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Abstract
In this paper we outline a procedure which can be seen as an approximation

to the well known “hopeless” problem of classifying m-tuples (m ≥ 2) of n×n
matrices under simultaneous conjugation by GLn. The method relies on joint
work with C. Procesi, on the étale local structure of matrix-invariants and
recent work [10], [11] on the nullcone of quiver-representations.

Résumé
Dans ce papier, nous présentons une procédure qui peut être considérée

comme une approximation au problème bien connu et “sans espoir” de
classification des m-uplets (m ≥ 2) de matrices n × n sous l’action de
conjugaison simultanée par GLn. La méthode est basée sur un travail en
commun avec C. Procesi, sur la structure étale locale des invariants de matrices
et sur un travail récent de l’auteur sur le cône nilpotent des représentations de
carquois.

Throughout, we fix an algebraically closed field of characteristic zero and call it
�. Let Xm,n =Mn(�)

⊕m be the affine space of m-tuples of n×n matrices with the
action of GLn given by simultaneous conjugation, that is

g.X = g.(x1, . . . , xm) = (gx1g
−1, . . . , gxmg−1)

for all g ∈ GLn and all X ∈ Xm,n. The first approximation to the orbit space of this
action is the quotient variety Vm,n which is determined by its coordinate ring which
is the ring of invariant polynomial functions �[Vm,n] = �[Xm,n]

GLn . The inclusion
�[Vm,n] ⊂ �[Xm,n] gives the quotient map

π : Xm,n −→ Vm,n = Xm,n//GLn

Procesi [14] has shown that the coordinate ring �[Vm,n] is generated by traces in
the generic matrices of degree at most n2. From general invariant theory [13] we
know that the points of Vm,n classify the closed orbits in Xm,n. The correspondence
being given by associating to a point ζ ∈ Vm,n the orbit of minimal dimension in
the fiber π−1(ζ).

AMS 1980 Mathematics Subject Classification (1985 Revision): 16R30, 16G20
∗Senior researcher at the NFWO — Departement Wiskunde UIA, B-2610 Wilrijk (Belgium)

Société Mathématique de France



246 Lieven Le BRUYN

A more algebraic interpretation is as follows. A point X = (x1, . . . , xm) ∈ Xm,n
determines an n-dimensional representation of � < X1, . . . , Xm > by associating to
X the algebra map

ϕX : � < X1, . . . , Xm > �→Mn(�)

given by Xi �→ xi. Two representations ϕX and ϕY are isomorphic if and only if X

and Y belong to the same orbit. By the Artin-Voigt theorem [6, II.2.7] the closed
orbits correspond to the semi-simple n-dimensional representations. A general orbit
is mapped under the quotient π to its semi-simplification, that is the direct sum of
the Jordan-Hölder components.

Our first aim is to study the highly singular variety Vm,n better. Assume that
ζ ∈ Vm,n determines a semi-simple n-dimensional representation of the form

S⊕e11 ⊕ . . .⊕ S⊕err

where the Si are the distinct simple components of dimension ki occuring with
multiplicity ei. We then say that ζ is of representation type

τ = (e1, k1; . . . ; er, kr)

where this tuple is of course only determined upto permuting the indices.
The algebraic notion of degeneration of representation types can be described
combinatorially as follows. We say that τ ′ = (e′1, k

′
1; . . . ; e

′
r′, k

′
r′) < τ if there is

a permutation σ on {1, . . . , r′} such that there exist numbers

1 = j0 < j1 < j2 < . . . < jr = r′

such that for every 1 ≤ i ≤ r we have

– eiki =
∑ji
j=ji−1+1

e′σ(j)k
′
σ(j)

– ei ≤ eσ(j)′ for all ji−1 < j ≤ ji

For example for n = 3 we have 5 representation types with a line degeneration
pattern (3, 1) < (2, 1; 1, 1) < (1, 1; 1, 1; 1, 1) < (1, 2; 1, 1) < (1, 3). However, things
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quickly become more complex. For n = 4 we have 11 representation types

type τ

1 (1, 4)

2 (1, 3; 1, 1)

3 (1, 2; 1, 2)

4 (1, 2; 1, 1; 1, 1)

5 (1, 1; 1, 1; 1, 1; 1, 1)

6 (1, 2; 2, 1)

7 (2, 2)

8 (1, 1; 1, 1; 2, 1)

9 (1, 1; 3, 1)

10 (2, 1; 2, 1)

11 (4, 1)

with corresponding Hasse diagram

1

2 3

4

5 6 7

8

9 10

11

With Vm,n(τ) we will denote the set of points ζ of Vm,n of representation type τ .
An application of the Luna slice theorem ([12] and [17]) gives the following result.
The crucial observation in the proof is that the representation type determines the
conjugacy class of the isotropy group of the corresponding closed orbit.

Proposition 1 ([8, II.1.1]) — {Vm,n(τ); τ} is a finite stratification of Vm,n into
locally closed irreducible smooth algebraic subvarieties.

Vm,n(τ
′) lies in the Zariski closure of Vm,n(τ) if and only if τ ′ < τ .
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Further, one can use the theory of trace identities [15] to describe the defining
equations of these locally closed subvarieties Vm,n(τ). Thus, we may assume that
we have a firm grip on these strata. Remains the difficulty of studying the orbit
structure of the fiber π−1(ζ) for ζ in a fixed stratum Vm,n(τ). That is, we want
to describe the isomorphism classes of n-dimensional representations with a fixed
Jordan-Hölder decomposition. Again, the first step is provided by the Luna slice
machinary.

Let X ∈ Xm,n be a point lying on the unique closed orbit in the fiber π−1(ζ)

for ζ ∈ Vm,n(τ). Let GX denote the isotropy group, then the tangent space at X ,
TX(Xm,n) � Xm,n has a splitting as GX -modules as

TX(Xm,n) = TX(GLn.X)⊕NX

where TX(GLn.X) is the tangent space to the orbit and NX the corresponding
normal space. By the Luna slice theorem we have in a neighborhood of 0 ∈ NX the
following commutative diagram

GLn ×
GX NX

α
//

��

Xm,n

��

NX//GX
α′

// Vm,n

where α is determined by sending the class of (g, n) to g.(X + n), where GLn ×GX

NX = (GLn ×NX)//GX under the action h.(g, n) = (gh−1, h.n) and where both α

and α′ are étale maps.

It follows from this description (see for example [17, p.101]) that the fiber at ζ is
isomorphic to

π−1(ζ) � GLn ×
GX Null(NX , GX)

as GLn-varieties where we denote by Null(NX , GX) the nullcone of the GX -action
on the normalspace NX , that is, if

NX
π′

// // NX//GX

the nullcone Null(NX , GX) = π
′−1(π′(0)). In particular, we deduce that the orbit

structure of the fibers π−1(ζ) is the same along a stratum Vm,n(τ) and is fully
understood provided we know the GX -orbit structure in the nullcone Null(NX , GX).

In order to achieve this goal we need to have a better representation theoretic
description of the normal space NX , of the isotropy group GX and of its action on
NX . These facts can best be described in terms of quiver representations. Let us
recall some definitions.
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A quiver Q is a 4-tuple (Qv, Qa, t, h) where Qv is a finite set {1, ..., k} of vertices,
Qa a finite set of arrows ϕ between these vertices and t, h : Qa → Qv are two maps
assigning to an arrow ϕ its tail tϕ and its head hϕ respectively. Note that we do not
exclude loops or multiple arrows.

A representation V of a quiver Q consists of a family {V (i) : i ∈ Qv} of finite
dimensional �-vector spaces and a family {V (ϕ) : V (tϕ)→ V (hϕ);ϕ ∈ Qa} of linear
maps between these vectorspaces, one for each arrow in the quiver. The dimension-
vector dim(V ) of the representation V is the k-tuple of integers (dim(V (i)))i ∈ �k.
We have the natural notion of morphisms and isomorphisms between representations
consisting of k-tuples of linear maps with obvious commutativity conditions.

For a fixed dimension-vector α = (α1, ..., αk) ∈ �k one defines the represen-
tation space R(Q,α) of the quiver Q to be the set of all representations V of Q

with Vi = �αi for all i ∈ Qv. Because V ∈ R(Q,α) is completely determined by the
linear maps V (ϕ), we have a natural vector space structure

R(Q,α) = ⊕
ϕ∈Qa

Mϕ(�)

where Mϕ(�) is the vector space of all αhϕ × αtϕ matrices over �.

We consider the vector space R(Q,α) as an affine variety with coordinate ring
�[Q,α] and function field �(Q,α). There is a canonical action of the linear reductive
group

GL(α) =

k∏
i=1

GLαi(�)

on the variety R(Q,α) by base change in the Vi. That is, if V ∈ R(Q,α) and
g = (g(1), ..., g(k)) ∈ GL(α), then

(g.V )(ϕ) = g(hϕ)V (ϕ)g(tϕ)
−1

The GL(α)-orbits in R(Q,α) are precisely the isomorphism classes of representa-
tions.

Let us return to our problem of describing the GX -action on the nullcone
Null(NX , GX). To a representation type τ = (e1, k1; . . . ; er, kr) we associate a quiver
Qτ and a dimension vector ατ in the following way.

– Qτ is the quiver on r-vertices {v1, . . . , vr} with

– (m− 1)k2i + 1 loops at vertex vi

– (m− 1)kikj directed arrows from vi to vj

– ατ = (e1, . . . , er)
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If ζ ∈ Vm,n(τ) and X a point of the corresponding closed orbit it is easy to
verify that the isotropy group GX � GL(ατ ). Moreover, studying the isotypic
decomposition of the normal space to the orbit as GL(ατ ) spaces one can prove
the following result, see [8] and [9]

Proposition 2 — With notations as above we have that

NX = R(Qτ , ατ )

as GX = GL(ατ ) vectorspaces.

Let us give the quivers occuring in the case of m-tuples of 3× 3 matrices. In the
table below the upper vertex-indices give the number of loops, the under vertex-
indices the components of the dimension-vector ατ . The number l associated to an
undirected edge between two vertices v and w indicates that there are l directed
arrows from v to w and l arrows from w to v.

type τ (Qτ , ατ )

1 (1, 3)
(9m−8)
•
1

2 (1, 2; 1, 1)
(4m−3)
•
1

2m−2 (m)
•
1

3 (1, 1; 1, 1; 1, 1)
(m)
•
1

m−1

::
::

::
::

(m)
•
1

m−1
��������
m−1 (m)

•
1

4 (2, 1; 1, 1)
(m)
•
2

m−1 (m)
•
1

5 (3, 1)
(m)
•
3
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In [9] the quotient varieties of quiver representations were studied. In particular
it was shown that the rings of invariant polynomial functions are generated by
the traces of oriented cycles in the quiver. Hence, a representation V will belong
to N(Qτ , ατ ), the nullcone of R(Qτ , ατ ) if and only if the matrices obtained by
multiplying along any cycle in the quiver are all nilpotent.

By the above results we have reduced the study of the orbit structure of π−1(ζ)

to that of the GL(ατ ) orbits in N(Qτ , ατ ). The theory of optimal one-parameter
subgroups due to Kempf [4] and which is a refinement of the Hilbert-Mumford
criterium to describe the nullcone can be used to obtain a remarkable stratification
of the nullcones due to Hesselink [3]. For more details on the general theory we refer
the reader to [18].

For arbitrary quiver-representations, the Hesselink stratification of the nullcone
was studied in [10]. Again, we will describe the strata by associating to each potential
stratum a new quiver situation. The question whether the stratum is non-empty is
then rephrased into a representation theoretic problem for which an algorithm exists
using the work of A. Schofield [16].

In general, the combinatorics underlying the strata is rather complex [10]. For the
quivers Qτ describing the étale local structure we can simplify things considerably
primarely due to the fact that every relevant weight occurs in the weight space
decomposition of R(Qτ , ατ ) which in turn is a consequence of the fact that Qτ

is a symmetric quiver. In the terminology of [3] and [10] the main contrast with
the general case considered in [10] is that every balanced coweight determines a
saturated subset and hence a potential stratum. Here, we will not go into these
definitions, but outline the required combinatorics from a practical point of view.

From now on, we fix a representation type τ = (e1, k1; . . . ; er, kr) with
corresponding quiver Qτ and dimension vector ατ and we want to stratify the
nullcone of the quiver-representations N(Qτ , ατ ).

Denote
∑

ei = z ≤ n and �z the set of all s = (s1, . . . , sz) ∈ �z which are
disjoint union of strings of the form

{pi, pi + 1, . . . , pi + li}

where li ∈ �, all intermediate numbers pi + j with j ≤ li do occur as components
in s with multiplicity aij ≥ 1 and satisfy the condition

∑
0≤j≤li

aij(pi + j) = 0

for every string in s. For given z one can describe the set �z easily. For fixed s ∈ �z
we distribute the si over the vertices (ej of them to vertex vj) in all possible ways
modulo the action of the Weyl group Se1 × . . .× Ser . That is, we can rearrange the
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si’s belonging to one vertex such that they are in decreasing order. This gives us
a list ��τ which describes the potential strata. For example, if τ = (2, 1; 1, 1) for
m-tuples of 3×3-matrices with associated quiver Qτ described before, then we have
for ��τ

s s1 s2 s3

a 1 0 −1

b 0 −1 1

c 1 −1 0

d 1
3

1
3 − 23

e 1
3 − 23

1
3

f 2
3 − 13 − 13

g − 13 − 13
2
3

h 1
2 0 − 12

i 0 − 12
1
2

j 1
2 − 12 0

k 0 0 0

Fix a maximal torus Tz in GL(ατ ) and decompose the space R(Qτ , ατ ) into
weightspaces with respect to it

R(Qτ , ατ ) = ⊕π∈�zR(τ)π

For given s ∈ ��τ we can consider the subspaces

Ys = ⊕π:(π,s)≥1R(τ)π and Xs = ⊕π:(π,s)=1R(τ)π

where (π, s) =
∑

πisi. Then, the projection map

χ : Ys �→ Xs

is a vectorbundle, the associated parabolic subgroup Ps = ⊕(π,s)≥0GL(ατ )π acts
on Ys and its Levi-subgroup Ls = ⊕(π,s)=0GL(ατ )π acts on Xs. There is a Zariski
open (but possibly empty) subset Vs of Xs consisting of those points for which the
one parameter subgroup corresponding to s is optimal (see [17] or [10] for details).
The Hesselink stratification of the nullcone N(Qτ , ατ ) is given by the locally closed
smooth irreducible subvarieties

St(s) = GL(ατ ).Us
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where Us = χ−1(Vs) for those s such that Vs �= ∅.
In [10] an algorithm is given to determine the sublist ��

′

τ of those s such that
Us �= ∅. To do this we associate to each s ∈ �� a new quiver which we will call
Q(τ)s. It is a finite subquiver of the infinite quiver Γ with vertices γv = (Qτ )v × �

and arrows : for each ϕ : tϕ −→ hϕ in Qτ there are � arrows in Γ

ϕn : (tϕ, n) −→ (hϕ, n+ 1)

To find the dimension vector αs for this subquiver Q(τ)s decompose s in its disjoint
strings

{pi, . . . , pi︸ ︷︷ ︸
a0

, pi + 1, . . . , pi + 1︸ ︷︷ ︸
a1

, . . . , pi + ki, . . . , pi + ki︸ ︷︷ ︸
aki

}

and for each segment i take a part of Γ consisting of ki + 1 columns say starting at
integer ti separated from the parts belonging to the other segments. The dimension
vector for (v, ti + j) is the number of times sk = pi + j belongs to vertex v.

We will illustrate this procedure in the case τ = (2, 1; 1, 1). In the following table
we give for every s ∈ ��τ the corresponding quiver Q(τ)s, the under-indices of the
vertices give the components of the dimension vector αs, a diagonal arrow stands
for a collection of m− 1 such arrows, a horizontal arrow for a collection of m such
arrows, as is clear from the structure of the quiver Qτ . In the final column we give
the moduli-spaces which will be defined later.

strata-quivers for τ = (2, 1; 1, 1)

s (Q(τ )s, αs) moduli

a

• •
1
−−−−−−−→ •

1

•
1

�

• •

�m−2 × �m−1

b

•
1
−−−−−−−→ •

1
•

• • •
1

�
�m−2 × �m−1
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strata-quivers for τ = (2, 1; 1, 1)

c

•
1

• •
1

• •
1

�

�
•

�m−2 × �m−2

d

• •
2

•
1

�
•

e

•
1

•
1

• •
1

�
�m−2 × �m−1

f

•
1

•
1

•
1

�

•

�m−2 × �m−1

g

•
2

•

• •
1

�
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strata-quivers for τ = (2, 1; 1, 1)

h

• •
1

•
1

•
1

�

•

�m−2

i

•
1

• •
1

• •
1

�
•

�m−2

j

•
1

•
1

•

• • •
1

�m−1

k

•
2

•
1

�0

In addition to assigning the quiver-situation (Q(τ)s, αs) to a potential stratum
s we will associate to it a character χs which is determined by associating to the
vertex (v, ti + j) the number nij = d.(pi + j) where d is the least common multiple
of the numerators of the pk’s determining the strings of s.

Above we have seen that the Hesselink stratum corresponding to s is nonempty
if and only if Vs �= ∅ and this is the open subset of the level-quiver representations
R(Q(τ)s, αs) for which a semi-invariant corresponding to the character χs does not
vanish.

One of the advantages of reducing to this quiver situation is that we can view
points of R(Q(τ)s, αs) as objects in the Abelian category of all representations of
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Q(τ)s, that is, the category of modules over the path algebra �Q(τ)s. Therefore, we
can associate to the character χs (which is determined by the integers (nij) defined
above) an additive function on the Grothendieck group of the path algebra

θs : K0(�Q(τ)s) −→ �

which is determined by sending the class of a representation of dimension-vector
β = (bij) to

∑
nijbij .

Using the analogy with vector bundles on projective varieties, A. King [5]
defines a representation V of Q(τ)s to be θ-semistable (for any additive function
θ on the Grothendieck group) if θ(V ) = 0 and every sub-representation V ′ ⊂ V

satisfies θ(V ′) ≥ 0. Similarly, a representation V is called θ-stable if the only
subrepresentations V ′ with θ(V ′) = 0 are 0 and V . Using [5, Prop.3.1] we then
have

Proposition 3 — Vs is the open subset of R(Q(τ)s, αs) which are θs-semistable.

Hence, in order to verify whether x ∈ R(Q(τ)s, αs) lies in Vs it suffices to know
the dimension vectors of all subrepresentations of x and verify that their values
under θs are ≥ 0. If Vs �= ∅ it is open in R(Q(τ)s, αs) and it suffices to know the
dimension vectors of subrepresentations of a general representation.

Precisely this problem had to be addressed by A. Schofield [16] in his solution of
some conjectures of V. Kač on the generic decomposition. Recall that V. Kač showed
[2] that the dimension vectors of indecomposable quiver-representations form an
infinite root system with associated generalized Cartan matrix the symmetrization
of the Ringel form or the Euler inner product. This form encodes a lot of information
on representations. If V resp. W are representations of dimension-vector α resp. β

then

ε(α, β) = dim Hom(V,W )− dim Ext(V,W )

For fixed dimension vector β and any quiver Q, there is an open subset of
representations V in R(Q, β) such that the dimension vectors of its indecomposable
components are constant, say βi. Then,

β = β1 + ...+ βl

is called the canonical decomposition of β into Schur roots βi (Schur roots are roots
γ such that there is an open set of indecomposable representations in R(Q, γ)).

Kač asked for a combinatorial description of the set of Schur roots and of the
canonical decomposition in terms of the Ringel form. Solutions to these problems
were presented by A. Schofield [16] and depend heavily on being able to describe the
dimension vectors of sub-representations of a general representation. Denote with

β ↪→ α
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that a general representation of dimension-vector α has a sub-representation of
dimension-vector β. Schofield gave an inductive way to find the dimension-vectors
of these generic sub-representations using the Ringel form

β ↪→ α iff max
β′↪→β

− ε(β′, α− β) = 0

For example, the description of the Schur roots [16, Th.6.1] is then : α is Schur iff
for all β ↪→ α we have ε(β, α) − ε(α, β) > 0. A combinatorial description of the
canonical decomposition was also given in [16].

These facts enable us to give the promised algorithmic description of the actually
occuring strata in the Hesselink stratification of N(Qτ , ατ ). For example, we can
use this algorithm to show that in our example of τ = (2, 1; 1, 1) all strata do occur
when m ≥ 3 and the only types which give empty strata for m = 2 are types d and
g. A similar phenomen also happens in the general case, for m sufficiently large all
potential strata will indeed occur.

Having determined which strata make up the nullcone

N(Qτ , ατ ) = ∪s∈��
′
τ
St(s)

we still have to determine the GL(ατ )-orbitstructure of one such stratum St(s).
From [3, Th.4.7] we deduce the existence of a natural morphism

GL(ατ )×
Ps Vs // St(s)

which is an isomorphism of GL(ατ )-varieties. Hence, the stratum St(s) is an open
subvariety of a vectorbundle over the flag variety GL(ατ )/Ps. Further, there is a
natural one-to-one correspondence between the GL(ατ )-orbits in St(s) and the Ps-
orbits in Us. Moreover, under the natural projection map

Us
χ

// // Vs
�

�

// R(Q(τ)s, αs)

points lying in the same Ps-orbit in Us are mapped to points lying in the same
GL(αs) orbit in Vs. Therefore, we have an induced projection map

Orb(Ps, Us)
χ

// // M(Q(τ)s, αs; θs)

from the orbit-space of Us under Ps to the ’moduli’ space of θs-semi stable
representations of Qs of dimension-vector αs, see [5] for some results on these moduli
spaces. We will mean in this section by M(Q(τ)s, αs; θs) the orbit-space of Vs under
action of GL(αs). Some easy examples of moduli spaces were given in the table
above. The moduli spaces for the types d and g in that table are more complex,
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they are �0 when m = 3 and moduli spaces of certain Grassman varieties under
action of GL2 for higher m.

Recapitulating our discussion, we have the following procedure to determine the
orbits of m-tuples of n× n matrices under simultaneous conjugation :

– Stratify the quotient variety Vm,n = Xm,n//GLn according to the different
representation types τ into locally closed smooth irreducible subvarieties
Vm,n(τ) and describe these by trace functions.

– For any point ζ ∈ Vm,n(τ) the GLn-orbit structure of the fiber π−1(ζ) is
in natural one-to-one correspondence with the GL(ατ )-orbit structure of the
nullcone N(Qτ , ατ ) of the quiver situation describing the étale local structure
of Vm,n near ζ.

– The nullcone has a Hesselink stratification in locally closed irreducible smooth
subvarieties St(s) where s belongs to a finite list ��

′

τ which can be obtained
from studying the semi-stable representations for a specific character θs and
quiver situation (Q(τ)s, αs) associated to a potential strata s.

– The GL(ατ )-orbits in such a stratum St(s) are in natural one-to- one
correspondence with the orbits of the associated parabolic subgroup Ps in
Vs and we have a projection morphism Orb(Ps, Vs) �→M(Q(τ)s, αs; θs) to the
moduli space of the associated quiver situation.

– Study the structure of these moduli spaces using representation theory of
quivers and finally describe the fibers of the projection map. This last problem
is open and probably very hard except for small values of n.

As an easy application of the above methods let us study the orbits of m-tuples
of 2 × 2 matrices. To the best of my knowledge only the case of couples of 2 × 2
matrices has been studied in the literature [1] and [7].

There are three representation types with the following local quiver situations

type τ (Qτ , ατ )

a (1, 2)
(4m−3)
•
1

b (1, 1; 1, 1)
(m)
•
1

m−1 (m)
•
1

c (2, 1)
(m)
•
2
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Type a has only one potential stratum corresponding to s = (0) and with
associated quiver situation

•
1

which obviously has just �0 as moduli space. This corresponds to the fact that these
points of Vm,2 have a unique closed orbit as their fiber.

For type b the following list gives us the potential strata and associated quiver-
situations together with their moduli spaces. An arrow denotes m−1 directed arrows
between the indicated vertices.

s1 s2 (Q(τ )s, αs) M

1
2

− 1
2

•
1

•

• •
1

�
�m−2

− 1
2

1
2

• •
1

•
1

�

•

�m−2

0 0

•
1

•
1

�0

In this case ��τ = ��
′

τ for all m ≥ 2, that is all potential strata do indeed
occur. Moreover, in these cases Us = Vs and so the required orbits Orb(Ps, Us) =
M(Q(τ)s, αs, θs) which easily can be seen to be the indicated projective spaces.
Hence, for ζ ∈ Vm,2(1, 1; 1, 1) the fiber π−1(ζ) consists of the unique closed orbit
(corresponding to the �0) and two families �m−2 of non-closed orbits. In the m = 2

case studied by Kraft and Friedland there are two non-closed orbits in the fiber.
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Finally, for τ = (2, 1), the fiber is isomorphic to the nullcone of m-tuples of 2× 2
matrices. We have the following strata-information (the arrow denotes m directed
arrows)

s1 s2 (Q(τ )s, αs) M

1
2
− 1
2
•
1

// •
1 �m−1

0 0 •
2

�0

Hence, the fiber π−1(ζ) consists of the closed orbit together with a �m−1-family
of non-closed orbits. Again, we recover the �1 family of non-closed orbits in the
m = 2 case found in [7] and [1].

Also the case of m tuples of 3× 3 matrices can be fully worked out. We leave the
details to the interested reader and mention here only the results

– For type 1 points the fiber consists of one orbit.

– For type 2 points the fiber consists of the closed orbit together with two �2m−3

families of non-closed orbits.

– For type 3 points the fiber consists of the closed orbit together with twelve
�m−2 × �m−2 families and one �m−2 family of non-closed orbits.

– For type 4 points we have described the relevant data before.

– For type 5 points we have to study the nullcone of m-tuples of 3× 3 matrices
for which we refer to [11].
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