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FOURTH ORDER EQUATIONS
IN CONFORMAL GEOMETRY

by

Sun-Yung A. Chang & Paul C. Yang

Abstract. — In this article we review some recent work on fourth order equations
in conformal geometry of three and four dimensions. We discuss an existence result
for a Yamabe-type equation in dimension three. We examine a generalization of the
Cohn-Vossen inequality to dimension four. Finally, we review an application of the
fourth order equation to a fully nonlinear equation in dimension four that involves
the Ricci tensor.

Résumé (Équations d’ordre quatre en géométrie conforme). — Dans cet article, nous
présentons un travail récent sur des équations d’ordre quatre en géométrie conforme
de dimensions trois et quatre. On présente un résultat d’existence d’une équation
de type Yamabe en dimension trois. On examine une généralisation de l’inégalité
de Cohn-Vossen en dimension quatre. Finalement, nous donnons une application, en
dimension quatre, de l’équation d’ordre quatre à une équation non linéaire faisant
intervenir le tenseur de Ricci.

1. Introduction

In this article we discuss some new developments in the fourth order equations in
conformal geometry of three and four dimensions. We refer the reader to [CY2] for
a survey of some earlier work in this area.

On a Riemannian manifold (Mn, g) of dimension n, the Laplace Beltrami operator
is the natural geometric operator. Under conformal change of metric gw = e2wg,
when the dimension is two, ∆gw is related to ∆g by the simple formula:

(1) ∆gw(ϕ) = e−2ω∆g(ϕ) for all ϕ ∈ C∞(M2).
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In dimension greater than two, similar transformation property continues to hold
for a modification of the Laplacian operator called the conformal Laplacian operator
L ≡ − 4(n−1)

n−2 ∆ +R where R is the scalar curvature of the metric. We have

(2) Lgw(ϕ) = e−
n+2

2 ωLg

(
e

n−2
2 ωϕ

)

for all ϕ ∈ C∞(M).
In general, we call a metrically defined operatorA conformally covariant of bidegree

(a, b), if under the conformal change of metric gω = e2ωg, the pair of corresponding
operators Aω and A are related by

(3) Aω(ϕ) = e−bωA(eaωϕ) for all ϕ ∈ C∞(Mn).

A particularly interesting such operator is a fourth order operator on 4-manifolds
discovered by Paneitz [Pa] in 1983:

(4) Pϕ ≡ ∆2ϕ+ δ

(
2
3
RI − 2 Ric

)
dϕ

where δ denotes the divergence, d the de Rham differential and Ric the Ricci tensor
of the metric. The Paneitz operator P is conformal covariant of bidegree (0, 4) on
4-manifolds, i.e.

(5) Pgw (ϕ) = e−4wPg(ϕ) for all ϕ ∈ C∞(M4).

A fourth order curvature invariant Q = 1
12{−∆R + R2 − 3|Rc|2} is associated to

the Paneitz operator:
Pw + 2Q = 2Qwe

4w.

In dimension four, the Paneitz equation has close connection with the Chern-Gauss-
Bonnet formula. For a compact oriented 4-manifold,

(6) χ(M) =
1

4π2

∫
M

(
|W |2

8
+Q)dV

where χ(M) denotes the Euler characteristic of the manifold M , and |W |2= norm
squared of the Weyl tensor. Since |W |2dV is a pointwise invariant under conformal
change of metric, QdV is the term which measures the conformal change in formula
(6).

For a 4-manifold with boundary, [CQ] defines a third order boundary operator P3
which is conformally covariant of bidegree (1, 3):

(7) P3 = −1
2
∂

∂n
∆ − ∆̃

∂

∂n
− 2

3
H∆̃ + Lαβ∇̃α∇̃β +

(1
3
R−RαNαN

) ∂
∂n

+
1
3
∇̃H · ∇̃

where ∂n is the unit interior normal, ∆̃ is the boundary Laplacian, H is the mean
curvature, Lαβ the second fundamental form, and ∇̃ the boundary gradient. The
boundary P3 operator defines the third order curvature invariant T through the equa-
tion:

(8) −P3w + Twe
3w = T on ∂M
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where

(9) T =
1
12

∂

∂n
R+

1
6
RH − RαNβNLαβ +

1
9
H3 − 1

3
TrL3 − 1

3
∆̃H.

For 4-manifolds with boundary, the Chern-Gauss-Bonnet formula is supplemented
by

(10) χ(M) =
1

4π2

∫
M

(
|W |2

8
+Q)dV +

1
4π2

∫
∂M

(L+ T )dΣ

where Ldσ is a pointwise conformal invariant of the boundary.
In order to find geometric interpretation for the fourth order invariantQ, we formu-

lated an analogue ([CQY1]) of the Cohn-Vossen inequality for complete surfaces with
finite total curvature and derived ([CQY2]) a compactification criteria for conform-
ally flat 4-manifold using the curvature invariant Q and the assumption of geometric
finiteness.

In general dimensions different from four there is also a natural fourth order op-
erator P , which enjoys the conformal covariance property with respect to conformal
changes in metrics. The relation of this operator to the Paneitz operator in dimen-
sion four is completely analogous to the relation of the conformal Laplacian to the
Laplacian in dimension two. On (Mn, g) when n 	= 4, define

P = (−∆)2 + δ(anR+ bn Ric)d+
n− 4

2
Q

where
Q = cn|Ric |2 + dnR

2 − 1
2(n− 1)

∆R

and

an =
(n− 2)2 + 4

2(n− 1)(n− 2)
, bn = − 4

n− 2
, cn = − 2

(n− 2)2
, dn =

n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

are dimensional constants. Then (Branson [Br]), writing gu = u
4

n−4 g, n 	= 4 we have

(11) (P )u(ϕ) = u−
n+4
n−4P (uϕ)

for all ϕ ∈ C∞(Mn). We also have the analogue for the Yamabe equation:

(12) Pu =
n− 4

2
Qu

n+4
n−4 on Mn, n 	= 4.

Such semilinear biharmonic equations with critical exponents were first investigated
by Pucci-Serrin in [PuS], they obtained the analogue of the Brezis-Nirenberg result
([BN]) in dimensions n = 5, 6, 7 for domains in Rn. In the article [DHL] there are
some criteria for existence for equations of Paneitz type.

It is interesting to note that in dimension three, the equation takes a special form

(13) Pu = −1
2
Qu−7

for the conformal factor g = u−4g0. It is natural to ask whether one can solve
the analogue of the Yamabe equation for this operator. In [XY] we were able to
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formulate a criteria for positivity of the operator P in dimension three and obtained
some existence result for the equation of prescribing constant Q. The study of this
equation is still in a primitive stage, there is much that remains to be developed.

In dimension four, the theory of the fourth order equation can be applied to the
study of fully nonlinear equations involving the symmetric functions of the modified
Ricci tensor. This set of equations is studied by Viaclovsky [V] in his thesis. In
dimension four, we can use the fourth order equation as a regularization of the second
order equation of prescribing the second elementary symmetric functions σ2(A) where
A is the conformal Ricci tensor A = Rc − 1

6Rg. As a consequence, we were able to
give a simple criteria for existence, in a given four dimensional conformal class, of a
metric with strongly positive Ricci tensor. The conformal classes in four dimension
that satisfy the conformally invariant conditions

∫
σ2(A)dV > 0 and having positive

Yamabe invariant, include the 4-sphere, connected sums of up to three copies of CP2,
connected sums of CP2 with up to eight copies of CP2 with reversed orientation, and
connected sums of up to two copies of S2 × S2.

We give an outline of the rest of the paper. In section two we study the fourth order
equation on 3-manifolds. We discuss the uniqueness question for the equation (12) in
Euclidean 3-space. We formulate a criteria for existence result for prescribing constant
Q for a class of 3-manifolds. In section three, we consider the fourth order equation on
conformally flat 4-manifolds and report on the compactification criteria of [CQY2].
Finally in section four we discuss the fully nonlinear equations for prescribing the
elementary symmetric functions of the conformal Ricci tensor on a 4-manifold.

It is a pleasant duty to acknowledge the help and support of our coworkers and col-
leagues, particularly Matt Gursky, Jie Qing, Peter Sarnak and Xingwang Xu. The last
named author would also like to thank the Department of Mathematics of Princeton
University for support and hospitality.

2. The fourth order operator in dimension three

For the P operator in dimension three we have

(14) P = (−∆)2 + δ(
5
4
Rg − 4Rc)d− 1

2
Q

where

(15) Q = −2|Rc|2 +
23
32
R2 − 1

4
∆R.

The Q curvature equation is given by

(16) Pu = −1
2
Qu−7.

The analogue of the Yamabe problem in this setting would be to solve equation (16)
with Q given by a constant. This is naturally the Euler equation of the variational
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functional

(17) F [u] =
(∫

M

u−6dV
)1/3 ∫

M

Pu · udV.

The direct method would be to minimize the functional over the class of positive
functions in the Sobolev space W 2,2. The negative exponent in the integral means
that the analytic difficulty is associated with the conformal factor touching zero. The
negative sign of the coefficient for the Q curvature term in equation (16) makes a
sharp contrast with the Yamabe equation. For example, among the eight standard
geometries, only in the case of the sphere and hyperbolic 3-manifolds the Q curvature
is positive. There is some preliminary result in this direction.

In studying a nonlinear equation involving a critical exponent, it will be important
to have an understanding of the blowup solutions. Thus one is interested in global
positive solutions in Euclidean 3-space of the equation

(18) ∆2u = −15
16
u−7.

Assuming the solution actually came from a positive solution of the corresponding
equation on S3 via the stereographic projection, it would have the natural asymptotic
behavior: u(x)/|x| tends to a positive constant as |x| tends to infinity. Adapting the
method of moving planes, Choi and Xu ([CX]) has classified such entire solutions:
after translations and dilations u is of the form u(x) = 2−1/2(1+ |x|2)1/2. In the same
article, they also showed that the same assertion holds if, instead of the asymptotic
condition at infinity, the scalar curvature of the metric is assumed to be non-negative
at infinity.

The question of existence turns out to be simplest when the operator P is positive
and the manifold (M3, g0) is in the positive Yamabe class. We have

Theorem 2.1([XY]). — If (M3, g0) has positive scalar curvature and the operator P
is positive, then the functional F achieves a positive minimum at a positive smooth
function u.

Remark 2.1
1. The positivity of the operator P does not follow from the positivity of the scalar

curvature. In fact on the standard 3-sphere the operator P has a negative eigenvalue
due to the fact Q0 = 15/8. A simple criteria for positivity of the operator P on
(M3, g) is that there is a conformal metric in which Q < 0 and R > 0. The class
of conformal structures satisfying the these conditions includes the standard product
structures on S1×S2 and their connected sums. In view of Yau’s conjecture [SY], it
is quite likely that the only possible topology supporting conformal structures with
these positivity conditions are those listed.

2. In a recent article, Djadli-Hebey-Ledoux [DHL] studied the best constants in a
Sobolev inequality related to the Paneitz equation in dimensions n ≥ 5.
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3. An extension of the Cohn-Vossen inequality

We recall the Cohn-Vossen ([CV]) inequality for complete surfaces. Suppose (M, g)
is a complete surface with Gauss curvature K in L1, then

(19)
∫

M

KdA ≤ 2πχ.

In fact, Huber ([Hu]) has shown that such a surface has a conformal compactification
M = M̃ �{P1, . . . , Pn} where M̃ is a compact Riemann surface. At each puncture Pi

by inverting a conformal disc Di � {Pi}, Finn ([Fn]) has considered the isoperimetric

ratio νi = limr→∞
(Length(∂Dr))2

4πArea(Dr)
, and accounted for the deficit in the inequality

above:

(20) χ(M) − 1
π

∫
M

KdA =
n∑

i=1

νi.

A completely analogous situation holds in dimension four provided we restrict ourselves
to conformally flat 4-manifolds of positive scalar curvature. Let us first recall that
Schoen-Yau ([SY]) has demonstrated that for such manifolds, the holonomy cover of
such manifolds embed conformally as domain M̃ in S4 with a boundary which has
Hausdorff dimension less than one. Thus by going to a covering of such manifolds we
may assume that we are dealing with domains in R4.

Theorem 3.1([CQY1]). — Let e2w|dx|2 be a complete metric on Ω = R4�{P1, . . . , Pn}
with nonnegative scalar curvature near the punctures. Suppose in addition that Q is
integrable. Then we have

(21) χ(Ω) − 1
4π2

∫
Ω

QdV =
n∑

i=1

νi

where at each puncture Pi a conformal disk Di � {Pi} is inverted and

(22) νi = lim
r→∞

(vol(∂Br))4/3

4(2π2)1/3 vol(Br)
.

To give some idea of the proof of Theorem 3.1, we explain the situation on R4.
The proof is based on an idea of Finn, to compare the conformal factor with the
biharmonic potential derived from the measure QdV . The positivity of the scalar
curvature at infinity implies that the conformal factor agrees with the potential up
to a constant. Working then with the expression of the potential as a logarithmic
integral, a delicate analysis shows that the isoperimetric ratio ν can be compared
with that of the symmetrized potential. In the latter case the required identity follows
from an analysis of the resultant ODE.

The finiteness of the Q integral together with the embedding result of Schoen-Yau
has strong implication for the underlying topology:
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Theorem 3.2([CQY2]). — Let (M4, g) be a simply connected complete conformally
flat manifold satisfying scalar curvature R ≥ c > 0, Ric ≥ −c, and

∫
|Q|dv < ∞;

then M is conformally equivalent to R4 � {P1, . . . , Pk}. In case M4 is not assumed
simply connected, under the additional assumption that M4 is geometrically finite as
a Kleinian manifold, then M is conformally equivalent to M̃ � {P1, . . . , Pk}, where
M̃ is a compact conformally flat manifold. In addition, we have

χ(M) =
1

4π2

∫
M

QdV + k.

Remark 3.1
1. As a consequence of this finiteness criteria, we can classify the complete con-

formal metrics defined on domains in S4, which satisfy the curvature conditions in
the statement of Theorem 3.2, and in addition has constant Q curvature which are
integrable. There are only three such metrics: the standard metric on S4, the flat
metric on R4 and the cylindrical metric on R4 � {0}.

2. The notion of geometric finiteness is a natural one that allows good control of
the ends of the associated hyperbolic manifold. The question which Kleinian groups
are geometrically finite has been intensively studied in dimension two. For example,
Bishop-Jones [BJ] has shown that in dimension two, a finitely generated Kleinian
group is geometrically finite if and only if the limit set has Hausdorff dimension
strictly less than two. In a preliminary study of the situation in higher dimensions,
we ([CQY3]) were able to show that if the Kleinian manifold is compact, has positive
Yamabe invariant, then the group is geometrically finite.

We will now indicate some ideas used in the proof of Theorem 3.2 in the case
when M4 is simply connected. Suppose Ω is a domain in R4 on which there is a
conformal metric g = u2|dx|2 = e2w|dx|2 satisfying the assumptions of Theorem 3.2.
One of the key ingredients in the proof of Theorem 3.2 is to establish the following
size estimate of the conformal factor u(x) for x ∈ Ω in terms of the Euclidean distance
d(x) = distance(x, ∂Ω).

Lemma 3.3. — Suppose M = (Ω, u2|dx|2) is a complete manifold which satisfies the
curvature assumptions as in Theorem 3.2. Then there exists some constant C so that

(23)
1
C
d(x)−1 ≤ u(x) ≤ Cd(x)−1 for all x ∈ Ω.

We remark that the left hand side of (23) follows from some estimate of Schoen-
Yau ([SY], Theorem 2.12, Chapter VI). The estimate of the right hand side of (23) is
derived via a blow up argument for the Paneitz equation, together with the following
uniqueness result.

Lemma 3.4. — On (R4, u2|dx|2), the only metric with Q ≡ 0 and R ≥ 0 at infinity is
isometric to (R4, |dx|2).
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We now consider the sets

Uλ = {x : u(x) ≤ λ} and Sλ = {x : u(x) = λ},

for large values of λ. Apply the Chern-Gauss-Bonnet formula (10) for the domain Uλ,
we obtain

(24) C ≥ λ
d

dλ
V (λ)

where

V (λ) =
∫

Sλ

(∂nw)3dσ +
∫

Sλ

J(∂nw)e2wdσ + 2
∫

Uλ

J |∇u|2dx.

The positivity of the scalar curvature then implies that

(25) V (λ) ≥ C

∫
Uλ

u4dxu.

Then the estimate (23) in Lemma 3.3 together with (24) and (25) allow us to use
a covering argument to show that Λ consists of a finite number of points.

4. Construction of Strongly Positive Ricci Curvature Metrics

In the thesis of J. Viaclovsky ([V]), a family of fully nonlinear differential equa-
tions are introduced as generalizations of the Yamabe equation that pertain to the
conformal structure of a Riemannian manifold. Consider the conformal Ricci tensor:
A = Rc− 1

2(n−1)Rg. The k-th elementary symmetric function of the eigenvalues of the
matrix A is denoted by σk(A). They constitute natural invariants of the Ricci tensor.
In particular σ1 is a multiple of the scalar curvature. In even dimensions n = 2k
the integral

∫
σkdV is in fact a conformal invariant of the manifold. In particular, in

dimension four,

(26) σ2 = −1
2
|E|2 +

1
24
R2

is part of the Gauss-Bonnet integrand that is related to the fourth order curvature
invariant

(27) Q = − 1
12

∆R +
1
2
σ2.

In low dimensions the sign of the quantity σ2(A) implies very strong restrictions
on the curvature tensor. In dimension three, this is discussed in the article of Gursky
in this volume. In dimension four, the positivity of σ2(A) implies first of all that the
scalar curvature R cannot change sign, and more importantly, the Ricci curvature
has the same sign as R. In case R > 0, an elementary algebraic argument shows that
(12R − 3

Rσ2)g > Rc ≥ 3
Rσ2g. Thus the Ricci tensor is strongly positive in this sense.

It would be interesting to find condition on the conformal class in which we can find a
metric with positive σ2(A). A natural set of condition would be that

∫
σ2(A)dV > 0

and that the conformal structure is in the positive Yamabe class.
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FOURTH ORDER EQUATIONS IN CONFORMAL GEOMETRY 163

Theorem 4.1([CGY2]). — On a compact 4-manifold (M, g0) with positive Yamabe in-
variant, if the conformal invariant

∫
σ2(A)dV is positive, there is a metric conformal

to g0 for which σ2(A) is pointwise positive.

To give a brief idea of the proof, we first remark that the variational approach
to the equation σ2(A) = constant is difficult due to the conformal invariance of the
integral. However, it is possible to regularize the equation as the limiting equation of
a family of fourth order equations that we had studied earlier ([CY1]):

(28) γ1|η|2 +Q− 1
24

(3δ − 2)∆R = 0

where η is any fixed non-vanishing section of S2(T ∗(M)) i.e. a symmetric bilinear
form on the tangent vectors, and γ1 is chosen by the normalization

γ1 =
−

∫
QdV∫
|η|2 dV.

This equation is then equivalent to

σ2(A) =
δ

4
∆R− 2γ1|η|2.

The parameters are chosen so that when δ = 1, the existence of solution is proved in
our earlier paper ([CY1]). The regularity of the solution is provided in the article
([CGY1]). We then used a continuity argument in ([CGY2]) to run the parameter
δ in the range 0 < δ ≤ 1. The a priori estimates that are available shows there is a
weak limit in C1,α as δ tends to zero.

Unfortunately, that is not strong enough to conclude it is a strong solution of the
equation (∗)0. By using the Yamabe flow applied to the solutions gδ we were able to
prove the limiting metric for a fixed small time t is smooth and satisfied the positivity
condition σ2(A) > 0.

Remark 4.1
1. There are topological constraints on a 4-manifold implied by the conditions of

Theorem 4.1. The Gauss Bonnet formula

χ =
1

8π2

∫
|W+|2 + |W−|2 + σ2,

and the index formula
τ =

1
12π2

∫
|W+|2 − |W−|2

combine to give the constraint 2χ+3τ > 0 as well as 2χ−3τ > 0. Since the positivity
of Ricci curvature implies the finiteness of fundamental group, the universal cover of
the manifolds in question still satisfy the same conditions. According to the results
of Freedman and Donaldson, the class of simply connected 4-manifolds carrying a
conformal structure satisfying the conditions of Theorem 4.1 must be of the form
k(CP2)#l(−CP2) where l < k and 4 + 5l > k or of the form k(S2 × S2). Here −CP2

is the complex projective plane taken with the opposite orientation. Among these
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it is easy to check that the 4-sphere, connected sums of up to three copies of CP2,
connected sums of CP2 with up to eight copies of −CP2, and connected sums of up
to 2 copies of S2 × S2 do carry such conformal structures.

2. In the study of fully nonlinear second order elliptic equations, many authors look
for solutions of the equations prescribing the elementary symmetric functions of the
hessian. It is usual to assume some boundary conditions that assure the existence of
functions whose Hessian lie in the positive cone defined to be the connected component
of square matrices that satisfy the constraint σk(A) > 0 and contain the identity
matrix. Our result may be viewed as supplying a criteria for the existence of functions
for the σ2(A) equation.

3. The regularization procedure used in dimension four can be used formally to
regularize the σ2(A) equation in other dimensions as well. Namely by adding, to
the functional which computes the Sobolev quotient in dimensions three and beyond
four, a term which calculates the integral

∫
R2dV of the conformal metric with an

appropriately chosen coefficient, it is possible to simultaneously cancel the fourth
order term ∆R as well as to rearrange the remaining quadratic term in the Ricci
tensor to be a multiple of σ2(A). This possibility makes the study of fourth order
equations (12) all the more interesting. Suffice it to say, there is much that remains
to be developed.
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