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Abstract
Invariant theory has been a major subject of research in the 19th century.

One of the highlights was Gordan’s famous theorem from 1868 showing that
the invariants and covariants of binary forms have a finite basis. His method
was constructive and led to explicit degree bounds for a system of generators
(Jordan 1876/79).
In 1890, Hilbert presented a very general finiteness result using completely

different methods such as his famous “Basissatz.” He was heavily attacked be-
cause his proof didn’t give any tools to construct a system of generators. In his
second paper from 1893 he again introduced new techniques in order to make
his approach more constructive. This paper contains the “Nullstellensatz,”
“Noether’s Normalization Lemma,” and the “Hilbert-Mumford Criterion!”
We shortly overview this development, discuss in detail the degree bounds

given by Popov, Wehlau and Hiss and describe some exciting new development
relating these bounds with the (geometric) degree of projective varieties and
with the Eisenbud-Goto conjecture. The challenge is still the fact that the
degree bounds for binary forms given by Jordan are much better than those
obtained from the work of Popov and Hiss.

Résumé
La théorie des invariants a été un sujet de recherche majeur au 19ème siècle.

Un des résultats marquants a été le fameux théorème de Gordan en 1868 qui
établissait que les invariants et les covariants des formes binaires ont une base
finie ; sa méthode était constructive et a conduit à des bornes explicites des
degrés d’un système de générateurs (Jordan 1876/79).
En 1890, Hilbert a présenté un résultat de finitude très général utilisant

des méthodes complètement différentes comme le fameux “Basissatz.” Il a
été vivement attaqué parce que sa preuve ne construisait pas un système de
générateurs explicite. Dans son deuxième papier datant de 1893, il a introduit
de nouvelles techniques pour rendre son approche plus constructive. Ce dernier
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papier contient le “Nullstellensatz,” le «Lemme de Normalization de Noether »
et le « Critère de Hilbert-Mumford »!
Nous présentons brièvement ces développements, discutons en détail les

bornes pour les degrés donnés par Popov, Wehlau et Hiss et décrivons
certains nouveaux résultats reliant ces bornes avec le degré (géométrique) de
certaines variétés projectives et avec la conjecture de Eisenbud-Goto. Encore
maintenant, le défi est que les bornes des degrés données par Jordan pour les
formes binaires sont meilleures que celles obtenues dans le travail de Popov et
Hiss.

1 Introduction

Let ρ : G→ GL(V ) be a representation of a groupG on a vector space V of dimension
n < ∞. For simplicity, we assume that the base field k is algebraically closed
and of characteristic zero. As usual, the group G acts linearly on the k-algebra
�(V ) of polynomial functions on V , the coordinate ring of V . Of special interest
is the subalgebra of invariant functions, the invariant ring, which will be denoted
by �(V )G. It carries a lot of information about the representation itself, its orbit
structure and its geometry, cf. [MFK94], [Kra85].

The ring of invariants was a major object of research in the last century. We
refer to the encyclopedia article [Mey99] of Meyer from 1899 for a survey (see also
[Kra85]). There are a number of natural questions in this context:

– Is the invariant ring �(V )G finitely generated as a k-algebra?

– If so, can one determine an explicit upper bound for the degrees of a system
of generators of �(V )G?

– Are there algorithms to calculate a system of generators and what is their
complexity?

The first question is essentially Hilbert’s 14th problem, although his formulation
was more general (see [Hil01]). The answer is positive for reductive groups by results
of Hilbert, Weyl, Mumford, Nagata and others (see [MFK94]), but negative in
general due to the famous counterexample of Nagata [Nag59]. We will not discuss
this here. For a nice summary of Hilbert’s 14th problem we refer to [New78, pp.
90–92].

Our main concern is the second question. For this purpose let us introduce the
number β(V ) associated to a given representation V of G:

β(V ) := min{d | �(V )G is generated by invariants of degree ≤ d}.

In the following we discuss upper bounds for β(V ). We start with a historical sketch
followed by a survey of classical and recent results. In the last paragraph we add a
few remarks about algorithms.
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2 Gordan’s work on binary forms

The first general finiteness result was obtained by Paul Gordan in 1868 ([Gor68]).
This was clearly one of the highlights of classical invariant theory of the 19th century
which has seen a lot of interesting work in this area by famous mathematicians,
like Boole, Sylvester, Cayley, Aronhold, Hermite, Eisenstein, Clebsch, Gordan, Lie,
Klein, Cappelli and others.

Theorem 2.1 — For every finite dimensional SL2-module V the ring of invariants
�(V )SL2 is finitely generated as a k-algebra.

Beside invariants Gordan also studies covariants and shows that they form a
finitely generated k-algebra. (This is in fact contained in the theorem above as we
will see below.) We shortly recall the definition.

Let Vd denote the binary forms of degree d, i.e., the vector space of homogeneous
polynomials in x, y of degree d. The group SL2 acts on this (d + 1)-dimensional
vector space by substitution:(

a b

c d

)
· p(x, y) := p(ax+ cy, bx+ dy) for p(x, y) ∈ Vd.

It is well-known that the modules Vd (d = 0, 1, . . . ) form a complete set of
representatives of the simple SL2-modules.

Definition 2.2 — Let W be an SL2-module. A covariant of degree m and order d of
W is an equivariant homogeneous polynomial map ϕ : W → Vd of degree m, i.e., we
have ϕ(g · w) = g · ϕ(w) for g ∈ SL2 and ϕ(tw) = tmϕ(w) for t ∈ k.

A covariant can be multiplied by an invariant function. Thus the covariants
�d(W ) of a fixed order d form a module over the ring of invariants. In fact, one easily
sees that �d(W ) = (�(W )⊗Vd)SL2 in a canonical way. More generally, multiplication
of binary forms defines a bilinear map Vd × Ve → Vd+e. With this multiplication
the vector space �(W ) :=

⊕
d �d(W ) of covariants becomes a graded k-algebra, the

ring of covariants, which contains the ring of invariants as its component of degree
0. In fact, �(W ) is itself a ring of invariants:

�(W ) =
⊕
d

(�(W )⊗ Vd)
SL2 = (�(W )⊗ �(V1))

SL2 = �(W ⊕ V1)
SL2 .

This algebra has an important additional structure given by transvection (in
German: “Überschiebung”). It is based on the Clebsch-Gordan formula which tells
us that there is a canonical decomposition

Vd ⊗ Ve � Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ Vd−e
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as an SL2-module where we assume that d ≥ e. Then the ith transvection of two
covariants ϕ, ψ of order d, e, respectively, is defined by

(ϕ, ψ)i := pri ◦(ϕ⊗ ψ)

where pri is the linear projection of Vd⊗Ve onto Vd+e−2i. This is clearly a covariant
of order d+ e− 2i and degree degϕ+ degψ.

By representing a binary form as a product of linear forms, i.e., by considering the
equivariant surjective morphism V d1 → Vd given by multiplication, one can produce
a natural system of generators for the vector space of covariants whose elements
are represented by so-called symbolic expressions. This is based on the fact that the
invariants and covariants of an arbitrary direct sum of linear forms W = V N1 are
well-known and easy to describe. Represent an element of � = (�1, �2, . . . , �N ) ∈ V N1
as a 2×N -matrix

(
a1 a2 a3 · · · aN

b1 b2 b3 · · · bN

)
where �i = aix+ biy.

Then the invariants are generated by the 2 × 2-minors [i, j] := det

(
ai aj

b1 bj

)
and

the covariants of order d by the maps � �→ �i1�i2 · · · �id . This approach is classically
called symbolic method (cf. [GrY03], [Schu68]).

By rather technical manipulations of these symbolic expressions Gordan was
able to prove that the ring of covariants is finitely generated. He starts with a
finite number of very simple covariants and shows that one only needs finitely
many (multiple) transvections in order to obtain a complete system of generators.
Gordan’s method is constructive and he easily produces a system of generators for
the invariants and covariants of Vd for d ≤ 5.

Using the same method of symbolic expressions Camille Jordan is able to give
the following explicit bounds for the degrees of the generators ([Jor76, Jor79]).

Theorem 2.3 — The ring of covariants of W =
⊕
Vdi where di ≤ d for all i is

generated by the covariants of order ≤ 2d2 and degree ≤ d6, for d ≥ 2.

In particular, we obtain in our previous notation β(Vd) ≤ d6. This is really a
big achievement. Today, a similar polynomial bound is not known for any other
semi-simple group! We refer to the work of Jerzy Weyman [Wey93] for a modern
interpretation of Gordan’s method.
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3 Hilbert’s general finiteness results

In 1890 David Hilbert proved a very general finiteness result using completely new
methods ([Hil90]). He formulated it only for the groups SLn and GLn, but he was
fully aware that his results generalize to other groups provided that there exists an
analogue to the Ω-process (see [Hil90, pp. 532–534]).

Finiteness Theorem —Let V be a G-module and assume that the linear representa-
tion of G on �(V ) is completely reducible. Then the invariant ring �(V )G is finitely
generated as a k-algebra.

This result applies to linearly reductive groups, i.e., algebraic groups whose
rational representations are completely reducible. Finite groups, tori and the
classical groups are examples of such groups.

The proof of Hilbert uses the following two main facts:

1. Every ideal in the polynomial ring �(V ) = k[x1, x2, . . . , xn] is finitely
generated.
(This is the famous “Basissatz;” it is theorem 1 of Hilbert’s paper.)

2. There exits a linear projection R : �(V ) → �(V )G which is a �(V )G-module
homomorphism and satisfies R(g · f) = R(f) for all g ∈ G.
(R is called Reynolds operator.)

In Hilbert’s situation (i.e. G = SLn or GLn) this operator R corresponds to Cayley’s
Ω-process (cf. [Hil90], [We46, VIII.7] or [Spr89, II.2.3]). For finite groups it is given
by

R : f �→
1

|G|

∑
g∈G

g · f

Using these two facts Hilbert’s proof of the Finiteness Theorem is not difficult:

Proof. Let I be the ideal of �(V ) generated by all G-invariant homogeneous
polynomials of positive degree. By (1) we can find finitely many homogeneous G-
invariant generators f1, f2, . . . , fr of I. We claim that �(V )G = k[f1, f2, . . . , fr]. In
fact, we show by induction on d that every homogeneous invariant polynomial f of
degree d lies in k[f1, f2, . . . , fr].

The case d = 0 is trivial. Suppose d > 0. Then f ∈ I and we can write it in the
form

f = a1f1 + a2f2 + · · ·+ arfr where a1, a2, . . . , ar ∈ �(V ).

Applying R from (2) yields

f = b1f1 + b2f2 + · · ·+ brfr where bi = R(ai) ∈ �(V )G for all i.
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Since we can replace each bi by its homogeneous part of degree d− deg(fi) we may
assume that bi is homogeneous of degree < d. Hence, by induction, b1, b2, . . . , br ∈
k[f1, f2, . . . , fr] and so f ∈ k[f1, f2, . . . , fr].

It is clear that this proof is highly non-constructive and does not provide any tools
to determine a system of generators. Also it does not give an upper bound for the
degrees of the generators fi. When Gordan took notice of the new methods of Hilbert
he made his famous exclamation: “Das ist Theologie und nicht Mathematik.”1

In view of many complaints about the non-constructiveness of his proof Hilbert
wrote a second paper [Hil93] in which he describes a way to construct generators of
the ring of invariants. This paper is very important for the development of algebraic
geometry as we will see below. Let us first introduce the nullcone �V in V :

�V := {v ∈ V | f(v) = 0 for all homogeneous f ∈ �(V )G of degree > 0}.

It is also called null-fiber since it is the fiber π−1(π(0)) of the quotient morphism
π : V → V//G defined by the inclusion �(V )G ↪→ �(V ) (see [Kra85]). Now Hilbert
proves the following result.

Proposition 3.1 — If h1, h2, . . . , hr are homogeneous invariants such that the zero
set of h1, h2, . . . , hr in V is equal to �V then �(V )G is a finitely generated module
over the subalgebra k[h1, h2, . . . , hr].

For the proof of this proposition Hilbert formulates (and proves) his famous
Nullstellensatz. In fact, if I is the ideal of �(V ) generated by all G-invariant
homogeneous polynomials of positive degree (see the proof of the Finiteness Theorem
above) then it follows from the Nullstellensatz that Im ⊂ (h1, h2, . . . , hr) for some
m > 0 since both ideals have the same zero set. It follows that there exists an integer
N > 0 such that every homogeneous invariant of degree ≥ N belongs to the ideal
(h1, h2, . . . , hr). From this one easily sees that the invariants of degree < N generate
�(V )G as a module over the subalgebra k[h1, h2, . . . , hr].

Let us define another number σ(V ) associated to a representation V :

σ(V ) := min{d | �V is defined by homogeneous invariants of degree ≤ d}.

Equivalently, σ(V ) is the smallest integer d such that for every v ∈ V \ �V there
is a non-constant homogeneous invariant f of degree ≤ d such that f(v) �= 0.
Hilbert shows that there is an upper bound for σ(V ) in terms of the data of the
representation. (He only considers the case G = SLn.)

The next step in the proof of Hilbert is the following result (which is nowadays
called “Noether’s Normalization Lemma!”).

1“This is theology and not mathematics!”
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Proposition 3.2 — There exist algebraically independent homogeneous invariants
p1, p2, . . . , ps such that �(V )G is a finitely generated module over the polynomial
ring k[p1, p2, . . . , ps].

Such a set p1, p2, . . . , ps is called a homogeneous system of parameters.

Sketch of proof. Suppose that f1, f2, . . . , fr are homogeneous invariants with degrees
d1, d2, . . . , dr defining �V , as in Proposition 3.1. Let d := lcm(d1, d2, . . . , dr), the
least common multiple. The powers f ′1 := f

d/d1
1 , f ′2 := f

d/d2
2 , . . . , f ′r := f

d/dr
r also

have the nullcone as common set of zeroes and these functions are all homogeneous
of the same degree d. Now it is not difficult to show that there exist algebraically
independent linear combinations p1, p2, . . . , ps of f ′1, f

′
2, . . . , f

′
r such that �(V )G is

integral over k[p1, p2, . . . , ps].

The final step is the existence of a primitive element. Hilbert shows that we
can find another homogeneous invariant p such that k[p1, p2, . . . , ps, p] and �(V )G

have the same field of fractions K. Then he remarks that �(V )G is the integral
closure of k[p1, p2, . . . , ps, p] in this field K. At this point Hilbert refers to Kronecker
whose general theory of fields contains a method to compute the integral closure of
k[p1, p2, . . . , ps] within the field k(p1, p2, . . . , ps, p). But he does not give an explicit
upper bound for β(V ).

The importance of these two papers of Hilbert for the development of commuta-
tive algebra and algebraic geometry can hardly be overestimated. As already men-
tioned above they contain the Finiteness Theorem, Hilbert’s Basis Theorem, the
Nullstellensatz, Noether’s Normalization Lemma, the Hilbert-Mumford Criterion
and the finiteness of the syzygy-complex. It seems that these completely new meth-
ods and deep results were not really estimated by some of the mathematicians of
that time. Following is part of a letter written by Minkowski to Hilbert on February
9th, 1892 ([Min73, page 45]):2

(. . . ) Dass es nur eine Frage der Zeit sein konnte, wann Du die alten
Invariantenfragen soweit erledigt haben würdest, dass kaum noch das
Tüpfelchem auf dem i fehlt, war mir eigentlich schon seit lange nicht
zweifelhaft. Dass es aber damit so schnell geht, und alles so überraschend
einfach gelingt, hat mich aufrichtig gefreut, und beglückwünsche ich Dich
dazu. Jetzt, wo Du in Deinem letzten Satze sogar das rauchlose Pulver
gefunden hast, nachdem schon Theorem I nur noch vor Gordans Augen
Dampf gab, ist es wirklich an der Zeit, dass die Burgen der Raubritter
Stroh, Gordan, Stephanos und wie sie alle heissen mögen, welche die

2We like to thank Reinhold Remmert for showing us this letter and Lance Small for his help
with the translation.
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einzelreisenden Invarianten überfielen und in’s Burgverliess sperrten,
dem Erdboden gleich gemacht werden, auf die Gefahr hin, dass aus diesen
Ruinen niemals wieder neues Leben spriesst.3 (. . . )

4 Popov’s bound for semi-simple groups

It took almost a century until Vladimir Popov determined a general bound for β(V )
for any semi-simple group G ([Pop81, Pop82]), combining Hilbert’s ideas with the
following fundamental result due to Hochster and Roberts [HoR74].

Theorem 4.1 — If G is a reductive group then the invariant ring �(V )G is Cohen-
Macaulay.

Recall that being Cohen-Macaulay means in our situation that for each
homogeneous system of parameters p1, p2, . . . , ps of �(V )G it follows that �(V )G is a
finite free module over P := k[p1, p2, . . . , ps]. So there exists homogeneous secondary
invariants h1, h2, . . . , hm, such that

�(V )G = Ph1 ⊕ Ph2 ⊕ · · · ⊕ Phm.

Put di := deg(pi) and ej := deg(hj). Then the Hilbert-series of �(V )G has the
following form:

F (�(V )G, t) =

∑m
j=1 t

ej∏s
i=1(1− t

di)
.

Moreover, Knop showed in [Kno89, Satz 4] that the degree of the rational function
F (�(V )G, t) is always ≤ − dim�(V )G. Thus

max
j
ej ≤ d1 + d2 + · · ·+ ds − s

and we get
β(V ) ≤ d s ≤ d dimV where d := max

i=1,...,s
di.

It remains to find an upper bound for the degrees of a homogeneous system of
parameters. Popov first determined an estimate for σ(V ) in case of a connected
semisimple group G, following the original ideas of Hilbert:

σ(V ) ≤ c(G) (dim V )2m−r+1ω(V )r

3(. . . ) For a long time I have not doubted that it is only a question of time until you solved the
old problems of invariant theory without leaving the tiniest bit. But I was frankly delighted that
it happened so quickly and that your solution is so surprisingly simple, and I congratulate you.
Now, after you have discovered with your last theorem the smokeless gunpowder where already
your Theorem 1 only for Gordan generated steam, it is really the right time to raze to the ground
the castles of the robber knights Stroh, Gordan, Stephanos and others who may be so called who
attacked the lonely traveling invariants and put them into the dungeon. Hopefully, from these ruins
never again shall new life arise. (. . . )
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where m := dimG, r := rankG, c(G) := 2m+r(m+1)!

3m(m−r2 )!2
and ω(V ) is the maximal

exponent in a weight of V .

Thus, there are homogeneous invariants f1, f2, . . . , fr of degree ≤ σ(V ) whose
zero set equals �V . We have seen in the proof of Proposition 3.2 that there
exists a homogeneous system of parameters p1, p2, . . . , ps where all pj are of degree
d := lcm(deg f1, deg f2, . . . , deg fr) ≤ lcm(1, 2, . . . , σ(V )) where lcm(. . . ) denotes
the least common divisor. Summing up we finally get the following result [Pop81].

Theorem 4.2 — For a representation of a semi-simple group G on a vector space
V one has

σ(V ) ≤
2m+r(m+ 1)!

3m(m−r2 )!2
· (dimV )2m−r+1ω(V )r

where m := dimG, r := rankG and ω(V ) is the maximal exponent in a weight of
V , and

β(V ) ≤ dimV lcm(1, 2, . . . , σ(V )).

Example. For the binary forms of degree d one gets

σ(Vd) ≤
27

32
d(d + 1)6

and so the upper bound for β(Vd) will be worse than (d6)!. Compare this with the
result of Jordan in §2.

5 Noether’s bounds for finite groups

The situation for finite groups is much better. Already in 1916 Emmy Noether
proved the following result [Noe16].

Theorem 5.1 — For a finite groups G we have β(V ) ≤ |G| for every G-module V ,
i.e., invariants are generated in degree ≤ |G|.

Proof. As before define the Reynolds operator R : �(V )→ �(V )G by

Rf :=
1

|G|

∑
g∈G

g · f.

It is well-known that the vector space �(V )e of homogeneous polynomials of degree
e is linearly spanned by the eth powers (α1x1+α2x2+ · · ·+αnxn)e of linear forms,
α1, α2, . . . , αn ∈ k. In fact, this span is a GL(V )-submodule of �(V )e which is a
simple module. So, the vector space �(V )Ge is spanned by the invariants

R(α1x1 + α2x2 + · · ·+ αnxn)
e where α1, α2, . . . , αn ∈ k.
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Suppose G = {g1, g2, . . . , gd} where d := |G| and define

yi := gi · (α1x1 + α2x2 + · · ·+ αnxn), i = 1, . . . , d.

Then

R(α1x1 + α2x2 + · · ·+ αnxn)
e = 1

d
(ye1 + y

e
2 + · · ·+ y

e
d) =: Pe.

Now we use the fact that every such “power sum” Pe for e > d can be expressed as
a polynomial in the power sums P1, P2, . . . , Pd, because P1, P2, . . . , Pd generate the
algebra of symmetric polynomials in k[y1, y2, . . . , yd]. Therefore, every invariant of
degree > d is a polynomial in the invariants of degree ≤ d.

In view of this result we define β(G) for a finite group G as the maximum of all
β(V ):

β(G) := max{β(V ) | V a representation of G}.

We have β(G) ≤ |G| by Noether’s theorem, but this bound is not always sharp. For
example, it is easy to see that β(�/2 × �/2) = 3. In fact, Barbara Schmid showed
that equality only occurs whenG is a cyclic group ([Sch89, Sch91]). For commutative
finite groups she proved the following result.

Proposition 5.2 — If G is a commutative finite group then β(G) equals the maximal
number � such that there exists an equation g1 + g2 + · · · + g� = 0 where gi ∈ G
with the property that for every strict subset {i1, i2, . . . , is} � {1, 2, . . . , �} we have
gi1 + gi2 + · · ·+ gis �= 0.

Schmid was able to calculate the β invariant for several “small” groups. In general,
this seems to be a very difficult problem.

Examples 1. The following examples can be found in [Sch89, Sch91]:

1. β((�/2)N ) = N + 1.

2. If p is a prime and G = �/pr1 × �/pr2 × · · · × �/prs we get
β(G) =

∑s
i=1 p

ri − s+ 1.

3. If G is the dihedral group Dn of order 2n then β(Dn) = n+ 1.

4. β(S3) = 4, β(A4) = 6, β(S4) ≤ 12.

Remark. It was pointed out to us by Nolan Wallach that one can show that

β(Sn) ≥ e
C
√
n lnn for n� 0 where 1 > C > 0

by using large cyclic subgroups of the symmetric group Sn (see [Mil87]). Thus we
cannot expect any polynomial bound for β(Sn).
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6 The case of tori

In this section we assume that G = T is a torus of rank r, acting faithfully on an n-
dimensional vector space V with weights ω1, ω2, . . . , ωn. The character groupX�(T )
of T is isomorphic to �r and has a natural embedding into X�(T )⊗� �. Choosing
an isomorphism X∗(T )

∼
−→ �r we obtain an isomorphism X�(T ) ⊗� �

∼
−→ �r and

therefore a volume form dV on X�(T )⊗� � which is independent of the chosen basis
of X∗(T ).

We can identify the set of monomials in x1, x2, . . . , xn with �n. It is clear that
the invariant monomials correspond to those (α1, α2, . . . , αn) ∈ �n which satisfy

α1ω1 + α2ω2 + · · ·+ αnωn = 0.

Now we are ready to state and prove the following result due to David Wehlau
[Weh93].

Theorem 6.1 — In the situation above we have

β(V ) ≤ (n− r)r! vol(�V )

where �V is the convex hull of ω1, ω2, . . . , ωn in �r.

Proof. Denote by S the set of invariant monomials (as a subset of �n). The subcone
�+S ⊆ �n+ has finitely many extremal rays �1, �2, . . . , �s, and �i ∩ �n = �Ri for
some unique monomial Ri. Suppose M is some invariant monomial. The dimension
of �+S is n−r, soM lies in some (n−r)-dimensional simplicial cone with extremal
rays �j1 , �j2 , . . . , �jn−r for certain indices j1, j2, . . . , jn−r. So

M = α1Rj1 + α2Rj2 + · · ·+ αn−rRjn−r , α1, α2, . . . , αn−r ∈ �+.

Write αj = aj + γj where aj ∈ � and 0 ≤ γj < 1. In multiplicative notation we get

M = Ra1j1R
a2
j2
. . . R

an−r
jn−r

N

where the degree of N satisfies

deg(N) = γ1 deg(Rj1) + γ2 deg(Rj2) + · · ·+ γn−r deg(Rjn−r )

≤ (n− r)max{deg(Ri) | i = 1, 2, . . . , s}.

Now we want to bound deg(Ri). After a permutation of the variables we may assume
that Ri = (µ1, µ2, . . . , µt, 0, 0, . . . , 0) where µ1, µ2, . . . , µt ∈ � \ {0}. The characters
ω1, ω2, . . . , ωt span a (t − 1)-dimensional vector space: If it were less then there
would be a solution T = (τ1, τ2, . . . , τt, 0, 0, . . . , 0) ∈ �n independent of Ri, and
Ri±εT ∈ �+S for small ε contradicting the extremality of the ray �i. After another
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permutation of xt+1, xt+2, . . . , xn we may assume that ω1, ω2, ω3, . . . , ωr+1 span an
r-dimensional vector space. The equations

α1ω1 + α2ω2 + · · ·+ αr+1ωr+1 = αr+2 = αr+3 = · · · = αn = 0

have a one-dimensional solution space. By Cramer’s rule, we can find a non-zero
solution A = (α1, α2, . . . , αr+1, 0, . . . , 0) in the usual way:

αi = (−1)i det(ω1, ω2, . . . , ωi−1, ωi+1, . . . , ωr+1)

= ±r! vol(�(0, ω1, ω2, . . . , ωi−1, ωi+1, . . . , ωr+1)) i = 1, 2, . . . , r + 1.

Now A is a rational (even an integral) multiple of Ri. Therefore

deg(Ri) ≤ |α1|+ |α2|+ · · ·+ |αr+1| = r!
r+1∑
i=1

vol(�(0, ω1, . . . , ω̂i, . . . , ωr+1))

= r! vol(�(ω1, ω2, . . . , ωr+1)) ≤ r! vol(�V ),

and so β(V ) ≤ (n− r)r! vol(�V ).

Remark. In his paper Wehlau was able to give a slightly better bound:

β(V ) ≤ max{n− r − 1, 1} r! vol(�V ).

It is conjectured that one even has the sharp bound β(V ) ≤ r! vol(�V ).

7 A general bound for reductive groups

The degree bounds for semi-simple groups and for tori which we have seen in §4 and
§6 depend on n, the dimension of the vector space. On the other hand, a general
theorem of Hermann Weyl states that for a given representation of a reductive group
G on V the invariants of many copies of V are obtained from those of n = dimV

copies by polarization (see [We46]). Here polarization means the iterated application
of the following procedure: Let f be a homogeneous invariant of degree d and write

f(v + tw) = f(v) + tf1(v, w) + t
2f2(v, w) + · · ·+ t

df(w), t ∈ k.

Then the fi are homogeneous invariants of V ⊕ V of bidegree (d− i, i).

In particular, we see that β(V N ) ≤ β(V dimV ) for all N . More precisely, we have
the following result.

Proposition 7.1 — Let V1, V2, . . . , Vr be irreducible representations of a reductive
group G. Then the invariants of W := V m11 ⊕ V m22 ⊕ · · · ⊕ V mrr are obtained from
those of

V dimV11 ⊕ V dimV22 ⊕ · · · ⊕ V dimVrr

by polarizing. In particular, β(W ) ≤ β(
⊕
j V
dimVj
j ).
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The proposition shows that our bound β(V ) only depends on the irreducible
representations occurring in V and not on their multiplicity. For a finite group G it
implies that β(G) = β(Vreg) where Vreg is the regular representation (cf. §5).

Example. If G = T is a torus then it is obvious that the degrees of a minimal system
of generators for the invariants only depend on the weights of V and not on their
multiplicity (cf. §6, proof of Theorem 5.1). Since the number of different weights in
V is ≤ #(�V ∩ �r) we obtain from Theorem 6.1

β(V ) ≤ (#(�V ∩ �r)− r) r! vol(�V ).

In her thesis [His96] Hiss was able to improve Popov’s bound and to generalize
it to arbitrary connected reductive groups, using some ideas of Knop’s. In
particular, her bounds for σ(V ) and β(V ) do not depend on dimV as indicated
by Proposition 7.1 above. Let us first introduce some notation. The vector space V
is embedded in �(V ⊕�) = �n+1 in the usual way. We define another constant δ(V )
by

δ(V ) := max{deg(Gp) | p ∈ V \�V }

where deg(Gp) is the degree of the projective closure Gp of the orbit Gp in �n+1.
Recall that this degree is given by the number of points in the intersection of Gp
with a generic affine subspace of codimension equal to dimGp. (See the following
§8 for some basic facts about the degree of a quasi-projective variety.)

Let B = TU be a Borel subgroup with its usual decomposition into a torus part
T and a unipotent part U and let � be the Lie-algebra of U . We define the nilpotency
degree NV of the representation V as

NV := min{� | X�+1v = 0 for all v ∈ V, X ∈ �}.

Finally, we denote by �V the convex hull of the weights of the action of the maximal
torus T on V (cf. §6). The following result is due to Karin Hiss [His96].

Theorem 7.2 — Let G be a connected reductive group of dimension m and rank r
and let V be a representation of G. Then

σ(V ) ≤ δ(V ) ≤ c(G)Nm−rV vol(�V ) where c(G) :=
2r(m+ 1)! r!

(m−r2 )!2
.

Sketch of Proof. If p �∈ �V , then 0 cannot lie in the closure of Gp. For a generic
linear subspace W of codimension dimGp− 1 the projection ψ : V → V/W has the
following properties:

1. ψ(Gp) is closed and has codimension 1 in V/W ;

2. ψ(Gp) does not contain 0;
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3. ψ|Gp is a finite and birational morphism onto its image and so degGp =

degψ(Gp) (see §8 Proposition 8.3 (1)).

Therefore, there exists a f ∈ �(V/W ) of degree d = degGp vanishing on ψ(Gp) and
satisfying f(0) = 1. Now h := f ◦ ψ ∈ �(V ) has degree d, h(0) = 1 and h vanishes
on Gp. Applying the Reynolds operator we obtain an invariant Rh of degree ≤ d
satisfying Rh(0) = 1 and Rh(p) = 0. It follows that one of the homogeneous parts
hi of Rh of degree > 0 must satisfy hi(p) �= 0. So for every p ∈ V \ �V there
exists a homogeneous invariant of degree ≤ d which does not vanish in p. Hence,
σ(V ) ≤ d ≤ δ(V ).

Now we want to find a bound for δ(V ). For simplicity we assume that the
stabilizer of p is trivial. Let �− be the nilpotent subalgebra opposite to �. We
define a morphism ϕ : �− × T × �→ V/W by

ϕ(u−, t, u) = (exp(u−) t exp(u)) · p+W.

The image of ϕ is a dense subset of ψ(Gp). The map ϕ is of degree ≤ NV in u− and
u and the weights appearing are contained in �V . Therefore,

ϕ�(�(V/W )≤�) ⊆ �(�−)≤�NV ⊗ �(T )��V ⊗ �(�)≤�NV

with obvious notation. Increasing � we eventually find an �0 such that

dim�(V/W≤�0) > dim(�(�−)≤�0NV ⊗ �(T )�0�V ⊗ �(�)≤�0NV )(∗)

because dimV/W = m + 1 > m = dim(�− × T × �). For such an �0 there exists a
non-zero f ∈ ker(ϕ�) with degree ≤ �0. Hence, the hypersurface ψ(Gp) has degree
≤ �0 and so δ(V ) ≤ �0. It remains to determine an �0 satisfying (∗). This eventually
leads to the formula given in the theorem.

To illustrate the last argument in the proof consider the parametrization of the cusp
ϕ : k → k2, t �→ (t2, t3). The homomorphism ϕ� : �(k2) = k[x, y] → �(k) = k[t] is
defined by ϕ�(x) = t2 and ϕ�(y) = t3. The image of a polynomial in x and y of
degree ≤ � will be a polynomial in t of degree ≤ 3� and so ϕ�(k[x, y]≤�) ⊆ k[t]≤3�.
Now we have dim(k[x, y]≤�) =

(
�+2
2

)
and dim(k[t]≤3�) = 3�+ 1. The smallest value

of � with
(
�+2
2

)
> 3�+ 1 is 4. Therefore, there must exist an f of degree ≤ 4 which

vanishes on the cusp. (Of course, there is even a polynomial of degree 3 doing the
same, namely x3 − y2.)

Example. For binary forms of degree d we get

σ(Vd) ≤ δ(Vd) ≤ 96 d3.
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That is a very good estimate (cf. §4 Example). In fact, Lucy Moser-Jauslin [Mos92]
has computed the degree of any orbit in Vd:

δ(Vd) ≥ degree of a generic orbit =

{
d(d− 1)(d− 2), d ≥ 6 even,

2d(d− 1)(d− 2), d ≥ 5 odd.

It should be pointed out that the degree of a generic orbit in �(Vd) was already
given by Enriques and Fano (see loc. cit. Remark in section 8).

8 Degrees of orbits in representation spaces

It was pointed out by Vladimir Popov that the degree δ(V ) of a generic orbit in a
representation space V might be an interesting “invariant” for that representation.
In the previous section we showed that it playes an important rôle in the study of
upper bounds for the degrees of a generating set for the ring of invariants �(V )G. In
fact, for every closed orbitGv different from 0 there is a (non-constant) homogeneous
invariant function of degree ≤ δ(V ) which does not vanish in v.

Before discussing a general degree formula found by Kazarnovskii we want to
recall a few facts about degrees of quasi-projective varieties. For more details we
refer to [Ful84].

Definition 8.1 — The degree of a quasi-projective variety X ⊂ �n of dimension d
is defined to be the degree of the closure X in �n, i.e.,

degX := #X ∩H1 ∩H2 ∩ . . . ∩Hd

where H1, H2, . . . , Hd are d hyperplanes in �n in general position.

In this definition we use the fact that the number of points in the intersection
X ∩H1 ∩H2 ∩ . . . ∩Hd is independent of the choice of the hyperplanes Hi if they
are chosen general enough. (One can show that the cardinality of the intersection
equals the degree if the intersection is transversal.) Clearly, for a quasi-affine variety
X ⊂ �n we have

degX = #X ∩A

where A is an affine subspace of �n of dimension n− d in general position.

The next lemma is well-known. It says that the degree of a projective variety is
equal to the multiplicity of its homogeneous coordinate ring.

Lemma 8.2 — Let Z ⊂ �n be a projective variety of dimension d and let R =⊕
i≥0Ri be its homogeneous coordinate ring. Then

degZ = multR := d! lim
i→∞

dimRi
id

.
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For an affine variety X ⊂ �n the coordinate ring �(X) has a natural filtration
given by the subspaces �(X)≤i of functions f which are restrictions of polynomials
of degree ≤ i. It follows from Lemma 8.2 that

degX = d! lim
i→∞

dim�(X)≤i
id

, d := dimX.

In fact, the homogeneous coordinate ring R of the closure of X in �n is given by
R =

⊕
i≥0 �(X)≤i t

i ⊂ R[t].

Another consequence of Lemma 8.2 is the following result which describes the
behavior of the degree under finite morphisms. The first statement was used in the
proof of Theorem 7.2 in §7.

Proposition 8.3 — Let ψ : �n → �m be a linear map and let ϕ : �n \ �(W )→ �m

be the projection from a subspace �(W ).

(1) If X ⊂ �n is a closed irreducible subvariety such that ψ|X : X → ψ(X) is
a finite morphism then

degX = degψ|X · degψ(X).

(2) If Y ⊂ �n is an irreducible projective variety such that Y ∩�(W ) = ∅ then
ϕ|Y : Y → ϕ(Y ) is a finite morphism and

deg Y = degϕ|Y · degϕ(Y ).

As usual, the degree of a dominant morphism is defined to be the degree of the
field extension of the corresponding fields of rational functions. It equals the number
of points in a general fiber (see [Kra85, Anhang I.3.5]).

Sketch of Proof. It is easy to see that (1) follows from (2). Moreover, statement (2)
is a consequence of Lemma 8.2 and the following claim:

Claim. Let R =
⊕
i≥0 Ri be a graded domain where dimRi <∞ and R0 = �, and

let S =
⊕
i≥0 Si ⊂ R be a graded subalgebra. Assume that both are generated by

their elements in degree 1 and that R is a finite S-module. Then

multR = [Quot(R) : Quot(S)] ·multS.

To see this let R =
∑N
j=1 Sfj with homogeneous elements fj ∈ R. Then

Quot(R) =
∑N
j=1Quot(S)fj and we can assume that the first

d := [Quot(R) : Quot(S)] elements form a basis. It follows that R ⊃
⊕d
j=1 Sfj

and that there is a homogeneous f ∈ S such that fR ⊂
⊕d
j=1 Sfj. From this the

claim follows immediately.
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Example. To any subvariety X ⊂ V = �n we can associate two projective varieties,
namely its closure X in �n = �(V ⊕ �) and the closure π(X) of the image of X in
�(V ). Assume that X is irreducible and that the closure of X in V is not a cone
(i.e., X and π(X) have the same dimension). Then

degX = degX = d · deg π(X)

where d = #�x ∩ X for a general x ∈ X . This follows from Proposition 8.3 (2)
applied to the projection �(V ⊕ �) \ {P} → �(V ) from the point P = (0, 1).

In particular, if ρ : G → GL(V ) is a representation and Gv ⊂ V a non-conical
orbit then

degGv = (Gv̄ : Gv) degGv̄

where v̄ is the image of v in �(V ).

9 Kazarnovskii’s degree formula

A general formula for the degree of a generic orbit in V n, n := dimV , for an arbitrary
representation V of a connected reductive group G was obtained by Kazarnovskii
in the paper [Kaz87]. We will give a short proof of his formula which was suggested
by the referee and which completes a partial result obtained by the first author.
Moreover, we will use the formula to deduce another upper bound for δ(V ).

First we need some notation. As before, we put m := dimG and r := rankG.
Moreover, we fix a Borel subgroup B and a maximal torus T ⊂ B and denote
by α1, α2, . . . , α�, � := m−r

2 , the positive roots. Let W be the Weyl group and let
e1, e2, . . . , er be the Coxeter exponents, i.e., e1+1, e2+1, . . . , er+1 are the degrees
of the generating invariants of W .

For any representation ρ : G→ GL(V ) we denote by �V ⊂ E := X∗(T )⊗� � the
convex hull of 0 and the weights of V . On E we use the volume form dV given by any
isomorphism E � �r which identifies X∗(T ) with �r . Finally, we fix a W -invariant
scalar product ( , ) on E and denote, for any γ ∈ E, by γ̌ ∈ E∗ the dual element
defined by γ̌(α) := 2(α,γ)

(γ,γ) .

Now the result of Kazarnovskii can be stated as follows.

Theorem 9.1 — Let ρ : G→ GL(V ) be a representation of dimension n with finite
kernel. Then the degree of a generic orbit in V n := V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸

n copies

is equal to

δgen(V ) =
m!

|W |(e1!e2! · · · er!)2
1

| ker(ρ)|

∫
�V

(α̌1α̌2 . . . α̌�)
2dV.
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Proof. It is clear from the formula that we can replace G by its image ρ(G) in GL(V )

and therefore assume that the representation ρ is faithful. By definition, δgen(V ) is
the degree of the closure G of G in �(End(V )⊕�). Let X be the closure of the cone
spanned by G in End(V ⊕ �) where � is considered as the trivial representation of
G:

X := �∗G ⊂ End(V )⊕ � ⊂ End(V ⊕ �).

Clearly, the (graded) algebra �(X) is the homogeneous coordinate ring of G ⊂
�(End(V ) ⊕ �). Denote by R =

⊕
j≥0 Rj the normalization of �(X) in its field of

fractions. Then

δgen(V ) = m! lim
j→∞

dim�(X)j
jm

= m! lim
j→∞

dimRj
jm

.

(For the second equality see the claim in the proof of Proposition 8.3 of §8.)

Claim. A simple module Vλ of highest weight λ appears in the homogeneous
component Rj if and only if λ ∈ −j�V ∩P∩X∗(T ) where P denotes the fundamental
Weyl chamber. Moreover, the multiplicity of Vλ is dimVλ.

The claim implies our theorem as follows. First recall Weyl’s character formula
(cf. [Hum72, IV.24.3]):

dimVλ =

∏�
i=1 α̌i(λ+ ρ)∏�
i=1 α̌i(ρ)

where ρ := 1
2

∑�
i=1 αi.

It follows that

dimRj
jm

=
1

jm
∏�
i=1 α̌i(ρ)

2

∑
λ∈−j�V ∩P∩X∗(T )

�∏
i=1

α̌i(λ+ ρ)
2

=
1

jr
∏�
i=1 α̌i(ρ)

2

∑
µ∈−�V ∩P∩

1
jX

∗(T )

�∏
i=1

α̌i(µ+
ρ

j
)2.

Passing to the limit j →∞ we obtain

δgen(V )

m!
=

1∏�
i=1 α̌i(ρ)

2

∫
−�V ∩P

(α̌1α̌2 · · · α̌�)
2dV

Since the function α̌1α̌2 · · · α̌� isW -invariant and since the numbers α̌i(ρ) are exactly
the numbers 1, 2, . . . , e1, 1, 2, . . . , e2, . . . , 1, 2, . . . , er (see [Hum90, 3.20 Theorem])
we finally get

δgen(V ) =
m!

|W | (e1!e2! · · · er!)2

∫
�V

(α̌1α̌2 · · · α̌�)
2dV.
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It remains to prove the claim. The second statement is easy because X and its
normalization X̃ are both G × G varieties and the equivariant morphism G → X

induces an injection Rj ↪→ �(G) for every j.

For the first statement let λ ∈ −j�V ∩P ∩X∗(T ) and define Y to be the closure of
�∗G in End(V )⊕End(V ∗λ )⊕� where this time �∗ acts by t(ϕ, ψ, z) := (tϕ, tjψ, tz):

Y := �∗G ⊂ End(V )⊕ End(V ∗λ )⊕ �.

It follows that End(Vλ) occurs in �(Y ) in degree j where the grading is given by the
�∗-action defined above. Moreover, the linear projection End(V )⊕End(V ∗λ )⊕�→

End(V ) ⊕ � induces a homogeneous morphism p : Y → X which is the identity
on �∗G. Thus, p is birational and it remains to show that p is finite, i.e., that
p−1(0) = {0}. Let (0, ψ, 0) ∈ p−1(0) ⊂ Y . By the following Lemma 9.2 there is a
one-parameter subgroup t �→ (ta, σ(t)) of �∗ ×G such that

lim
t→0

(taρ(σ(t)), tajρ∗λ(σ(t)), t
a) = (0, ψ, 0).

It follows that a > 0 and that a+ (σ, µ) > 0 for all weights µ of V and therefore for
all µ ∈ �V . Hence, ja+(σ, ν) > 0 for all ν ∈ j�V and so ψ = limt→0 t

jaρ∗λ(σ(t)) = 0

because all weights of V ∗λ are contained in j�V , by assumption.

The following lemma was used in the proof above. It is essentially due to Strickland
(see [Str87]) and was communicated to us by DeConcini.

Lemma 9.2 — Let ρ : G→ GL(V ) be a representation of a reductive groups and let
T ⊂ G be a maximal torus. Then the closure G in EndV is equal to GTG.

The proof follows immediately from the fact that for a reductive group G with
maximal torus T we haveG(�((t))) = G(�[[t]])T (�((t)))G(�[[t]]) (Theorem of Ivahori;
see [MFK94, Chap. 2, §1]).

Finally, we show that the generic degree given by Kazarnovskii’s formula is an
upper bound for all degrees of G-orbits and in particular for δ(V ).

Proposition 9.3 — For any representation ρ : G → GL(V ) of a reductive group G
and any vector v ∈ V we have

degGv ≤ δgen(V ) and δ(V ) ≤ δgen(V ).

Proof. Given a generic q ∈ V n and an arbitrary v ∈ V there exists a G-equivariant
linear map ψ : V n → V satisfying ψ(q) = p. Thus, the orbit of q is mapped onto the
orbit of p. From this it is not difficult to see that δgen(V ) = degGq ≥ degGv.
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Example. For binary forms of degree d we have G = SL2, W � �/2, e1 = 1,
�V = [−d, d]. Therefore,

δ(Vd) ≤
3!

2

∫ d
x=−d

x2 dx = 2d3 if d is odd and δ(Vd) ≤ d
3 if d is even.

This improves the bound found by Hiss (see §7).

10 Algorithms

With the development of computers over the last decades the computational aspects
of invariant theory gained importance:

How can one explicitly compute generators for the invariant ring? Are
there finite algorithms and what is their complexity?

We refer to Sturmfels’ book [Stu93] for an excellent introduction into the subject
and a source of references. Some algorithms are already implemented. For example,
Kemper wrote the invar package in Maple for finite groups (see [Kem93, Kem95])
and for tori an algorithm to compute invariants is given by Sturmfels in loc. cit.

In the following we describe a new algorithm to compute invariants of arbitrary
reductive groups which was discovered by the first author (see [Der97] Chap. I). It
is implemented in the computer algebra system SINGULAR (see [GPS]). In some
sense, it is a generalization of Sturmfels’ algorithm.

Consider the morphism ψ : G× V → V × V defined by ψ(g, v) = (v, gv) (g ∈ G,
v ∈ V ) and let B ⊂ V × V be the closure of the image of ψ:

B := {(v, w) ∈ V × V | Gv = Gw}.

Let � be the homogeneous ideal in �(V × V ) = k[x1, x2, . . . , xn, y1, y2, . . . , yn]

defining B. The algorithm is based on the following result:

Proposition 10.1 — If h1(x, y), h2(x, y), . . . , hs(x, y) are homogeneous generators of
the ideal � then

�(V )G = k[R(h1(x, 0)), R(h2(x, 0)), . . . , R(hs(x, 0))]

where R is the Reynolds operator.

It is clear that homogeneous generators of � can be computed using Gröbner basis
techniques. Thus, the proposition gives us an algorithmic way to compute generators
for the invariant ring. In case of a torus the algorithm is essentially the same as the
one given by Sturmfels.
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The proposition above also has some interesting theoretical consequences. In
fact, it gives us a way to obtain an upper bound for β(V ). If � is generated by
homogeneous polynomials of degree ≤ d then, by Proposition 10.1, β(V ) ≤ d. The
variety B is a cone, so we can view it as a projective variety in �(V × V ). It can
be shown that the degree δ̄(B) of B as a projective variety in �(V × V ) is at most
the degree of the generic orbit closure in �(∧n(V × V )) where G acts only on the
second factor. Using the formula of Kazarnovskii one finds

δ̄(B) ≤ min(C(nL)m, C′Lm
2+m )

where C,C′ are positive constants, n := dimV , m := dimG and L is the maximal
euclidean length of all weights appearing in V . On the other hand, Eisenbud and
Goto made the following conjecture [EiG84]:

Conjecture — If B is connected (i.e., if G is connected) then the ideal � is generated
by homogeneous polynomials of degree ≤ δ̄(B).

In fact, their conjecture is stronger and involves also higher syzygies; it can
be translated into terms of local cohomology. Clearly, the conjecture implies that
β(V ) ≤ δ̄(B) which together with the upper bounds for δ̄(B) would be a considerable
improvement of the bounds found by Popov and Hiss.

Note added in Proof:The first author has recently shown that

β(V ) ≤ max

{
3

8
sσ(V )2, σ(V )

}
where s = dim�(V )G (see Derksen, H.: Polynomial bounds for rings of invariants,
to appear). This is a considerable improvement of all degree bounds obtained so far,
except for those of Jordan: For binary forms of degree d it gives β(Vd) ≤ 3

2d
7.
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