� yxz.
Two minimal geodesics emanating from a point are by definition equivalent if one is

a subarc of the other. For p ∈ X , let Σ′
p denote the set of all equivalence classes of

minimal geodesics starting from p. The space of directions Σp at p is the completion

of Σ′
p with respect to the angle distance. We denote by x′ the set consisting of

all directions represented by minimal geodesics joining p to x. If ξ ∈ x′, we use the

familiar notation exp tξ to denote the minimal geodesic px parametrized by arclength.

From now on, all geodesics are assumed to have unit speed unless otherwise stated.

The following theorem, which corresponds to the Toponogov comparison theorem

in Riemannian geometry, is of basic importance in the geometry of Alexandrov spaces.

Theorem 1.1. ([BGP, 4.2]) — If X has curvature ≥ k, then

(1.1.1) for any x, y, z ∈ X , there is a triangle ∆̃(x, y, z) in M(k) such that each

angle of ∆̃(x, y, z) is not less than the corresponding one of ∆(x, y, z).

In the case where k > 0 and the perimeter of ∆(x, y, z) is less than 2π/
√
k, such

a triangle is uniquely determined up to isometry.
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(1.1.2) — Suppose that |xy| = |x̃ỹ|, |xz| = |x̃z̃| for x, y, z ∈ X , x̃, ỹ, z̃ ∈ M(k),

and that � yxz = � ỹx̃z̃. Then |yz| ≤ |ỹz̃|.

In [BGP], (1.1.1) is proved in the case when the perimeter is less than 2π/
√
k.

Then, the rest follows along the same line as the Toponogov comparison theorem (cf.

[CE]).

Next, we briefly discuss measure of metric balls. It is quite natural to expect

that the curvature assumption should influence on it. From now on, we assume

that X has finite Hausdorff dimension, denoted by n. For r > 0, bnk (r) denotes the

volume of a metric r-ball in the n-dimensional simply connected space Mn(k) with

constant curvature k. We fix p ∈ M and p̄ ∈ Mn(k), and put Bp(r) = Bp(r,X) =

{x ∈ X ||px| < r}.

Lemma 1.2. — There exists an expanding map ρ : Bp(r) → Bp̄(r).

Proof. We show by induction on n. Since Σp has curvature ≥ 1 and diameter

≤ π, we have an expanding map I : Σp → Sn−1 = Σp̄. For every x ∈ Bp(r), put

ρ(x) = exp p̄|px|I(ξ), where ξ is any element in x′. Theorem 1.1.2 then shows that ρ

is expanding.

Let Vn denote the Hausdorff n-measure. Lemma 1.2 immediately implies

(1.3) Vn(Bp(r)) ≤ bnk (r) .

In the Appendix, we shall discuss the equality case in (1.3) and relative volume

comparison.

A system of pairs of points (ai, bi)mi=1 is called an (m, δ)-strainer at p if it satisfies

the following conditions:

˜� aipbi > π − δ , |˜� aipbi − π/2| < δ ,
|˜� bipbj − π/2| < δ , |˜� aipbj − π/2| < δ (i = j) .

The number min1≤i≤m{|aip|, |bip|} is called the length of the strainer (ai, bi). It should

be remarked that one can make the length of (ai, bi) as small as one likes by retaking

strainer on minimal geodesics from p to ai, bi.
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From now on, we assume that X has curvature ≥ −1 for simplicity. For n and

µ0 > 0 we use the symbol τ(δ, . . . , ε) to denote a positive function depending only on

n, µ0, δ, . . . , ε satisfying limδ,...,ε→0 τ(δ, . . . , ε) = 0.

A surjective map f : X→Y is called an ε-almost isometry if ||f(x)f(y)|/|xy|−1|
< ε for all x, y ∈ X .

Theorem 1.4 ([BGP, 10.4]). — There exists δn > 0 satisfying the following. Let

(ai, bi)ni=1 be an (n, δ)-strainer at p with length ≥ µ0, δ ≤ δn. Then, the map f :

X → Rn defined by f(x) = (|a1x|, . . . , |anx|) provides a τ(δ, σ)-almost isometry of a

metric ball Bp(σ) onto an open subset of Rn, where σ � µ0.

A system (Ai, Bi)mi=1 of pairs of subsets in an Alexandrov space Σ with curvature

≥ 1 is called a global (m, δ)-strainer if it satisfies

|ξiηi| > π − δ , ||ξiξj | − π/2| < δ ,
||ξiηj | − π/2| < δ , ||ηiηj | − π/2| < δ (i = j)

for every ξi ∈ Ai and ηi ∈ Bi. It should be remarked that if (ai, bi)mi=1 is an (m, δ)-

strainer at p ∈ X , then (a′i, b
′
i)
m
i=1 is a global (m, δ)-strainer of Σp. The result for

global strainers, corresponding to Theorem 1.4 is the following (compare [OSY]).

Theorem 1.5 ([BGP, 10.5]). — There exists a positive number δn satisfying the

following. Let Σ be an Alexandrov space with curvature ≥ 1 and with Hausdorff

dimension n − 1. Suppose that Σ has a global (n, δ)-strainer (Ai, Bi)ni=1 for δ ≤ δn.

Then,

(1.5.1) |
∑n

i=1 cos
2 |Aiξ| − 1| < τ(δ) for every ξ ∈ Σ,

(1.5.2) the map f of Σ to the unit (n− 1)-sphere Sn−1 ⊂ Rn defined by

f(ξ) =
(cos |Aiξ|)
|(cos |Aiξ|)|

is a τ(δ)-almost isometry.

As a result of Theorem 1.5, it turns out that the space of directions Σp at an

(n, δ)-strained point p in X is τ(δ)-almost isometric to Sn−1.
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Let f : X → R be a Lipschitz function. The directional derivative of f in a

direction ξ ∈ Σ′
p is defined as

df(ξ) = lim
t↓0

f(exp tξ)− f(p)
t

,

if it exists. Then df extends to a Lipschitz function on Σp.

Proposition 1.6 ([BGP, 12.4]). — If f is a distance function from a fixed point

p ∈ X ,

df(ξ) = − cos |ξp′|

for every x ∈ X and ξ ∈ Σx.

We now represent some basic properties of (n, δ)-strained points of X .

Lemma 1.7. — LetX ,p and δ, σ be as in Theorem 1.4. Then, for every q, r, s ∈ Bp(σ)

with 1/100 ≤ |qr|/|qs| ≤ 1, we have | � rqs− ˜� rqs| < τ(δ, σ).

Proof. This is an immediate consequence of Theorem 1.4.

Lemma 1.8. — Let X ,p and δ, σ be as in Theorem 1.4. Then for every q ∈ Bp(σ/2)

and ξ ∈ Σq, there exist points r, s ∈ Bp(σ) such that

(1.8.1) |qr|, |qs| ≥ σ/4 ,

(1.8.2) |ξr′| < τ(δ, σ) ,

(1.8.3) ˜� rqs > π − τ(δ, σ) .

Proof. For ξ ∈ Σq and a fixed θ > 0, let us consider the set A = {x = exp tη | |ξη| ≤
θ, σ/4 ≤ t ≤ σ/2}. For q̄ ∈ Mn(−1), let I : Σq → Σq̄ and ρ : Bq(σ/2) → Bq̄(σ/2) be

as in Lemma 1.2. Now suppose that A is empty. Then ρ(Bq(σ/2)) ⊂ Bq̄(σ/2)− Ã,
where Ã = {x = exp tη | |I(ξ)η| ≤ θ, σ/4 ≤ t ≤ σ/2}. It follows from (1.3) that

Vn(Bq(σ/2))
bn−1(σ/2)

≤ bn−1
1 (π)− bn−1

1 (θ)
bn−1
1 (π)

+
bn−1(σ/4)b

n−1
1 (θ)

bn−1(σ/2)b
n−1
1 (π)

.

On the other hand since Bq(σ/2) is τ(δ, σ)-almost isometric to B(σ/2),

Vn(Bq(σ/2))
bn−1(σ/2)

> 1− τ(δ, σ) .
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Therefore θ < τ(δ, σ). Thus we can find r satisfying (1.8.1) and (1.8.2). For (1.8.3) it

suffices to take s such that |f(q)f(s)| = σ/2 and � f(r)f(q)f(s) = π.

Lemma 1.9. — Let X ,p,δ, σ be as in Theorem 1.4. Then for every q with σ/10 ≤
|pq| ≤ σ and for every x with |px| � σ, we have

| � xpq − ˜� xpq| < τ(δ, σ, |px|/σ) .

Proof. By Lemma 1.8, we can take r such that |pr| ≥ σ/4 and ˜� qpr > π − τ(δ, σ).
Then the lemma follows from [BGP, Lemma 5.6].

We have just verified that the constant µ0 or σ plays a role similar to the injec-

tivity radius at p.
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2. EMBEDDING X INTO L2(X)

From now on, we assume that X is an n-dimensional complete Alexandrov space

with curvature ≥ −1 satisfying

(2.1) δ-str.rad (X) > µ0

for a fixed µ0 > 0 and a small δ > 0. By definition, for every p ∈ X there exists an

(n, δ)-strainer (ai, bi) at p with length > µ0. Let σ be a positive number with σ � µ0.

Then, by Lemmas 1.7 and 1.8, we may assume that for every p ∈ X

(2.2.1) — there exists an (n, δ)-strainer at every point in Bp(σ),

(2.2.2) — for every q ∈ Bp(σ) and for every ξ ∈ Σq, there exist points r, s such

that |qr| ≥ σ, |qs| ≥ σ and |ξr′| < τ(δ, σ), ˜� rqs > π − τ(δ, σ),

(2.2.3) — | � rqs−˜� rqs| < τ(δ, σ), for any q, r, s ∈ Bp(10σ) with 1/100 ≤ |qr|/|qs|
≤ 1.

Let L2(X) denote the Hilbert space consisting of all L2 functions on X with

respect to the Hausdorff n-measure. In this section we study the map fX : X → L2(X)

defined by

fX(p)(x) = h(|px|) ,

where h : R → [0, 1] is a smooth monotone non-increasing function such that

(2.3.1) h = 1 on (−∞, 0], h = 0 on [σ,∞).

(2.3.2) h′ = 1/σ on [2σ/10, 8σ/10].

(2.3.3) −σ2 < h′ < 0 on (0, σ/10].

(2.3.4) |h′′| < 100/σ2.
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Remark that fX is a Lipschitz map.

From now on, we use c1, c2, . . . to express positive constants depending only on

the dimension n. First we remark that by Theorem 1.4 there exist constants c1 and

c2 such that for every p ∈ X ,

(2.4) c1 <
Vn(Bp(σ))
bn0 (σ)

< c2 .

We next consider the directional derivatives of fX . For ξ ∈ Σp, we put

(2.5) dfX(ξ)(x) = −h′(|px|) cos |ξx′|, (x ∈ X) .

Since x → |ξx′| is upper semicontinuous, dfX(ξ) is an element of L2(X), and by

Lebesgue’s convergence theorem and Proposition 1.6,

dfX(ξ) = lim
t↓0

fX(exp tξ)− fX(p)
t

in L2(X) .

From now on, we use the norm of L2(X) with normalization

|f |2 =
σ2

b(σ)

∫
X

|f(x)|2dµ(x) ,

where b(σ) = bn0 (σ) and dµ denotes the Hausdorff n-measure.

Lemma 2.6. — There exist positive numbers c3 and c4 such that for every p ∈ X
and ξ ∈ Σp,

c3 < |dfX(ξ)| < c4 .

Proof. By (2.2.2) take q such that |pq| ≥ σ/2 and |ξq′| < τ(δ, σ). Then, it follows

from (2.2.3) that for every x ∈ Bq(σ/100), � xpq < 1/20 and hence |ξx′| < 1/10.

Then, the lemma follows from (2.3), (2.4) and (2.5).

Lemma 2.7. — There exist positive numbers c5 and c6 such that, for every p, q ∈ X
with |pq| ≤ σ,

c5 <
|fX(p)− fX(q)|

|pq| < c6 .

In particular fX is injective.
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Proof. By Lemma 2.6, we can take c6 = c4. Let . = |pq|. By (2.2.2) we can take

a (1, τ(δ, σ))-strainer (p, r) at q with |qr| = σ/2. Let c : [0, .] → X be a minimal

geodesic joining q to p. Then by (2.2.3), � rc(t)x < 1/10 for every x in Br(σ/100). It

follows that

h(|px|)− h(|qx|) =
∫ �

0

d

dt
h(|c(t)x|) dt

=
∫ �

0

h′(|c(t)x|) cos � rc(t)x dt

>
.

σ
cos(1/10) ,

which implies
|fX(p)− fX(q)|

|pq| >
√
c1 cos(1/10) > 0 .

Let Kp = K(Σp) be the tangent cone at p. From definition, Σp can be considered

as a subset of Kp. The map dfX : Σp → L2(X) naturally extends to dfX : Kp →
L2(X). Next, we show that dfX(Kp) can be approximated by an n-dimensional

subspace of L2(X).

For a global (n, δ)-strainer (ξi, ηi) of Σp, let Πp be the subspace of L2(X) gener-

ated by dfX(ξi).

Lemma 2.8. — For any ξ ∈ Σp,

|dfX(ξ)−
n∑

i=1

ci dfX(ξ)| < τ(δ) ,

where ci = cos |ξiξ|. In particular, dfX(ξ1), . . . , dfX(ξn) are linearly independent.

Proof. Let φ : Σp → Sn−1 be the τ(δ) almost isometry defined by

φ(ξ) = (cos |ξiξ|)/|(cos |ξiξ|)| .

(See Theorem 1.5). Using (1.5.1), one can verify

| cos |ξη| −
n∑

i=1

ci cos |ξiη|| < τ(δ) ,
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for every η ∈ Σp. It follows that

|dfX(ξ)−
n∑

i=1

ci dfX(ξi)|2

=
σ2

b(σ)

∫
X

(h′(|px|))2(cos |ξx′| −
n∑

i=1

ci cos |ξix′|)2 dµ(x)

< τ(δ) .

Next, suppose that
∑
αi dfX(ξi) = 0 for a nontrivial αi. If we assume that

∑
α2
i = 1,

then there exists a ξ ∈ Σp such that φ(ξ) = (α1, . . . , αn). It turns out that

|dfX(ξ)| = |dfX(ξ)−
∑

αi dfX(ξi)| < τ(δ) ,

which contradicts Lemma 2.6 if δ is sufficiently small.

Thus, dfX(Kp) can be approximated by the n-dimensional subspace Πp. In view

of Lemma 2.8, one may say that dfX is almost linear.
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3. CONSTRUCTION OF A TUBULAR NEIGHBORHOOD

In this section, we construct a tubular neighborhood of fX(X) in L2(X). In the

case where X is a smooth Riemannian manifold with bounded curvature, Katsuda

[K] studied a tubular neighborhood of a smooth embedding of X into a Euclidean

space by using an estimate on the second fundamental form. However, in our case,

fX(X) is a Lipschitz manifold. Hence, even the existence of a tubular neighborhood

in a generalized sense is a priori nontrivial.

We begin with a lemma.

Lemma 3.1. — For any p, q ∈ X , dL
2

H (dfX(Σp), dfX(Σq)) < τ(δ, σ, |pq|/σ), where

dL
2

H denotes the Hausdorff distance in L2(X).

Proof. By (2.2.2), for every ξ ∈ Σq there exists r satisfying |qr| ≥ σ and |ξr′| < τ(δ, σ).
We put ξ1 = r′ ∈ Σp. By using (2.2.3), we then have ||ξx′| − |ξ1x′|| < τ(δ, σ, |pq|/σ)
for all x with σ/10 ≤ |px| ≤ σ. It follows that |dfX(ξ)− dfX(ξ1)| < τ(δ, σ, |pq|/σ).

We put Ñp = fX(p)+Π⊥
p , where ⊥ denotes the orthogonal complement in L2(X).

Lemma 3.2. — For any p, q ∈ X and ξ in q′ ⊂ Σp,

(3.2.1)
∣∣∣∣fX(q)− fX(p)

|qp| − dfX(ξ)
∣∣∣∣ < τ(δ, σ, |pq|/σ) .

In particular, fX(Bp(σ1)) ∩ Ñp = {fX(p)} if σ1/σ is sufficiently small.

Proof. By Lemma 1.9, | � xpq− ˜� xpq| < τ(δ, σ, |pq|/σ) for all x with σ/10 ≤ |px| ≤ σ.
We put t = |pq|. Since ||xq| − |xp|+ t cos ˜� xpq| < tτ(t/σ), it follows that

(3.3) ||xq| − |xp|+ t cos |ξx′|| < t τ(δ, σ, t/σ) ,
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which yields (3.2.1). Since (3.2.1) shows that the vector fX(q)− fX(p) is transversal

to Ñp, we obtain fX(Bp(σ1)) ∩ Ñp = {f(p)} for sufficiently small σ1/σ.

For q ∈ Bp(σ1) and σ1 � σ, we put

N̂q = fX(q) + Π⊥
p .

Then, Lemmas 2.8, 3.1 and 3.2 imply the following.

Lemma 3.4. — We have fX(Bp(σ1)) ∩ N̂q = {fX(q)} for all q ∈ Bp(σ1).

Let Gn be the infinite-dimensional Grassmann manifold consisting of all n-

dimensional subspaces in L2(X). Let {pi} be a maximal set in X such that |pipj | ≥
σ1/10, (i = j), and Ti : Bi → Gn be the constant map, Ti(x) = Πpi

, where

Bi = BfX(pi)(c6σ1/10, L2(X)). Notice that {Bi} covers fX(X) and that the mul-

tiplicity of the covering has a uniform bound depending only on n. (See Lemma 1.2,

or Proposition A.4).

Our next step is to take an average of Ti in Gn to obtain a global map T : ∪Bi →
Gn. We need the notion of angle on Gn. The space Gn has a natural structure of

Banach manifold. The local chart at an element T0 ∈ Gn is given as follows. Let N0

be the orthogonal complement of T0, and L(T0, N0) the Banach space consisting of all

homomorphisms of T0 into N0, where the norm of L(T0, N0) is the usual one defined

by

‖f‖ = sup
0 �=x∈T0

|f(x)|
|x| , (f ∈ L(T0, N0)) .

We put V = {T ∈ Gn |T ∩N0 = {0}}. Then, p(T ) = T0 for every T ∈ V , where p :
L2(X) → T0 is the orthogonal projection. Hence, T is the graph of a homomorphism

ϕT0(T ) ∈ L(T0, N0). Thus, we have a bijective map ϕT0 : V → L(T0, N0), which

imposes a Banach manifold structure on Gn.

Under the notation above, the angle � (T0, T1) between T0 and T1 (∈ Gn) is given

by

� (T0, T1) =

{
Arc tan‖ϕT0(T )‖ if T1 ∩ T⊥

0 = {0}

π/2 if T1 ∩ T⊥
0 = {0} .
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It is easy to check that the angle gives a distance on Gn and that the topology of Gn

coincides with that induced from angle.

From now on, we use the simpler notation τ to denote a positive function of type

τ(δ, σ, σ1/σ).

An estimate for the second fundamental form in case of X being a smooth Rie-

mannian manifold can be replaced by the following more elementary lemma. We put

U = ∪Bi.

Lemma 3.5. — There exists a smooth map T : U → Gn such that

(3.5.1) � (T (x), Ti(x)) < τ if x ∈ Bi ,

(3.5.2) � (T (x), T (y)) < C|x− y|, where C = τ/σ1 .

Proof. Let {ρi} be a partition of unity associated with {Bi} such that |∇ρi| ≤
100/c6σ1. First, put T = T1 on B1 and extend it on B1 ∪ B2 as follows. Let

{v1, . . . , vn} and {w1, . . . , wn} be orthonormal bases of T1 and T2 respectively such

that |vi − wi| < τ . Put ui(x) = ρ1(x)vi + (1− ρ1(x))wi, and let T (x) be the n-plane

generated by u1(x), . . . , un(x), (x ∈ B1 ∪B2). Then, {u1(x), . . . , un(x)} is a τ -almost

orthonormal basis of T (x) in the sense that

| < ui(x), uj(x) > −δij | < τ .

Notice that � (T (x), Ti) < τ if x ∈ Bi (i=1,2), and |∇ui| < τ/σ1 .

Suppose that T (x) and a τ -almost orthonormal basis {v1(x), . . . , vn(x)} of T (x)

are defined for x ∈ Uj = ∪j
i=1Bi in such a way that

(3.6.1) � (T (x), Ti) < τ if x ∈ Bi, (1 ≤ i ≤ j) ,

(3.6.2) |∇vi| < τ/σ1.

We extend them on Uj+1 as follows. Let {w1, . . . , wn} be an orthonormal basis of

Tj+1 such that |vi(x)wi| < τ on Uj ∩Bj+1. Now, we put

ui(x) =

(
j∑

α=1

ρα(x)

)
vi(x) +

(
1−

j∑
α=1

ρα(x)

)
wi ,
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and let T (x) be the subspace genereted by ui(x). Then, it is easy to check that T (x)

and ui(x) satisfy the properties of (3.6). Thus, by induction, we have a smooth map

T : U → Gn and a τ -almost orthonormal frame ui(x) for T (x) satisfying (3.6). It

follows from (3.6.2)

� (T (x), T (y)) ≤ constn max
1≤i≤n

|ui(x)− ui(y)|

≤ constn max
1≤i≤n

|∇ui||x− y|

≤ (τ/σ1)|x− y| .

Let G∗
n be the Grassmann manifold consisting of all subspaces of codimension n in

L2(X), and ν : U → G∗
n the dual of T , ν(x) = T (x)⊥. The angle � (ν(x), ν(y)) is also

defined in a way similar to � (T (x), T (y)). Remark that the equality � (ν(x), ν(y)) =
� (T (x), T (y)) holds. We put

Nx = x+ ν(x) .

By using (3.5.1), we have the following lemma in a way similar to Lemma 3.2.

Lemma 3.7. — For every p ∈ X and q ∈ Bp(σ1),

fX(Bp(σ1)) ∩NfX(q) = {fX(q)} .

For c > 0, we put

N (c) = {(x, v)|x ∈ fX(X), v ∈ ν(x), |v| < c} .

Lemma 3.8. — There exists a positive number κ = constn σ1 such that N (κ)

provides a tubular neighborhood of fX(X). Namely,

(3.8.1) x1 + v1 = x2 + v2 for every (x1, v1) = (x2, v2) ∈ N (κ) ;

(3.8.2) the set U(κ) = {x+ v|(x, v) ∈ N (κ)} is open in L2(X).

Proof. Suppose that x1 + v1 = x2 + v2 for xi = fX(pi) and vi ∈ ν(xi). If |p1p2| > σ1

and |vi| ≤ c5σ1/2, a contradiction would immedately arise from Lemma 2.7. We
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consider the case |p1p2| ≤ σ1. Put K = Nx1 ∩ Nx2 , and let y ∈ K and z ∈ Nx2 be

such that |x1y| = |x1K|,|x1y| = |yz| and that � x1yz = � (x1 −y,Nx2) ≤ � (Nx1 , Nx2).

Then, Lemma 3.1 implies that � x1yz < τ . It follows from the choice of z that

| � (x1−z,Nx2)−π/2| < τ . On the other hand, the fact � (x2−x1, T (x1)) < τ (Lemma

3.2) also implies that | � (x2 − x1, Nx2) − π/2| < τ . It follows that |x2z| < τ |x1x2|.
Putting . = |yx1| = |yz| and using Lemma 3.5, we then have

|x1z| ≤ . � x1yz

≤ . � (T (x1), T (x2))

≤ .C|x1x2|, C = τ/σ1 .

Thus, we obtain . ≥ (1− τ)/C ≥ σ1/τ as required.

The proof of (3.8.2) follows from (3.8.1): For any y ∈ U(κ) with y ∈ Nx0 ,

x0 ∈ fX(X) and for any z ∈ L2(X) close to y, let T0 be the n-plane through z and

parallel to T (x0), and y0 the intersection point of T0 and Nx0 . If x ∈ fX(X) is near

x0, then Nx meets T0 at a unique point, say α(x). Using (3.8.1), we can observe that

α is a homeomorphism of a neighborhood of x0 in fX(X) onto a neighborhood of y0

in T0. Hence z ∈ U(κ) as required.

Remark 3.9. — The proof of Lemma 3.8 suggests the possibility that one can take

the constant κ in the lemma such as κ = σ1/τ . In fact we can get the sharper estimate

by a bit more refined argument. However, we omit the proof because we do not need

the estimate in this paper.

Next, let us study the properties of the projection π : N (κ) → fX(X) along ν.

By definition, π(x) = y if x ∈ Ny and y ∈ fX(X).

Lemma 3.10. — The map π : N (κ) → fX(X) is locally Lipschitz continuous. More

precisely, if x, y ∈ N (κ) are close each other and t = |xπ(x)|, then

(3.10.1) |π(x)π(y)|/|xy|< 1 + τ + τt/σ1 ,

(3.10.2) if | � (y − x,Nπ(x))− π/2| < τ , then

|(y − x)− (π(y)− π(x))| < (τ + τt/σ1)|xy| .
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Proof. First we prove (3.10.2). Let N be the affine space of codimension n parallel to

Nπ(x) and through y. Let y1 and y2 be the intersections of Nπ(y) and N with Tπ(x)

respectively. Let z be the point in K = N ∩Nπ(y) such that |y2z| = |y2K|, and y3 ∈
Nπ(y) the point such that |y2z| = |y3z| and � y2zy3 = � (y2 − z,Nπ(y)) ≤ � (N,Nπ(y)).

An argument similar to that in Lemma 3.8 yields that

(3.11.1) |y1y3| < τ |y1y2| ,

(3.11.2) |y2y3|/|zy2| ≤ � (ν(π(x)), ν(π(y)))≤ (τ/σ1)|π(x)π(y)| .

It follows that |y1y2| < (τ/σ1)t|π(x)π(y)|. Furthermore the assumption implies

|(π(x)− y2)− (x− y)| < τ |xy|. Therefore, we get

|(π(x)− y1)− (x− y)| ≤ |(π(x)− y1)− (π(x)− y2)|+ |(π(x)− y2)− (x− y)|

≤ |y1y2|+ τ |xy|

< (τ/σ1)t|π(x)π(y)|+ τ |xy| .

On the other hand, since � y1π(x)π(y) < τ ,

|(π(x)− π(y))− (π(x)− y1)| < τ |π(x)π(y)| .

Combining the two inequalities, we obtain that

|(π(x)− π(y))− (x− y)| < (τ + C′t)|π(x)π(y)|+ τ |xy| ,

from which (3.10.2) follows.

For (3.10.1), take y0 ∈ Nπ(y) such that |xy0| = |xNπ(y)|. Then, (3.10.2) implies

|π(x)π(y)|
|xy| ≤ |π(x)π(y)|

|xy0|
≤ 1 + τ + τt/σ1 .
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4. f IS AN ALMOST LIPSCHITZ SUBMERSION

In this section, we shall prove Theorem 0.2.

Let M be an Alexandrov space with curvature ≥ −1. We suppose dH(M,X) < ε

and ε � σ1. Let ϕ : X → M and ψ : M → X be ε-Hausdorff approximations such

that |ψϕ(x), x| < ε, |ϕψ(x), x| < ε, where we may assume that ϕ is measurable. Then,

the map fM :M → L2(X) defined by, for x ∈ X

fM (p)(x) = h(|pϕ(x)|) ,

should have the properties similar to those of fX . We begin with a lemma.

Lemma 4.1. — We have fM (M) ⊂ N (c7ε) .

Proof. This follows immediately from

(4.2) |fM (p)− fX(ψ(p))| < c7ε .

By Lemmas 3.8 and 4.1, the map f = f−1
X ◦ π ◦ fM :M → X is well defined.

Lemma 4.3. — We have d(f(p), ψ(p)) < c8ε.

Proof. It follows from (4.2) that |fX(f(p))− fX(ψ(p))| < 3c7ε. Since we may assume

that |f(p)ψ(p)| < σ, we have |f(p)ψ(p)| < 3c7ε/c5 by Lemma 2.7.

It follows from Lemmas 3.10 and 4.3 that f is a Lipschitz map.

Similarly to (2.5), dfM (ξ) ∈ L2(X), ξ ∈ Σp, is given by

(4.4) dfM (ξ)(x) = −h′(|pϕ(x)|) cos |ξϕ(x)′| .
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Lemma 4.5. — For every p, q ∈M take ξ in q′ ⊂ Σp. Then∣∣∣∣fM (q)− fM (p)
|qp| − dfM(ξ)

∣∣∣∣ < τ(δ, σ, ε/σ, |pq|/σ) .
Proof. For every x with σ/10 ≤ |px| ≤ σ, take y ∈ X such that ˜� ψ(x)ψ(p)y >

π− τ(δ, σ). Since ˜� xpϕ(y) > π− τ(δ, σ)− τ(ε/σ), it follows from an argument similar

to Lemma 3.2 that ||qx| − |px|+ |qp| cos |ξx′|| < |qp|τ(δ, σ, ε/σ, |pq|/σ), which implies

the required inequality.

We now fix p ∈M , and put p̄ = f(p) and

Hp = {ξ | ξ ∈ x′ ⊂ Σp, |px| ≥ σ/10} ,

which can be regarded as the set of “horizontal directions” at p.

Lemma 4.6. — For every ξ̄ ∈ Σ′
p̄, there exists q ∈M with |pq| ≥ σ such that

|f(exp tξ), exp tξ̄| < tτ(δ, σ, σ1/σ, ε/σ1) ,

for every ξ in q′ ⊂ Σp and sufficiently small t > 0.

Conversely, for every ξ ∈ Hp, there exists ξ̄ ∈ Σ′
p̄ satisfying the above inequality.

In other words, the curve f(exp tξ) is almost tangent to exp tξ̄.

For the proof of Lemma 4.6, we need

Comparison Lemma 4.7. — Let x, y, z be points in M, and x̄, ȳ, z̄ points in X

such that σ/10 ≤ |xy|, |yz| ≤ σ. Suppose that |ψ(x)x̄| < τ(ε), |ψ(y)ȳ| < τ(ε) and

|ψ(z)z̄| < τ(ε). Then, for every minimal geodesics xy, yz, and x̄ȳ, ȳz̄, we have

| � xyz − � x̄ȳz̄| < τ(δ, σ, ε/σ) .

Proof. By (2.2.2), we take a point w̄ ∈ X such that

(4.8) ˜� z̄ȳw̄ > π − τ(δ, σ)
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and |ȳw̄| ≥ σ. Put w = ϕ(w̄). Then, Theorem 1.1 and (2.2.3) imply that

� xyz > � x̄ȳz̄ − τ(δ, σ)− τ(ε/σ) ,(4.9.1)

� xyw > � x̄ȳw̄ − τ(δ, σ)− τ(ε/σ) .(4.9.2)

Since (4.8) implies

| � zyw − π| < τ(δ, σ) + τ(ε/σ) ,

(4.9.1) and (4.9.2) yield the required inequality.

Proof of Lemma 4.6. Take q̄ ∈ X such that |p̄q̄| ≥ σ and |ξ̄q̄′| < τ(δ, σ). Put q = ϕ(q̄).
For any ξ in q′ ⊂ Σp let c(t) = exp tξ, c̄(t) = exp tξ̄. By using (2.3),(2.5),(4.4) and

Lemma 4.7 we get |dfM(ξ)− dfX(ξ̄)| < τ(δ, σ, ε/σ). Lemmas 3.2 and 4.5 then imply∣∣∣∣fM (c(t))− fM (p)
t

− fX(c̄(t))− fX(q)
t

∣∣∣∣ < τ(δ, σ, ε/σ) ,
for sufficiently small t > 0. In particular, fM (c(t)) − fM (p) is almost perpendicular

to Nπ(fM(p)). It follows from (3.10.2) that∣∣∣∣fM (c(t))− fM (p)
t

− π ◦ fM (c(t))− π ◦ fM (p)
t

∣∣∣∣ < τ(δ, σ, σ1/σ, ε/σ1) ,

and hence |π ◦ fM (c(t)) − fX(c̄(t)) | < tτ(δ, σ, σ1/σ, ε/σ1). Lemma 2.7 then implies

the required inequality.

Similarly, we have the second half of the lemma.

From now on, we use the simpler notation τε to denote a positive function of type

τ(δ, σ, σ1/σ, ε/σ1).

The following fact follows from Lemma 4.6. For all ξ ∈ Hp and small t > 0,

(4.10)
∣∣∣∣ |f(exp tξ), p̄|t

− 1
∣∣∣∣ < τε .

Lemma 4.11. — For every p, q ∈M , we have∣∣∣∣ |f(p)f(q)||pq| − cos θ
∣∣∣∣ < τε ,
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where θ = |ξHp|, ξ = q′ ∈ Σp.

For the proof of Lemma 4.11, we need two sublemmas.

Sublemma 4.12. — dH(Hp, S
n−1) < τε.

Proof. For each ξ ∈ Hp let ξ̄ be an element of Σp̄ as in the second half of Lemma 4.6,

and let χ : Hp → Σp̄ be the map defined by χ(ξ) = ξ̄. By Lemma 4.7, ||χ(ξ1)χ(ξ2)| −
|ξ1ξ2|| < τε, and Lemma 4.6 shows that χ(Hp) is τε-dense in Σq. Thus χ is a τε-

Hausdorff approximation as required.

Sublemma 4.13. — For ξ ∈ Σ′
p, let θ = |ξHp| and ξ1 ∈ Hp be such that |θ−|ξξ1|| <

τε. Then,

|f(exp tξ), f(exp t cos θξ1)| < tτε ,

for every sufficiently small t > 0.

Proof. Since Σp has curvature ≥ 1, we have an expanding map ρ : Σp → Sm−1 with

m = dimM . First, we show that ||ρ(v1)ρ(v2)| − |v1v2|| < τε for every v1, v2 ∈ Hp.

Let v∗1 ∈ Hp be such that |v1v∗1 | > π − τε. Since ρ is expanding, we obtain that

(4.14) ||v1v2| − |ρ(v1)ρ(v2)|| < τε, ||v∗1v2| − |ρ(v∗1)ρ(v2)|| < τε .

This argument also implies that ρ(Hp) is Hausdorff τε-close to a totally geodesic

(n− 1)-sphere Sn−1 in Sm−1. Let ζ : Hp → Sn−1 ⊂ Sm−1 be a τε-Hausdorff approx-

imation such that d(ζ(v), ρ(v)) < τε for all v ∈ Hp. For a given ξ ∈ Σp, an argument

similar to (4.13) implies that ||ξv| − |ρ(ξ)ζ(v)|| < τ for all v ∈ Hp. Remark that, for

any y with σ/10 ≤ |py| ≤ σ, an elementary geometry yields

cos |ρ(ξ)ζ(y′)| = cos |ρ(ξ)η| cos |ηζ(y′)| ,

where η is an element of Sn−1 such that |ρ(ξ)η| = |ρ(ξ)Sn−1|. It follows that for
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sufficiently small t > 0

|fM (exp tξ)− fM (exp t cos ξ1)|2/t2

=
σ2

b(σ)

∫
X

(
h(|exp tξ, ϕ(x)|)− h(|pϕ(x)|)

t

−h(exp t cos θξ1, ϕ(x)|)− h(|pϕ(x)|)
t

)2

dµ(x)

≤ σ2

b(σ)

∫
X

(h′(|pϕ(x)|))2(cos |ξϕ(x)′| − cos θ cos |ξ1ϕ(x)′|)2 dµ(x) + τε

≤ σ2

b(σ)

∫
X

(h′)2(cos |ξϕ(x)′| − cos |ρ(ξ)ζ(ϕ(x)′)|

+ cos |ρ(ξ)η| cos |ηζ(ϕ(x)′)| − cos |ξξ1| cos |ξ1ϕ(x)′|)2 dµ(x) + τε

≤ τε .

Therefore, by Lemmas 3.10 and 2.7 we conclude the proof of the sublemma.

Proof of Lemma 4.11. Since f is a τ(ε)-Hausdorff approximation (Lemma 4.3), we

may assume that |pq| < σ2 � σ. Let c : [0, .] → M be a minimal geodesic joining p

to q where . = |pq|. By using (2.2.2), one can show that

(4.15) | � qc(t)x− � qpx| < τε ,

for every t < . and for every x ∈ M with σ/10 ≤ |px| ≤ σ. Let ξ be any element

in q′ ⊂ Σc(t), and η0 ∈ Hp such that |ξ0Hp| = |ξ0η0|. Take y such that η0 = y′,

σ/10 ≤ |py| ≤ σ and ηt in y′ ⊂ Σc(t). Put θt = � qc(t)y. It follows from Sublemma

4.13 and (4.15) that

(4.16) |f ◦ c(t+ s), f(exp s cos θ0ηt)| < τεs .

Put c̄(t) = f ◦ c(t), and take any η̄t in ψ(y)′ ⊂ Σc̄(t). Then, by Lemma 4.6,

(4.17) |f(exp s cos θ0ηt), exp s cos θ0η̄t| < τs .

By (2.2.3), we see that for every z ∈ X with σ/10 ≤ |p̄z| ≤ σ,

(4.18) | � ψ(y)c̄(t)z − � ψ(y)p̄z| < τε .
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Now, let (ai, bi) be an (n, δ)-strainer at p̄ such that |p̄ai| = σ and λ : Bp̄(σ2) → Rn

be the bi-Lipschitz map, λ(x) = (|a1x|, . . . , |anx|). Put u(t) = λ ◦ c̄(t). Combining

(4.16),(4.17) and (4.18), we get

|u̇(s)− u̇(t)| < τ, ||u̇(s)| − cos θ0| < τ ,

for almost all s, t ∈ [0, .]. Thus, we arrive at

|.u̇(s)− (λ(f(y))− λ(f(x)))|

≤
∫ �

0

|u̇(s)− u̇(t)| dt ≤ τε. .

This completes the proof.

We conclude the proof of Theorem 0.2 by showing

Lemma 4.19. — For every p ∈M and x ∈ X , there exists q ∈M such that f(q) = x

and |f(p), f(q)| ≥ (1− τε)|p, q|.

Namely, f is (1− τε)-open in the sense of [BGP1].

Proof. First we show that f is surjective. Since f is proper, f(M) is closed in X .

Suppose that there exists a point x ∈ X − f(M), and take p̄ ∈ f(M) such that

|xp̄| = |xf(M)| and put p̄ = f(p). By Lemma 4.6, for any ξ̄ in x′ ⊂ Σp̄ we would find

ξ ∈ Hp satisfying |f(exp tξ), exp tξ̄| < τεt for sufficiently small t > 0. Thus, it turns

out that |f(exp tξ), x| < |p̄x|, a contradiction.

By Lemma 4.3, we may assume that |f(p), x| < σ2. By Lemma 4.6, there exists

p1 ∈ M such that p′1 ∈ Hp and |f(p1), x| < |f(p), x| τε. Inductively, we have a

sequence {pi} such that p′i ∈ Hpi−1 and |f(pi), x| < |f(pi−1), x| τε. Since |pi, pi+1| <
(1 + τε)|f(pi), f(pi+1)| and

|f(pi), f(pi+1)| < |f(pi+1), x|+ |x, f(pi)|

< (1 + τε)|f(pi−1), x| τε

< (1 + τε)τ iε ,

we see that {pi} is a Cauchy sequence. It follows that f(q) = x for the limit point q

of {pi}, and that

|f(p), f(q)| ≥ |f(p), f(p1)| −
∞∑
i=1

|f(pi), f(pi+1)|

> (1− τε)|p, p1| − Cτε|f(p), f(q)| .
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This implies that f is (1− τε)-open.

Lemmas 4.11 and 4.19 show in particular that the fibre is not a point if

dimM > dimX . Thus, the proof of Theorem 0.2 is now complete.

Proof of Corollary 0.4. If dimM = n, then 2δ-strain radius ofM is greater than µ0/2

for sufficiently small ε > 0. Lemma 1.8 then implies that Hp is τ(δ, σ)-dense in Σp

for any p ∈ M . It follows from Lemma 4.11 that |f(x)f(y)|/|xy| − cos τ(δ, σ)| < τε.
Thus, f is a τε-almost isometry as required.

Remark 4.20. — Suppose that bothM and X have natural differentiable structures

of class C1 such that the distance functions are C1-class. In this case, we can take

a locally trivial fibre bundle of class C1 in addition as the map f . It suffices only to

replace the maps fX and fM by C1-maps defined by

fX(p)(x) = h

(
1

Vn(Bx(ε))

∫
Bx(ε)

|py| dµ(y)
)
,

fM (p)(x) = h

(
1

Vm(Bϕ(x)(ε))

∫
Bϕ(x)(ε)

|py| dµ(y)
)
.

For instance, if every point in X is an (n, 0)-strained point, then X has a natural

C1-structure ([OS]). Remark that the fibre of f is an “almost nonnegatively curved

manifold” in the sense of [Y].

By the previous remark, one can modify the main result in [O] as follows. We

denote by ed(M) the excess defined there.

Corollary 4.21. — For given m and D, d > 0, (D ≥ d), there exists a positive

number ε = εm(D, d) such that if a compact Riemannianm-manifoldM with sectional

curvature ≥ −1 satisfies

diameter(M) ≤ D, radius(M) ≥ d, ed(M) < ε ,

then there exists an Alexandrov spaceX with curvature ≥ −1 having C1 differentiable

structure and a fibration f :M → X whose fiber is an “almost nonnegatively curved

manifold”.
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In [O], Otsu constructed a smooth Riemannian manifold X ′ with a similar prop-

erty as in Corollary 4.21. Unfortunately, the lower sectional curvature bound of X ′

goes to −∞ when M changes such as ed(M) → 0.

Proof of Corollary 4.21. Suppose the corollary does not hold. Then we would have a

sequence of compact m-dimensional Riemannian manifolds (Mi) with sectional cur-

vature ≥ −1 such that diam(Mi) ≤ D, rad(Mi) ≥ d, ed(Mi) → 0 and that each Mi

does not satisfies the conclusion. Passing to a subsequence, we may assume that (Mi)

converges to an Alexandrov space X . Since ed(X) = 0, we see that the injectivity

radius of X is not less than d. Hence by [Pl], X admits a natural C1-differentiable

structure. Thus by Remark 4.20 we have a C1-fibration of Mi over X for large i, a

contradiction.

Proof of Corollary 0.6. Let A ⊂M be the set of all (n, δ)-strained points for a small

δ. By [BGP2] and [OS],M \A has measure zero. Thus, for any ε > 0, we have a finite

covering {Bj}j=1,...,N of M \ A by metric balls of radii δj < ε such that
∑

j δ
n
j < ε.

By the construction of the map f in Theorem 0.2, we have τ(εi)-almost isometries

fi : Ui → A, where Ui ⊂ Mi and εi is the Hausdorff distance between Mi and M .

Hence we see that lim infi→∞ Vn(Mi) ≥ Vn(M). On the other hand, Mi \ Ui have a

finite covering {Bi
j}j=1,...,N such that diam(Bi

j) < diam(Bj) + τ(εi). Therefore, we

have limVn(Mi) = Vn(M).

Remark 4.22. — In the construction of the map f , we used the embedding of X

into L2(X). One can also employ an embedding of X into a Euclidean space by using

the distance function from each point of a net in X . However, if one tries to extend

our argument to a more general Alexandrov space Y , which may contain more serious

singular points, L2(Y ) is large enough to embed Y . This is the main reason why we

employ L2(X) to embed X .

The remark above leads us to the following

Problem 4.23. — Find geometric conditions on an Alexandrov space X (other than

the small size of singularities) that ensures the existence of a tubular neighborhood,

in the generalized sense, of the embedding fX : X → L2(X).
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An answer to the problem would provide, for instance, a geometric proof of Grove,

Petersen and Wu’s finiteness theorem [GPW]. (Compare [Pr1].)
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5. PROOF OF THEOREM 0.7

The proof of Theorem 0.7 is based on the following

Theorem 5.1. — For given positive integers m,n (m ≥ n) and µ0 > 0, there exist

positive numbers δ, ε, σ and w depending only on a priori constants and satisfying

the following. Let M and X be Alexandrov spaces with curvature ≥ −1 and with

dimension m and n respectively. Suppose that δ-str. rad(X) > µ0. Then, if the

Hausdorff distance between M and X is less than ε, then for any p ∈ M the image

Γ of the inclusion homomorphism π1(Bp(σ,M)) → π1(Bp(1,M)) contains a solvable

subgroup H satisfying

(5.1.1) [Γ : H] < w ,

(5.1.2) the length of polycyclicity of H is not greater than m− n.

For the defininition of the length of polycyclicity of a solvable group, see [FY1].

The essential idea of the proof of Theorem 5.1 is the same as that in [FY1,7.1].

However, in our case we do not know yet if the map in Theorem 0.2 is a fibre bundle.

This is the point for which we have to be careful.

Proof. The proof is done by downward induction on n and by contradiction. By

Corollary 0.4, the theorem holds for n = m. Suppose that it holds for dimX ≥ n+1,

but not for n. Then, we would have sequences Mi, Xi of Alexandrov spaces satisfying

(5.2.1) dimMi = m, dimXi = n.

(5.2.2) δi-str. rad (Xi) > µ0, where limi→∞ δi = 0.

(5.2.3) dH(Mi, Xi) < εi, where limi→∞ εi = 0.
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(5.3) For some pi ∈ Mi and for sequences σi → 0,wi → ∞, the image of

the inclusion homomorphism π1(Bpi
(σi,Mi)) → π1(Bpi

(1,Mi)) does not contain a

solvable subgroup satisfying (5.1) for w = wi.

Let fi : Mi → Xi be the τ(δi, εi)-almost Lipschitz submersion constructed in

Theorem 0.2, and ∆i the diameter of f−1
i (xi), xi = fi(pi). For σ0 � µ0, we put

B̄i = Bxi
(σ0, X), Bi = f−1

i (B̄i). Remark that Bpi
(σ0/2,Mi) ⊂ Bi ⊂ Bpi

(2σ0,Mi).

Let πi : B̃i → Bi be the universal cover, and Γi the deck transformation group. Let

di and d̄i be the distances of Mi and Xi respectively. From now on, we consider

the scaled distances di/∆i and d̄i/∆i implicitly. Passing to a subsequence, we may

assume that (Bi, pi) (resp. (B̄i, xi)) converges to a pointed space (Y, y0) (resp. to

(Rn, 0)) with respect to the pointed Hausdorff distance. We may also assume that

the Lipschitz map fi : Bi → B̄i converges to a Lipschitz map f : Y → Rn with

Lipschitz constant 1. Since one can lift n-independent lines in Rn to those in Y , the

splitting theorem ([GP],[Y]) implies that Y is isometric to a product Rn ×N , where

N is compact with diameter 1. Furthermore, since the property of fi in Lemma 4.11

is invariant under scaling of metrics, one can check that f : Rn×N → Rn is actually

the projection.

In particular, it turns out that the fiber f−1
i (xi) with the distance di/∆i converges

to the nonnegatively curved Alexandrov space N . This implies the properties of fiber

stated in Remark 0.3.

For p̃i ∈ π−1
i (pi), by using [FY1,3.6], we may assume that (B̃i,Γi, p̃i) converges

to (Z,G, p̃∞) with respect to the pointed equivariant Hausdorff distance, where G is

a closed sugbroup of the group of isometries of Z. As before, one can prove that Z is

isometric to Rn+�×Z ′, where Z ′ is compact, and that πi converges to the projection

π∞ : Rn+� ×Z ′ → Rn ×N by the action of G. Remark that G acts on R� ×Z ′. Let

C be the diameter of N = (R� × Z ′)/G.

For a triple (X,Γ, x0), we use the notation in [FY1,§3] such as

Γ(R) = {γ ∈ Γ | |γx0x0| < R} .

Then we have easily.
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Lemma 5.4. — The group G is generated by G(2C).

To apply [FY1,3.10], we need to restrict ourselves to a compact set of Rn. Let

Ūi = Bxi
(10C +1, d̄i/∆i), Ui = f−1(Ūi). Remark that Ui has a uniform bound D on

its diameter.

Since fi is not known to be a fibre bundle, we need the following lemma.

Lemma 5.5. — There exists a positive integer I such that Γi is generated by

Γi(8C +1) for each i > I. In particular, the inclusion homomorphism π1(Ui) → Γi is

surjective.

Proof. First, we prove that π−1
i (Ui) is connected. Suppose that it has two connected

components Vi and Wi. Since the diameter of Ui is uniformely bounded, we can take

yi ∈ Vi and zi ∈ Wi such that |yizi| = |ViWi| and that |p̃iyi| is uniformly bounded.

Let c̃i = exp tξ̃i be a minimal geodesic joining yi to zi, and .i the length of c̃i. Since

the action of G on Rn-factor is trivial, .i must go to infinity as i → ∞. For x ∈ B̃i

let H̃x ⊂ Σx be the set that project down to Hπi(x). (See §4). From the convergence

(B̃i, p̃i) → (Rn+� × Z ′) and from the choice of yi and zi, it follows that |ξ̃iH̃yi
| → 0

as i → ∞. Now let ci = πi ◦ c̃i = exp tξi. Take wi such that |πi(yi)wi| ≥ σ0/∆i

and |ξiw′
i| < τ(δi, εi), and put ηi(t) = exp tw′

i. A generalized version of Theorem

1.1 (see [CE]) implies that |πi(zi)ηi(.i)| < .iτ(δi, εi). Take γ1, γ2 ∈ Γi such that

|γ1p̃i, yi| < 2D, |γ2p̃i, zi| < 2D. It turns out

0 = |πi(γ1p̃i), πi(γ2p̃i)|

≥ |πi(yi)πi(zi)| − |π(γ1p̃i)πi(yi)| − |πi(γ2p̃i)πi(zi)|

≥ .i − .iτ(δi, εi)− 4D > 0 ,

for each sufficiently large i, a contradiction.

Now, for any γ ∈ Γi, let c1(t) be a curve in π−1
i (Ui) joining p̃i to γp̃i with length

say, R. For each j, 1 ≤ j ≤ R and for sufficiently large i, one can take γj ∈ Γi such

that |c1(j)γj p̃i| < 4C. Thus, γ is written as the product

γ = (γγ−1
[L])(γ[L]γ

−1
[L]−1) · · · (γ2γ

−1
1 )γ1 ,
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A CONVERGENCE THEOREM IN THE GEOMETRY OF ALEXANDROV SPACES 635

each of whose factor has length less than 8C + 1. This completes the proof of the

lemma.

Let Ũi be the universal cover of Ui, and Λi the deck transformation group. As

before, we may assume that (Ũi,Λi, p̃i) converges to a triple (Rk ×W,H, 0), where
both W and (Rk × W )/H are compact. The main theorem in [FY2] implies that

H/H0 is discrete, where H0 is the identity component of H.

We next show that H/H0 is almost abelian. Since H preserves the splitting

Rk ×W , we have a homomorphism p : H → Isom(Rk). Let K and L denote the

kernel and the image of p respectively. The compactness of K implies the closedness

of L. It follows from [FY, 4.1] that L/L0 is almost abelian. Since KH0/H0 is finite,

the exact sequence

1 −→ KH0

H0
−→ H

H0
−→ L

L0
−→ 1

implies that H/H0 is almost abelian as required. (See [FY1, 4.4]).

Now, by [FY1, 3.10], we can take the “collapsing part” Λ′
i of Λi in the following

sense:

(5.6.1) (Ũi,Λ′
i, p̃i) converges to (Rk × W,H0, 0) with respect to the pointed

equivariant Hausdorff distance ;

(5.6.2) Λi/Λ′
i is isomorphic to H/H0 for large i ;

(5.6.3) for any ε > 0 there exists Iε such that Λ′
i is generated by Λ′

i(ε) for every

i > Iε.

The final step is to show that Λ′
i is almost solvable. We go back to the Hausdorff

convergence of Ui to Bn(C′) × N , where C′ = 10C + 1 and Bn(C′) = B0(C′,Rn).

By [BGP], we can take a good point x0 in Bn(C′)×N . This means that ((Bn(C′)×
N, d/ε), x0) converges to (Rn+s, 0) as ε → 0, where d is the original distance of

Bn(C′) × N and s is the Hausdorff dimension of N (s ≥ 1). Let εm,n+s(1) and

σm,n+s(1) be the constants ε, σ given by the inductive assumption for m,n + s and

µ0 = 1. Now, fix a small ε and take a large i so that the pointed Hausdorff distance

between ((Ui, di/∆iε), qi) and (Rn+s, 0) is less than εm,n+s(1), where qi is a point in

Ui Hausdorff close to x0. By induction we can conclude that the image Γ̃i under the
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inclusion homomorphism of π1(Bqi
(σm,n+s(1), di/∆iε)) to π1(Bqi

(1, di/∆iε)) contains

a solvable subgroup Hi such that

(5.7.1) [Γ̃i : Hi] has a uniform bound independent of i ;

(5.7.2) the length of polycyclicity of Hi is not greater than m− n− s.

By [FY1,7.11], (5.6.3) can be strengthened as :

(5.6.3)′ for any ε > 0, there exists a positive integer Iε such that Λ′
i is generated

by the set {γ ∈ Λ′
i | |γxx| < ε} for every x ∈ Ũi.

It follows that Λ′
i is included in the image of π1(Bqi

(σm,n+s, di/∆iε)) → Λi. Therefore,

also Λ′
i contains a solvable subgroup satisfying (5.7). Thus, it follows from (5.6.2) that

Λi is almost solvable. Therefore, Lemma 5.4 yields the almost solvability of Γi. This

is a contradiction to (5.3). The proof of Theorem 5.1 is now complete.

By using Theorem 5.1, we can prove the following theorem, a generalized Margulis

lemma along the same line as [FY1, 10.1, A2]. The details are omitted.

Theorem 5.8. — For given m, there exists a positive number σm satisfying the fol-

lowing. LetM be anm-dimensional Alexandrov space with curvature≥ −1. Then, for

any p ∈M the image of the inclusion homomorphism π1(Bp(σm,M)) → π1(Bp(1,M))

contains a nilipotent subgroup of finite index.

Our Theorem 0.7 is a special case of Theorem 5.8.
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6. APPENDIX : RELATIVE VOLUME COMPARISON

Let X be an n-dimensional Alexandrov space with curvature ≥ k. We fix p ∈M
and p̄ ∈ Mn(k), and put Dp(r) = {x ∈ X | |px| ≤ r}. First, we study the equality

case in (1.3).

Proposition A.1. — Suppose Vn(Bp(r)) = bnk(r). Then, Bp(r) with the length

structure induced from the inclusion Bp(r) ⊂ X is isometric to Bp̄(r) with the induced

length structure.

Furthermore one of the following occurs:

(A.2.1) Dp(r) with the induced length structure is isometric to Dp̄(r) with the

induced length structure ;

(A.2.2) X = Dp(r) and there exists an isometric Z2-action on the boundary of

Dp̄(r) such that X is isometric to the quotient space Bp̄(r) ∪Z2
∂Dp̄(r).

In the case k > 0, π/2
√
k < r < π/

√
k, (A.2.2) does not occur.

Proof. By Lemma 1.2, the map ρ : Bp(r) → Bp̄(r) there does not decrease measure,

and hence preserves measure in the equality case. To show that Bp(r) is isometric

to Bp̄(r), it suffices to show that ρ is a local isometry. For any x ∈ Bp(r), take

an ε > 0 such that Bx(ε) ⊂ Bp(r), and suppose that |ρ(y1)ρ(y2)| > |y1y2| for some

y1, y2 ∈ Bx(ε/2). Put 2s = |y1y2|, 2t = |ρ(y1)ρ(y2)|, B̃i = Bρ(yi)(t) and Bi = Byi
(t).

Let z be the midpoint of a minimal geodesic y1y2, and B = Bz(t − s). Then, from

Vn((B1 ∪B2)c) ≤ Vn((B̃1 ∪ B̃2)c) and Vn(Bi) ≤ Vn(B̃i), we would have

Vn(Bp(r)) < Vn(B1) + Vn(B2) + Vn((B1 ∪B2)c)− Vn(B)

≤ Vn(B̃1) + Vn(B̃2) + Vn((B̃1 ∪ B̃2)c)− Vn(B)(A.3)

= bnk (r)− Vn(B) ,
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which is a contradiction.

The proof of (A.2.2) is essentially due to [GP2]. Suppose that ρ is not continuous

on the boundary ∂Dp̄(r). Let µ : Dp̄(r) → Dp(r) be the continuous map such that

µ = ρ−1 on Bp̄(r). We show that Gµ−1(x) ≤ 2 for all x ∈ ∂Dp̄(r). Suppose that

there are three points x1, x2, x3 in µ−1(x). Now, we have three minimal geodesics

γi : [0, .] → X joining p to x, where . = |px|. For a sufficiently small ε > 0, put

yi = γi(.− ε). Then, it follows from an argument similar to (A.3) measuring volume

loss that for every 1 ≤ i = j ≤ 3, the ball Byi
(ε) does not intersects with Byj

(ε).

Thus, it turns out that the segments yix and xyj form a minimal geodesic. This

contradicts the non-branching property of geodesic.

Now we have an involutive homeomorphism Φ on ∂Dp̄(r) such that µ(Φ(x)) =

µ(x). Since a curve in ∂Dp̄(r) can be approximated by curves in Bp̄(r), we can

see that Φ preserves the length of curves and hence is an isometry. Thus, Dp(r)

is isometric to the quotient Bp̄(r) ∪Z2
∂Dp̄(r). If Φ is nontrivial, then again the

non-branching property of geodesic implies X = Dp(r). However, in case of k > 0

and π/2
√
k < r < π/

√
k, the nontrivial quotient Bp̄(r) ∪Z2

∂Dp̄(r) does not have

curvature ≥ k. Hence, ρ must be continuous in this case. It follows that ρ = µ−1

is an isometry with respect to the induced length structure because it preserves the

length of curves.

Next, we prove a relative version of (1.3), which corresponds to the Bishop and

Gromov volume comparison theorem ([GLP]) in Riemannian geometry.

Proposition A.4. — For r < R, we have

Vn(Bp(R))
Vn(Bp(r))

≤ bnk (R)
bnk (r)

.

Proof. Put Sp(t) = {x ∈ X | |px| = t}. By the recent result in [BGP2] and [OS], the

set of all (n, δ)-strained points in X has full measure for any δ > 0. Hence, in view of

Theorem 1.4, we can apply the coarea formula ([Fe]) to obtain

(A.5) Vn(Bp(R)) =
∫ R

0

Vn−1(Sp(t)) dt .
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Now we show that

(A.6)
Vn−1(Sp(R))
Vn−1(Sp(r))

≤ Vn−1(Sp̄(R))
Vn−1(Sp̄(r))

.

Let us suppose that k < 0. The other cases can be treated similary. For x ∈ Sp(R)
(resp. x̄ ∈ Sp̄(R)), let ρ(x) (resp. ρ̄(x̄)) denote the intersection of a minimal geodesic

px with Sp(r) (resp. p̄x̄ with Sp̄(r)). We know that for any ε > 0 there exists δ > 0

such that if |x̄ȳ| < δ, then ∣∣∣∣ |ρ̄(x̄)ρ̄(ȳ)||x̄ȳ| − sinh
√
−kR

sinh
√
−kr

∣∣∣∣ < ε ,
which implies

(A.7)
Vn−1(Sp̄(R))
Vn−1(Sp̄(r))

=
(
sinh

√
−kR

sinh
√
−kr

)n−1

.

Theorem 1.1 yields that |ρ(x)ρ(y)| ≥ |ρ̄(x̄)ρ̄(ȳ)| for every x, y ∈ Sp(R) and x̄, ȳ ∈
Sp̄(R) with |xy| = |x̄ȳ|. Hence, if |xy| < δ, then

(A.8)
|ρ(x)ρ(y)|

|xy| >
sinh

√
−kR

sinh
√
−kr

− ε .

Now, (A.6) immediately follows from (A.7) and (A.8).

We put A(t) = Vn−1(Sp(t)), Ā(t) = Vn−1(Sp̄(t)) and

f(t) =
Vn(Bp̄(t))
Vn(Bp(t))

=

∫ t
0
Ā(t)dt∫ t

0
A(t)dt

.

Since

f ′(t) =
Ā(t)

∫ t
0
A(t)− A(t)

∫ t
0
Ā(t)

(
∫ t
0
A(t))2

=
(
Ā(t)
A(t)

∫ t

0

A(t)−
∫ t

0

Ā(t)
)

A(t)(∫ t
0
A(t)

)2 ,

it follows from (A.6) that(
Ā(t)
A(t)

∫ t

0

A(t)−
∫ t

0

Ā(t)
)′

≥ 0 .
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This completes the proof.

By using Proposition A.4, one can obtain the volume sphere theorem extending

one in [OSY].

Proposition A.9. — There exists a positive number ε = εn such that if an n-

dimensional Alexandrov space X with curvature ≥ 1 satisfies Vn(X) > bn1 (π) − ε,

then X is τ(ε)-almost isometric to Sn.

Proof. Let ρ : X → Sn be an expanding map as in Lemma 1.2. For some y1, y2 ∈ X
suppose that 2s = |y1y2| < |ρ(y1)ρ(y2)| = 2t. Then, by the argument in (A.3),

(A.10) Vn(X) < bn1 (π)− Vn(Bz(t− s)) ,

where z is the midpoint of a minimal geodesic y1y2. On the other hand, from Proposi-

tion A.4 and the assumption on Vn(X), we have Vn(Bz(t−s)) > (1−ε/bn1 (π))bn1 (t−s).
Together with (A.10), this implies |t − s| < τ(ε). Thus dH(X,Sn) < τ(ε) because

ρ(X) is τ(ε)-dense in Sn. Therefore, by Theorem 1.5 we obtain a τ(ε)-almost isometry

between X and Sn.
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SÉMINAIRES & CONGRÈS 1
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