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Abstract
Some progress is made in Hilbert’s Thirteenth problem.

Résumé
Un certain progrès est réalisé dans le treizième problème de Hilbert.

1 Introduction

Amongst the 23 problems which Hilbert formulated at the turn of the last century
[Hi1], the 13th problem asks if every function of n variables is composed of functions
of n− 1 variables, with the expectation that this is not so for any n ≥ 2.

Hilbert’s continued fascination with the 13th problem is clear from the fact that
in his last mathematical paper [Hi2], published in 1927, where he reported on the
status of his problems, Hilbert devoted 5 pages to the 13th problem and only 3
pages to the remaining 22 problems. In [Hi2], in support of the n = 2 case of the
13th problem, Hilbert formulated his sextic conjecture which says that, although the
solution of a general equation of degree 6 can be reduced to the situation when the
coefficients depend on 2 variables, this cannot be cut down to 1 variable.

In the 1955 paper [A01] which represents the failure part of his Ph.D. Thesis,
Abhyankar showed that Jung’s method of resolving singularities of complex algebraic
surfaces does not carry over to nonzero characteristic; he did this by constructing a 6
degree surface covering with nonsolvable local Galois group above a simple point of
the branch locus. In his 1957 paper [A04], by taking a section of this surface covering,
Abhyankar was led to write down several explicit families of bivariate polynomials
f(X,Y ) giving unramified coverings of the affine line in nonzero characteristic and
to suggest that their Galois groups be computed. It turned out that these Galois
groups include all the alternating and symmetric groups AltN and SymN where
N > 1 is any integer, all the Mathieu groups M11, M12, M22, M23 and M24, the
linear groups SL(N, q) and PSL(N, q) where N > 1 is any integer and q > 1 is any
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prime power, the unitary groups SU(2N − 1, q) and PSU(2N − 1, q) where N > 1

is any integer and q > 1 is any prime power, the symplectic groups Sp(2N, q) and
PSp(2N, q) where N > 2 is any integer and q > 1 is any prime power, and the
orthogonal groups Ω−(2N, q) and PΩ−(2N, q) where N > 3 is any integer and q > 1
is any odd prime power; see Abhyankar [A06] to [A12].

In the 1956 paper [A02] which represents the success part of his Ph.D. Thesis,
Abhyankar resolved surface singularities in nonzero characteristic and observed that
this completes the solution of Zariski’s version of Hilbert’s 14th problem in the
2 dimensional case, and shows the birational invariance of arithmetic genus for
2 dimensional varieties; later in his 1966 monograph [A05], Abhyankar resolved
singularities of 3 dimensional varieties in nonzero characteristic and observed that
this shows the birational invariance of arithmetic genus for 3 dimensional varieties.

Remarkably, it became apparent after 40 years that the above cited 6 degree
surface covering constructed in Abhyankar’s failure paper [A01] precisely solves
Hilbert’s sextic conjecture, and hence settles the n = 2 case of his 13th problem,
by showing that the algebraic closure k(X,Y )∗ of the bivariate rational function
field k(X,Y ) over a field k is strictly bigger than the compositum of the algebraic
closures k(f)∗ of k(f)with f varying over all elements of the polynomial ring k[X,Y ].
Likewise, Galois theory together with ideas from resolution of singularities of higher
dimensional varieties leads to a weak form of the 13th problem for general n, which
says that the algebraic closure k(Z1, . . . , Zn)∗ of the n-variable rational function field
k(Z1, . . . , Zn) is strictly bigger than the compositum of the algebraic closures k(g)∗

of k(g) as g varies over all (n − 1)-tuples g1, . . . , gn−1 of elements of k[Z1, . . . , Zn]
whose linear parts are linearly independent.

In Section 4 we shall prove the stronger version of the n = 2 case of the 13th
problem which says that, for any n > 1, the integral closureBn ofAn = k[Z1, . . . , Zn]
in the algebraic closure Ln = k(Z1, . . . , Zn)∗ of the n-variable rational function field
Kn = k(Z1, . . . , Zn) over a field k is strictly bigger than the integral closure of
An in the compositum L

(1)
n,1 of the algebraic closures k(f)∗ of k(f) (in Ln) with f

varying over all elements of An. Actually, we shall prove more. Namely, let L(2)n,1
be the compositum of the algebraic closures k(f (1))∗ of k(f (1)) with f (1) varying
over all elements of L(1)n which are integral over An, let L(3)n be the compositum of
the algebraic closures k(f (2))∗ of k(f (2)) with f (2) varying over all elements of L(2)n
which are integral over An, and so on. Let Ln,1 = L

(1)
n,1 ∪ L

(2)
n,1 ∪ L

(3)
n,1 ∪ . . . and let

Bn,1 be the integral closure of An in Ln,1. Let Ân = the formal power series ring
k∗[[Z1, . . . , Zn]] over the algebraic closure k∗ of k, let K̂n = the meromorphic series
field k∗((Z1, . . . , Zn)) = the quotient field of Ân, and let B̂n be the integral closure
of Ân in the algebraic closure L̂n of K̂n, where we suppose that L̂n is an overfield of
Ln. Finally, let K̂soln be the maximal solvable extension of K̂n (in L̂n), i.e., K̂soln is
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the maximal normal extension of K̂n (in L̂n) such that the Galois groups of all the
intermediate finite normal extensions are solvable (where we note that the Galois
group of a finite normal extension coincides with the Galois group of the maximal
separable subextension); alternatively, K̂soln may be defined to be the compositum
of all the finite normal extensions of K̂n with solvable Galois groups. In Section
2 we shall show that then Ln,1 ⊂ K̂soln . In Section 3 we shall indicate how the
unsolvable 6 degree surface covering of [A01] solves Hilbert’s sextic conjecture. By
putting together the results of Sections 2 and 3, in Section 4 we shall show that Bn
is strictly bigger than Bn,1; we call this the presingleton version of the 13th problem.

To state the corresponding version of the general case of the 13th problem, given
any n > m ≥ 1, let L(1)n,m be the compositum of the algebraic closures k(g)∗ of k(g)
with g varying over all m-tuples of elements of An, let L(2)n,m be the compositum
of the algebraic closures k(g(1))∗ of k(g(1)) with g(1) varying over all m-tuples of
elements of L(1)n,m which are integral over An, let L(3)n,m be the compositum of the
algebraic closures k(g(2))∗ of k(g(2)) with g(2) varying over all m-tuples of elements
of L(2)n,m which are integral over An, and so on. Let Ln,m = L

(1)
n,m∪L

(2)
n,m∪L

(3)
n,m∪ . . . ,

and let Bn,m be the integral closure of An in Ln,m. Then the said version conjectures
that Bn is strictly bigger than Bn,m; we call this the general version of the 13th
problem. In Section 2 we shall formulate a version which is stronger than the general
version and call it the analytic version of the 13th problem.

In Section 5 we shall settle a weak version of the general case of the 13th problem
by proving that, whenever n > m ≥ 1, Bn is strictly bigger than the integral closure
B′n,m of An in the compositum L′n,m of Kn and the algebraic closures k(g)∗ of k(g)
as g varies over all m-tuples g1, . . . , gm of elements of An whose linear parts (i.e.,
terms of degree 1) are linearly independent over k; we call this the prelinear version
of the 13th problem.

In Section 6 we shall prove an extremely weak version of the 13th problem which
says that, for any partition n1 + · · · + nt = n of n into positive integers n1, . . . , nt
with t > 1, Bn is strictly bigger than the integral closure B′′n1,...,nt of An in the
compositum L′′n1,...,nt of Kn and the algebraic closures k({Zj : n1 + · · · + ni−1 <
j ≤ n1 + · · ·+ ni})∗ of k({Zj : n1 + · · ·+ ni−1 < j ≤ n1 + · · ·+ ni}) for 1 ≤ i ≤ t;
we call this the prepartition version of the 13th problem. It may be noted that the
n = 2 case of this can be found in Abhyankar’s 1956 paper [A03] which was written
to answer a question of Igusa.

In Sections 4, 5 and 6 we shall actually prove the analytic, and hence
stronger, forms of the presingleton, prelinear and prepartition versions and we shall
respectively call these the singleton, linear and partition versions.

In his discussion of the 13th problem, Hilbert did not make it clear what kind of
functions he had in mind. We have interpreted them as integral functions. In their
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1976 reformulation, Arnold-Shimura [ArS] took them to be algebraic functions. In
their 1963 articles, Arnold [Ar] and Kolmogorov [Kol] thought of them as continuous
functions.

It is a pleasure to thank Jim Madden for stimulating conversations concerning
the Hilbert 13th problem.

2 Analytic version and solvability

Given any field k and integers n > m ≥ 1, let An, Bn,Kn, Ln, k∗, Ân, B̂n, K̂n, L̂n, K̂soln
and L(1)n,m, L

(2)
n,m, L

(3)
n,m, . . . , Ln,m, Bn,m be as in Section 1. Let L̃(1)n,m be the composi-

tum of the algebraic closures k∗(g)∗ of k∗(g) with g varying over all m-tuples of
elements of Ân. Let L̃(2)n,m be the compositum of the algebraic closures k∗(g(1))∗ of
k∗(g(1)) with g(1) varying over all m-tuples of elements of L̃(1)n,m∩B̂n, let L̃(3)n,m be the
compositum of the algebraic closures k∗(g(2))∗ of k∗(g(2)) with g(2) varying over all
m-tuples of elements of L̃(2)n,m∩ B̂n, and so on. Let L̃n,m = L̃

(1)
n,m∪ L̃

(2)
n,m∪ L̃

(3)
n,m∪ . . . ,

and let B̃n,m be the integral closure of Ân in L̃n,m. Now obviously:
Remark 2.1. Ln,m ⊂ L̃n,m and hence Bn,m ⊂ B̃n,m.

Therefore if we conjecture that Bn 
⊂ B̃n,m and call this the preanalytic version
of the 13th problem, then clearly:
Remark 2.2. The preanalytic version for k, n,m implies the general version for
k, n,m.

For any finite sequence r = (r1, . . . , ru) of elements in B̂n, by basic properties
of complete local rings, as given in Chapter VIII of [ZS2], we see that Ân[r] is an
n-dimensional complete local domain and k∗ is a coefficient field of Ân[r], i.e., k∗

is mapped bijectively onto the residue field Ân[r]/M(Ân[r]) by the residue class
epimorphism µr : Ân[r] �→ Ân[r]/M(Ân[r]) where M(Ân[r]) is the maximal ideal
in Ân[r]. Given any finite sequence of elements s = (s1, . . . , sv) in Ân[r], we put
s̄ = (s̄1, . . . , s̄v) = (s1 − s̃1, . . . , sv − s̃v), where s̃1, . . . , s̃v are the unique elements
in k∗ such that µr(s1) = µr(s̃1), . . . , µr(sv) = µr(s̃v), and by k∗[[s]] we denote the
closure of k∗[s̄] in Ân[r] with respect to its Krull topology. Note that then k∗[[s]] is a
complete local domain of dimension at most v and k∗ is a coefficient field of k∗[[s]];
by k∗((s)) we denote the quotient field of k∗[[s]]; likewise by k∗((s))∗ we denote the
algebraic closure of k∗((s)) (in L̂n). If r′ = (r′1, . . . , r

′
u′) is any other finite sequence

in B̂n such that the elements s1, . . . , sv belong to Ân[r′] then by passing to Ân[r, r′]
we see that (for any finite sequence s in B̂n) the above definitions of s̄, k∗[[s]], k∗((s))
and k∗((s))∗ are independent of r (for instance we can take r = s). Note that if s
is a singleton, i.e., if v = 1, then either k∗[[s]] = k∗ or k∗[[s]] is a complete discrete
valuation ring, and hence in both the cases (by generalized Newton’s Theorem)
k∗((s))∗ is a solvable extension of k∗((s)), i.e., k∗((s))∗ is a normal extension of
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k∗((s)) such that the Galois groups of all the finite normal intermediate extensions
are solvable. [The said generalized Newton’s Theorem says that the Galois group
of a finite Galois extension of a field which is complete with respect to a discrete
valuation with algebraically closed residue field is always solvable; in view of Hensel’s
Lemma (see Chapter VIII of [ZS2]), this follows from the fact that the inertia group
of a discrete valuation is always solvable (see Chapter V of [ZS1])].

Let L̂(1)n,m be the compositum of the fields k∗((g))∗ with g varying over all m-
tuples of elements of Ân. Let L̂(2)n,m be the compositum of the fields k∗((g(1)))∗ with
g(1) varying over all m-tuples of elements of L̂(1)n,m∩ B̂n, let L̂(3)n,m be the compositum
of the fields k∗((g(2)))∗ with g(2) varying over all m-tuples of elements of L̂(2)n,m∩ B̂n,
and so on. Let L̂n,m = L̂

(1)
n,m∪ L̂

(2)
n,m∪ L̂

(3)
n,m∪ . . . , and let B̂n,m be the integral closure

of Ân in L̂n,m. Now obviously:

Remark 2.3. L̃n,m ⊂ L̂n,m and hence B̃n,m ⊂ B̂n,m.

Therefore if we conjecture that Bn 
⊂ B̂n,m and call this the analytic version of
the 13th problem, then clearly:

Remark 2.4. The analytic version for k, n,m implies the preanalytic version for
k, n,m.

By induction on i we shall show that L̂(i)n,1 ⊂ K̂
sol
n for all i ≥ 0 where L̂(0)n,1 = K̂n.

Obviously L̂(0)n,1 ⊂ K̂soln . So let i > 0 and assume that L̂(i−1)n,1 ⊂ K̂soln . Given any

h ∈ L̂(i)n,1, we can find a finite sequence r = (r1, . . . , ru) of elements in L̂(i−1)n,1 ∩ B̂n
such that h is algebraic over the compositum D of k∗((r1)), . . . , k∗((ru)). Clearly
D is the quotient field of the compositum C of k∗[[r1]], . . . , k∗[[ru]], and we have
C ⊂ Ân[r]. By the induction hypothesis Ân[r] ⊂ K̂soln and hence D ⊂ K̂soln . As
noted above, k∗((rj))∗ is a solvable extension of k∗((rj)). This being so for every
j we see that D(k∗((r1))∗, . . . , k∗((ru))∗) is a solvable extension of D. Therefore
D(k∗((r1))

∗, . . . , k∗((ru))
∗) ⊂ K̂soln and hence h ∈ K̂soln . Consequently L̂(i)n,1 ⊂ K̂

sol
n .

This completes the induction. Thus, in view of 2.1 and 2.3, we have proved that:

Theorem 2.5 — L̂n,1 ⊂ K̂soln and hence in particular Ln,1 ⊂ K̂soln .

3 Unsolvable coverings

Given any field k and integer n > 1, let An, Bn,Kn, Ln, k∗, Ân, B̂n, K̂n, L̂n, K̂soln be
as in Section 1. Let

F = F (Y ) = Y Q + ZR2 Y + Z
S
1 ∈ An[Y ] ⊂ Ân[Y ]

where R and S are positive integers and Q > 1 is an integer with GCD(Q−1, R) = 1.
By the calculation of the Y -discriminant DiscY (F ) of F on page 105 of [A06] we see
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that DiscY (F ) 
= 0 and hence we can talk about the Galois group Gal(F, K̂n) of F
over K̂n as a subgroup of SymQ. Let G = Gal(F, K̂n).

In Example 5 of [A01] we have concluded that if char k (= characteristic of k)
is a prime number p, n = 2, Q = p + 1, R = p − 1 and S = p + 1, then G is a
large complicated subgroup of Symp+1 because its order is divisible by p(p+1). By
using the MTR (= Method of Throwing away Roots) technique of [A06] and by
paraphrasing a proof given there we shall show that if p 
= 7 and the integers R and
S have suitable divisibility properties then actually G = PSL(2, p).

Moreover we shall show that, without the above assumptions of the said Example
5, most of the time (especially when char k is zero) G is unsolvable.

More precisely we shall prove 3.1 to 3.5:

Lemma 3.1 — G is doubly transitive.

Lemma 3.2 — If char k = p > 0 and Q = q + 1 where q > 1 is a power of p,
and in case of p = 2 we have GCD(q − 1, S) = 1 whereas in case of p > 2 we have
GCD(q − 1, S) = 2, then G = PSL(2, q) except that in case of q = p = 7 we may
have G = PSL(2, 7) or AΓL(1, 8).

Lemma 3.3 — If Q is not a prime power then G is unsolvable.

Theorem 3.4 (A form of the sextic conjecture) — If Q = 6 then G is unsolvable.

Corollary 3.5 — Bn 
⊂ K̂soln .

To prove 3.1 we first note that obviously F is an irreducible monic distinguished
polynomial in Z1 over k∗[[Y, Z2, . . . , Zn]] and hence by a Gauss Lemma type
argument using the Weierstrass Preparation Theorem we see that F is irreducible
as a polynomial in Y over K̂n. Therefore G is transitive. Let V be the real discrete
valuation of K̂n whose valuation ring is the localization of Ân at the principal prime
ideal generated by Z1. Now the coefficients of F have nonnegative V -value and by
reducing them modulo the maximal ideal of the valuation ring of V we get the
polynomial H = Y Q + ZR2 Y . Clearly H factors as H = Y (Y Q−1 + ZR2 ) into two
coprime irreducible factors over the residue field k∗((Z2, . . . , Zn)) of V . Therefore
by Hensel’s Lemma, F factors into two coprime monic irreducible polynomials of
degrees 1 and Q− 1 in Y over the V -completion k∗((Z2, . . . , Zn))((Z1)) of K̂n, and
hence upon letting β to be a root of F (Y ) we see that V has exactly two extensions
W and W ′ to K̂n(β) and after labelling them suitably we have W (β) > 0 =W ′(β)

and then the ramification exponents of W and W ′ are both 1 whereas their residue
degrees are 1 and Q−1 respectively. From this it follows that G is doubly transitive,
which proves 3.1.

By Burnside’s Theorem (see page 89 of [A06] including footnotes 37 to 40), a
doubly transitive permutation group contains a unique minimal normal subgroup,
and the said subgroup is either elementary abelian or nonabelian simple; moreover,

Séminaires et Congrès 2



Hilbert’s Thirteenth Problem 7

the first case occurs if and only if the unique minimal normal subgroup is regular as
a permutation group; hence in the first case the degree of the group = the degree
of the said subgroup = the order of the said subgroup = a prime power. Therefore
3.1 implies 3.3.

Noting that 6 is (the smallest integer which is) not a prime power, 3.3 implies
3.4. Now β ∈ Bn and, taking Q = 6, by 3.4 we get β 
∈ K̂soln , which proves 3.5.

To prove 3.2, assume that char k = p > 0 and Q = q + 1 where q > 1 is a
power of p. Let F ′(Y ) ∈ K̂n(β)[Y ] be obtained by throwing away the root β of
F (Y ). Then F ′(Y ) = (1/Y )[F (Y + β)− F (β)] = Y q + βY q−1 − (ZS1 /β). Let F̃ (Y )
be obtained from F ′(Y ) by reciprocation. Then F̃ (Y ) = (−β/ZS1 )Y

qF ′(1/Y ) =

Y q− (β2/ZS1 )Y − (β/Z
S
1 ). Let F̃ ′(Y ) ∈ K̂n(β, γ)[Y ] be obtained by throwing away a

root γ of F̃ (Y ). Then F̃ ′(Y ) = (1/Y )[F̃ (Y +γ)− F̃(γ)] = Y q−1− (β2/ZS1 ). Hence if
p > 2 and S ≡ 0 (mod 2) then F̃ ′(Y ) = [Y (q−1)/2+(β/ZS/21 )][Y

(q−1)/2− (β/ZS/21 )].
In view of the relations F (β) = 0 and W (β) > 0 we have β = ZS1 β̃ with W (β̃) = 0.
Now in view of the equation F (β) = 0 we see thatW (β̃+Z−R2 ) > 0. Consequently in
view of the equation F̃ (γ) = 0 we see that W has a unique extension U to K̃n(β, γ)
and for this extension the ramification exponent is 1 and the residue degree is q. It
follows that if p = 2 and GCD(q−1, S) = 1 then the polynomial F̃ ′(Y ) is irreducible
over K̃n(β, γ), whereas if p > 2 and GCD(q − 1, S) = 2 then the polynomials
Y (q−1)/2+(β/Z

S/2
1 ) and Y (q−1)/2−(β/ZS/21 ) are irreducible over K̃n(β, γ). Therefore

as on page 114 of [A06], as a consequence of the Zassenhaus-Feit-Suzuki Theorem,
we get 3.2.

4 Singleton version

Given any field k and integer n > 1, let An, Bn,Kn, Ln, k∗, Ân, B̂n, K̂n, L̂n, K̂soln
and Bn,1, Ln,1, B̂n,1, L̂n,1 be as in Section 1. Let us call the assertion Bn 
⊂ B̂n,1 the
singleton version of the 13th problem. Then by 2.5 and 3.5 we get the following:

Theorem 4.1 — The singleton version is true, i.e., Bn 
⊂ B̂n,1. In particular, the
presingleton version is true, i.e., Bn 
⊂ Bn,1.

5 Linear version

Given any field k and integers n > m ≥ 1, let An, Bn,Kn, Ln, k∗, Ân, B̂n, K̂n,L̂n
and B′n,m, L

′
n,m be as in Section 1. Let L̂′n,m be the compositum of K̂n and the

algebraic closures k∗((g))∗ of k∗((g)) with g varying over all m-tuples of elements of
Ân whose constant terms are zero and whose linear parts are linearly independent
over k∗. Let B̂′n,m be the integral closure of Ân in L̂′n,m. Now obviously:
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Remark 5.1. L′n,m ⊂ L̂
′
n,m and hence B′n,m ⊂ B̂

′
n,m.

Therefore if we assert that Bn 
⊂ B̂′n,m and call this the linear version of the 13th
problem, then clearly:

Remark 5.2. The linear version for k, n,m implies the prelinear version for k, n,m.

We shall now prove the following:

Lemma 5.3 — Let ∆ be a nonzero homogeneous polynomial of degree e > 1 in
Z1, . . . , Zn with coefficients in k∗ such that (0, . . . , 0) is the only point in k∗n at
which ∆ = 0 = ∆i for 1 ≤ i ≤ n where ∆i is the partial derivative of ∆ relative to
Zi. Then (I) for every set of linearly independent homogeneous linear polynomials
z1, . . . , zn in Z1, . . . , Zn with coefficients in k∗ we have ∆ 
∈ k∗[z1, . . . , zn−1] (thus,
in the sense of Hironaka’s desingularization paper [Hir], for the singularity of the
hypersurface ∆ = 0 at the origin we have ν = e and τ = n).

Moreover (II) if n > 2 then ∆ is irreducible in k∗[Z1, . . . , Zn]. Now let Θ ∈ Ân
be such that Θ−∆ ∈M(Ân)e+1 where M(Ân) is the maximal ideal in Ân, let d > 1
be an integer which is nondivisible by char k, and let Θ1/d be a dth root of Θ in L̂n,
i.e., an element of L̂n whose dth power is Θ.

Then (III) assuming n > 2 we have Θ1/d 
∈ B̂′n,m (in particular, by taking
Θ = ∆ = Ze1 + · · · + Z

e
n where e > 1 is an integer nondivisible by char k, we

get a concrete element Θ ∈ An which has the desired properties and hence for which
we have Θ1/d ∈ Bn but Θ1/d 
∈ B̂′n,m).

In view of the last parenthetical observation, 5.3 implies the linear version for
n > 2; for n = 2, the linear version follows from the singleton version proved in 4.1.

To prove (I), let δ be the expression of ∆ as a polynomial in z1, . . . , zn with
coefficients in k∗, and let δi be the partial derivative of δ with respect to zi. Now
the condition that (0, . . . , 0) is the only point of k∗n at which ∆ = 0 = ∆i for
1 ≤ i ≤ n is equivalent to the condition that (0, . . . , 0) is the only point of k∗n

at which δ = 0 = δi for 1 ≤ i ≤ n. If ∆ ∈ k∗[z1, . . . , zn−1] then we would have
δ = 0 = δi for 1 ≤ i ≤ n at (0, . . . , an) for every an ∈ k∗ which would be a
contradiction. Therefore we must have ∆ 
∈ k∗[z1, . . . , zn−1]. This proves (I).

If ∆ = ∆′∆′′ with nonconstant polynomials ∆′ and ∆′′ then ∆′ and ∆′′ must
be homogeneous, ∆′ = 0 = ∆′′ for an (n− 2)-dimensional algebraic set in k∗n, and
every point of ∆′ = 0 = ∆′′ is singular for ∆ = 0. This proves (II).

To prove (III) assume that Θ1/c ∈ B̂′n,m where c is a positive integer nondivisible

by char k. Then Θ1/c is separable over K̂n. Therefore we can find a finite number
of triples (g(j), h(j), P (j))1≤j≤u such that, for 1 ≤ j ≤ u, g(j) is an m-tuple of
elements of Ân whose constant terms are zero and whose linear parts are linearly
independent over k∗, h(j) ∈ k∗((g(j)))∗, and P (j) = P (j)(Y ) is a univariate monic
polynomial over k∗[[g(j)]] whose Y -discriminant DiscY (P (j)) is a nonzero element
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of k∗[[g(j)]] and for which P (j)(h(j)) = 0, and such that Θ1/d ∈ K̂n(h(1), . . . , h(u)).
Now assume that n > 2. Then by (II) we see that Θ is irreducible in Ân, and hence
we get a real discrete valuation Ω of K̂n whose valuation ring is the localization
of Ân at the principal prime ideal generated by Θ. For any j, by (I) we see that
DiscY (P (j)) is nondivisible by Θ in Ân and hence Ω is unramified in K̂n(h(j)). This
being so for 1 ≤ j ≤ u, we conclude that Ω is unramified in K̂n(h(1), . . . , h(u)). Since
Θ1/d ∈ K̂n(h(1), . . . , h(u)), we must have c = 1. This proves (III).

As said above, as a consequence of 4.1, 5.2 and 5.3 we get:

Theorem 5.4 — The linear version is true, i.e., Bn 
⊂ B̂′n,m. In particular, the
prelinear version is true, i.e., Bn 
⊂ B′n,m.

6 Partition version

Given any field k and integers n1 + · · · + nt = n with n1 > 0, . . . , nt > 0, t > 1
let An, Bn,Kn, Ln, k∗, Ân, B̂n, K̂n,L̂n and B′′n1,...,nt , L

′′
n1,...,nt be as in Section 1.

Let L′′n1,...,nt be the compositum of K̂n and the algebraic closures k∗(({Zj :
n1+· · ·+ni−1 < j ≤ n1+· · ·+ni}))∗ of k∗(({Zj : n1+· · ·+ni−1 < j ≤ n1+· · ·+ni}))
for 1 ≤ i ≤ t. Let B′′n1,...,nt be the integral closure of Ân in L′′n1,...,nt . Now obviously:

Remark 6.1. L′′n1,...,nt ⊂ L̂
′′
n1,...,nt

and hence B′′n1,...,nt ⊂ B̂
′′
n1,...,nt

.

Therefore if we assert that Bn 
⊂ B̂′′n1,...,nt and call this the partition version of
the 13th problem, then clearly:

Remark 6.2. The partition version for k, n1, . . . , nt implies the prepartition version
for k, n1, . . . , nt.

Also clearly:

Remark 6.3. The partition version obviously follows from the linear version 5.4.

Alternatively:

Remark 6.4. Upon letting λ = k∗((Z2, . . . , Zn−1))∗ and Λ = the integral closure of
λ[[Z1, Zn]] in the compositum of λ((Z1))∗, λ((Zn))∗ and λ((Z1, Zn)), by the two
proofs sketched in [A03] we see that for any g(Z1) ∈ λ[[Z1]] and h(Zn) ∈ λ[[Zn]]
with g(0) = 0 
= g(Z1) and h(0) = 0 
= h(Zn) and any integer E > 1 nondivisible
by char k we have [g(Z1) + h(Zn)]1/E 
∈ Λ. Clearly B̂′′n1,...,nt ⊂ Λ. By taking
g(Z1) ∈ k[Z1] and h(Zn) ∈ k[Zn] (for instance g(Z1) = Z1 and h(Zn) = Zn))
we also get [g(Z1) + h(Zn)]1/E ∈ Bn. Thus the partition version also follows from
[A03].

In view of 6.2, by 6.3 or 6.4 we get:

Theorem 6.5 — The partition version is true, i.e., Bn 
⊂ B̂′′n1,...,nt . In particular,
the prepartition version is true, i.e., Bn 
⊂ B′′n1,...,nt.
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