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Abstract
Let U(�) be the enveloping algebra of a semi-simple Lie algebra �. Very

little is known about the nature of AutU(�). However, if G is a finite subgroup
of AutU(�) then very general results of Lorenz-Passman and of Montgomery
can be used to relate SpecU(�) to SpecU(�)G. As noted by Alev-Polo one
may read off the Dynkin diagram of � from SpecU(�) and they used this to
show that U(�)G could not be again the enveloping algebra of a semi-simple
Lie algebra unless G is trivial. Again let U be the minimal primitive quotient of
U(�) admitting the trivial representation of �. A theorem of Polo asserts that
if UG is isomorphic to a similarly defined quotient of U(�′) : �′ semi-simple,
then � ∼= �′. However in this case one cannot say that G is trivial.

The main content of this paper is the possible generalization of Polo’s
theorem to other minimal primitive quotients. A very significant technical
difficulty arises from the Goldie rank of the almost minimal primitive quotients
being > 1. Even under relatively strong hypotheses (regularity and integrality
of the central character) one is only able to say that the Coxeter diagrams of
� and �′ coincide. The main thrust of the proofs is a systematic use of the
Lorenz-Passman-Montgomery theory and the known very detailed description
of PrimU(�). Unfortunately there is a severe lack of good examples. During
this work some purely ring theoretic results involving Goldie rank comparisons
and skew-field extensions are presented. A new inequality for Gelfand-Kirillov
dimension is obtained and this leads to an interesting question involving a
possible application of the intersection theorem.

Résumé
Soit U(�) l’algèbre enveloppante d’une algèbre de Lie semi-simple �. On sait

très peu de choses sur AutU(�). Néanmoins, si G désigne un sous-groupe fini
de AutU(�), alors des résultats généraux de Lorenz-Passman et Montgomery
relient SpecU(�) à SpecU(�)G. Alev et Polo ont observé qu’on peut lire le
diagramme de Dynkin de � sur SpecU(�) et ils en ont déduit que U(�)G ne
peut être isomorphe à l’algèbre enveloppante d’une algèbre de Lie que si G est
trivial. Soit U le quotient primitif minimal de U(�) admettant la représentation
triviale de �. D’après un théorème de Polo, si UG est isomorphe à un quotient
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186 Anthony JOSEPH

de U(�′) : �′ semi-simple, alors � ∼= �′. Mais dans ce cas on ne peut affirmer
que G est trivial.

Le contenu principal de ce papier est une possible généralisation du résultat
de Polo à d’autres quotients primitifs minimaux. Une difficulté technique
significative provient du fait que la dimension de Goldie peut alors être > 1.
Même sous des hypothèses relativement fortes (régularité et intégralité du
caractère central) on peut seulement dire que les diagrammes de Coxeter de �
et �′ coincident. Les preuves sont basées sur une utilisation systématique de la
théorie de Lorenz-Passman et Montgomery et la connaissance très détaillée de
PrimU(�). Malheureusement, il y a un manque sévère d’exemples. Dans ce
travail, on présente quelques résultats de théorie des anneaux concernant des
comparaisons de rangs de Goldie et des extensions de corps gauches. On obtient
une nouvelle inégalité pour la dimension de Gelfand-Kirillov qui conduit à une
question intéressante concernant une application du théorème d’intersection.

1 Introduction

1.1. Let � be a complex semisimple Lie algebra and U(�) its enveloping algebra.
Let G be a finite subgroup of AutU(�). A remarkable recent result of J. Alev and P.
Polo [AP, Thm.1] shows that U(�)G cannot be again the enveloping algebra of some
possibly different semisimple Lie algebra �′ unless G is trivial. Again let Uρ (resp.
Vρ) be the minimal primitive quotient of U(�) (resp. U(�′)) admitting the trivial
representation of � (resp. �′) and G a finite subgroup of AutUρ. Polo [P, Thm.7.1]
has shown that if UG

ρ
∼= Vρ then � ∼= �′.

1.2. The proof of the above results uses some general results on finite group
actions (see Section 2) and some knowledge of PrimU(�). However the proofs are
not particularly difficult and need relatively little from these two theories.

1.3. The aim of this paper is to generalize Polo’s theorem to arbitrary (regular)
central characters. At present the only interest for doing this is that the problem
becomes very significantly harder and we need practically all that is known on the
two theories discussed in 1.2. The obvious critique is that we know of no non-trivial
examples of such finite group actions. Yet for example take � of type B2 (resp.
G2) with �2 (resp. �3) ⊂ AutU(�) acting via scalar multiplication on short root
vectors. Then the maximal completely prime ideal P associated to the 4 (resp. 6)
dimensional coadjoint orbit [J1] is �2 (resp. is �3) stable and “accidentally” the
fixed subalgebra is isomorphic to a minimal primitive quotient of U(��(2) × ��(2))

(resp. U(��(3))).

1.4. In Section 2 we review some general results on finite group actions and in
particular the Montgomery bijection. In Section 3 we develop some comparison
results on Goldie rank, particularly with respect to the additivity principle. In
Section 4 we show that the isomorphism UG

λ
∼= Vµ (where λ, µ are dominant,
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regular elements of the appropriate Cartan subalgebras) implies that the (relative)
Coxeter diagrams pertaining to Uλ and Vµ are isomorphic (Theorem 4.20). Unlike
the situation encountered in the special case of Polo’s theorem we are not able to say
that G orbits in SpecUλ are trivial (which also ”trivializes” Montgomery’s bijection).
In Section 5 we relate λ, µ through an additivity principle (Theorem 5.16). However
we are not able to say that the (relative) Dynkin diagrams pertaining to Uλ and Vµ

are isomorphic. This question is examined in Section 6 where we show that it cannot
be resolved by passage to rings of fractions and analysis of Goldie rank except in
what we call the indivisible Goldie rank case (Theorem 6.7). This occurs for example
in Polo’s situation and leads to a refinement of that result. I would like to thank the
referee for some remarks and corrections.

2 Finite Group Actions on Rings

2.1. Let B be a ring, G a finite subgroup of AutB and A := BG the fixed ring. A
number of remarkable very general results relating SpecB to SpecA derive from the
work of G. Bergman and I.M. Isaacs [BI], M. Lorenz and D.S. Passman [LP] and S.
Montgomery [M2]. We detail what we need of this theory below. It will be assumed
here and throughout this paper that |G| �= 0 in B. We remark that in applications
A,B are assumed noetherian and then the resulting weaker versions of these results
partly go further back.
2.2. It is clear that G acts on SpecB which is hence a disjoint union of G orbits
which are in turn finite sets. Given P ∈ SpecB we denote by O(P ) the G orbit
containing P . Then I(P ) :=

⋂
Pi∈O(P )

Pi, or simply I, is G invariant and so it is
natural to consider IG which is a semiprime ideal [BI] of A. Note however that
IG = PG

i = Pi ∩ A for all Pi ∈ O(P ). If P, P ′ ∈ SpecB lie in the same G orbit we
write P ∼ P ′. Obviously

Lemma — The following are equivalent

(i) I(P ) ⊃ I(P ′).

(ii) For all Pi ∈ O(P ) there exists P ′j ∈ O(P ′) such that Pi ⊃ P ′j .

(iii) For all P ′i ∈ O(P ′) there exists Pj ∈ O(P ) such that Pj ⊃ P ′i .

We write O(P ) ≥ O(P ′) when one of these hold.
2.3. Define the group ring BG to be the free B module on generators g ∈ G with
multiplication (bg, b′g′) = (bg(b′), gg′) where b′ 
→ g(b′) denotes the action of G on
B.
Set e = 1

|G|

∑
g∈G g which is an idempotent of BG. After a classical result of

Jacobson (see [LP, Lemma 4.5] for example) the map ϕ : Q 
→ eQe is an order
isomorphism of {Q ∈ SpecBG | e �∈ Q} onto SpecA. Extend ϕ to a bijection
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of semiprime ideals. Define an equivalence relation ∼ on SpecA by p ∼ p′ if
ϕ−1(p) ∩ B = ϕ−1(p′) ∩ B and let C(p) denote the equivalence class containing
p. Set I(p) =

⋂
p′∈C(p) p

′.

2.4. There are three key facts which lead to the Montgomery isomorphism [M2,
Sect.3], namely

(i) For all Q ∈ SpecBG there exists P ∈ SpecB such that Q ∩B = I(P ).

(ii) Qi ∈ SpecBG is minimal over I(P )G⇐⇒ Qi ∩B = I(P ). Moreover there are
finitely many such Qi and

⋂n
i=1Qi = I(P )G.

(iii) If an ideal J of BG strictly contains a prime Q then J ∩B � Q ∩B.

With the exception of the very last statement of (ii), these are due in their most
general form to Lorenz and Passman [LP, Lemma 4.2, Thm. 1.3, Thm. 1.2].

In (ii) choose m ∈ � and order the Qi so that e ∈ Qi ⇐⇒ i > m. Taking
Q = ϕ−1(p) : p ∈ SpecA it follows from (ii) that C(p) = {ϕ(Qi) : i ≤ m} and
ϕ−1(p) ∩A =

⋂m
i=1 ϕ(Qi). In particular we note the

Lemma — C(p) is the set of minimal primes over ϕ−1(p) ∩A.

2.5. The above result immediately leads [M2, 3.5 (3)] to a partial analogue of 2.2
namely

Lemma — The following are equivalent

(i) ϕ−1(p) ∩B ⊃ ϕ−1(p′) ∩B.

(ii) For each pi ∈ C(p) there exists p′j ∈ C(p′) such that pi ⊃ p′j.

Proof. Assume (i). Then ϕ−1(pi) ⊃
⋂n′

j=1Q
′
j and so pi contains some ϕ(Q′j).

We write C(p) ≥ C(p′) when one of these hold. For our purposes it is a significant
technical difficulty that we have no analogue of 2.2 (iii).
2.6. From 2.4 (i) and 2.4 (ii) one immediately obtains [M2, Thm. 3.4] the

Theorem — The map p 
→ O(P ), where I(P ) = ϕ−1(p) ∩ B factors to an order
isomorphism Φ of SpecA/ ∼ onto SpecB/ ∼.

2.7. It is clear that primes of SpecB in the same G orbit have the same height. By
2.4 (iii) it follows [M2, Prop. 3.5] that equivalent primes of SpecA are incomparable
and have the same height. Moreover

Lemma — One has htp = htP given P ∈ Φ(p).

2.8. Whilst ϕ−1(I(P )G) = I(P )G it is not quite obvious if this implies that the
inclusion BI(P )GB ⊂ I(P ) is an equality. Fortunately we shall only need the

Lemma — The minimal primes over BI(P )GB are the Pi ∈ O(P ).

Proof. If P ′ is a minimal prime over BI(P )GB then so are its G translates and
I(P ′) ⊃ BI(P )GB. Consequently I(P ′)G ⊃ I(P )G. Then I(P ′) ⊃ I(P ) from 2.6 or
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directly from 2.4. Then P ′ contains some Pi ∈ O(P ). Conversely BI(P )GB ⊂ I(P )

so P ′ is contained in some Pj ∈ O(P ).

3 Goldie Rank Comparison

3.1. We use some fairly standard methods to compare various Goldie ranks. In
this we retain the hypotheses and notation of Section 2 except that B is assumed
semisimple artinian. This implies (see for example [M1, Cor. 0.2 and Thm. 1.15])
the correspond ing properties for BG and then for A.

3.2. Observe that a left BG submodule of B is just a left ideal which is G stable.

Lemma — A left ideal L of B is G stable (resp. and minimal) if and only if it takes
the form Be with e ∈ A idempotent (resp. and minimal).

Proof. Let L′ be a BG stable complement of L in B. Then e is obtained as the image
of 1 ∈ B under the projection onto L defined by the decomposition B = L ⊕ L′.
Conversely right multiplication gives an algebra anti-isomorphism A = BG ∼

−→

EndBGB which restricts to an anti-isomorphism K := eAe
∼
−→ EndBGBe. Yet K is

a skew-field if and only if e is minimal.

3.3. Let M be a left BG module.

Lemma — Suppose AnnAM ∈ SpecA. Then the multiplication map θ : B ⊗A

MG →M is injective.

Proof. Let e be a minimal idempotent of A such that eM �= 0 and set K = eAe.
The hypothesis on AnnAM implies that B ⊗A MG = Be⊗K eMG.

Suppose kerθ �= 0. Since Be is a simple BGmodule by 3.2 and EndBGBe = K one
may apply the Jacobson density theorem [H, Thm. 2.1.4] to obtain m ∈ eMG \ {0}

for which Be⊗m ⊂ ker θ. Then em = 0 which is absurd.

3.4. Let M be a left BG module. One may give B′ := EndBM a G-algebra
structure through the action ψ 
→ g.ψ, ∀ g ∈ G,ψ ∈ EndBM by (g.ψ)(m) =

g(ψ(g−1m)), ∀m ∈ M . Then g(ψ(bm)) = (g.ψ)(g(b)(gm)). Set A′ = B′G. Then
A′, B′ are also semisimple artinian rings.

Lemma — Assume that A,B,A′, B′ are all simple and that MG �= 0. Then
rkB/rkA = rkB′/rkA′.

Proof. Take m ∈ MG \ {0}. Then AnnBm is a BG submodule of B and so of
the form Be′ for some idempotent e′ ∈ A \ {1}. Let e ≤ 1 − e′ be a minimal
idempotent of A. Since Be is a simple BG module by 3.2 we obtain an isomorphism
Be

∼
−→ Bem. In particular Bem is a simple BG submodule ofM . Now EndBM = B′

so EndBGM = B′G = A′. Since A′ is assumed simple, it follows that M is an
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isotypical BG module and moreover rkA′ copies of Be. Let f ≤ e be a minimal
idempotent of B. Then Be is rkB/rkA copies of Bf . Finally EndBM = B′

and since B′ is assumed simple, it follows that M is rk B′ copies of Bf . Thus
(rkA′)(rkB/rkA) = rkB′ as required.

3.5. It is easy to see that 3.4 fails if MG = 0. Indeed let k be an algebraically
closed field and S, S′ simple kG module say of dimensions n and n′ respectively. Set
B = EndkS,B

′ = EndkS
′. Then A := BG = k,A′ := B′G = k and M := S ⊗ S′ is

a B − B′ module satisfying the hypotheses of 3.4 except for the condition on MG;
yet n and n′ are in general unrelated. The condition MG �= 0 is equivalent to S′

being the contragredient module to S forcing n = n′.

3.6. The above example is in some sense generic if B is finite dimensional over
its centre F and G is assumed to fix F pointwise. In this case it is easy to check
(and well-known) that rkB/rkA is just the dimension of a projective representation
of FG. This intrinsic classification of the Goldie rank ratio may lead one to hope
that the conclusion of 3.4 also results even if B′ is not the full endomorphism ring
EndBM ; but just a simple G stable subring with A′ = B′G also simple. This already
fails if F is not algebraically closed;but that is not a case of interest to us. We shall
construct a more relevant counterexample in Section 6.

3.7. It is necessary to generalize 3.4 to the following situation. Define
B,G,A,M,B′, A′ as in 3.1, 3.3 and 3.4. Assume B,B′ simple. Let {zi}ti=1, {z

′
i}

t′

i=1 be
the minimal central idempotents of A,A′. Set Ai = Azi, A

′
i = A′z′i, Bi = ziBzi, B

′
i =

z′iB
′z′i which are all simple, artinian rings. Set Mi,j = ziMz′j.

Corollary — There exist integers mi,m
′
j > 0 such that

rkB =

t∑
i=1

mirkAi, rkB′ =

t′∑
i=1

m′jrkA
′
j

with mi = m′j whenever MG
i,j �= 0.

Proof. Clearly EndBiMi = B′i and BG
i = Ai, B

′G
i = A′i. Suppose MG

i,j �= 0. Then by
3.4 one has mi := rkBi/rkAi = rkB′j/rkA

′
j =: m′j . Finally B is a direct sum of the

Bzi and the rank of Bzi as a left B module is the rank of its endomorphism ring
which is ziBzi. Hence rkB =

∑
rkBi. Similarly rkB′ =

∑
rkB′i.

3.8. Retain the notation and hypotheses of 3.7. In particular B,B′ are simple.

Proposition — Assume t = t′ and MG
i,i �= 0 for all i. Then BMG = M = MGB.

Proof. One may write Ni := MG
i,i as a direct sum of say ni simple left Ai modules.

Then ni = rkEndAiNi = rkA′i. Choosing a minimal idempotent ei for Ai we have
B ⊗A Aiei = B ⊗A Aei

∼
−→ Bei by 3.3. Furthermore by 3.3 again B ⊗A Ni

∼
−→ BNi
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and is just ni copies of Bei as a left B module. Yet Bzi is just rkAi copies of Bei
and rkBi copies of the simple B module S. Finally theMi,i form a direct sumM ′ in
M and N ′ := M ′G = ⊕Ni. Moreover this direct sum arises from right multiplication
by the central idempotents z′i and so BN ′ = ⊕BNi. From the above we conclude
that BN ′ is exactly s :=

∑t
i=1 ni(rkBi/rkAi) =

∑t
i=1 nimi copies of S.

On the other hand rkEndBM = rkB′ =
∑t

i=1 rkB
′
i
3.7
=

∑t
i=1mirkA

′
i =∑t

i=1mini = s. ConsequentlyM is also s copies of S and so the inclusion BN ′ ⊂M

is an equality. A fortiori BMG = M . Similarly MGB = M .

Remark. Consider the example of 3.5 withM = S⊗S∗. ThenM =
∑

si⊗s∗i where
{si} is a basis for S and {s∗i } a dual basis for the contragredient module S∗. Then
BMG = M = MGB follows directly from the Jacobson density theorem (which was
also used in 3.3).

4 Coxeter Structure

4.1. Let � be a complex semisimple Lie algebra with triangular decomposition
� = �+ ⊕ � ⊕ �−. Let ∆ (resp. ∆+) be the corresponding set of non-zero, (resp.
positive) roots and ρ the half-sum of the positive roots. Fix λ ∈ �∗ dominant and
regular (that is 2(λ,α)(α,α) �∈ {0,−1,−2, · · · } for all α ∈ ∆+) and let M(λ) denote
the Verma module with highest weight λ− ρ. Set Uλ = U(�)/AnnM(λ) which is a
minimal primitive quotient of U(�). Set ∆λ = {α ∈ ∆ | 2(α, λ)/(α, α) ∈ �} which
is a root subsystem [Ja1, 1.3] of ∆ with Weyl groupWλ generated by the reflections
sα : α ∈ ∆λ. Set ∆+λ = ∆λ ∩ ∆+ and let πλ ⊂ ∆+λ be the corresponding set of
simple roots. One knows that to a large extent the structure of SpecUλ depends just
on the Coxeter diagram assigned to πλ, a fact made even more precise by the truth
of the Kazhdan-Lusztig conjectures. Some finer points involving Goldie rank ratios
for certain Dixmier algebras depend also on the Dynkin diagram of πλ (where root
lengths are also considered).

4.2. The above considerations of course apply to a second complex semisimple Lie
algebra and we denote the corresponding minimal primitive quotient by Vµ with ∆0µ
(resp. π0µ) the corresponding set of non-zero (resp. simple) roots. Now let G be a
finite subgroup of AutUλ. Our assumption throughout the rest of this paper is that
UG
λ is isomorphic as an algebra to Vµ. The main result of this section is that πλ has
the same Coxeter diagram as π0µ. We generally omit the λ, µ subscripts.

4.3. Given a finitely generated algebra B with identity andM a finitely generated
left B module let dB(M) denote the Gelfand-Kirillov dimension [Ja2, 8.3] ofM over
B. IfM is a finitely generated right B module we shall write d′B(M) for dBop(M) for
M viewed as a left Bop module. One has dB(B) = d′B(B) which we denote simply as
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d(B). If G ⊂ AutB is a finite group, then B is a finitely generated [M1, 5.9] left or
right A := BG module. Now let M be a B−A module which is a finitely generated
left B (resp. right A) module. A simple argument (due to W. Borho [B, 2.3]) shows
that

dB(M) = d′A(M)(∗)

(here A,B need not be related). In particular taking M = B one obtains d(B) =

dB(B) = d′A(B) = d′A(A) = d(A) ≤ d(B). Thus d(A) = d(B).
4.4. Applying 4.3 to 4.2 we conclude that d(U) = d(V ). Recall [Ja2, Kap.10] that
d(U/I) is an even integer for any ideal I of U which is |∆| if and only if I = 0. In
particular |∆| = |∆0|. Apply the correspondence of 2.6 to the pair U, V = UG. For
all P ∈ SpecU , set C(P ) = C(Φ−1(O(P ))).

Lemma — For each P ∈ SpecU and each p ∈ C(P ) one has dV (V/p) = dU (U/P ).

Proof. This is a slight extension of [JS, 3.9]. We sketch the details for completion.
Obviously d(U/Pi) is independent of Pi ∈ O(P ) and this common value is
d(U/I(P )). Let L̄ be a non-zero left ideal of Ū := U/I(P ). Since U is left noetherian
one may write L̄U as a finite sum

∑
i L̄ui : ui ∈ U and then dU (L̄) = dU (L̄U).

Moreover the image of L̄U in some prime quotient U/g(P ) : g ∈ G must be non-
zero and so dU (L̄U) = dU (U/g(P )).

Now let K̄ be a non-zero ideal of V̄ := V/I(P )G ↪→ U/I(P ) = Ū and set L̄ = UK̄.
Then

d(U/I(P )) = dU (L̄), by the above,

= d′V (UK̄), by 4.3 (∗),

= d′V (K̄), since UV is finitely generated,

= dV (K̄), by 4.3 (∗).

Thus dV (K̄) = dV (V̄ ), by 4.3. In view of the noetherianity of V and 4.3 (∗) (applied
to the case A = B = V̄ ) it follows that V̄ satisfies the hypotheses of [JS, 2.6 (i)].
From its conclusion dV (V̄ /p̄) = dV (V̄ ) = dU (Ū) for every minimal prime p̄ over V̄ .
Recalling 2.4 the required conclusion follows.

Remark. It is convenient to define cod(U/P ) = d(U) − d(U/P ) for all P ∈ SpecU

with a similar definition in SpecV .

4.5. Let {Pα : α ∈ π} (resp. {pα : α ∈ π0}) denote the set of almost minimal
prime ideals of U (resp. V ). This set was introduced in [BJ], [D] and studied in
particular detail in [J2], [GJ]. Each such prime is characterized by the property
cod(U/P ) = 2. It is then immediate that the action of G permutes the Pα : α ∈ π.
More precisely it follows from [P, Thm. 3.1 (b)] that G induces a group of Dynkin
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diagram automorphisms of π which we shall also denote by G. For each α ∈ π let
o(α) denote the G orbit containing α. The following is immediate from 2.6, 2.8 and
4.4. Recall the notation of 2.2 and 2.3 concerning I(·).

Lemma — For each α ∈ π there exists a subset c(α) ⊂ π0 such that C(Pα) = {pβ |

β ∈ c(α)}. Moreover the c(α) : α ∈ π/G form a disjoint union of π0 and

(i) I(Pα)G =
⋂

β∈c(α) pβ = I(pα).

(ii) The Pβ : β ∈ o(α) are the minimal primes over UI(pα)U .

Remark. If the Pα are completely prime, the c(α) automatically are singletons and
this makes the subsequent analysis far easier [P, Thm. 7.1].

4.6. Recall [BJ, Sect.2; D, Sect.3] that the τ invariant on SpecU is defined by
τ(P ) = {α ∈ π | P ⊃ Pα}. For each subset π′ ⊂ π there is a unique minimal (resp.
maximal) ideal Pπ′ (resp. P π′) whose τ value is π′. We denote P π\{α} simply by
Pα. By [D, Prop. 12; GJ, Cor. 5.2] one has

Pπ′ =
∑
α∈π′

Pα(∗)

Again Pπ = P π and is the unique maximal ideal Pmax of U , whilst Pφ = Pφ = 0.
More generally for each pair π′′ ⊂ π′ ⊂ π there is a unique maximal ideal P π′′

π′

contained in Pπ′ on which τ takes the value π′′. We denote P
π′\{β}
π′ simply by

P β
π′ : β ∈ π′. It is the unique maximal ideal of U contained in Pπ′ and not containing

Pβ . Similar definitions apply to SpecV for which we replace P by p.

Lemma — For all π′ ⊂ π,

(i) P 2π′ = Pπ′ .

(ii) If π′′ ⊂ π′ are both G stable, then so is P π′′

π′ .

Proof. (i) is just [J2, 4.5] combined with [GJ, Cor. 5.2]. (ii) is clear.

4.7. Recall the notation of 4.5.

Proposition — For all α ∈ π/G one has

(i) PG
o(α) ⊃ pc(α).

(ii) Po(α) = Upc(α)U .

Proof. Set p′c(α) = PG
o(α) = V ∩Po(α). Since the Po(α) are G stable (4.6 (ii)) we have

V ∩ Pmax = V ∩
∑

α∈π/G

Po(α) =
∑

α∈π/G

p′c(α),(∗)

and by 2.6 that V ∩ Pmax = pmax . Now suppose there exists β ∈ π0 such
that p′c(α) �⊃ pβ . Then recalling 4.6 (applied to V ) we obtain p′c(α) ⊂ pβ. This
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cannot hold for all α ∈ π/G since otherwise pmax ⊂ pβ by (∗). Thus defining
π0α = {β ∈ π0 | pβ ⊂ p′c(α)} one obtains⋃

α∈π/G

π0α = π0.(∗∗)

Let us show that

π0α = c(α), ∀α ∈ π/G.(∗ ∗ ∗)

Suppose that π0α ∩ c(β) �= ∅ and take γ in this intersection. Then I(pc(β)) ⊂ pγ ⊂

p′c(α) and so UI(pβ)U ⊂ Up′c(α)U ⊂ Po(α). Then 4.5 (ii) implies that Pδ ⊂ Po(α) for
some δ ∈ o(β). Consequently δ ∈ o(α) which forces o(α) = o(β). We conclude that
π0α ∩

⋃
β∈π/G\o(α) c(β) = ∅ and so π0α ⊂ c(α) by 4.5. By (∗∗) this gives (∗ ∗ ∗).

By 4.6 (∗) (applied to V ) and (∗ ∗ ∗) conclusion (i) results.
By 2.8 and (i) we obtain Po(α) ⊃ Upc(α)U . Let P be a minimal prime over

Upc(α)U . Suppose P �⊃ Pγ for some γ ∈ o(α). Then Upc(α)U ⊂ P ⊂ P γ ,
whilst if o(β) �= o(α) one also has Upc(β)U ⊂ Po(β) ⊂ P γ . Then UpmaxU =∑

β∈π/G Upc(β)U ⊂ P γ which contradicts 2.8. We conclude that Po(α) is the unique
minimal prime over Upc(α)U . Since U is noetherian the latter contains a power of
Po(α) and so (ii) results from 4.6 (i).

4.8. The following is an obvious consequence of 2.2 (ii) and 2.5 (ii).

Lemma — For all P, P ′ ∈ SpecU ; p, p′ ∈ SpecV one has

(i) P ∼ P ′ =⇒ (τ(P ) ∩ o(α) �= ∅ =⇒ τ(P ′) ∩ o(α) �= ∅)

(ii) p ∼ p′ =⇒ (τ(p′) ∩ c(α) �= ∅ =⇒ τ(p′) ∩ c(α) �= ∅).

4.9. Each G stable subset π̂ of π is a union of G orbits o(α) and we let c(π̂) ⊂ π0

denote the corresponding union of the c(α).

Proposition — For each G stable subset π̂ of π one has (P π̂)G = pc(π̂).

Proof. Suppose p′ ∼ pc(π̂). Then by 4.8 (ii) we have τ(p′) ⊂ c(π̂) and so p′ ⊂ pc(π̂).
Then by incomparability (2.7) we obtain p′ = pc(π̂). Let {Pi} be the G orbit
corresponding (2.6) to pc(π̂). Let us show that τ(Pi) = π̂ for all i.
Suppose β ∈ τ(pi). Then I(pβ) = PG

β ⊂ PG
i = pc(π̂) and so pβ′ ⊂ pc(π̂) for some

β′ ∈ c(β). This forces τ(Pi) ⊂ π̂. On the other hand pc(π̂) ⊃ pc(α) for all c(α) ⊂ c(π̂)

and so by 4.7 (ii) and 2.8 we obtain Pi ⊃ Upc(π̂)U ⊃ Upc(α)U = Po(α) which gives
the opposite inclusion.

Recalling 2.8 and 4.6 we conclude that Upc(π̂)U ⊂ P π̂ . Thus (P π̂)G ⊃ pc(π̂). For
the opposite inclusion set p′ = (P π̂)G. If p′ ⊃ pα then P π̂ ⊃ Up′U ⊃ UI(pα)U .
By 4.5 (ii) this forces τ(P π̂) ∩ o(α) �= ∅. Thus o(α) ⊂ π̂ and then τ(p′) ⊂ c(π̂).
Consequently p′ ⊂ pc(π̂) as required.
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4.10. To prove equality in 4.7 (i) it would be useful to have the analogue of 2.2 (iii)
to hold in 2.5. To circumvent this lacuna we combine 4.9 with the following well-
known [J4, III, 4.7] consequence of the truth of the Kazhdan-Lusztig conjectures
and [V]. Consider SpecU as an ordered set for inclusion.

Proposition — There exists an order reversing involution σ ∈ SpecU such that
σ(Pα) = Pα for all α ∈ π. In particular σ(Pπ′ ) = P π\π′ for all π′ ⊂ π.

Remark. Of course a corresponding result holds for SpecV .

4.11. Let π̂ be a G stable subset of π. Then by 2.2 or directly Specπ̂U := {P ∈

SpecU | P ⊃ P π̂} is a union of G orbits. Again by 2.5 and 4.9 we may also
conclude that Specc(π̂)V := {p ∈ SpecV | p ⊃ pc(π̂)} is a union of equivalence
classes in the sense of 2.3. Moreover it is clear that Φ of 2.6 restricts to an order
preserving isomorphism of Specc(π̂)V/ ∼ onto Specπ̂U/ ∼. Given P ∈ Specπ̂U we
set htπ̂P = ht(P/P π̂) with a similar definition for V . Given P ∈ Specπ̂U and p

minimal over PG then by 2.7 it follows that htπ̂P = htc(π̂)p.

Theorem — For all α ∈ π/G one has PG
o(α) = pc(α).

Proof. Take p ∈ C(Po(α)). By 4.7 (i) one obtains p ⊃ pc(α) and so it is enough to
show that htp = htpc(α). Set π̂ = π \ o(α). By 2.7, 4.10 and the above remarks
htp = htPo(α) = htπ̂(Pmax ) = htc(π̂)(pmax ) = htpc(α), as required.

4.12. For each G stable subset π̂ we may define Specπ̂U = {P ∈ SpecU | P ⊂ Pπ̂}

which by 2.2 (iii) or directly is clearly a union of G orbits. Again one may define
Specc(π̂)V = {p ∈ SpecV | p ⊂ pc(π̂)}. Unfortunately it is not obvious that Specπ̂V

is a union of classes. Nevertheless one has the

Lemma — Let π̂ be a G stable subset of π. Then

(i) C(P ) ∩ Specc(π̂)V �= ∅, ∀P ∈ Specπ̂U .

(ii) Specc(π̂)V =
⋃

P∈Specπ̂U
(C(P ) ∩ Specc(π̂)V ).

(iii) τ(p) ⊂ c(π̂) for all p ∈ C(P ) with P ∈ Specπ̂U .

Proof. Given P ⊂ Pπ̂, one has PG ⊂ PG
π̂ = pc(π̂) by 4.11. Then (i) results from 2.4

or 2.5 (ii). Conversely given p ∈ Specc(π̂)V one has UI(p)U ⊂ Upc(π̂)U = Pπ̂ by 4.7
(ii). Let P be a minimal prime over UI(p)U . Then P ⊂ Pπ̂ and p ∈ C(P ) by 2.8.
Finally (iii) follows from (i) and 4.8 (ii).

4.13. Let π̂ be a G stable subset of π. For each α ∈ π̂ it is clear that O
o(α)
π̂ :=

{P β
π̂ | β ∈ o(α)} is a single G orbit. Set Cc(α)

c(π̂) = Φ−1(O
o(α)
π̂ ).

Lemma — Specc(π̂)V ∩ C
c(α)
c(π̂) = {pβc(π̂) | β ∈ c(α)}.

Proof. It is clear from 4.11 and 2.6 that Cc(α)
c(π̂) � {pc(π̂)} and are exactly the maximal
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classes with this property. Then by 2.5 and 4.12 it follows that

Specc(π̂)V ∩
⋃

α∈π̂/G

C
c(α)
c(π̂) = {pβ

c(π̂) | β ∈ c(π̂)}.

Finally take β ∈ π̂. Then (P β
π̂ )G ⊃ PG

o(α)

4.11
= pc(α), for all α ∈ π̂ \ o(β). Thus a

minimal prime p over (P β
π̂ )G contains pc(π̂)\c(β). Recalling 2.4 this completes the

proof.

4.14. Let π =
∐n

i=1 π̂i be a decomposition into G orbits of connected components
(of the Dynkin diagram).

For any subset π′ ⊂ π set ∆π′ = �π′∩∆. It is well-known (combine [J4, II, Thm.
5.1; Ja1, 2.16; Ja2, 10.9]) that

cod(U/Pπ′) = |∆π′ |.(∗)

This implies for any two disjoint subsets π′, π′′ of π that

cod(U/Pπ′) + cod(U/Pπ′′) ≤ cod(U/Pπ′∪π′′)(∗∗)

with equality if and only if π′, π′′ are components of π. Of course a similar assertion
holds for V .

Lemma — The c(π̂i) are components of π0.

Proof. This follows from 4.4, 4.6(∗), 4.10 and (∗∗) above.

4.15. It is immediate from Duflo’s theorem [D, Thm.1] describing SpecU that if
π′ is a component of π and P ∈ SpecU satisfies τ(P ) ⊂ π′ then P ⊂ P τ(P ) ⊂ Pπ′ .
Applying the analogous result for V to the conclusion of 4.14 it follows from 4.12
that

Corollary — Take i ∈ {1, 2, · · · , n}. Then Specc(π̂i)V is a union of classes and Φ

(of (2.6)) restricts to an order isomorphism of Specc(π̂i)V/ ∼ onto Specπ̂iU/ ∼.

4.16. In virtue of 4.15 we may assume that n = 1 in 4.14 from now on without loss
of generality. Consequently π is a union of connected Dynkin diagrams of the same
type, permuted transitively by G. We would like to show that then π0 is a union
of Dynkin diagrams of this same type. However we are only able to show that the
Coxeter structure is preserved. This involves a rather messy case by case analysis.

4.17. Let Dπ′ denote the Dynkin diagram of π′.

Lemma — For each α ∈ π/G there is an isomorphism θα : Do(α)
∼
−→ Dc(α) of

Dynkin diagrams.
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Proof. Since G acts by Dynkin diagram automorphisms it follows (from the well-
known classification of such diagrams) that one of the following hold

Do(α) =

{
Ar
1 : case 1),

As
2 : case 2).

By 4.4, 4.11 and 4.13 we obtain

d(U/P β
o(α))− d(U/Po(α)) = d(V/pγc(α))− d(V/pc(α)), ∀β ∈ o(α), γ ∈ c(α).(∗)

Now the left hand side equals 2 in case 1) (resp. 4 in case 2)). From Table 1 (see
4.19) this forces γ ∈ c(α) to belong to a component of c(α) of type A1 (resp. type
A2). It then remains to apply 4.14 (∗) with π′ = o(α).

4.18. Take α, β ∈ π/G. Set o(α, β) = o(α)�o(β) and c(α, β) = c(α)�c(β). Set
S
o(β)
o(α,β) = {P ∈ Speco(α,β)U | P ⊃ Po(β)} and T

c(β)
c(α,β) = Φ−1(S

o(β)
o(α,β)).

Lemma — (i) Every class in T
c(β)
c(α,β) has a non-empty intersection with

Specc(α,β)V .

(ii) Specc(α,β)V ∩ T
c(β)
c(α,β) = {p ∈ Specc(α,β)V | p ⊃ pc(β)}.

Proof. (i) follows from 4.12(i). (ii) follows from 2.4 and 4.11 as in the proof of
4.13.

4.19. Take α, β ∈ π/G. By 4.17 we have a bijection θα × θβ : o(α, β)
∼
−→ c(α, β)

defined up to permutation.

Proposition — θα × θβ can be chosen to be an isomorphism of Coxeter diagrams.

Proof. Suppose first that both o(α) and o(β) satisfy 1) of 4.17. Since π is assumed
to be an orbit of a connected component it follows that both must be of type Ak

1

for some k and moreover one of the following hold

Do(α,β) =




(A1 ×A1)
k : case 11,

Ak
2 : case 12,

Bk
2 : case 13,

Gk
2 : case 14,

Ak
3 : case 15,

Dk
4 : case 16,

We must show that a similar conclusion holds for Dc(α,β). By 4.10 and 4.14 (∗) we
have

|∆o(α,β)| = |∆
0
c(α,β)|.(∗)
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This dispenses with case 11. For the remaining cases we need to have for each
simple Lie algebra �π′ (with simple root system π′) some information on the
common value of d(U(�π′ )/P

β) : β ∈ π′. (These are the same as the values of
d(U/P β

π′) − d(U/Pπ′) : β ∈ π′). The relevant information is given by the following
table.

Dπ′
1/2d(U(�π′ )/P

β) : β ∈ π′

An n

B2 3

G2 5

B3 5

D4 5

Table 1.

In all other cases the second entry is > 5.

By 4.4, 4.10 and 4.13, the analogue of 4.17 (∗) holds with o(α) (resp. c(α))
replaced by o(α, β) (resp. c(α, β)). In view of Table 1 this dispenses with case 12.

Recall the notation of 4.18. Take P ∈ S
o(α)
o(α,β). Then by Table 1 we have

1/2
[
d(U/P )− d(U/Po(α,β))

]
=

{
3i : i = 0, 1, . . . , k in case 13,

5i : i = 0, 1, . . . , k in case 14.
(∗∗)

Thus from 4.4 and 4.18 the connected components of c(α, β)must be of types A3, B2.
Suppose γ1, γ2, γ3 form a system of type A3. Then up to permutation of α, β we
must have γ1, γ3 ∈ c(α) and γ2 ∈ c(β). Consider p = pγ1 +pγ3 +pc(α,β)\{γ1,γ3}. Then
p � pγ2

c(α,β) and one further sees that
1/2[d(V/p)− d(V/pc(α,β))] = 1/2(|∆

o
{γ1,γ2,γ3}

| −

|∆o
{γ1,γ3}

|) = 1/2(12 − 4) = 4. This is incompatible with 4.4, 4.18 and (∗∗). This
dispenses with case 13.

In case 14 we must exclude types B3, D4, A5. It is convenient to present the
calculation diagrammatically. In this we can assume without loss of generality that
there are just 2 diagrams of each of the above types in c(α, β). This gives rise to the
following possibilities where we have included the A3 case from 13 for illustration.
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A3 B3 D4 A5

c(α) γ 1 γ3 γ1 γ3 γ1 γ3 γ5 γ1 γ3 γ5

c(β) γ 2 γ2 γ2 γ2 γ4

Table 2.

In type B3 we take p = pγ1 + pγ3 + pc(β). Then 1/2[d(V/p) − d(V/pc(α,β))] =
1/2(|∆

o
{γ1,γ2,γ3}

|− |∆o
{γ1,γ3}

|) = 7. In types D4, A5 we take p = pγ1 +pγ3 +pγ5 +pc(β)

and then 1/2[d(V/p) − d(V/pc(α,β))] = 12 − 3 = 9 in the first case and 15-3=12 in
the second. None of the above are multiples of 5 so this dispenses with case 14.

Now consider case 15. As in case 12 it follows from Table 1 that c(α, β) must be a
union of k1 diagrams of type B2 and k2 diagrams of type A3. Now we can take o(α) to
be the orbit containing the central roots of the A3 diagrams. If {γ1, γ2, γ3} ⊂ c(α, β)

is a system of type A3 then by 4.17 either {γ1, γ3) ⊂ c(α), γ2 ∈ c(β) or vise versa.
Hence k = |o(α)| = |c(α)| ≤ k1 + k2 whilst 2k = |o(β)| = |c(β)| ≥ k1 + 2k2 which
forces k1 = 0 and dispenses with case 15. The case 16 is similar. By the table c(α, β)

must be a union k1 diagrams of type A5, k2 diagrams of type G2, k3 diagrams of
type B3, k4 diagrams of type D4. Take o(α) to be the orbit containing the central
roots of the D4 diagrams. Then as above k = |o(α)| ≥ 2k1 + k2 + k3 + k4 whilst
3k = |o(β)| ≤ 3k1 + k2 + 2k3 + 3k4 which forces k1 = k2 = k3 = 0 and dispenses
with case 16.

Finally suppose that o(α) or o(β) satisfies 2) of 4.17. Then o(α, β) must be of
type Ak

4 and as in case 12 it follows from the table that c(α, β) has only components
of type A4 and then by cardinality must be of type Ak

4 also.

4.20. Let π′ be a connected component of π (which we can assume equals Gπ′).

Theorem — The bijection {θα}α∈π′ (defined up to permutations) can be chosen to
be an isomorphism of Coxeter diagrams.

Proof. Suppose StabGπ′ is the identity of G. Then by 4.17 there exists k ∈ �+ such
that Gα is of type Ak

1 for all α ∈ π′. Let αi, αj be elements of π′. By 4.19 we can
label c(αi) = {β1i , β

2
i , · · · , β

k
i } and c(αj) = {β1j , β

2
j , · · · , β

k
j } so that {β

"
i , β

"
j} has the
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same Coxeter diagram as {αi, αj} for : = 1, 2, · · · , k. Then π" := {β"
1, · · · , β

"
|π′|} has

the same Coxeter diagram as π′ and is a (connected) component of πo.

If StabGπ′ is not the identity of G, then Dπ′ is of type A2n+1, Dn, E6 or A2n. Case
D4 (and when G permutes transitivity the three neighbours of the central roots)
is just case 16 of 4.19. Otherwise in the first three types above there is a unique
central root with two neighbours permuted by G. This gives a subsystem of π′ of
type A3 and the result obtains from case 15 of 4.19 and an analysis similar to the
trivial stabilizer case. Finally the assertion for π′ of type A2n results similarly from
the type A4 case in 4.19.

4.21. The above result obtains far more easily (see [P, Thm. 7.1]) when G acts
trivially on Dπ, equivalently when G stabilizes each Pα : α ∈ π. As in [P, Thm. 5.5]
it further follows that each P ∈ SpecU is G stable. Now from the truth of Kazhdan-
Lusztig conjectures |SpecU |, which is finite, depends only on the Coxeter diagram of
π. Thus |SpecU | = |SpecV | in this case and this further forces each class in SpecV

to be a singleton. Then 4.12 implies that if P ∈ Specπ̂U , then PG ∈ Specc(π̂)V

whilst in general it is not at all obvious if C(P ) ⊂ Specc(π̂)V .

5 Comparison of Weights—Additivity Principle

5.1. Suppose for the moment that πλ is connected. Then by 4.20 so is πµ and
moreover has the same Coxeter diagram as πλ. Then there is a natural sense in
which λ, µ can be said to be proportional and we show that µ divides λ. In the
general case we show that restriction to each connected component can be defined
and that the restricted values of µ satisfy an additivity principle. The case when G

acts trivially on πλ is significantly easier and illustrates the main technique. In this
case PG

α = pα, for all α ∈ π by 4.5. Then (see 5.10) one has PG
w = pw for all w ∈W .

Then Upw ⊂ Pw and suppose we can show that equality holds. Taking successive
quotients for appropriate choices of w, namely w = sαsβwπ, w = sαwπ one may
relate (see remark following Thm. 5.16) Goldie rank ratios for the almost minimal
primitive ideals in U , to those in V using the results in Section 3. This gives our
main result (Theorem 5.16). Sections 5.2-5.11 allow one to avoid assuming that the
action of G on πλ is trivial. Unfortunately they are rather technical. Sections 5.12-
5.15 analyse to what extent the above equality can be established. They simplify
significantly when G acts trivially on πλ.

5.2. Let us start with a result which is a strengthening of a special case of 4.14
(∗∗) and which does not seem to have been noticed previously.
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Lemma — Let
∐n

i=1 πi form a disjoint union of πλ. Then

n∑
i=1

cod(U/P πi) ≤ cod(U/P πλ)

with equality if and only if the πi are components of πλ.

Proof. By the truth of the Kazhdan-Lusztig conjectures and [J4, II, Thm. 5.1; Ja2,
10.9] it is enough to establish this for λ integral and then we omit the λ subscript.
In this case P π has finite codimension and so d(U/P π) = |∆|.
Recall the canonical filtration� of U(�). Then S(�) = gr�U(�) identifies with the

algebra of polynomial functions on �∗. View P πi as an ideal of U(�) by inverse image.
An elementary calculation gives d(U/P πi) = d(S(�)/

√
gr�P πi) = dim (�(gr�P πi)),

where �(Q) ⊂ �∗ denotes the zero variety of an ideal Q of S(�).
For each α ∈ π let xα ∈ � be a root vector of weight α. For each subset π′ ⊂ π

set xπ′ :=
∑

α∈π′ xα. Identity � with �∗ through the Killing form. By [J5, 8.15] one
has xπ\π′ ∈ �(gr�P π′). Though we don’t need this �(gr�P π′) is a nilpotent orbit
closure [J6]; but may be strictly bigger than that given by xπ\π′ , except for example
if π′ is a component of π.

By the above observations the lemma is reduced to the purely geometric problem
of estimating certain orbit dimensions and this in turn reduces to the linear algebra
inequality

n∑
i=1

(|∆| − dim [�, xπ\πi ]) ≤ |∆|,(∗)

with equality whenever the πi are components of π. This is established below.
Set Vj = [�, xπj ] which is a subspace of V := [�, xπ ]. For all i ≥ 2 one has

dim


 n∑

j( �=i)=1

Vj


+ dim

(
i∑

k=2

Vk

)

= dim V + dim

(
i−1∑
k=2

Vk

)
+ dim


Vi ∩

n∑
j( �=i)=1

Vj


− dim

(
Vi ∩

i−1∑
k=2

Vk

)

≥ dim V + dim

(
i−1∑
k=2

Vk

)

and so
n∑

i=1

dim


 n∑

j( �=i)=1

Vj


 ≥ (n− 1) dimV = (n− 1)|∆|,
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which gives (∗). Equality implies in particular that [�, xπi ]∩ [�, xπ\πi ] = 0 for i = 2;
but as the ordering is arbitrary this holds for all i. It implies that πi and π \πi form
separate components, as required.

Remark. Suppose π1, π2 are disjoint subsets of π. One can ask if cod(U/P π1) +

cod(U/P π2) ≤ cod(U/P π1�π2). This apparently requires a more sophisticated
analysis of tangent spaces. Indeed although the dimension of the intersection of the
tangent spaces [�, xπ\πi ] : i = 1, 2 has the correct dimension we cannot immediately
apply the intersection theorem since in each orbit Gxπ\πi the tangent space is taken
at a different point, namely xπ\πi .

5.3. Assume that π is connected and let Γ denote the automorphism group of the
Coxeter diagram of π. When Γ is non-trivial we shall need a technical modification
of the above result. Namely we relax the condition that πi : i = 1, 2, · · · , n form a
disjoint union and require only for each α ∈ π that

n∑
i=1

|Γα ∩ πi| = |Γα|.(∗)

It is easy to see that this change only affects types Am−1 and E6. In type Am−1 we
establish that a similar conclusion holds as a corollary of the lemma below. Given
Dπ
∼= Am−1, view π′ ⊂ π as a partition of m and let S(π′) denote the corresponding

Young diagram.

Lemma — Assume Dπ
∼= Am−1. Let πi ⊂ π : i = 1, 2, · · · , n be such that∑n

i=1 |πi| ≤ m − 1. Then
∑n

i=1 cod(U/P πi) ≤ cod(U) with equality if and only
if there is an equality in the first sum and the S(π \ πi) are all rectangular.

Proof. In type Am−1 our previous inequality dim �(gr�P π′) ≥ dim [�, xπ\π′ ]

becomes an equality [J5, 9.14]. It thus suffices to show that |∆| − dim [�, xπ\π′ ] ≤

m|π′| with equality if and only if S(π \ π′) is rectangular. Set k = |π′|. Let {mi}
k+1
i=1

be the partition defined by the Jordan blocks of xπ\π′ . Then the left hand side above
equals 2

∑k+1
i=1 (i − 1)mi. It is easy to check (and well-known) that this sum takes

its maximal value exactly when the mi are equal (necessarily to m/k + 1) and this
value is km.

Remark (1). If S(π \ πi) is rectangular, then πi is Γ stable. If this holds for all i,
then (∗) is equivalent to the union

⋃
πi being disjoint, so in this case the required

conclusion (of strict inequality unless n = 1) results from 5.2. For example if m = 6

then π1 = {α2, α4}, π2 = {α3} are the unique diagrams for which π \ πi is proper
and S(π \ πi) is rectangular; but they are insufficient to cover π.
Remark (2). In type E6 there is exactly one bad configuration not covered by 5.2,
namely when π1 ⊃ {α1, α3}, π2 ⊃ {α1, α5}. In Table 3 we list all possible choices of
the πi writing αj simply as j. We designate the orbit �i generated by απ\πi using
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its Dynkin data.The values of di := 1/2(|∆|−dim [�, xπ\πi ]) obtain from the column

labelled dim 	u in [C, p.402]. The last column gives the left hand side of 5.2(∗) and
is always strictly less than 1/2|∆| = 36.

π1 π2 π3 �1 �2 �3 d1 d2 d3
∑

di

1,3 1,5 2,4 20002
2

01010
1

20002
0 6 8 12 26

1,2,3 1,5 4 10001
2

01010
0

20202
0 10 8 3 21

1,3,4 1,5 2 10001
1

01010
1

21012
1 13 8 4 25

1,3 1,5,2 4 20002
2

10001
1

20202
0 6 13 3 22

1,3 1,5,4 2 20002
2

10001
1

21012
1 6 10 4 20

1,2,3 1,5,4 - 10001
2

10001
2 - 10 10 - 20

1,3,4 1,5,2 - 10001
1

10001
1 - 13 13 - 26

1,2,3,4 1,5 - 10001
0

01010
1 - 20 8 - 28

1,3 1,2,4,5 - 20002
2

10001
1 - 6 20 - 26

Table 3.

In the remaining case π1 = {α1, α3}, π2 = {α1, α5}, π3 = {α2}, π4 = {α4} we
obtain

∑
di = 21 from rows 1-3 above.

5.4. Let π1 be a connected component of π. We wish to calculate C(Pπ1) which
should be some analogue of a combination of 4.5 and 4.11. This would have been
easy had we an analogue in 2.5 of 2.2 (iii). By 4.15 we can assume that Gπ1 = π

without loss of generality.

Lemma — Suppose o(α) ⊂ π has cardinality ≥ 2. Let P be a minimal prime over

U
(⋂

β∈c(α)\{α} pβ

)
U . Then there exist γ, δ ∈ o(α) distinct such that P ⊃ Pγ + Pδ.

Proof. Clearly U
(⋂

β∈c(α)\{α} pβ

)
U ⊃ U

(⋂
β∈c(α) pβ

)
U and so by 4.5 (ii) one

has P ⊃ Pγ for some γ ∈ o(α). If equality holds then
(⋂

β∈c(α)\{α} pβ

)
⊂ PG =

PG
γ =

⋂
β∈c(α) pβ , by 4.5 (i) which is impossible. Hence P � Pγ . On the other hand

P ⊂ Po(α) by 4.7 (ii). Since Do(α) is of type Ar
1 or As

2 every such prime [BJ, 2.20;
D, Prop.12] is the sum of some Pγ : γ ∈ o(α). Hence the assertion.

5.5. Take α ∈ π. As noted in the proof of 5.4 every P ∈ Speco(α)U takes the form
P = Pτ(P ). By 4.17 the same holds for Specc(α)V .

Lemma — For all P ∈ Speco(α)U and p ∈ Specc(α)V ∩ C(P ) one has Dτ(P )
∼=

Dτ(p).

Proof. If Do(α)
∼= Ar

1 then the assertion is immediate from 4.4 and 4.14(∗). Now
suppose Do(α)

∼= As
2 and suppose Dτ(P )

∼= Au
2 × Av

1 and Dτ(p)
∼= Au′

2 × Av′

1 . Then
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3u+v = cod(U/P ) = cod(V/p) = 3u′+v′ by 4.4 and 2u+v = htP = htp = 2u′+v′

by 2.7. Hence u = u′, v = v′ as required.

5.6. Let πi : i = 1, 2, · · · ,m be the G translates of (the connected component)
π1. Obviously the Pi := Pπi : i = 1, 2, · · · ,m form a single G orbit in SpecU . By
4.20, π0 is a disjoint union �c(πi) where each c(πi) has the same Coxeter diagram
as π1. Let Γ denote the group of Dynkin diagram automorphisms of π, equivalently
of π0. For each α ∈ π1 set r(α) = Γα ∩ π1 and let ri(α) denote the corresponding
subset of c(πi). (This makes sense though we cannot identify an individual element
α ∈ π1 with an element of c(πi). In general Gα ∩ π1 ⊂ r(α) and the inclusion may
be strict;but this will not matter).

Theorem — Let π1 be a connected component of π. Then C(Pπ1) = {pc(πi) : i =

1, 2, · · · ,m}.

Proof. Take α ∈ π1 and p ∈ C(P1). Suppose s :=
∑

i |τ(p) ∩ ri(α)| > |r(α)| =: r.
We may write p ⊃ p′ :=

∑s
i=1 pγi for some γi ∈ c(α). Then C(p) ≥ C(p′) by 2.5 and

so C(P1) = Φ(C(p)) ≥ Φ(C(p′)) by 2.6. By 5.4 we obtain P1 ⊃
∑s

i=1 Pδi for some
δi ∈ o(α). Since s > r this is impossible.

We conclude that
∑

i |τ(p) ∩ ri(α)| ≤ |r(α)| for every α ∈ π1. Identify the
Coxeter diagram of each c(πi) with that π1 via 4.20. For simplicity consider first the
case when Γ is trivial. Then this inequality can be interpreted through the above
identification as saying that the πi(p) := τ(p) ∩ c(πi) are disjoint and their union
is contained in π1. By the truth of the Kazhdan-Lusztig conjectures and [J4, Thm.
5.1; Ja2, 10.9] the d(U/P ) : P ∈ SpecU depends only on the Coxeter diagram of π
(and not on the more refined Dynkin diagram). Thus we may apply 5.2 to conclude
that cod(V/p) < cod(U/P1) with equality if and only if τ(p) = c(πi) for some i. The
case when Γ is non-trivial (which only arises in types An, E6, Dn) is essentially the
same as the above, in type Dn ; but in types An and E6 we also need 5.3.

From the above we conclude that there exists i such that p = pc(πi) (which also
equals pc(πi) since πi is a component of c(π)). Finally suppose some pc(πj) is absent
from C(P1). Then by 2.7 and 5.4 we may conclude that for any α ∈ π1 there exists
γ, δ ∈ o(α) distinct such that Pπ1 ⊃ Pγ + Pδ. This is clearly impossible unless
|o(α) ∩ π1| ≥ 2. Except in type A2n we can always choose α so that this is not so
and this gives the required contradiction. In type A2n one may choose α so that
o(α) ∩ π1 is a system of type A2. We write o(α) ∩ πi = {αi, α

′
i}. It is clear that the

set {Pαi + Pα′i
: i = 1, 2, · · · ,m} forms a single G orbit in Speco(α)U . Since it is the

only orbit in Speco(α)U of primes P for which Dτ(P )
∼= A2 it follows from 4.12 (ii)

and 5.5 that C(Pα1 +Pα′1
) contains {pc(αi)+ pc(α′i) : i = 1, 2, · · · ,m}. Now let P be

a minimal prime over U
(⋂m

i( �=j)=1(pc(αi) + pc(α′i))
)
U . Then P ⊃ Pαi +Pα′i

for some

i. Equality implies PG ⊂
⋂m

i( �=j)=1(pc(αi) + pc(α′i)) which is absurd. Yet P ⊂ Po(α)
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and so we can assume P ⊃ Pαi + Pα′i
+ Pβ for some β ∈ {αs, α

′
s} : s �= i. Then the

required contradiction obtains as before.

5.7. Apart from its own interest our main need for the above theorem is to establish
the following “triviality”. Retain the notation 5.6.

Corollary — Fix α ∈ π and β, γ ∈ o(α) in distinct components of π. Then
C(Pβ + Pγ) ⊂ Specc(α)V .

Proof. Consider p ∈ C(Pβ +Pγ)\Specc(α)V . Then cod(V/p) = cod(U/Pβ +Pγ) = 4

and so Dτ(p) = A1 × A1 or A1. Yet τ(p) ⊂ c(α) by 4.8 (ii) and so p ∈ Specc(α)V

if |τ(p)| = 2. If not, τ(p) ∈ c(πi) for some i and so p ⊂ pc(πi) = pc(πi). Then
ϕ−1(p) ∩ U ⊂ ϕ−1(pc(πi)) ∩ U and so by 2.6, 5.6 we obtain O(Pβ + Pγ) ≤ O(Pπ1 ).
Then Pβ + Pγ ⊂ Pπj for some j, which is excluded by the hypothesis.

5.8. One also has a “dual” version of 5.7 with a quite different proof.

Lemma — Fix α ∈ π and β, γ ∈ o(α) distinct and in the same connected component
of π. Then C(Pβ + Pγ) ⊂ Specc(α)V .

Proof. Consider p ∈ C(Pβ +Pγ)\Specc(α)V . Then htp = ht(Pβ +Pγ) = 2 by 2.7 and
τ(p) ⊂ c(α) by 2.8 (ii). This forces |τ(p)| = 1, whilst cod(V/p) = cod(U/Pβ + Pγ)

which is 4 or 6. Let p denote the set of all such primes in SpecV and 
 the set of all
primes of SpecU satisfying analogous conditions. Consider P ∈ 
. One checks that
P �∈ Speco(α)U and so C(P ) ∩ Specc(α)V = ∅. This forces C(P ) ⊂ p and equality
would contradict 2.6. Now by 5.4 there exists for each γ ∈ c(α) some p′ ∈ p with
τ(p′) = γ. Thus it suffices to show that p ∈ p is uniquely determined by τ(p).
Suppose first that D{β,γ} ∼= A1×A1. We claim that p ∈ p exists if and only if τ(p)

has at least two neighbours in Dπ0 , is unique if it has exactly two neighbours;whilst
there are exactly three solutions if τ(p) has three neighbours. (This last possibility
is excluded by β, γ being in the same Γ orbit. It is the reason why 5.7 cannot be
likewise proved).
The proof of the above claim is an easy exercise with the Goldie rank polynomial

of V/p which by [J4, Thm. 5.4] must belong to the W module M generated by any
α′γ′ : α′, γ′ ∈ π0 that are not neighbours. Moreover if β′ has α′, γ′ as neighbours
then sβ′(α

′γ′)−α′γ′ is proportional to a Goldie rank polynomial of some p ∈ p with
τ(p) = β′. No other Goldie rank polynomials can appear in virtue of their linear
independence [J4, Thm. 5.5].

Finally suppose D{β,γ} ∼= A2. Then any c(πi) is of type A2n. In this case
Specc(πi)V is classified by standard Young tableaux [J3]. The partitions (of 2n + 1)
concerning p ∈ p are either 2n− 1, 1, 1 or 2n− 2, 3. Let T be the tableaux assigned
to p ∈ Specc(πi)V . Let r(j) denote the row containing j. Then (see for example)
[Me, 2.2.12] τ(p) = {αj |r(j + 1) > r(j)}. It follows that τ(p) = {αj} if and only if
T takes the form
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1 2 3 4 . . . . . . j j+4 j+5 . . . . . . 2n+1

j+1 j+2 j+3

This proves uniqueness. (However we do not claim existence, in fact probably htp = 3

in this case).

5.9. For each subset π′ ⊂ π there is a unique [CD, 5.5; D, II] minimal ideal Pπ′,min

whose radical is
⋂

α∈π′ Pα. It is a power of its radical and can also be written [J2,
Thm. 5.1] as a suitable product of the Pα : α ∈ π′. We denote Pπ,min simply by
Pmin . As before we replace P by p to denote the corresponding ideal of V .

Lemma — For each G stable subset π̂ ⊂ π one has

(i) PG
π̂,min ⊃ pπ̂,min .

(ii) Pmin = Upmin = pminU .

(iii) PG
min = pmin .

Proof. (i) follows from 4.5 (i) and the above remarks. For (ii) consider M :=

Pmin /Upmin as a U − V module. Clearly AnnV M ⊃ pmin . Since UV is finitely
generated and V is noetherian it follows that MV is finitely generated and so
d′V (M) ≤ d′V (V/pmin ) < d(V ). Since U is noetherian, UM is finitely generated
and so by 4.3(∗) we obtain dU (M) < d(V ) = d(U). NowMV is finitely generated so
by [JS, 2.1] we obtain dU (U/AnnUM) ≤ dU (M) and this forces AnnUM �= 0. Then
AnnUM ⊃ Pmin and since P 2min = Pmin we conclude thatM = 0 so Pmin = Upmin .
Similarly pminU = Pmin . Obviously (ii) implies (iii).

5.10. Fix w ∈ W and let w = sα1sα2 · · · sαr : αi ∈ π be a reduced decomposition
and :(w) = r its reduced length. By [J2, 4.11] Pw := Pα1Pα2 · · ·Pαr is independent
of the reduced decomposition chosen. We remark [J2, 5.3] that Pπ′,min = Pwπ′

where wπ′ is the unique longest element in the subgroup Wπ′ of W generated by
the sα : α ∈ π′.

Lemma — For each G orbit o(α) in π one has

∑
β∈o(α)

Psβwo(α) =


 ⋂

β,γ∈o(α)
of type A2

(Pβ ∩ Pγ)






⋂
β,γ∈o(α)
of type A21

(Pβ + Pγ)


 .

Proof. Assume we have proved the inclusion ⊂. For the opposite inclusion we need
to know that the Pw : w ∈ W generate a distributive lattice of subspaces of U . Since
PwM(λ) = M(wλ) and the map I 
→ IM(λ) is a bijection [Ja2, 6.20; see also J7,
Sect. 8.4] from ideals of U to submodules ofM(λ) an equivalent assertion is that the
M(wλ) : w ∈W generate a distributive lattice of subspaces ofM(λ). Unfortunately
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we do not know this to hold except in the case when the simple components of πλ
are at most of rank 2 and then it is a trivial consequence of Verma modules being
multiplicity-free. Since o(α) itself has only components of type A1 or type A2 we
can reduce it to this situation by varying λ so that it is fixed on o(α). Had λ been
integral the modules which concern us, namely the M(wλ) : w ∈ Wo(α), viewed
as subspaces of U(�−) can be assumed to be independent of λ and so the result
follows in this case. In the general case choose a weight δ such that (δ, β) �= 0 if
β ∈ πλ\o(α) and (δ, β) = 0 if β ∈ o(α) and consider λc := λ + cδ : c ∈ �. Now
M(sβwo(α)λc) ⊃ M(wo(α)λc), ∀β ∈ o(α), c ∈ � and the quotient is simple for c in
general position. Thus the inequality of formal characters

ch
∑

β∈o(α)

M(sβwo(α)λc) ≥
∑

β∈o(α)

chM(sβwo(α)λc)− (|o(α)| − 1)chM(wo(α)λc)

which by the above is an equality for c in general position, is an equality for arbitrary
c (because the right hand side is independent of c and the left hand side can only
become smaller at special values of c). Finally let M r

c (resp. M
"
c ) denote the sum

of the Verma submodules of M(λ)c corresponding to the ideal in the right (resp.
left) hand side of the lemma. Given the inclusion ⊂, then M "

c ⊂M r
c with equality if

and only if the inequality chM "
c ≤ chM r

c is an equality. Since the left hand side has
been shown to be independent of c, the inclusion ⊃ for c in general position gives
the required assertion.

For the asserted inclusion ⊂ recall 4.17 and suppose that case 1) holds. Recall
(4.6 (i)) that P 2β = Pβ , ∀β ∈ π. Since the members of o(α) are pairwise orthogonal
one obtains

⋂
β,γ∈o(α)
distinct

(Pβ + Pγ) ⊃
∏

β,γ∈o(α)
distinct

(Pβ + Pγ) ⊃
∑

β∈o(α)


 ∏

γ∈o(α)\{β}

Pγ


 =

∑
β∈o(α)

Psβwo(α) .

Distributivity gives the reverse inclusion.

Case 2) of 4.17 is similar. First write o(α) = {βi, γi}ki=1 so that {βi, γi} forms a
system of type A2 for each i. Then

∏
i=1

(PβiPγi + PγiPβi) ⊂
k⋂

i=1

(Pβi ∩ Pγi)
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whilst

k∑
i=1

k∏
j( �=i)=1

(PβjPγj + PγjPβj ) ⊂
k∑

i=1

k⋂
j( �=i)=1

(Pβj ∩ Pγj )

⊂
k⋂

j=i+1

k⋂
i=1

(Pβi ∩ Pγi + Pβj ∩ Pγj )

⊂
⋂

β,γ∈o(α)
of type A21

(Pβ + Pγ)

and ∑
β∈o(α)

Psβwo(α) =
k∑

i=1

(PβiPγi + PγiPβi)


 k∏

j( �=i)=1

PβjPγjPβj


 .

Combined these give the inclusion ⊂. Distributivity gives the reverse inclusion.

Corollary (5.11) — For each G orbit o(α) in π one has

U


 ∑

β∈c(α)

psβwo(α)


U ⊂

∑
β∈o(α)

Psβwo(α) .

Proof. It is enough to show that
(∑

β∈o(α) Psβw0(α)

)G
⊃
∑

β∈o(α) psβwc(α) . Clearly

{Pβ + Pγ : β, γ ∈ o(α) of type A21} is a union of G orbits. Combining 4.12 (ii),
5.7, 5.8 it follows that the corresponding union of classes is {pβ + pγ : β, γ ∈

c(α) of type A21}. Combined with 4.5 (i) and 2.6 the required assertion follows from
5.10.

5.12. We may generalize the notion of reduced decomposition by saying that w =

w1w2 is a reduced decomposition whenever lengths add, that is :(w) = :(w1)+:(w2).

Recall that G induces Dynkin diagram automorphisms of π. We may view G

as a subgroup of Γ (notation 5.3) and then consider its induced action on W . Set
WG = {w ∈ W |g(w) = w, ∀g ∈ G}. Obviously wπ̂ ∈ WG for any G stable subset π̂
of π.

Lemma — (i) Take w ∈ WG and α ∈ π such that :(sαw) < :(w). Then there
exists w′ ∈ WG such that w = wo(α)w

′ is a reduced decomposition.

(ii) There exists a reduced decomposition wπ = wo(α1)wo(α2) · · ·wo(αn) of the
unique longest element.

(iii) Suppose α, β ∈ π lie in distinct G orbits. Then one may take α1 = α, α2 =

β in (ii).
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Proof. The hypothesis of (i) is equivalent to wα < 0 which further implies wβ < 0

for all β ∈ o(α) and hence all β ∈ �o(α) ∩ ∆+. By say [J7, A.1.1] this gives the
desired conclusion. Obviously (ii) results from (i). For (iii) it is enough to observe
that wπwo(α)β < 0 if β �∈ o(α).

5.13. Through 5.12 (ii), 5.11 with α = α1 and 5.9 (i) with π̂ = o(αi) : i > 1 we
obtain the

Lemma — For all α ∈ π one has∑
β∈c(α)

Upsβwπo ⊂
∑

β∈o(α)

Psβwπ .

5.14. Let π1 be a connected component of π. Given α, β ∈ π1 in distinct G

orbits which are neighbours in Dπ, let o[α, β] denote the set of all ordered pairs
γ ∈ o(α), δ ∈ o(β) which are neighbours in Dπ. Give c[α, β] a similar meaning.

Let � denote the set of all U − V bimodules M such that UM, MV are finitely
generated and (cf. 4.4) that dU (M) = d′V (M) = d(U). GivenM,M ′ ∈ � we say that
M = M ′ up to codimension 2 if there existsM ′′ ∈ � such thatM ′′ ⊂M,M ′′ ⊂M ′,
M/M ′′ = M ′/M ′′ and d(U)− d(M/M ′′) > 2, d(U)− d(M ′/M ′′) > 2. Notice that if
N is a left V module then dV (N) = dU (UN).

Lemma — Fix α, β ∈ π1 in distinct G orbits which are neighbours in Dπ. Then∑
γ,δ∈c[α,β]

Upsγsδwπo ⊂
∑

γ,δ∈o[α,β]

Psγsδwπ .

up to codimension 2.

Proof. As in 5.13 this follows from 5.9 (i), 5.11, 5.12 (iii) given that certain obvious
unwanted terms can be ignored. For example if γ ∈ o(α), δ ∈ o(β) are not neighbours
then d(U)−d(Psγsδwπ/(Psγwπ +Psδwπ)) = 4. There is also an extra little verification
in type Ak

2n when Do(α) is of type Ak
2 . For example when k = 1, n = 2 writing

sαi = si and Pαi = Pi the term P4P2P3P1P4P2P3P2 equals Ps3s4s1wπ which in turn
equals Ps3s4wπ + Ps1wπ up to codimension 2.

5.15. Recall [Ja2, 6.20] the bijection I 
→ IM(λ) of ideals of U to submodules
of M(λ). In this Pmin = Pwπ becomes the simple Verma module M(wπλ)

and Psβwπ/Pwπ the simple quotient L(sβwπ) = M(sβwπλ)/M(wπλ). Moreover
AnnUL(sβwπ) = Pβ . Similar considerations apply to V .

Proposition — For all α ∈ π one has∑
β∈c(α)

Upsβwπo =
∑

β∈c(α)

psβwπoU =
∑

β∈o(α)

Psβwπ .
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Proof. We prove only the equality of the first and third terms since equality of the
second and third terms is similar. Set

Q =
∑

β∈o(α)

Psβwπ , q =
∑

β∈c(α)

psβwπo .

By 5.13 we have Uq ⊂ Q and we must show that equality holds. By 5.9 (iii) it is
enough to show that Uq̄ = Q̄ where q̄ = q/pmin , Q̄ = Q/Pmin . By the remarks
preceding the proposition Q̄ is a semisimple module for the semisimple noetherian
ring Ū := U/

⋂
β∈o(α) Pβ . Similarly q̄ is a semisimple module for the semisimple

noetherian ring V̄ := V/
⋂

β∈c(α) pβ . Moreover 4.5 (i) gives V̄ = ŪG and 4.3 implies
that Ū is finitely generated as a left and a right V̄ module. Let S be the set of regular
elements of V̄ . By Goldie’s theorem S is an Ore subset of V̄ and then A := V̄ S−1

coincides with the ring of fractions of V̄ and is a semisimple artinian ring [H, Chap.7].
Then B := ŪS−1 has the structure of a finitely generated A module and is hence
artinian. Left multiplication by a regular element of Ū is hence a bijective map.
It follows (as noted in [JS, 3.7]) that B coincides with the ring of fractions of Ū
which is also semisimple, artinian. Moreover BG = A. Similarly Uq̄S−1 and Q̄S−1

are B − A bimodules. Admit that the inclusion Uq̄S−1 ⊂ Q̄S−1 is an equality,
equivalently that Q̄/Uq̄ is an S torsion module. The noetherianity of U implies that
Q̄ and hence Q̄/Uq̄ is finitely generated as a left U module. Consequently there
exists s ∈ S such that s ∈ AnnV̄ (Q̄/Uq̄) =: p. Then by 4.3 (∗) and [B, 1.3] one
has dŪ (Q̄/Uq̄) = d′

V̄
(Q̄/Uq̄) ≤ d(V̄ /p) < d(V̄ ) = d(Ū). Now Q̄ is finitely generated

as a right Ū module and so Q̄ and hence Q̄/Uq̄ is finitely generated as a right V̄

module. Then the previous inequality implies that d(Ū/AnnŪ (Q̄/Uq̄)) < d(Ū). Yet
the annihilators Pβ : β ∈ o(α) of the simple quotients of Q̄ satisfy d(U/Pβ) = d(Ū)

and so (AnnŪ (Q̄/Uq̄))Q̄ = Q̄. This forces Q̄/Uq̄ = 0 which is the assertion of the
proposition. It remains to show Uq̄S−1 = Q̄S−1.
It is clear from 5.13 that QG ⊃ q. Recall that

(⋂
β∈o(α) Pβ

)
Q ⊂ Pmin and so

4.5 (i) and 5.9 (iii) give
(⋂

β∈c(α) pβ

)
QG ⊂ pmin . Recall the bijection I 
→ IM(µ)

of ideals of V to submodules of M(µ) and the fact [Ja1, 5.22] that any submodule,
say QGM(µ), of M(µ) strictly containing some

∑
β∈π′ M(sβwπoµ) must contain

a Verma submodule, which is either M(sγwπoµ) : γ ∈ π \ π′ or M(sβsγwπoµ) :

β, γ ∈ π′. From this and the previous inclusion one checks as in say [J2, Sect.7] that
QGM(µ)/qM(µ) can at most have a simple quotient of the form L(sβsγwπoµ) with
β, γ ∈ c(α) of type A1 × A1. Then the corresponding simple subquotient of V has
GK dimension equal to d(V ) − 4. We conclude that QG = q and hence Q̄G = q̄,
both up to codimension 2. Obviously V̄ modules of GK dimension strictly less than
d(V̄ ) = d(V )− 2 are S torsion and so q̄S−1 = (Q̄S−1)G. Set M = Q̄S−1. It remains
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to show that M = BMG. In this we want to apply 3.8 but first it is necessary to
replace B by a simple ring.
Since the minimal primes of Ū form a G orbit it follows that G permutes the

minimal central idempotents e1, e2, · · · , ek : k = |o(α)| of B. SetH = StabGe1. Then
we may writeG =

∐k
i=1 giH where gi ∈ G satisfies gi(e1) = ei. Set B1 = Be1 = e1B.

Define a linear map θ : B1 −→ B by θ(b) =
∑k

i=1 gi(b). Then gi(b)gj(b
′) = 0 for

all b, b′ ∈ Be1 and i �= j. From this it follows that θ is a homomorphism (and
obviously injective) of the simple artinian ring B1 into B. Obviously θ(B1) is G

stable and θ(B1)
G = BG. Set M1 = e1M and define an injection θ : M1 −→ M

by θ(m) =
∑k

i=1 gi(m). Then θ(bm) = θ(b)θ(m), ∀b ∈ B1,m ∈ M1. Again
θ(M1) is G stable and θ(M1)

G = MG. One has Endθ(B1)θ(M1) ∼= EndB1M1 =

EndFract(U/Pα)Fract(Psαwπ/Pwπ) which by [J4, I, 3.2] is a simple artinian ring
(and even isomorphic to Fract(U/P−wπα)). Finally θ(M1)

G is a direct sum of the
Fract(psβwπo /pwπo ) : β ∈ c(α) each of which is a non-zero module for the simple
direct summand Fract(V/pβ) of A. Thus 3.8 applies to give θ(B1)M

G = θ(M1).
Multiplying on the left by the ei : i = 1, 2, · · · , k gives BMG = M as required.

5.16. Set β∨ = 2β/(β, β), ∀β ∈ π. By [CD, 8.6] the Goldie rank rk(U/Pβ) of
U/Pβ equals (λ, β∨). Moreover this value is clearly independent of the choice of
β in its G orbit o(α). Similarly rk(V/pβ) = (µ, β∨) but this may depend on the
choice of β in its class c(α). Let µi denote the restriction of µ to the connected
component c(πi) of π0. Our main result established below is essentially that λ is
a linear combination of the µi with positive integer coefficients. However since we
do not know if the Dynkin diagrams of π1 and c(πi) coincide we can only prove
the following modification of this result. Indeed define µ̃i to be µi if π1 and c(πi)

have the same Dynkin diagram. Otherwise long and short roots are interchanged on
passing from π1 to c(πi). Then define µ̃i as a weight of π1 by (µ̃i, α

∨) = (µi, c(α)∨)

if α is long in π1 ; and (µ̃i, α) = (µi, c(α)) if α is short in π1. In other words if
we set r = (c(α), c(α))/(α, α) for α short, then the coefficient of the fundamental
weight ωβ occurring in µi is multiplied by r to obtain µ̃i exactly when β is a short
root. One may remark that any Goldie rank polynomial computed with respect to
µi defined on the dual Dynkin diagram reversing long and short roots divides the
corresponding Goldie rank polynomial computed with respect to µ̃i.

Theorem — There exist strictly positive integers mi such that

λ =

n∑
i=1

miµ̃i.

Proof. As before we can assume without loss of generality that π is a G orbit of
a connected component π1. The assertion then results from 3.7 and 5.14 using an
analysis similar to that given in 5.15 so we shall be brief. Let α, β be neighbours in
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Dπ1 and set

Q̄ =
∑

γ,δ∈o[α,β]

Psγsδwπ

/ ∑
δ∈o(α,β)

Psδwπ , q̄ =
∑

γ,δ∈c[α,β]

psγsδwπo

/ ∑
δ∈c(α,β)

psδwπo .

By 5.14 and 5.15 we have Uq̄ ⊂ Q̄ up to codimension 2. Moreover Q̄ (resp. q̄) is
a semisimple module for the semisimple noetherian ring Ū := U/

⋂
γ∈o(α) Pγ (resp.

V̄ = V/
⋂

γ∈c(α) pγ). Let S be the set of regular elements of V̄ . Then as in 5.14 the
rings A := V̄ S−1 = FractV̄ , B := ŪS−1 = FractŪ are semisimple artinian with
BG = A. Moreover Uq̄S−1 is a B −A submodule of Q̄S−1 with (Q̄S−1)G = q̄S−1.
Set M = Q̄S−1. We are almost ready to apply 3.7. As in 5.15 we may replace

B,M by θ(B1), θ(M1) defined similarly and we remark that

Endθ(B1)θ(M1) = EndFract(U/Pα)Fract(Psαsβwπ/(Psβwπ + Psαwπ)).

This by [J4, I, 3.2] is a simple artinian ring containing Fract(U/Pwπβ). Moreover
the Goldie rank of the former divided by the Goldie rank of the latter is
zsαsβ = −(α∨, β). (See also [P, 2.6] ). Finally θ(M1)

G is a direct sum of
the Fract(psγsδwπo /psγwπo + psδwπo ) each of whose endomorphism ring as a left
Fract(V/pγ) module can be similarly expressed. Application of 3.7 then gives the
assertion of the theorem.

Remark. It is perhaps useful to consider the case when G orbits in π are all
trivial and α, β is of type A2. Then the above endomorphism ring is exactly
Fract(U/P−wπβ). Moreover 3.7 (or just 3.4) gives (λ, α∨)/(λ, β∨) = (µ, α∨)/(µ, β∨).

6 Skew Field Extensions

6.1. The aim of this section is to analyze to what extent one may strengthen
Theorem 4.20 replacing Coxeter by Dynkin. Unfortunately we find that except for
special values of λ this cannot be achieved at the level of rings of fractions. For this
we return to the point raised in 3.6 and construct an interesting counterexample.
For any ring A and any integer r we denote by Mr(A) the ring of r × r matrices
over A.

6.2. We start with some general and fairly well-known analysis. Let B be a
simple, artinian ring and G a finite subgroup of AutB. Let S be the unique up
to isomorphism simple B module and K := EndBS which is a skew field. For all
g ∈ G let Sg be the B module which is S as an additive group with B action
g(b).s = bs, ∀b ∈ B, s ∈ S; equivalently there is an additive group isomorphism
ϕg : S −→ Sg satisfying g(b)ϕg(s) = ϕg(bs). Yet Sg ∼

−→ S as a B module so one can
just view ϕg as an element of AutS. Then the action of g becomes conjugation by
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ϕg. Let ϕ̃g be a second element of AutS with the above properties. One easily checks
that ϕg−1ϕg and ϕg−1 ϕ̃g are non-zero elements of EndBS = K. Thus ϕ̃g ∈ ϕgK.
Similarly ϕ̃g ∈ Kϕg.

Take θ ∈ EndBS. Then θϕg(bs) = θ(g(b)ϕg(s)) = g(b)θ(ϕg(s)) and so θϕg ∈ ϕgK

by our previous observation. Again ϕg(θ(bs)) = ϕg(bθ(s)) = g(b)ϕg(θ(s)) and so
ϕgθ ∈ Kϕg. Consequently Kϕg = ϕgK, equivalently K is stable for conjugation
by ϕg, hence is G stable. Finally one checks that ϕgϕg′ ∈ ϕgg′K. These properties
exactly mean that ⊕

g∈G

ϕgK =
⊕
g∈G

Kϕg =: K ∗G

inherits a cross product structure. Moreover its action on S defines an algebra
homomorphism K ∗ G −→ EndS whose image we denote by C. Since K ∗ G is
semisimple, artinian so is C. Clearly EndCS = (EndKS)G = BG =: A. Finally
C = EndAS by the second commutant theorem [H, 4.3.2].

6.3. To simplify the subsequent analysis we further assume that A is simple. Let T
be the unique up to isomorphism simple A module and set L = EndAT . Let r be the
dimension of T over L and s the multiplicity of T in S. Then C = EndAS = Ms(L),
whilst A = Mr(L). The question raised in 3.6 is whether rkB/rkA can be read off
from the action of G on S. For the moment observe that r = rkA, s = rkC and
rs = dim LS.

Suppose B̂ is a simple, artinian ring containing B and assume that the action
of G on B extends to B̂. Suppose further that Â := B̂G is simple. One may
pose the above question in a strong form by asking if rkB̂/rkÂ = rkB/rkA?
Consider the special case when rkB̂ = rkB. Then a minimal idempotent f ∈ B

is also a minimal idempotent for B̂ and so K̂ := fB̂f ⊃ fBf = K is a skew-
field and the unique up to isomorphism simple B̂ module Ŝ can be taken to
be S ⊗K K̂. Then Ĉ, L̂, r̂, ŝ may be defined with respect to B̂, G as in 6.2 and
one obtains Â = Mr̂(L̂), Ĉ = C ⊗K K̂ = Mŝ(L̂) and r̂ŝ = dim L̂Ŝ. Then
dim K̂Ĉ = dim KC = s dim KU = (s/r) dim KS = (s/r)rkB, whilst for the same
reason dim K̂Ĉ = (ŝ/r̂)rkB̂. Thus m := r̂/r = ŝ/s and our question becomes is
m = 1? Consider the special case when s = 1. Then U identifies with K which
consequently must be a subfield of L. Furthermore C = L, Ĉ = L ⊗K K̂ = Mŝ(L̂)

and we are asking if ŝ = 1. To specify the algebra structure of L ⊗K K̂ we recall
that L is an image of K ∗ G and that G acts by automorphisms on K̂. It is clear
that there is an additive group isomorphism L ⊗K K̂

∼
−→ K̂ ⊗K L and a skew-field

embedding of L (resp. K̂) in K̂ ⊗K L defined by : 
→ 1 ⊗ : (resp. k̂ 
→ k̂ ⊗ 1) such
that the multiplication in Ĉ is given by

(k̂1 ⊗ g1, k̂2 ⊗ g2) 
→ k̂1g1(k̂2)⊗ g1g2, ∀k̂1, k̂2 ∈ K̂, g1, g2 ∈ G.(∗)
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For our purposes it is relevant to further impose thatMŝ(L̂) is isomorphic to EndL̂L.
6.4. We give a number of examples for which ŝ > 1 in the above.
Example (1). Let G be the group of quaternions and K = � the real field. Then G

admits a four dimensional simple module over � which further defines a surjection
of �G onto the skew-field of quaternions �. Take L = � and K̂ = � with the trivial
action of G and set L̂ = �. Then K̂ ⊗K L = �⊗� � ∼= M2(�) ∼= End�� = EndL̂L.
Thus ŝ = 2. In this (classical) example the base field (namely �) is not algebraically
closed and the rings A,B are finite dimensional over their centres so it is not so
relevant to our present interest.
Example (2). Take K̂ to be the first Weyl skew-field over � which we may represent

as �
(
y, ∂

∂y

)
and define θ ∈ AutK̂ by θ(y) = −y, θ

(
∂
∂y

)
= − ∂

∂y
+ y−1. Then θ2 is

conjugation by y2 on K̂ whilst on the subfield K := �
(
y2, y ∂

∂y

)
, the automorphism

θ restricts to conjugation by y. Identify K̂, L by their images in K̂ ⊗K L where L is
generated over K by an element z satisfying z2 = −y2 and zkz−1 = θ(k), ∀k ∈ K̂

viewed as an element of K̂ ⊗K L. Set x = ∂
∂y
. Then K̂ ⊗K L has generators x, y, z

satisfying

xy − yx = 1, yz + zy = 0, zx + xz = y−1z, z2 = −y2.(∗)

In particular L has generators z−1yx, z. It is also a first Weyl skew-field over �.
Indeed K̂, L̂,K are all isomorphic.

The element u := y−1z satisfies u2−1, uz+zu = 0, yu+uy = 0, xyu = uxy. Thus
conjugation by u defines an involution σ of K̂ leaving K pointwise fixed. Define G

to be generated by σ and so isomorphic to �2.
One has K̂ = K + yK. Thus the structure of K̂ as a right K module may

be represented by taking 1 =
(
1
0

)
, y =

(
0
1

)
. Then through left multiplication the

generators y, yx of K̂ become the elements of EndKK̂ represented as the matrices(
0 y2

1 0

)
,
(
yx 0
0 1+yx

)
; whilst σ =

(
1 0
0 −1

)
. Then z ∈ EndKK̂ is just yσ =

(
0 −y2

0 1

)
. One

thus easily checks that y, yx, z generate EndKK̂. This establishes the isomorphism
(of algebras) K̂ ⊗K L

∼
−→ EndKK̂ which is furthermore isomorphic to EndL̂L as

required.

Since K̂ and L are isomorphic we can view the above as an example of an algebra
isomorphism L ⊗K L

∼
−→ EndKL. However this is quite different to the well-known

[H, 4.13] isomorphism L ⊗F Lop ∼
−→ EndFL for any skew-field L finite dimensional

over its centre F since the algebra structure in the first case is defined by 6.3(∗)
rather than just component-wise.
Example (3). Let ω be a primitive nth root of unity. Take K̂ as in example 2 and
σ ∈ AutK̂ defined by σ(x) = ωx, σ(y) = ω−1y with G =< σ >∼= �n. Set K = K̂G.
Then dim KK̂ = n. The elements yx, yσ ∈ K̂ ∗G generate a subfield L isomorphic
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to K̂. One checks as in example 2 that

K̂ ⊗K L
∼
−→ K̂ ∗G

∼
−→ EndKK̂

∼
−→Mn(K).

Example (4). Take K̂,G as in example 2; but with σ(x) = x, σ(y) = y. Define
L ⊂ K̂ ∗G as in example 3. Set K = L ∩ K̂ which is the Weyl skew-field �(yx, y2)

but no longer K̂G. One checks from 6.3(∗) that K̂ ⊗K L
∼
−→ L⊕ L.

6.5. Let us show how example 2 relates to the problem discussed in 6.1. Here eight
rings are involved and these will all be constructed as subrings of the ring of 2 × 2

matrices of the first Weyl skew field which we shall represent as M2(�(a, b)) where
a = ∂/∂b.

Define x, y, z, x′, y′, z′ ∈M2(�(a, b)) by the formulae

yx = y′x′ =

(
ba 0

0 1 + ba

)
, y =

(
0 b2

1 0

)
, z = z′ =

(
0 −b2

1 0

)
, y′ =

(
b 0

0 −b

)
.

It is clear that we may define σ ∈ AutM2(�(a, b)) satisfying σ(y′) = −y′ and fixing
xy, z, y′. Take G =< σ >∼= �2. From the analysis of example 2 the relations 6.4(∗)
hold for x, y, z and one further checks that they also hold for the primed elements.

Set L = �(a, b),K = �(ab, b2), B̂ = M2(L). Then B̂ is generated by
yx, y, z, y′ and by inverting regular elements. We shall designate this briefly as
B̂ = �(yx, y, z, y′). Then Â := B̂G = �(yx, y, z) which as we have seen in example
2 is isomorphic to M2(K). Define B = �(yx, y′, z) = �(y′x′, y′, z′) which is again
isomorphic to M2(K). Then A := BG = �(yx, z) and is isomorphic to L.

In 3.4 take M = B considered as a left B module. Then B′ = EndBM identifies
with B and A′ := B′G with EndAMG = EndAA = A. Set τ :=

(
1 0
0 −1

)
∈ B̂. Then

conjugation by τ restricts to an automorphism of B and B̂ identifies with the cross
product B∗ < τ >. Then M = B may be viewed as a B̂ module extending the B

action through conjugation by τ . One checks that B̂′ := EndB̂M = B′τ identifies
with the subfield �(y′x′, y′). Then Â′ := B̂′G = �(y′x′, y′2) = �(yx, y2) = �(yx, z2).
One has MG = A and as a right Â′ module EndÂ′M

G = �(yx, y, z) = Â = B̂G.
Finally B̂′G = EndB̂GM

G = Â′.

The above may be summarized by the following diagram of ring inclusions.
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G

′

′

′

′

Figure 1.

In the above A↪−−−−→©G B designates that B = AG whilst B−©M−B′ designates that
B′ = EndBM . The diagram on the right gives the Goldie ranks of the corresponding
rings.
6.6. We are not yet able to show that the above inclusions of rings (of fractions)
can be lifted to give an example with � of type B2 and �′ of type C2 in the conclusion
of Theorem 4.20. The question is the following. Does there exist a finite subgroup
G of Aut(U(�)/AnnM(λ)) such that (U(�)/AnnM(λ))G ∼= U(�′)/AnnM(µ) with
PG
α = pβ , P

G
β = pα and (β, β)/(α, α) > 1? To be specific take � of type B2 and �′

of type C2 so then (β, β) = 2(α, α). Recalling 5.16 set

Q̄ = Psβsαwπ/(Psαwπ + Psβwπ), q̄ = psβ′sα′wπo/(psα′wπo + psβ′wπo ).

One has Uq̄ = Q̄ but we cannot say if α = α′, β = β′ that is if the root lengths
remain in the same relative proportions, or become reversed. Define S as in 5.16
and set M = Q̄S−1 which is a right B′ = FractU(�)/Pα module. As noted
in 5.16 its endomorphism ring B has zsαsβ = −(α∨, β) = 2 times the Goldie
rank of Fract(U(�)/Pβ). On the other hand if α′ = β, β′ = α then MG is a
right A′ := B′G = FractU(�′)/pβ module and its endomorphism ring A := BG

has zsβsα = −(β∨, α) = 1 times the Goldie rank of Fract U(�′)/pα. This is
perfectly compatible with the Goldie ranks in the top half of Figure 1 if we take
λ = ωα + ρ, µ = ρ. On the other hand if α′ = α, β′ = β and taking λ = µ, µ = ρ the
resulting Goldie ranks are compatible with those occurring in the bottom half of
Figure 1. Consequently we cannot strengthen Theorem 4.20 in the desired manner by
passage to rings of fractions unless (λ, α∨) is not divisible by zsαsβ . Finally notice
in the first example that G has to be quite big. Indeed Pmax is the annihilator of
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a four dimensional module, whilst PG
max = pmax is the annihilator of the trivial

module. Consequently G must admit (3.6) a four dimensional irreducible projective
representation.

6.7. As noted above we can strengthen Theorem 4.20 in the following “indivisible
Goldie rank” case. In this we can assume that π is the G orbit of a connected
component π1 of π and moreover that π1 is not simply-laced. Then in π1 there is a
unique pair of neighbouring roots α, β with (β, β)/(α, α) =: z > 1.

Theorem — Suppose that z does not divide (λ, α∨). Then one may replace Coxeter
by Dynkin in 4.20 and µ̃i by µi in 5.16.

Proof. The required strengthening is obtained by applying the result noted in italics
in 6.6.

Remark. Of course this applies in particular when λ = ρ and refines Polo’s result in
[P, Thm. 7.1].

Index of Notations

Symbols used frequently are given below in the place where they are first defined:

1.1 �, U(�).

2.2 O(P ), I(P ), O(P ) ≥ O(P ′).

2.3 ϕ, I(p).

2.4 C(p).

2.5 C(p) ≥ C(p′).

2.6 Φ.

4.1 �+, �,�−,∆,∆+, ρ,M(λ), Uλ,∆λ,Wλ,∆
+
λ , πλ.

4.2 Vµ,∆
o
µ, π

o
µ.

4.3 dB, d′B.

4.4 C(P ), cod.

4.5 Pα, pα, o(α), c(α).

4.6 τ, Pπ′ , P
π′ , Pα, Pmax , P

π′′

π′ , P
β
π′ .

4.9 π̂.

4.11 Specπ̂.

4.12 Specπ̂.

4.14 ∆π′ .

4.17 Dπ′ .
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4.18 o(α, β), c(α, β).

5.3 Γ.

5.9 Pmin .

5.10 :(w), Pw , wπ′ ,Wπ′ .

5.14 o[α, β], c[α, β].

6.1 Mr(A).
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