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Abstract

Hermann Weyl’s papers on the representation of semisimple Lie
groups (1925-26) stand out as landmarks of twentieth century
mathematics. The following essay focuses on how Weyl came to
write these papers. It offers a reconstruction of his intellectual
journey from intense involvementwith the mathematics of general
relativity to that of the representation of groups. In particular
it calls attention to a 1924 paper by Weyl on tensor symmetries
that played a pivotal role in redirecting his research interests. The
picture that emerges illustrates how Weyl’s broad philosophically
inclined interests inspired and informed his creative work in pure
mathematics.

Résumé

Les articles de Hermann Weyl sur la représentation des groupes
de Lie semi-simples (1925-26) apparaissent comme des étapes ma-
jeures des mathématiques du vingtième siècle. En analysant ce
qui a amené Weyl à écrire ces articles, cet essai présente une re-
construction de sa démarche intellectuelle, depuis les mathéma-
tiques de la relativité générale jusqu’à celles des représentations
de groupes. Il attire notamment l’attention sur l’article de 1924
sur les symétries tensorielles, pivot de la réorientation de ses do-
maines de recherche. On voit aussi comment les larges intérêts et
les motivations philosophiques de Weyl ont inspiré et enrichi sa
créativité en mathématiques pures.
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Dieudonné once wrote that “progress in mathematics results, most of the
time, through the imaginative fusion of two or more apparently different top-
ics” [Dieudonné 1975, p. 537]. One of the most brilliant examples of progress
by fusion is provided by Herman Weyl’s celebrated papers on the representa-
tion of semisimple Lie groups (1925-1926). For in them he fashioned a theory
which embraced I. Schur’s recent work (1924) on the invariants and represen-
tations of the n-dimensional rotation group, which was conceived within the
conceptual framework of Frobenius’ theory of group characters and represen-
tations, and E. Cartan’s earlier work (1894–1913) on semisimple Lie algebras,
which was done within the framework of Lie’s theory of groups and had been
unknown to Schur. Moreover, in fashioning his theory of semisimple groups,
Weyl drew on a host of ideas from such historically disparate areas as Frobe-
nius’ theory of finite group characters, Lie’s theory, tensor algebra, invariant
theory, complex function theory (Riemann surfaces), topology and Hilbert’s
theory of integral equations. Weyl’s papers were thus a paradigm of fusion,
and they exerted a considerable influence on subsequent developments. They
stand out as one of the landmarks of twentieth century mathematics.

It is not my purpose here to describe the rich contents of these remarkable
papers nor to analyze their influence. This has been done by Chevalley and
Weil [1957], by Dieudonné [1976], and, above all, by Borel [1986]. I wish to
focus instead on how Weyl came to write these remarkable papers. In this
connection Weyl wrote:

“for myself I can say that the wish to understand what really is the
mathematical substance behind the formal apparatus of relativity
theory led me to the study of representations and invariants of
groups ...”[Weyl 1949, p. 400].

My goal is to attempt to explain what Weyl meant by this remark, that
is, to reconstruct the historical picture of his intellectual journey from his
involvement with the mathematics of general relativity to that of the repre-
sentation of semisimple Lie groups. In particular, I want to call attention
to a paper by Weyl [1924a], which in my opinion adds a fullness and clarity
to the picture that would otherwise be lacking. The picture that emerges
illustrates how Weyl’s broad philosophically inclined interests — in this in-
stance in theoretical physics — inspired and informed his creative work in
pure mathematics.1

1For another such instance, see [Scholz 1995] where Weyl’s interest in Fichte’s philosophy
is related to his approach to the geometry of manifolds.
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FROM GENERAL RELATIVITY TO GROUP REPRESENTATIONS 71

The Space Problem

Weyl’s involvement with general relativity began in 1916, when, at age 31, he
returned from military service to his position at the Eidgenössische Technische
Hochschule (ETH) in Zürich. “My mathematical mind was as blank as any
veteran’s,”he later recalled, “and I did not know what to do. I began to study
algebraic surfaces; but before I had gotten far, Einstein’s memoir came into
my hand and set me afire.”2 By the summer of 1917 Weyl was lecturing on
general relativity at the ETH. These lectures formed the starting point for his
classic book, Raum, Zeit, Materie, which went through four editions during
1918–23,3 and spawned many collateral publications by Weyl aimed at further
developing the ideas and implications of his lectures. One of the outcomes of
Weyl’s reflections on general relativity was his introduction of what he called
a “purely infinitesimal geometry.”4

Weyl became convinced that Riemannian geometry, including the quasi
Riemannian geometry of an indefinite metric ds2 =

∑
ij gijdxidxj ,

gij = gij(x1, . . . , xn), on which Einstein’s theory was based, was not a con-
sistently infinitesimal geometry. That is, in Riemannian geometry, a vector
v = (dx1, . . . , dxn) in the tangent plane at point P of the manifold could only
be compared with a vector w = (dy1, . . . , dyn) in the tangent plane at point
Q in the relative sense of a path-dependent parallel transport from P to Q,
but the lengths of v and w were absolutely comparable in the sense that

|v|
|w| =

√∑
i,j gij(P )dxidxj∑
i,j gij(Q)dyidyj

.

These considerations led Weyl to a generalization of Riemannian geometries in
which the lengths of v and w are not absolutely comparable. As in Riemannian
geometry a nondegenerate quadratic differential form ds2 of constant signa-
ture is postulated but metric relations are determined locally only up to a pos-
itive calibration (or gauge) factor λ and so are given by ds2 =

∑
ij λgijdxidxj .

Here λ varies from point to point in such a way that the comparison of the
lengths of v at P and w at Q is also in general a path-dependent process.5

2Quoted by S. Sigurdsson [1991, p. 62] from Weyl’s unpublished “Lecture at the Bicen-
tennial Conference” (in Princeton).

3There were actually five editions, but the second (1919) was simply a reprint of the first
[Scholz 1994, p. 205n].

4See Scholz [1994, 1995] for a detailed account of the historical context and evolution of
Weyl’s ideas on this theory during 1917–23 .

5For a complete definition of Weyl’s geometry see [Scholz 1994, p. 213] and for a contem-
porary formulation see [Folland 1970]. Weyl’s geometry represented the first of a succession
of gauge theories that has continued into present-day physics [Vizgin 1989, p. 310].
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Although Weyl’s geometry was motivated by the above critique of Rie-
mannian geometry, he discovered that he could use its framework to develop
a unified field theory, that is, a theory embracing both the gravitational and
the electromagnetic field. Hilbert had been the first to devise a unified the-
ory within the framework of general relativity in 1915. Weyl’s theory was
presented in several papers during 1918–19 and in the third edition (1919)
of Raum, Zeit, Materie. Einstein admired Weyl’s theory for its mathemat-
ical brilliance, but he rejected it as physically impossible. Although Weyl
respected Einstein’s profound physical intuition and was accordingly disap-
pointed by the negative reaction to his unified theory, Einstein’s arguments
did not convince him that his own approach was wrong. His belief in the cor-
rectness of his theory was bolstered by the outcome of his reconsideration, in
publications during 1921–23, of the “space problem” first posed by Helmholtz
in 1866. It was in connection with this problem that Weyl first began to
appreciate the value of group theory for investigating questions of interest to
him involving the mathematical foundations of physical theories.

In 1866 Helmholtz sought to deduce the geometrical properties of space
from facts about the existence and motion of rigid bodies. He concluded
that the distance between points (x, y, z) and (x + dx, y + dy, z + dz) is√
dx2 + dy2 + dz2 and that space is indeed Euclidean. He returned to the

matter in 1868, however, after learning from the work of Riemann and Bel-
trami about geometries of constant curvature. Using the properties of rigid
bodies he had singled out earlier, he argued that Riemann’s hypothesis that
metric relations are given locally by a quadratic differential form is actually
a mathematical consequence of these facts. Later, in 1887, Poincaré obtained
Helmoltz’s results for two-dimensional space by applying Lie’s theory of groups
and utilizing, in particular, the consideration of Lie algebras. Lie himself con-
sidered the problem in n dimensions by means of the consideration of Lie
groups and algebras in 1892. The Lie-Helmholtz treatment of the space prob-
lem, however, was rendered obsolete by the advent of general relativity since,
as Weyl put it:

“Now we are ... dealing with a four-dimensional [continuum] with
a metric based not on a positive definite quadratic form but rather
one that is indefinite. What is more, we no longer believe in the
metric homogeneity of this medium — the very foundation of the
Helmholtzian metric — since the metric field is not something
fixed but rather stands in causal dependency on matter” [Weyl
1921a, p. 263].

Following the Helmholtz-Lie tradition, Weyl conceived of space (includ-
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ing therewith the possibility of space-time) as an n-dimensional differentiable
manifold M with metric relations determined by the properties of congru-
ences which are conceived in terms of groups. Thus at each point P ∈ M the
rotations at P are assumed to form a continuous group of linear transforma-
tions GP , and since the volume of parallelepipeds is assumed to be preserved
by rotations, the GP are taken as subgroups of SL (TP (M)). Metrical re-
lations in a neighborhood U of P are then based on the assumption that all
rotations at P ′ ∈ U can be obtained from a single linear congruence trans-
formation A taking P to P ′ by composition with the rotations at P ; that
is, every T ′ ∈ GP ′ is of the form T ′ = ATA−1 so that GP ′ = AGPA

−1.
By “passing continuously” from P to any point Q of the manifold M, Weyl
was led to the assumption that all the groups GP are congruent to a group
G ⊂ SL(n) with Lie algebra g ⊂ sl(n). Thus, whereas in the Lie-Helmholtz
treatment of the space problem, the homogeneity of space entails the identity
of the rotation groups at diverse points, in Weyl’s formulation the rotation
groups have differing “orientations,” although they share the same abstract
Lie algebra.

Within this mathematical context Weyl stipulated two postulates: (1) the
nature of space imposes no restriction on the metrical relationship; (2) the
affine connection is uniquely determined by the metrical relationship. His
interesting mathematical interpretation of these two postulates led to the
conclusion that the Lie algebra g must possess the following properties:
a) For all X ∈ g, tr X = 0 (i.e., g ⊂ sl(n,R));
b) dim g = 1

2n(n− 1);
c) For any X1, . . . ,Xn ∈ g with matrix form Xk = (a(k)

ij ) with regard to some
basis, if Col i of Xj = Col j of Xi for all i, j = 1, ..., n, then Xi = 0 for all
i = 1, ..., n.

In the fourth edition of Raum, Zeit, Materie, where Weyl first presented
his analysis of the space problem [Weyl 1921a, §18], he pointed out that the Lie
algebras gQ of all orthogonal groups with respect to a nonsingular quadratic
form Q satisfy (a)–(c) and he conjectured as “highly probable” the following
theorem which he had confirmed for n = 2, 3:

Theorem 1. — The only Lie algebras satisfying (a)–(c) are the orthogonal
Lie algebras gQ corresponding to a nondegenerate quadratic form Q.

Weyl’s conjectured theorem thus implied the locally Pythagorean nature of
space. Weyl pointed out that when g does correspond to an orthogonal Lie
algebra, the quadratic form Q is only determined up to a constant of pro-
portionality [Weyl 1921a, p. 146]. Although he did not say it explicitly at
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this point, the truth of Theorem 1 would thus imply that his generalization
of quasi-Riemannian geometry, his purely infinitesimal geometry, was also
compatible with the conclusions of his analysis of the space problem.

Within a few months of completing the fourth edition of Raum, Zeit,
Materie, Weyl had obtained a proof of Theorem 1, which he submitted for
publication in April 1921 [Weyl 1921b] and announced in a general talk in
September 1921 [Weyl 1922]. With the proof of Theorem 1 his analysis of the
space problem was complete. Weyl saw it as confirmation of the legitimacy
of his geometrical approach to relativity theory — his purely infinitesimal
geometry with its concomitant unified field theory. He was also mindful of
the fact that it had been achieved by utilizing the theory of groups: “The
establishment by group theory is hence a new support for my conviction that
this geometry, as geometry of the world, is the basis for the interpretation of
physical field phenomena, rather than, as with Einstein, the more restrictive
Riemannian [geometry]” [Weyl 1922, p. 344]. Indeed, Weyl was so taken
up with Theorem 1 that he even likened the “confirmation by logic” of the
correctness of his approach to the space problem afforded by Theorem 1 to
the factual confirmation of the correctness of Einstein’s relativistic approach
to gravitation afforded by the observed advance of the perihelion of mercury
[Weyl 1921b, p. 269].

During the spring of 1922 Weyl lectured on the space problem in Spain,
and a version of his lectures was then published as a monograph [1923a],
which he regarded as a supplement to Raum, Zeit, Materie since “the deeper
conception of the space problem using group theory”was only sketched there.
In the eighth lecture, which sketches a proof of Theorem 1, Weyl wrote:

“While almost all deeper mathematical theories — such as, e.g.,
the wonderful theory of algebraic number fields — have little to
signify within the great philosophical continuum of knowledge and
while, on the other hand, what mathematics can contribute to
enlighten the general problem of knowledge mostly stems from
the surface of mathematics, here we have the rare case that a
problem which is fundamental to all knowledge of reality, as is
the space problem, gives rise to deeply penetrating mathematical
questions.”[Weyl 1923a, p. 61]

Within the context of the space problem Weyl had discovered group theory
as a powerful tool for dealing with fundamental questions inspired by gen-
eral relativity and leading to “deeply penetrating mathematical questions.”
Although he described it as a rare occurrence, as we shall see, this was not
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the last time that his involvement with the fundamentals of general relativ-
ity led to important mathematical questions of a group-theoretic nature and,
ultimately, to his papers on the representation of Lie groups.

Before proceeding to consider these further occurrences, however, there
is one additional, historically important, consequence of Weyl’s involvement
with the space problem that needs to be mentioned. In 1922 the fourth edition
of Raum, Zeit, Materie was translated into French and read by Elie Cartan,
who, since 1921, had become interested in Einstein’s theory. Unaware that
Weyl had already proved the conjectured Theorem 1, Cartan provided a proof
of his own [Cartan 1922]. Strictly speaking, Cartan did not prove Theorem 1.
Instead, he reformulated Weyl’s somewhat vaguely articulated version of the
space problem in terms of his own approach to geometry based on moving
frames and differential forms. Cartan’s approach evolved into the modern
theory of G-structures.6 Within that framework, however, Cartan’s formula-
tion of the space problem ultimately reduced to the problem of determining
all linear Lie algebras g satisfying Weyl’s conditions (a) and (b) and, in lieu of
the rather mysterious condition (c), the condition that g leaves no proper sub-
spaces invariant.7 By a theorem Cartan had proved in [Cartan 1909, p. 912]
it followed that g must be semisimple. Since Cartan had already determined
all such linear Lie algebras which leave no vector spaces invariant [Cartan
1913, 1914], it was, as he noted, just a matter of checking which of these Lie
algebras satisfy the dimension condition (b), to arrive at Weyl’s conclusion
that g must be an orthogonal Lie algebra.8

Expressed in modern terms, what Cartan had done in [Cartan 1913] was to
determine all irreducible representations of a complex semisimple Lie algebra,
and in [Cartan 1914] he did the same for real Lie algebras. However Cartan
did not conceive of his work within the conceptual framework of group repre-
sentations. He conceived of his work as solving the problem of determining all
groups of projective transformations which “leave nothing planar” invariant
— a problem of importance from the Kleinian view of geometry as the study

6See in this connection [Scheibe 1988, p. 66] and [Scholz 1994, p. 225]. Scheibe argues
that if what Weyl had in mind is made more precise in accord with what his writings
seem to suggest, then it is not equivalent to Cartan’s formulation, but the theorem Cartan
proved implies the theorem Scheibe reconstructs from Weyl’s vague statements [Scheibe
1988, pp. 68–69].

7This property of the g satisfying (a)–(c) of Weyl’s Theorem 1 actually follows readily
from propositions Weyl deduced from (a)–(c) [Weyl 1923a,c], although he did not expressly
take note of this fact.

8Both Cartan and Weyl realized that it suffices to consider the problem for complex Lie
algebras. In his announcement Cartan indicated that a detailed solution of the problem in
a generalized form was contained in [Cartan 1923].
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and classification of groups acting on manifolds. Historically the conceptual
framework of group representations and characters came from Frobenius’ the-
ory as developed for finite groups during 1896–1903, and it was Weyl who first
brought Cartan’s work within that framework in his papers of 1925–26.

Weyl learned of Cartan’s work when the latter sent him his announcement
[Cartan 1922] of a solution to the space problem. In Weyl’s reply, dated
October 5, 1922, after pointing out that he had already given a proof of
Theorem 1, he wrote:

“Untraveled on the paved roads of the general theory of continuous
groups, which have been laid out and constructed thanks to your
masterly skill, I have on my own beat a steep inconvenient footpath
through much underbrush to my goal. I have no doubt that your
method corresponds better to the nature of the matter; still, I
see that you also cannot arrive at the goal without distinguishing
many cases.”9

The general consensus seems to be that Weyl, impressed by Cartan’s pa-
pers on Lie algebras, studied them carefully and that this study, combined
with an interest in the theory of invariants piqued by some critical remarks
by the mathematician E. Study (discussed below) led, through the inspiration
provided by a paper on invariants by I. Schur [1924] (also discussed below), to
his celebrated papers of 1925–26 on the representation of Lie groups. While
there is much truth in such a portrayal of events, it does overlook Weyl’s deep
seated, philosophically inclined interest in the mathematical foundations of
theoretical physics; in particular, it fails to fully account for Weyl’s own state-
ment that “the wish to understand what really is the mathematical substance
behind the formal apparatus of relativity theory led me to the study of rep-
resentations and invariants of groups. ...” Weyl’s involvement with the space
problem was certainly an instance of his interest in the mathematical sub-
stance underlying relativity theory, and it led him to E. Cartan’s work. But
the space problem was not the only focal point of this interest. In what fol-
lows, I will attempt to give a clearer notion of how other manifestations of
his interest in finding the proper mathematical basis for the mathematical
apparatus of general relativity increased his involvement with the theory of
groups and, in particular, with the theory of their representations and how
this in turn made Cartan’s work all the more relevant.

9I am grateful to B.L. van der Waerden, who called these letters to my attention many
years ago and sent me copies after obtaining consent of the holders — H. Cartan in the case
of Weyl’s letters and the ETH in the case of E. Cartan’s letters.
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In this connection, it should be kept in mind that Weyl’s above-quoted re-
ply to Cartan was written when he had only the original proof of his theorem,
which he disliked because it was complicated and lacked an overall unifying
idea [Weyl 1922, p. 344]. He compared it deprecatingly to tightrope danc-
ing [Weyl 1921b, p. 269], and in his popular lectures on the space problem,
including those in Spain in the spring of 1922, he declined for this reason
to sketch the proof. By the spring of 1923, however, when he published a
German version of the lectures in Spain, he included a proof (as Appendix
12) because he had obtained what he felt were “far reaching simplifications”
to his original proof [Weyl 1923a, p. v] so that, although still complicated in
detail due to the need to distinguish many cases, it was now guided by a single
idea, which in fact Weyl pushed further in [Weyl 1923c], where he wrote in
conclusion:

“Our game on the chessboard of matrix schemes has been played
to its end. As complicated in details as it may be, it — including
the first part, which was already laid out in ...[Weyl 1923a] ...
Append. 12 — rests ... upon a single constructional idea which
determined each step and was tenaciously carried out to the end.”

It is interesting to observe that in Weyl’s presentation of his new proof, he
used another “roadway” analogy in comparing his and Cartan’s proofs, but
now with a different slant: “By contrast with Cartan’s proof mine does not
take the detour of the investigation of abstract groups. It is based on the clas-
sical theory of the individual linear mapping going back to Weierstrass” [Weyl
1923a, p. 88]. So now Cartan’s solution involves a “detour” because it draws
upon the theory of semisimple Lie algebras, whereas Weyl’s approach is more
direct and elementary, depending only on “the classical theory” of the Jor-
dan canonical form of a matrix implicit in Weierstrass’ theory of elementary
divisors.

That is not to say that Weyl did not appreciate by this time — early
1923 — the impressive results and deep theory developed by Killing and
Cartan. Indeed, immediately prior to the above quotation, Weyl characterized
Cartan’s solution to the space problem by writing:

“An entirely different proof has been given by Cartan ... based on
[his] ... earlier comprehensive and deep investigations ... on the
theory of continuous groups, in which he achieved a far reaching
solution to the problem of determining all abstract groups and
their realization through linear operations .... Now he only needed
to seek out among the groups determined by him those which
satisfy my stipulations.”
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These words indicate that Weyl certainly understood the gist of what Cartan
had done in his papers and appreciated the profundity of the mathematics.
But as far as the space problem was concerned, the extensive detour required
by Cartan’s approach was not deemed appropriate by Weyl, who was still
fascinated by his own approach. It is not clear he had found reason enough
to take on the nontrivial task of mastering the details of Cartan’s papers so
as to put them to his own use. Eventually he did — and he was perhaps the
first mathematician to do so — but the motivation to do so seems to have
come not from the space problem but from tensor algebra.

Tensor Algebra and Symmetries

The formal apparatus of relativity theory consisted in large part of the calcu-
lus of tensors. This apparatus had evolved out of the work of mathematicians,
notably Christoffel, Lipschitz and Ricci, interested in developing the theory
of the transformation of quadratic differential forms suggested by Riemann’s
speculations on the foundations of geometry.10 The principal source of the
resulting theory upon which Einstein and Grossman drew in developing the
mathematical side of general relativity starting in 1913 was the monographic
paper by Ricci and Levi-Civita, “Méthodes de calcul différentiel absolu et
leurs applications” [1900], which more or less summed up what had been
achieved during 1868–1900. To this they added the term “tensor,” the notion
of mixed tensors and (in 1916) Einstein’s now-familiar summation conven-
tion, but essentially they took over the apparatus of the absolute differential
calculus of Ricci and Levi-Civita.

In Raum, Zeit, Materie, Weyl also credited the Ricci-Levi-Civita paper
[1900] for the systematic development of tensor calculus,11 but it was he,
who, drawing upon his Göttingen background, recast tensor calculus in its es-
sentially modern form. For one thing, Weyl treated tensor algebra — tensor
analysis in a fixed tangent plane — independently as a preliminary to tensor
analysis, and in developing tensor algebra he did so within the geometrically
flavored context of vector spaces, which had grown out of Hilbert’s work on
integral equations as developed by Erhard Schmidt. It is within the context of
tensor algebra as developed by Weyl in the pages of Raum, Zeit, Materie that
the formal apparatus of relativity theory gave rise to fundamental mathemat-
ical questions. As I will attempt to show, Weyl’s concern with these questions
was a major factor in the considerations that ultimately led to his papers of

10The history of the tensor calculus from its origins in up to its application to general
relativity is traced in [Reich 1994].

11See note 4 to p. 53 of the fourth edition [Weyl 1921a].
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1925–26. To make these questions intelligible I will first sketch out the basics
of Weyl’s approach to tensors.

Let V denote an n-dimensional vector space over the real or complex field
equipped with a nondegenerate quadratic form Q(v,w), v,w ∈ V defining a
scalar product.12 Then if e1, . . . , en is a basis for V we may express v ∈ V in
the form

(1) v =
n∑

i=1

xiei.

The xi are called contravariant coordinates of v since if ē1, . . . , ēn is another
basis related to the first by

(2) ēi =
n∑

k=1

mk
i ek,

then if M denotes the matrix with (i, k) entry mk
i , we have v =

∑n
i=1 x̄

iēi

where xi =
∑n

k=1 m
i
kx̄

k so that, expressed in matrix form (which Weyl did
not use)

(3) x̄ =
(
MT

)−1
x.

The vector v is also uniquely determined by the n values yi = Q(v, ei), which
are called covariant coordinates of v with respect to the basis e1, . . . , en since
they transform according to

(4) ȳ = My,

and thus with the same coefficient matrix as in the basis change (2). Nowadays
the yi would be regarded as coordinates of the element v∗ in the dual space
V∗ defined by v∗(w) = Q(v,w). That is, the yi are the coordinates of v∗ with
respect to the basis e1, . . . , en of V∗ dual to e1, . . . , en.

For Weyl tensors are uniquely determined by multilinear forms. For ex-
ample, the mixed tensor of rank 3 denoted by T k

ij by Einstein and covariant
in the indices i, j and contravariant in the index k is conceived by Weyl as
determined by a multilinear form f = f(u, v,w), where if xi and yj are the
contravariant coordinates of u and v respectively and zk the covariant coor-
dinates of w, then

(5) f =
∑
i,j,k

T k
ijx

iyjzk.

12Weyl does not speak of V as a vector space but rather as an n-dimensional affine space.
Also of course Q is not necessarily positive definite.
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In view of the remark following (4), f may be regarded as a multilinear form on
V ×V ×V∗ with w∗ =

∑
k yke

k from which (5) follows with T k
ij = f(ei, ej , e

k).
Thus Weyl in effect identified the above type tensors with the vector space L
of all such multilinear forms f , which agrees with the present-day formulation
according to which

(6) L ∼= (V ⊗ V ⊗ V∗)∗ ∼= V∗ ⊗ V∗ ⊗ V.

In view of (6) the reader may wish to identify the tensor defined by (5) with
the element

(7)
∑
i,j,k

T k
ij e

i ⊗ ej ⊗ ek ∈ V∗ ⊗ V∗ ⊗ V.

The representation of the tensor determined by f with respect to any basis
is then known by the rules of linear algebra. That is, suppose a basis change
is given by the matrix M defined by (2). Then the representation of f in the
barred variables is

(8) f =
∑
i,j,k

T̄ k
ijx̄

iȳj z̄k,

where the T̄ k
ij are obtained from (3)–(4) by substituting x = MT x̄, y = MT ȳ

and z = M−1z̄ in (5). The result is:

(9) T̄ γ
αβ =

∑
i,j,k

T k
ijm

i
αm

j
βn

γ
k,

where nγ
k denotes the (k, γ) entry of M−1. Before Weyl such a rank three

tensor would have been defined as the “totality” of a system of functions
T k

ij = T k
ij(P ), P a point in the underlying manifold, which transform by the

rule laid down in (9), where M=M(P ) is the Jacobian matrix of a variable
change in the underlying manifold.13

The above presentation of the algebra of tensors was novel on Weyl’s part
but was a reworking of earlier notions. However, Weyl also introduced a
new notion — that of a tensor density — in his paper [Weyl 1918] and in
Raum, Zeit, Materie.14 He was motivated by the consideration of an invari-
ant integral I =

∫
W (x)dx where x = (x1, . . . , xn). Given a variable change

13See, e.g., [Einstein and Grossmann 1913]. The same approach is found in [Ricci and
Levi-Civita 1900, §2], although not applied to mixed tensors which were first introduced by
Einstein and Grossmann [Reich 1994, p. 194].

14In the fourth edition [Weyl 1921a, see §13]. Pauli [1921, p. 32, n.16] credits Weyl with
this notion and cites Weyl’s paper [1918] — see §5 — and the third edition of Raum, Zeit,
Materie; I am grateful to John Stachel for calling this to my attention.
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x = ϕ(y), a scalar function W = W (x) transforms from W to W̄ where
W̄ (y) = W (ϕ(x)). In the integral I, however, where W (x) can be regarded as
giving the density of the manifold at x so that I represents its mass, we have
I =

∫
W (ϕ(y))|∂x/∂y|dy, where ∂x/∂y denotes the Jacobian determinant of

x = ϕ(y). Hence the function W , as a scalar density function, transforms
by the rule W → W̄ where W̄ (y) = W (ϕ(x))|∂x/∂y|. For tensors Weyl in-
troduced the analogous notion of a tensor density. Expressed in the tensor
algebra notation presented above, tensor densities are also identified with mul-
tilinear forms, such as the form f given in (5), but the rules of transformation
are different. To obtain the representation (9) of the tensor density defined
by f in the new coordinate system, instead of using (3) and (4), one uses

(10) x̄ = |det(MT )−1|(MT )−1x

on the contravariant variables and

(11) ȳ = |detM |My

on the covariant variables. “By contrasting tensors and tensor-densities,”
Weyl wrote in Raum, Zeit, Materie, “it seems to me that we have rigorously
grasped the difference between quantity and intensity, so far as the difference
has a physical meaning ...” [Weyl 1921a, p. 109]. Weyl’s notion of tensor
densities is still a part of general relativity today.15

The introduction of the concept of a tensor density seems to have
prompted the following mathematical question. Although it is very“Weylian”
in nature, it was first posed by Weyl’s student at the ETH, Alexander We-
instein.16 Weinstein, who had proof-read the third edition (1919) of Raum,
Zeit, Materie, observed that all of the transformations (3)-(4) and (10)-(11)
underlying Weyl’s version of tensor algebra involve a matrix M ′ which is
a function of the matrix M of the basis change (2), namely, if we assume
without any real loss of generality that detM > 0, M ′ = (MT )−1 in (3),
M ′ = M in (4), M ′ = det((MT )−1)(MT )−1 in (10), and M ′ = (detM)M
in (11). In all of these cases, he observed, the law of matrix composition is
preserved, i.e.,

(12) (M1M2)′ = M ′
1M

′
2.

15See, e.g., [Misner et al. 1973, p. 501], [Møller 1972, p. 310].
16I owe my awareness of Weinstein’s paper to A. Borel [1986, p. 54]. Weinstein was one

of Weyl’s few students, and one he regarded highly. He went on to distinguish himself as
an analyst. See in this connection the biographical sketch by Diaz in Weinstein Selecta, see
[Weinstein 1923].
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Just as Weyl asked: what is the mathematical basis for the locally pythagorean
nature of space in relativity theory, so now Weinstein asked: what is the
mathematical basis for the transformation rules (3)-(4), (10)-(11) of tensor
algebra? That is: “Are there other rules M → M ′ satisfying (12) and hence
other sorts of tensors?” Weinstein proved the answer is “no” in the sense that
(3)-(4), (10)-(11) are the only “elementary rules”; all others are composed out
of these. Hence there are no essentially new types of tensors to consider. He
called his result the “fundamental theorem of tensor calculus.”

As with the space problem, so here too Weinstein’s question involved a
group, this time the group of all matrices of positive determinant. At the
advice of Weyl, Weinstein proved his result by working on the Lie algebra
level. By virtue of (12), of course, today we would say that Weinstein was
studying degree n representations of this group, but Weinstein made no ref-
erence to such a theory. That is not surprising. Frobenius had developed a
representation theory for finite groups in 1896–1904, but nothing comparable
in scope had been done for continuous groups. Some things had been done
which, in retrospect, can be seen as contributions to such a theory, although
it is quite conceivable that neither Weyl nor Weinstein were aware of this
fact at the time Weinstein worked on his dissertation, which was submitted
for publication on February 22, 1922.17 In addition to the above-mentioned
work of E. Cartan, which, as we have seen, Weyl seems to have first learned
about in October 1922, there was the doctoral dissertation of Frobenius’ stu-
dent Issai Schur [1901] devoted to the study of the type of representation of
GL(n,C) that occurs in the theory of invariants. Schur’s dissertation will
be discussed further on. It was probably not known to Weyl until 1924. In
any case, Weyl discovered a completely different, conceptually simpler way to
connect representations of GL(n,C) with those of the symmetric group than
that developed by Schur. As we shall see, this discovery was a by-product
of his own interest in the mathematical underpinnings of tensor algebra and
ultimately led him to his own “fundamental theorem” about tensors and to
the involvement with the representation of continuous groups that culminated
in his papers of 1925–26.

The aspect of tensor algebra that proved significant in this connection
had to do with the symmetry properties of tensors. In relativistic physics and
in geometry the tensors that arose were not totally general; they came with
specific symmetry properties. Thus in the pages of Raum, Zeit, Materie [Weyl
1921a], the stress tensor Sik is seen to be a symmetric tensor of rank 2 (§8),
and the four-dimensional relativistic electromagnetic intensity vector Fik of

17The paper was published in Mathematische Zeitschrift [Weinstein 1923] and also sepa-
rately as Weinstein’s doctoral dissertation at the ETH.

SÉMINAIRES ET CONGRÈS 3
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§20 is a skew-symmetrical tensor of rank 2. The symmetry properties of the
Riemann curvature tensor Rijkl (§17) are more complex, being given by

(i) Rjikl = Rijlk = −Rijkl; (ii) Rklij = Rijkl;

(iii) Rijkl +Riklj +Riljk = 0.

With such examples in mind, Weyl wrote emphatically at the beginning of §7
on “Symmetrical Properties of Tensors,” that: “the character of a quantity is
not in general described fully, if it is stated to be a tensor of such and such
an order [i.e., rank], but symmetrical characteristics have to be added” [Weyl
1921a, p. 54].

Weyl realized that permutations could be used to characterize symmetry
properties in general. Consider, for example, a covariant tensor of rank 3,
Tijk, which following Weyl, we regard as a multilinear function

(13) f = f(x, y, z) =
∑
i,j,k

Tijkx
iyjzk.

If S is some permutation of the x, y and z variables, let fS denote the
form that arises from f by permuting the variable series according to S.
Then f is symmetric if fS = f for all S and skew-symmetric if fS = (sgn S)f ,
where as usual the sign of S is ±1 according to whether S is an even or odd
permutation. Weyl concluded his discussion of tensor symmetry by observing
that the most general form of a symmetry condition is expressible by one or
more equations of the form

(14)
∑
S

eSfS = 0,

where the eS are numbers and S runs over all possible permutations of the
variables.

Weyl’s emphasis on the symmetry properties of tensors and the manner in
which he conceived of them, i.e., in terms of permutations and (14) naturally
suggest questions about the mathematical basis of tensor symmetry. Here are
some questions suggested by the above presentation, and eventually posed by
Weyl. Suppose C is a symmetry class of tensors determined by one or more
symmetry relations of the form (14). What are the possibilities for C? That
is, what is the mathematical basis for understanding the possibilities for C?
Also, is there an analog for C of the following properties P ′, P ′′ which hold,
respectively, for symmetric and skew symmetric tensors:

Property P′. If f∗ is an arbitrary covariant tensor of rank ν, then the tensor
f = ( 1

ν!)
∑

S f
∗
S is symmetric. Furthermore, all symmetric tensors of rank ν

are so expressible since if f is such a tensor then f = ( 1
ν!)

∑
S fS.
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Property P′′. If f∗ is an arbitrary covariant tensor of rank ν, then the tensor
f = ( 1

ν!)
∑

S(sgn S)f∗
S is skew symmetric. Furthermore all skew symmetric

tensors of rank ν are so expressible since if f is such a tensor, then f =
( 1

ν!)
∑

S(sgn S)fS .

Although Weyl did not explicitly mention properties P ′, P ′′ in Raum, Zeit,
Materie, it is doubtful they escaped his notice. Indeed, he used the fact that
any skew symmetric tensor f is expressible as f = ( 1

ν!)
∑

S(sgn S)fS to show
that (for ν = 3) every such f is expressible as a linear combination of the spe-
cial skew symmetric “volume tensors” (defined by Weyl using determinants)
which have become the standard basis for the subspace of skew symmetric
tensors [Weyl 1921a, p. 55].

As we shall see, Weyl posed and answered the above questions in a paper
submitted in January 1924 [Weyl 1924a]. I suspect he may have had them in
mind much earlier, but his resolution of them — or at least his publication
of these results — may have been prompted by an episode involving the
mathematician Eduard Study (1862-1930) which occurred in 1923.

Response to Study

Study was an idiosyncratic, somewhat cantankerous mathematician whose
primary mathematical research interest was in the theory of invariants and
its geometrical applications. For a while in the late 1880’s and early 1890’s, he
became a part of Lie’s school, being charged by Lie with the task of relating
his theory of transformation groups to the theory of invariants. During this
period his work on ternary invariants even led him to conjecture, in a letter
to Lie, what amounts to the complete reducibility theorem for semisimple Lie
groups — the theorem Weyl first succeeded in proving in his papers of 1925-26.
But Study finally abandoned his efforts to deal with groups on the “abstract”
level of Lie’s theory and concentrated instead on more concrete problems,
including the study of the invariants of groups other than the general linear
group. In particular he studied the invariants of the orthogonal group in
[Study 1897].

At the beginning of 1923 Study published a book on the theory of invari-
ants [Study 1923], and in the lengthy introduction he chastised those working
on relativity theory for their neglect of the tools of the theory of invariants
in favor of tensor calculus. He pointed out that for over fifty years a highly
developed theory of invariants with respect to the general linear group had
been in existence and, citing his own work on orthogonal invariants, he noted
that an invariant theory of other groups had also been indicated. But “with
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the majority of authors there is nothing to indicate that they live in an age
in which the theory of groups is in full bloom” (p. 3). “In short,” Study
continued (p.4), “they are behind the times, and not just a little. Even with
an otherwise knowledgeable writer one can read for example the following:
‘Many will be appalled at the deluge of formulas and indices with which the
leading ideas are inundated. It is certainly regrettable that we have to enter
into the purely formal aspect in such detail and to give it so much space but,
nevertheless, it cannot be avoided’.” That quotation, although not identified
as such, was drawn from Weyl’s book, Raum, Zeit, Materie.18

Study went on to criticize Weyl for accepting the formalism of the tensor
calculus as an unavoidable, necessary evil. That is not to say that Study
was against formalism. Quite the contrary! He believed the formal aspects
of mathematics were important, but the formalism must be of the right kind:
“Mathematics is neither the art of calculation nor the art of avoiding calcu-
lations. To mathematics, however, belongs the art of avoiding superfluous
calculations and carrying out the necessary ones adroitly. In this regard, one
can learn from the older authors” (p. 4). What Study had principally in
mind was the symbolical method of the theory of invariants which went back
to Aronhold and Clebsch. This method reduced the problem of determining
invariants to the far easier problem of determining symbolical or vector in-
variants. In sum (to use Study’s own analogy): mathematicians had thought
that in the tensor calculus they were borrowing from the garden of their
neighbor the physicist the seeds of the golden apples of the Hesperides but
were contenting themselves with a harvest of potatoes! The neglected theory
of invariants and in particular the symbolical method, Study implied, would
prove to be far more valuable.

It will be helpful for what is to follow to briefly indicate the nature
of the theory of invariants in Study’s time and the gist of the symbolical
method. Let G denote a group of nonsingular linear transformations of vari-
ables x = (x1, . . . , xn), y = (y1, . . . , yn), . . . In the classical theory G was
GL(n,C), but by Study’s time other groups such as the orthogonal group
O(n,C) were also considered, thanks largely to Study’s efforts. Invariants
are defined with respect to one or more base forms (Grundformen), which
are homogeneous polynomials of specific type in one or more variables series
x, y, . . . with unspecified coefficients. Consider, for example, as base form the
bilinear form f(a;x, y) =

∑n
i,j=1 aijxiyj. Then each T ∈ G induces a linear

18I am grateful to Erhard Scholz for informing me that Study was using the first edition
of 1918 or its 1919 reprint as second edition. The quotation is from p. 111. In subsequent
editions published before 1923 the passage was changed and is not as vulnerable to Study’s
criticism. See p. 123 of the third edition and p. 137 of the fourth edition [Weyl 1921a].
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transformation M(T ) of a = (a11, ..., ann) as follows. The variable change
x = Tx′, y = Ty′, transforms f(a;x, y) into f ′(a′, x′, y′) = f(a, Tx′, T y′) and
the relation between the coefficients aij and a′ij is given by a nonsingular linear
transformation: a′ = M(T )a. An invariant of the form f(a;x, y) is any ho-
mogeneous polynomial I(a) = I(a11, . . . , ann) for which I(a′) = (detT )µI(a)
for all a′ = M(T )a, i.e., for all T ∈ G. Here, in the traditional presentation
T → M(T ) is not quite a representation of G since M(T1T2) = M(T2)M(T1),
but this can be remedied by considering T → M(T−1). In effect this is
the representation determined by the action of G on the vector space of
all bilinear forms. The symbolical method uses the polarization process of
Aronhold to transform each invariant I(a) into a symbolical or vector invari-
ant i(α, β, . . .), i.e., a homogeneous polynomial in vectors α = (α1, . . . , αn),
β = (β1, . . . , βn),. . . , such that i(Tα, Tβ, . . .) = (detT )µi(α, β, . . .).19 Since
the original invariant can be recaptured from the vector invariant, the prob-
lem of determining the invariants of G with respect to the form f(a;x, y)
reduces to the simpler problem of finding vector invariants. In [1897] Study
determined all vector invariants of the orthogonal group, thereby in principle
solving the problem of determining all the invariants of the orthogonal group
with respect to a set of base forms.

Weyl replied to Study’s criticism in two papers. The first reply was explicit
and was contained in a paper submitted at the end of October 1923 [Weyl
1923c]. This paper was intended as the first of a series of papers in which Weyl
proposed to deal with mathematical topics of interest to all mathematicians
and to emphasize clarifying known results rather than presenting new ones.
One such topic Weyl dealt with was that of determining the invariants, in
the sense of the symbolical method of determining vector invariants, for the
“classical groups,” the symplectic group being treated here for the first time.
Thus he tacitly accepted invariant theory and the symbolical method as a
part of basic mathematics, but in a footnote referring to Study’s criticism,
he rejected Study’s suggestion that invariant theory and, in particular, the
symbolical method belonged in a treatise on relativity theory. Even if he
possessed Study’s great command of the theory of invariants, Weyl declared:
“I would not apply the symbolical method in my book ‘Space, Time, Matter’
and not a single word would have been said about the completeness theorems
of invariant theory. Everything in its proper place!”

Weyl’s paper [1923c] is sometimes seen as revealing an awakening interest
in the theory of invariants, which in turn encouraged his work on the rep-
resentation of Lie groups. However, this does not quite agree with Weyl’s

19In his book [Weyl 1946, pp. 5–6, 243–245] Weyl gives a clear exposition of the polar-
ization process and its role in the symbolical method.
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own words quoted at the beginning that his study of both the representation
and invariants of groups was motivated by his interest in the mathematical
substance behind the formal apparatus of relativity theory. In my opinion, in
order to understand Weyl’s move towards an interest in group representation
theory, it is more enlightening to consider what I regard as his second reply
to Study’s criticism.

Weyl’s second reply was implicit — Study is nowhere mentioned by name
— and came about six weeks later in a paper submitted in January 1924 “On
the symmetry of tensors and the scope of the symbolical method in the theory
of invariants”[Weyl 1924a].20 The paper has two parts. In part one, on tensor
symmetries, Weyl answered the questions on tensor symmetries formulated
above. In part two, he applied these results to a question in the theory of
invariants that may well have been prompted by his encounter with Study.
Let me explain.

In part two Weyl considered the kind of invariant theoretic question that
would be of interest to a relativist. As we have seen, a typical problem consid-
ered in the theory of invariants would be that of determining the invariants
of the general linear group with the base form being the general covariant
tensor f of rank ν = 3 given in (13). In modern terms, this is the study
of the polynomial invariants of the representation of the general linear group
induced by its action on the 3-fold tensor product V∗ ⊗V∗ ⊗V∗. Formulated
as such, this would be a standard invariant-theoretic problem. But, as was
pointed out when discussing Weyl’s treatment of tensor symmetries in Raum,
Zeit, Materie, he stressed the fact that in physics and geometry tensors come
endowed with specific symmetry properties. Echoing this sentiment, Weyl
wrote in the first part of [Weyl 1924a, p. 472]: “For every tensor which arises,
a category characterized by symmetry relations must be specified a priori,
inside of which the tensor is to be thought of as freely variable.”

So suppose that we consider instead of the general tensor of rank 3, the
tensors of that rank with prescribed symmetry properties as given by equa-
tions of the form (14). Then such tensors transform among themselves by
variable changes of, say, elements in the general linear group. As in the stan-
dard situations of invariant theory, the transformation of the coefficients of
these tensors is linear and we may consider the invariants with respect to
these linear transformations. In other words, if W ⊂ V∗ ⊗V∗ ⊗V∗ consists of
the tensors satisfying some symmetry relations of the form (14), then W is a
a representation module in its own right, and we may consider the invariant

20In Weyl’s Gesammelte Abhandlungen II, this paper is misleadingly placed (with the date
of submission omitted) after Weyl’s two notes of November 1924 [Weyl 1924b,c] announcing
his principal results on the representation of semisimple Lie groups.
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polynomials of the associated representation. This is what Weyl proposed to
consider, albeit expressed in the older terminology. These are the type of in-
variants that might arise within relativistic physics, where physical quantities
are given by tensors with specific symmetry properties.

Now it turns out, as Weyl observed, that the symbolical method breaks
down in this case. That is, because f is not the “general” rank 3 covariant
tensor but is restricted by symmetry conditions (14), the link between its
invariants and the symbolical ones that is fundamental to the symbolical
method is severed. As a simple illustration of this fact, consider the general
skew symmetric rank two tensor f = a12x

1y2 − a12x
2y1, which has the linear

invariant I(a) = a12. The symbolical method associates with I the expression
i(α, β) = α1β2, where α = (α1, α2), β = (β1, β2). But i is not a vector
invariant. Thus an ordinary invariant need not give rise in the usual manner
to a symbolical one, and so direct application of the method fails.

Weyl, however, perceived a way to salvage the symbolical method. Sup-
pose, for example, that f belongs to the class of skew symmetric tensors.
Then by virtue of property P ′′, f is obtained from a completely general ten-
sor f∗ of the same rank, and by virtue of this fact, Weyl could see how
to push through the symbolical method by utilizing f∗. To illustrate this
point we consider again the above skew symmetric tensor f of rank 2. By
property P ′′, f can be obtained from the completely general rank two tensor
f∗ = a11x

1y1 + a12x
1y2 + a21x

2y1 + a22x
2y2:

f =
1
2
f∗− 1

2
f∗
(12) =

1
2
(a12 −a21)x1y2 − 1

2
(a12 −a21)x2y1 ≡ ā12x

1y2− ā12x
2y1.

Thus f is expressible in terms of the coefficients of the completely general f∗.
As a consequence the linear invariant I = ā12 = 1

2(a12 − a21) is expressible
in terms of the coefficients of f∗ and is an invariant with respect to f∗ as
base form. Thus the symbolical method, which requires that the coefficients
of the base form be completely unconstrained, may now be applied to I =
1
2 (a12 − a21) to obtain the (skew symmetric) vector invariant

i(α, β) =
1
2
α1β2 − α2β1 =

1
2

∣∣∣∣α1 α2

β1 β2

∣∣∣∣ .
Weyl could see how to do the same sort of thing for any symmetry class of

tensors, because he could generalize properties P ′, P ′′ to any such class. This
constitutes the first part of his paper. There he proved the following result:

Theorem 2. — Let f(x, y, z, · · · ) =
∑

ijk··· Tijk···x
iyjzk · · · denote a tensor

of rank ν. Then:
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a) If W is the class of such tensors f which satisfy several symmetry relations
of the form (14), there is a single such relation which characterizes W.
b) Given any symmetry class W, there exist constants cS , S ∈ Sν , such that
if f∗ is arbitrary, then f =

∑
S∈Sν

cSf
∗
S ∈ W. Moreover every f ∈ W is

obtained in this manner since if f ∈ W, then f =
∑

S∈Sν
cSfS ∈ W.

How did Weyl obtain these results? As he tells us: “By applying the
representation theory of Frobenius to the group of all permutations one eas-
ily obtains a complete insight into the possible symmetry characteristics of
tensors” [Weyl 1924a, pp. 468–9]. Exactly how Weyl hit upon Frobenius’
theory is not known, but the left hand side of the general symmetry relation
(14) of Raum, Zeit, Materie,

∑
S∈Sν

eSfS, certainly suggests looking at the
group algebra of the symmetric group Sν , and the structure of this algebra
was known to be related to the representations of Sν . In [1924a] Weyl wrote
(14) in the equivalent form

(15)
∑

S∈Sν

kSfS−1 = 0

and observed that one can associate to the form f an element f in the group
algebra H of the symmetric group Sν , namely

(16) f =
∑

S∈Sν

fSS.

Since the f given in (16) depends upon the values of the variables x, y, z, · · ·
defining f , (16) actually defines a family of elements in H. Weyl glossed over
this point, but his results go through nonetheless.21 Direct calculation then
shows that (15) is equivalent to kf = 0, where k =

∑
S∈Sν

kSS, and, for
example, part (b) of Theorem 2 can be deduced from the following result
about the group algebra H:

Theorem 3. — Given k =
∑

S∈Sν
kSS ∈ H, there is an element

c =
∑

S∈Sν
cSS ∈ H such that kf = 0 if and only if f = cf∗ for some

f∗ in H. Moreover, cf = f for all f satisfying kf = 0.

Theorem 3 was proved using the fact that the group algebra of the sym-
metric group decomposes into a sum of complete matrix algebras22 — the
group algebra version of Frobenius’ complete reducibility theorem for finite

21Weyl later touched on this point in his exposition of tensor symmetries and the group
algebra H in his book on group theory and quantum mechanics [Weyl 1931, p. 283].

22That is, the linear associative algebra of all m × m matrices for some m ∈ Z
+.
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groups. By virtue of this decomposition into complete matrix algebras the
proof of Theorem 3 is reduced to basic linear algebra, as Weyl showed. The
same is true of part (a) of Theorem 2.

So Weyl had discovered the value of Frobenius’ theory of group characters
and representations for answering questions from tensor algebra as well as
questions about the scope of the symbolical method. If this paper is viewed
as a response to Study, then the message would seem to be: I have discovered
in the representation theory of groups something of far greater importance
than the essentially formal symbolical method. Not only does it enable me
to gain insight into questions about the foundations of tensor algebra that
interest me, it also provides insight into the scope of the symbolical method
itself.

Once again, Weyl had discovered in the theory of groups the means to
answer questions motivated by relativity theory. In the case of the space
problem, however, he had utilized only the basic elements of Lie’s theory —
primarily the fact that one could deal with certain group theoretic questions
more easily by working with the infinitesimal group or Lie algebra. The same
can be said for Weinstein’s work on his “Fundamental Theorem of Tensor
Calculus.” Now for the first time, Weyl had gone beyond the elements of
group theory to achieve his goal. He had discovered the power of the theory
of representations for answering the questions that intrigued him.

The Group–Theoretic Foundation of Tensor

Calculus

The paper by Frobenius that was especially relevant here was his paper on the
primitive idempotents of the group algebra of the symmetric group [Frobe-
nius 1903]. It was written after he learned of the work published by Alfred
Young in 1901 and 1902. Young’s work dealt with the theory of invariants,
but Frobenius could see that it related to the group algebra of the symmet-
ric group and that Young had in effect obtained a formula for the primitive
idempotents. Since the primitive idempotents determine the irreducible rep-
resentations and their characters, Frobenius deemed it worthwhile to rederive
Young’s formulae and to relate them to his theory of group characters. I
should mention that Frobenius himself preferred to present his work on group
representations without the explicit use of the “hypercomplex numbers”of the
group algebra and this was true of the above mentioned paper as well. As he
explained there: “It is less significant that I abstain from the use of hyper-
complex numbers, since, as convenient as they occasionally are, they do not
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always serve to make the presentation more transparent” [Frobenius 1903, p.
266]. Weyl, however, could read between the lines and interpret Frobenius’
theory in terms of the group algebra, which was precisely the point of view
that was relevant to his study of tensor symmetries.

Weyl realized that the element c of the group algebra in Theorem 3 is an
idempotent. He also realized that if c is an idempotent, then the totality W
of all tensors obtained from the operation f∗ → f =

∑
S∈Sν

cSf
∗
S of part (b)

of Theorem 2 is a symmetry class — with symmetry equation (15) given by
k = 1 − c, 1 being the identity element of the symmetric group. Since the
primitive idempotents determine the irreducible representations of the sym-
metric group Sν , it would be natural to wonder whether if c is a primitive
idempotent, and hence given by Young’s formula, the representation of the
special linear group which it generates by means of the representation module
W would be one of the irreducible representations classified by Cartan accord-
ing to highest dominant weights in [Cartan 1913]. Indeed, although Cartan
did not couch his results in terms of tensors, to anyone with a background in
tensor algebra, it would have been clear that the representation modules he
constructed could be regarded as consisting of tensors.

Weyl eventually discovered how to associate with a given dominant weight
a Young tableau such that the primitive idempotent c it defines generates,
in the above sense, the symmetry class W of tensors which is an irreducible
representation module for that weight. Consider, for example, G = SL(4,C)
and the irreducible representation module of highest weight π =

∑3
i=1 piπi,

where the πi are the fundamental dominant weights and pi ≥ 0 in accordance
with Cartan’s theory. If we set m1 = p1 + p2 + p3, m2 = p2 + p3, m3 = p3,
then m1 ≥ m2 ≥ m3, and the mi define the shape of a Young tableau, with
first row of length m1, second row of length m2 and third of length m3, which
corresponds to the symmetric group Sν with ν =

∑3
i=1 mi. For example, if

π = 2π1 + π2 + 3π3, so m1 = 6,m2 = 4,m3 = 3 and ν = 13, then

T =
1 2 3 4 5 6
7 8 9 10
11 12 13

is a Young tableau of the given shape. If R denotes the subgroup of elements
of S13 which permute the numbers in the rows of T among themselves and
if C is defined analogously with respect to the columns of T , then the corre-
sponding Young-Frobenius primitive idempotent c turns out to be a constant
multiple of e =

∑
P∈Sν

ζ(P )P , where ζ(P ) = sgn C if P = RC with R ∈ R
and C ∈ C and ζ(P ) = 0 otherwise.23 Since a constant multiple does not

23The constant multiple is f
ν!
, where f is the degree of the irreducible representation of
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change the symmetry class defined by part (b) of Theorem 2, an irreducible
module of weight π = 2π1 + π2 + 3π3 consists of all the tensors obtained
from the operation f∗ → f =

∑
S∈S13

ζ(S)f∗
S applied to the general ten-

sor f∗. In other words, the tensors characterized by the symmetry relation∑
S kSfS−1 = 0, where k = 1 − c, form an irreducible module of hightest

weight 2π1 + π2 +3π3. Noting that Cartan had not indicated this connection
between symmetry classes of tensors and irreducible representations, Weyl
expressed the conviction that it was through this connection “that the entire
matter is first placed in the right light.”24

The fact that tensors with specific symmetry characteristics are the basis
of all the irreducible representations of SL(n,C) had an intriguing implication
for Weyl: If the complete reducibility theorem of Frobenius’ theory were true
for SL(n,C), it would mean that tensors — with specific symmetry prop-
erties — are the building blocks for all representations of SL(n,C). Weyl
perhaps realized that Lie, prompted by Study’s above-mentioned conjectures,
had conjectured the truth of what amounts to the complete reducibility theo-
rem for SL(n,C) in the third and final volume of his Theory of Transformation
Groups [Lie 1893, pp. 785–6]; but, in any case, it was a paper by Frobenius’
student, Issai Schur, that put Weyl in a position to prove it. On January 10,
1924, and hence at about the same time as Weyl submitted his paper [1924a]
on tensor symmetries, Schur presented a paper [1924] to the Berlin Academy
in which he pointed out how Frobenius’ theory of group representations, in-
cluding the complete reducibility theorem, could be extended to the rotation
group of n-dimensional space, SO(n,R). He also referred to his dissertation
[Schur 1901] in which he had studied representations A → R(A) of GL(n,C)
for which the entries of the matrix R(A) are polynomials in the entries of
the matrix A, and this may have been how Weyl learned of it.25 These are
the sort of representations that come up implicitly in the classical theory of
invariants and that is why Schur was interested in them. Making critical
use of the polynomial nature of the entries of R(A), he showed how to asso-
ciate with each irreducible representation R(A) an irreducible representation
of a symmetric group. As we have seen, such a connection can be given by

S13 associated to c. Frobenius [1903, p. 265] and Weyl [1925, p. 573] gave different ways
of defining f directly in terms of Sν .

24Weyl made this comment in his first communication on these matters [Weyl 1924b,
p. 462]; they are discussed in somewhat more detail in [Weyl 1925, pp. 558–9, 571–3].
Complete details, in the context of GL(n, C ), are given in his lectures [Weyl 1934, pp.
21ff.].

25Although Schur’s dissertation was a brilliant piece of work, it was only published as a
separate pamphlet (as was required of dissertations). Many dissertations (e.g., Weinstein’s)
were also published in journals.
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the above primitive idempotent c of Young and Frobenius, but Schur, whose
work predates that of Young and Frobenius, made the connection in a dif-
ferent, more complicated way.26 However he showed how it could be used to
obtain many beautiful theorems, including a complete reducibility theorem
for the polynomial representations R(A).

In neither his dissertation nor his paper [1924] was Schur’s primary goal
an extension of Frobenius’ theory to continuous groups. In [Schur 1924] he
was concerned with a counting problem in the theory of invariants that had
been solved in the classical case of the in- and covariants of binary forms
by Cayley in 1856 and for the invariants of finite groups by T. Molien in
1897.27 Molien had used the representation theory of finite groups to solve
his problem, and Schur realized he could do the same for the invariants of
the rotation group by extending Frobenius’ theory to this group. His method
of extension was based upon a technique introduced by Adolph Hurwitz and
involved replacing summation over a finite group with invariant integration
over a compact Lie group. Hurwitz had used the technique to extend Hilbert’s
basis theorem to orthogonal invariants — a new result — but he also used it
to give another proof for invariants with respect to SL(n,C). The application
of the technique to SL(n,C), which is not compact, involved an idea which
Weyl later dubbed the “unitarian trick.”Weyl saw how to use the same sort
of trick to establish the complete reducibility theorem for SL(n,C), thereby
showing that tensors (with prescribed symmetry conditions) are the building
blocks for all possible representations.

The paper Weyl presented to the Göttingen Academy of Sciences in
November 1924 [Weyl 1924b] announcing this discovery (as well as others),
was entitled “Das gruppentheoretische Fundament der Tensorrechnung,” and
in it he opined that“the true group theoretic foundation of the tensor calculus”
was to be found in the above-mentioned consequence of the complete re-
ducibility theorem for SL(n,C). In the first part of his famous series of papers
on the representations of semisimple Lie groups [Weyl 1925, pp. 545–6], which
bore the same title as the Göttingen paper, Weyl put the matter as follows.
Tensors, he explained, are examples of what he called “linear quantities.”
Consider for example the mixed tensors of rank three T k

ij discussed earlier at
(5). Each such T k

ij may be regarded as an N -tuple (with N = n3). The change
of basis (2) corresponding to a matrix M ∈ SL(n,C) brings with it the vari-
able changes xi → x̄i, yj → ȳj, zk → z̄k which leads to an expression (8) for f

26After Schur learned of Weyl’s approach, he returned to the subject of his dissertation and
developed another way to make the connection that was simpler than his original approach
[Schur 1927, pp. 70, 72ff.].

27The history of this counting problem is treated in my paper [Hawkins 1986].
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in terms of the barred variables, and implicitly defines the linear transforma-
tion R(M) : T k

ij → T̄ k
ij . It is easily seen that R(M2M1) = R(M2)R(M1).

For this reason the T k
ij constitute a linear quantity. In general, according

to Weyl, a linear quantity is an N -tuple (a1, . . . , aN ) which transforms
by a linear transformation R(M) : (a1, . . . , aN ) → (ā1, . . . , āN ) such that
R(M2M1) = R(M2)R(M1). Of course linear quantities are just representa-
tions of SL(n,C), but Weyl recast the notion here in a form that was more
congenial to the mathematical context from which he was coming — the
mathematics of relativity theory. Thus the complete reducibility theorem for
SL(n,C) became in this language the theorem that the only linear quantities
are the tensors. It was in this form that it was particularly meaningful for
him.

Weyl regarded this theorem as “the proper group theoretic justification
of the tensor calculus” [Weyl 1925, p. 546]. In other words, he had obtained
through the theory of groups, and in particular through the theory of group
representations — as augmented by his own contributions — what he felt
was a proper mathematical understanding of tensors, tensor symmetries, and
the reason they represent the source of all linear quantities that might arise
in mathematics or physics. Once again, he had come to appreciate the im-
portance of the theory of groups — and now especially the theory of group
representations — for gaining insight into mathematical questions suggested
by relativity theory. Unlike his work on the space problem or Weinstein’s
work on the fundamental theorem of the tensor calculus, however, Weyl now
found himself drawing upon far more than the rudiments of group theory.
His study of tensor symmetries had drawn upon Frobenius’ theory of group
representations and his own “fundamental theorem” for tensors had involved
him with the continuous analog of Frobenius’ theory. And of course Cartan
had showed that the space problem could also be resolved with the aid of
results about representations. In short, the representation theory of groups
had proved itself to be a powerful tool for answering the sort of mathematical
questions that grew out of Weyl’s involvement with relativity theory.

Frobenius had more or less developed all the essentials of the theory of rep-
resentations for finite groups, but that was not at all the case for continuous
groups, notwithstanding the important contributions contained in the work
of Cartan and Schur. Their work certainly suggested to Weyl the potential
richness of a continuous analog of Frobenius’ theory, but it did not constitute
a coherent theory. Schur, who was unaware of Cartan’s work, had concen-
trated on two specific groups and had emphasized the role of group charac-
ters, whereas Cartan dealt with all semisimple groups but on the infinitesimal
level using his theory of weights and without any complete reducibility the-
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orem. Having become convinced of the importance of group representation
theory, Weyl went on to extend his results about SL(n,C) so as to create
in his brilliant papers of 1925–26 a coherent theory of the representation of
all semisimple groups within which the approaches of Schur and Cartan were
linked together for the first time.

Epilogue

Two additional points need to be made.

1. Weyl was not the only mathematician interested in tensor algebra who
saw a connection with the representation theory of the symmetric group. As
early as 1919 J. A. Schouten (1883–1971) studied the problem of expressing
a tensor as a sum of “irreducible” tensors with symmetry properties. To this
end he utilized the group algebra of the symmetric group and Frobenius’ the-
ory of group characters (in a formula for the principal idempotents). He was,
however, unaware of Frobenius’ paper [1903] or Young’s work and indepen-
dently developed notions akin to that involving Young tableaux. Schouten’s
work was expounded (with complete references to his earlier publications)
in his book [Schouten 1924, VII], which Weyl cites in [Weyl 1924b, p. 462,
n.2]. There is no evidence that Weyl knew of Schouten’s work earlier and was
influenced by it. Schouten actually submitted a note [1923] illustrating his
method (on an example suggested by Study!) to the Rendiconti del Circolo
Matematico di Palermo a year before Weyl’s paper [1924a] on tensor symme-
tries was submitted to the same journal. Had Weyl known of this note he
most certainly would have cited it in his own.

2. I have suggested that Weyl wrote his papers of 1925–26 on representa-
tion theory with the conviction that the theory was a powerful instrument
for answering questions suggested by theoretical physics. Weyl acted on that
conviction shortly after he completed the above papers. This time however
group representations were utilized to deal with questions arising from the
new quantum mechanics initiated by the work of Heisenberg and Schrödinger
in 1924–25. By 1927 their work had led to further developments by theoretical
physicists such as Born, Pauli, Jordan and Dirac and, from the mathemati-
cian’s side, by von Neumann. Weyl seems to have assimilated and mastered
these developments as rapidly as he had mastered relativity theory a decade
earlier. Thus in a paper, “Quantenmechanik und Gruppentheorie”, we find
him posing the question: “How do I arrive at the matrix, the Hermitean
form, which represents a given quantity in a physical system of known consti-
tution?”[Weyl 1927, p. 90] To explain, precisely, what Weyl meant by this
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would take us too far afield. But his further words should have a familiar ring
to them by now: “Here with the help of group theory I believe I have suc-
ceeded in arriving at a deeper insight into the true nature of things” (p. 91).
By “group theory” Weyl meant representation theory. This time it was to
the study of unitary projective (or ray) representations of the abelian Lie
group R

2f that he turned for the deeper insight. Once again the mathematics
generated by the question went on to have a fruitful life of its own.28
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