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Abstract. — This paper is a survey of recent results concerning twistor and Killing
spinors on Lorentzian manifolds based on lectures given at CIRM, Luminy, in June
1999, and at ESI, Wien, in October 1999. After some basic facts about twistor spinors
we explain a relation between Lorentzian twistor spinors with lightlike Dirac current
and the Fefferman spaces of strictly pseudoconvex spin manifolds which appear in
CR-geometry. Secondly, we discuss the relation between twistor spinors with timelike
Dirac current and Lorentzian Einstein Sasaki structures. Then, we indicate the local
structure of all Lorentzian manifolds carrying real Killing spinors. In particular, we
show a global Splitting Theorem for complete Lorentzian manifolds in the presence
of Killing spinors. Finally, we review some facts about parallel spinors in Lorentzian
geometry.

Résumé(Twisteurs et spineurs de Killing en géométrie lorentzienne). — Le présent papier
est un article de synthèse basé sur les exposés donnés au CIRM, Luminy, en juin
1999, et à l’ESI, Vienne, en octobre 1999, concernant des nouveaux résultats sur les
spineurs twisteurs et les spineurs de Killing lorentziens. Après quelques préliminaires
sur les spineurs twisteurs, on met en évidence des relations entre les spineurs twisteurs
lorentziens admettant un courant de Dirac isotrope et les espaces de Fefferman des
variétés spinorielles strictement pseudoconvexes qui apparaissent dans la géométrie
CR. De plus, on décrit la relation entre les spineurs twisteurs admettant un courant
de Dirac de type temps et les structures de Sasaki-Einstein lorentziennes. On indique
aussi la structure locale des variétés lorentziennes admettant des spineurs de Killing
réels. En particulier, on obtient un théorème de < splitting > global pour les variétés
lorentziennes complètes qui admettent des spineurs de Killing. Enfin, on fait le point
sur la théorie des spineurs parallèles en géométrie lorentzienne.
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36 H. BAUM

1. Introduction

Twistor spinors were introduced by R.Penrose and his collaborators in General
Relativity as solutions of a conformally invariant spinorial field equation (twistor
equation) (see [Pen67], [PR86], [NW84]). Twistor spinors are also of interest in
physics since they define infinitesimal isometries in semi-Riemannian supergeometry
(see [ACDS98]). In Riemannian geometry the twistor equation first appeared as an
integrability condition for the canonical almost complex structure of the twistor space
of an oriented four-dimensional Riemannian manifold (see [AHS78]). In the second
half of the 80’s A.Lichnerowicz started the systematic investigation of twistor spinors
on Riemannian spin manifolds from the view point of conformal differential geometry.
Nowadays one has a lot of structure results and examples for manifolds with twis-
tor spinors in the Riemannian setting (see e.g. [Lic88b], [Lic88a], [Lic89], [Wan89],
[Fri89] [Lic90], [BFGK91], [Hab90], [Bär93], [Hab94], [Hab96], [KR94], [KR96],
[KR97b], [KR97a], [KR98]).
An other special kind of spinor fields related to Killing vector fields and Killing tensors
and therefore called Killing spinors is used in supergravity and superstring theories
(see e.g. [HPSW72], [DNP86], [FO99a], [AFOHS98]). In mathematics the name
Killing spinor is used (more restrictive than in physics literature) for those twistor
spinors which are simultaneous eigenspinors of the Dirac operator. The interest of
mathematicians in Killing spinors started with the observation of Th. Friedrich in
1980 that a special kind of Killing spinors realise the limit case in the eigenvalue estim-
ate of the Dirac operator on compact Riemannian spin manifolds of positive scalar
curvature. In the time after the Riemannian geometries admitting Killing spinors
were intensively studied. They are now basically known and in low dimensions com-
pletely classified (see [BFGK91] [Hij86], [Bär93]). These results found applica-
tions also outside the spin geometry, for example as tool for proving rigidity theorems
for asymptotically hyperbolic Riemannian manifolds (see [AD98], [Her98]). In the
last years the investigation of special adapted spinorial field equations was exten-
ded to Kähler, quaternionic-Kähler and Weyl geometry (see e.g. [MS96], [Mor99],
[KSW98], [Buc00b], [Buc00a]).

In opposite to the situation in the Riemannian setting, there is not much known
about solutions of the twistor and Killing equation in the pseudo-Riemannian setting,
where these equations originally came from. The general indefinite case was studied
by Ines Kath in [Kat00], [Kat98], [Katb], [Kata], where one can find construction
principles and examples for indefinite manifolds carrying Killing and parallel spinors.
In the present paper we restrict ourselves to the Lorentzian case. We explain some
results concerning the twistor and Killing equation in Lorentzian geometry, which we
obtained in a common project with Ines Kath, Christoph Bohle, Felipe Leitner and
Thomas Leistner.
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TWISTOR AND KILLING SPINORS 37

2. Basic facts on twistor spinors

Let (Mn,k, g) be a smooth semi-Riemannian spin manifold of index k and dimension
n ≥ 3 with the spinor bundle S. There are two conformally covariant differential
operators of first order acting on the spinor fields Γ(S), the Dirac operator D and the
twistor operator (also called Penrose operator) P . The Dirac operator is defined as
the composition of the spinor derivative ∇S with the Clifford multiplication µ

D : Γ(S) ∇S

−→ Γ(T ∗M ⊗ S)
g
≈ Γ(TM ⊗ S)

µ−→ Γ(S),

whereas the twistor operator is the composition of the spinor derivative ∇S with the
projection p onto the kernel of the Clifford multiplication µ

P : Γ(S) ∇S

−→ Γ(T ∗M ⊗ S)
g
≈ Γ(TM ⊗ S)

p−→ Γ(kerµ).

The elements of the kernel of P are called twistor spinors. A spinor field ϕ is a twistor
spinor if and only if it satisfies the twistor equation

∇S
Xϕ+

1
n
X ·Dϕ = 0

for each vector field X . Special twistor spinors are the parallel and the Killing spinors,
which satisfy simultaneous the Dirac equation. They are given by the spinorial field
equation

∇S
Xϕ = λX · ϕ , λ ∈ C.

The complex number λ is called Killing number.

We are interested in the following geometric problems:

1. Which semi-Riemannian (in particular Lorentzian) geometries admit solutions
of the twistor equation?

2. How the properties of twistor spinors are related to the geometric structures
where they can occur.

The basic property of the twistor equation is that it is conformally covariant: Let
g̃ = e2σg be a conformally equivalent metric to g and let the spinor bundles of (M, g)
and (M, g̃) be identified in the standard way. Then for the twistor operators of P and
P̃ the relation

P̃ϕ = e−
1
2σP (e−

1
2σϕ)

holds.
Let us denote by R the scalar curvature and by Ric the Ricci curvature of (Mn,k, g).
K denotes the Rho tensor

K =
1

n− 2

{
R

2(n− 1)
g − Ric

}
.

We always identify TM with TM∗ using the metric g. For a (2, 0)-tensor field B we
denote by the same symbol B the corresponding (1, 1)-tensor field B : TM −→ TM ,
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38 H. BAUM

g(B(X), Y ) = B(X,Y ). Let C be the (2,1)-Cotton-York tensor

C(X,Y ) = (∇XK)(Y )− (∇Y K)(X).

Furthermore, let W be the (4,0)-Weyl tensor of (M, g) and let denote by the same
symbol the corresponding (2,2)-tensor field W : Λ2M −→ Λ2M. Then we have the
following integrability conditions for twistor spinors

Proposition 2.1([BFGK91, Th.1.3, Th.1.5]). — Let ϕ ∈ Γ(S) be a twistor spinor and
η = Y ∧ Z ∈ Λ2M a two form. Then

D2ϕ =
1
4

n

n− 1
Rϕ(1)

∇S
XDϕ =

n

2
K(X) · ϕ(2)

W (η) · ϕ = 0(3)

W (η) ·Dϕ = nC(Y, Z) · ϕ(4)

(∇XW )(η) · ϕ = X · C(Y, Z) · ϕ+
2
n
(X − W (η)) ·Dϕ(5)

If (Mn, g) admits Killing spinors the Ricci and the scalar curvature of M satisfy
in addition

Proposition 2.2. — Let ϕ ∈ Γ(S) be a Killing spinor with the Killing number λ ∈ C.
Then

1. (Ric(X)−4λ2(n−1)X) ·ϕ = 0 . In particular, the image of the endomorphism
Ric−4λ2(n− 1)idTM is totally lightlike.

2. The scalar curvature is constant and given by R = 4n(n− 1)λ2 . The Killing
number λ is real or purely imaginary.

If the Killing number λ is zero (R = 0), ϕ is a parallel spinor, in case λ is real and
non-zero (R > 0), ϕ is called real Killing spinor, and in case λ is purely imaginary
(R < 0), ϕ is called imaginary Killing spinor.
We consider the following covariant derivative in the bundle E = S ⊕ S

∇E
X :=

(
∇S

X
1
nX ·

−n
2K(X) ∇S

X

)
.

Using the integrability condition (2) of Proposition 2.1 one obtains the following

Proposition 2.3([BFGK91, Th.1.4]). — For any twistor spinor ϕ it holds ∇E
(

ϕ
Dϕ

)
= 0.

Conversely, if
(
ϕ
ψ

)
is ∇E-parallel, then ϕ is a twistor spinor and ψ = Dϕ.

The calculation of the curvature of ∇E and Proposition 2.3 yield

Proposition 2.4. — The dimension of the space of twistor spinors is conformally in-
variant and bounded by

dimkerP ≤ 2[ n
2 ]+1 = 2 · rankS =: dn.
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TWISTOR AND KILLING SPINORS 39

For each simply connected, conformally flat semi-Riemannian spin manifold the di-
mension of the space of twistor spinors equals dn. On the other hand, the maximal
dimension dn can only occur if (M, g) is conformally flat.

Let Mn,k be a conformally flat manifold with the universal covering M̃n,k. The
bundle E is a tractor bundle associated to the conformal structure of (M, g) and ∇E

is the covariant derivative on E defined by the normal conformal Cartan connection.
(For the definition of tractor bundles see for example [CG99]). Using this description
one obtains a development of M̃n,k into a covering Ĉn,k of the (pseudo-) Möbius
sphere. The corresponding holonomy representation

ρ : π1(M) −→ O(k + 1, n− k + 1)

of the fundamental group of M characterizes conformally flat spin manifolds with
twistor spinors.

Proposition 2.5([KR97a], [Lei00b]). — A conformally flat semi-Riemannian manifold
is spin and admits twistor spinors iff the holonomy representation ρ admits a lift

ρ̃ : π1(M) −→ Spin(k + 1, n− k + 1)

and the the representation of π1(M) on the spinor module ∆k+1,n−k+1 has a proper
trivial subrepresentation.

If the scalar curvature R of (Mn,k, g) is constant and non-zero, the integrability
conditions (1) and (2) of Proposition 2.1 show that the spinor fields

ψ± :=
1
2
ϕ±

√
n− 1
nR

Dϕ

are formal eigenspinors of the Dirac operator D to the eigenvalue ± 1
2

√
nR
n−1 .

For an Einstein space (Mn,k, g) with constant scalar curvature R = 0 the spinor
fields ψ± are Killing spinors to the Killing number λ = ∓ 1

2

√
R

n(n−1) . Hence, on
this class of semi-Riemannian manifolds each twistor spinor is the sum of two Killing
spinors.

To each spinor field ϕ we associate a vector field Vϕ (Dirac current) by the formula

g(Vϕ, X) := ik+1〈X · ϕ,ϕ〉 , X ∈ Γ(TM).

Proposition 2.6. — Let ϕ ∈ Γ(S) be a twistor spinor. Then Vϕ is a conformal vector
field with the divergence

div(Vϕ) = −2(−1)[
k
2 ] h(〈Dϕ,ϕ〉) ,

where h(f) denotes the real part of f if the index k of g is odd and the imaginary part
of f , if the index k of g is even.
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40 H. BAUM

From now on we restrict our consideration to the case of Lorentzian manifolds
(Mn,1, g). Then for each spinor field the vector field Vϕ is causal: g(Vϕ, Vϕ) ≤ 0. Let
denote by Zero(ϕ) and Zero(Vϕ) the zero sets of the spinor and the associated vector
field, respectively. In the Lorentzian setting we have the following special feature of
these zero sets

Proposition 2.7([Lei00c]). — For each spinor field ϕ on a Lorentzian manifold the
zero sets Zero(ϕ) and Zero(Vϕ) coincide. If ϕ is a twistor spinor with zero, then Vϕ

is an essential conformal field satisfying ∇Vϕ(p) = 0 for each p ∈ Zero(Vϕ). The zero
set of ϕ is the union of isolated points and isolated lightlike geodesics. Furthermore,
the Weyl tensor vanishes on the zero set of ϕ.

3. Twistor spinors on 4-dimensional spacetimes

Let us first collect some results in the 4-dimensional case.

Proposition 3.1. — Let (M, g) be a 4-dimensional Lorentzian spin manifold and let
ϕ ∈ Γ(S±) be a half spinor. Then Vϕ · ϕ = 0. In particular, the vector field Vϕ is
lightlike. In case ϕ is a twistor spinor we have Vϕ − W = 0.

From the Propositions 2.7 and 3.1 it follows that a 4-dimensional spacetime with
nontrivial twistor spinors is in each point of Petrov type N or 0.
There is a standard model for 4-dimensional spacetimes admitting parallel spinors,
known by physicists for a long time, the so-called pp-manifolds

R
4,1, gf := −2dx1dx2 + f(x2, x3, x4)dx2

2 + dx2
3 + dx2

4,

where f denotes a smooth function.

Proposition 3.2([Ehl62]). — Each 4-dimensional spacetime admitting parallel spinors
is locally isometric to a standard pp-manifold (R4,1, gf ).

Proposition 3.3([Boh98]). — Each 4-dimensional spacetime admitting real Killing spi-
nors has constant positive sectional curvature. If a 4-dimensional spacetime admits 2
linearly independent imaginary Killing spinors, then it has constant negative sectional
curvature.

The following spacetime has exactly 1 imaginary Killing spinor:(
R

4, hf := e2x4(−2dx1dx2 + f(x2, x3)dx2
2 + dx2

3) + dx2
4

)
.

If ∂2f/∂x2
3 = 0, then (R4, hf ) is neither conformally flat nor Einstein.

One kind of spacetimes of Petrov type N are the so-called Fefferman spaces which
are known in CR-geometry. In 1991 J. Lewandowski proved the following

Proposition 3.4([Lew91]). — Let ϕ be a twistor half spinor without zeros on a 4-
dimensional spacetime (M4,1, g).
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TWISTOR AND KILLING SPINORS 41

1. If Vϕ is hypersurface orthogonal, then (M4,1) is locally conformal equivalent to
a pp-manifold.

2. If the rotation rot(Vϕ) of Vϕ is nondegenerate on V ⊥
ϕ /Vϕ, then (M4,1, g) is

locally conformal equivalent to a Fefferman space.

On the other hand, there exist local solutions of the twistor equation on each 4-
dimensional Fefferman space and each pp-manifold.

As in the Riemannian situation there is a twistor space of each 4-dimensional (real)
Lorentzian manifold. The structure of this twistor space was studied for example in
[Nur96], [Nur97], [MS94], [Lei98], [Lei]. In [Lei98] it is shown, that similarly to
the Riemannian situation a twistor spinor on a 4-dimensional spacetime can be con-
sidered as holomorphic section (with respect to an optical structure) in the canonical
line bundle over the twistor space of the spacetime.

4. Lorentzian twistor spinors, CR geometry and Fefferman spaces

In this section we want to explain how the result of Lewandowski can be generalised
to arbitrary even dimensions. Detailed proofs of the statements can be found in
[Bau99a]. First we recall some notions from CR-geometry which are necessary to
define the Fefferman spaces.

LetN2m+1 be a smooth oriented manifold of odd dimension 2m+1. A CR-structure
on N is a pair (H, J), where

1. H ⊂ TM is a real 2m-dimensional subbundle,
2. J : H −→ H is an almost complex structure on H : J2 = −id,

3. If X,Y ∈ Γ(H) , then [JX, Y ] + [X, JY ] ∈ Γ(H) and

NJ(X,Y ) := J([JX, Y ] + [X, JY ])− [JX, JY ] + [X,Y ] ≡ 0
(integrability condition).

Let us fix in addition a contact form θ ∈ Ω1(N) such that θ|H ≡ 0 and let us denote
by T the Reeb vector field of θ which is defined by θ(T ) = 1, T − dθ = 0. In the
following we suppose that the Leviform Lθ : H ×H −→ R

Lθ(X,Y ) := dθ(X, JY )

is positive definite. In this case (N,H, J, θ) is called a strictly pseudoconvex manifold.
The tensor gθ := Lθ + θ ◦ θ defines a Riemannian metric on N . There is a special
metric covariant derivative on a strictly pseudoconvex manifold, the Tanaka-Webster
connection ∇W : Γ(TN) −→ Γ(TN∗ ⊗ TN) given by the conditions

∇W gθ = 0

TorW (X,Y ) = Lθ(JX, Y ) · T

TorW (T,X) = −1
2
([T,X ] + J [T, JX ])
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42 H. BAUM

for X,Y ∈ Γ(H). This connection satisfies ∇WJ = 0 and ∇WT = 0 (see [Tan75],
[Web78]). Let us denote by T10 ⊂ TNC the eigenspace of the complex extension
of J on HC to the eigenvalue i. Then Lθ extends to a hermitian form on T10 by
Lθ(U, V ) := −idθ(U, V ), U, V ∈ T10. For a complex 2-form ω ∈ Λ2NC we denote by
Trθω the θ-trace of ω:

Trθω :=
m∑

α=1

ω(Zα, Zα) ,

where (Z1, . . . , Zm) is an unitary basis of (T10, Lθ). Let RW be the (4,0)-curvature
tensor of the Tanaka-Webster connection ∇W on the complexified tangent bundle of
N

R
W (X,Y, Z, V ) := gθ(([∇W

X ,∇W
Y ] −∇W

[X,Y ])Z, V ).

and let us denote by

RicW := Trace(3,4)θ :=
m∑

α=1

R
W (·, ·, Zα, Zα)

the Tanaka-Webster-Ricci-curvature and byRW := Traceθ RicW the Tanaka-Webster-
scalar curvature. Then RicW is a (1, 1)-form on N with RicW (X,Y ) ∈ iR for real
vectors X,Y ∈ TN and RW is a real function.

Now, let us suppose, that (N2m+1, H, J, θ) is a strictly pseudoconvex spin manifold.
The spin structure of (N, gθ) defines a square root

√
Λm+1,0N of the canonical line

bundle
Λm+1,0N := {ω ∈ Λm+1NC | V − ω = 0 ∀V ∈ T10}.

We denote by (F, π,N) the S1-principal bundle associated to
√

Λm+1,0N .
If one fixes a connection form A on F and the corresponding decomposition of the
tangent bundle TF = ThF⊕TvF = H∗⊕RT ∗⊕TvF into the horizontal and vertical
part, then a Lorentzian metric h is defined by

h := π∗Lθ − icπ∗θ ◦A,

where c is a non-zero real number.
The Fefferman metric arrises from a special choice of A and c done in such a way that
the conformal class [h] of h does not depend on the pseudohermitian form θ. Such a
choice can be made with the connection

Aθ := AW − i

4(m+ 1)
RW · θ,

where AW is the connection form on F defined by the Tanaka-Webster connection
∇W . The curvature form of AW is ΩAW

= − 1
2 RicW . Then

hθ := π∗Lθ − i
8

m+ 2
π∗θ ◦Aθ

is a Lorentzian metric such that the conformal class [hθ] is an invariant of the CR-
structure (N,H, J). The metric hθ is S1-invariant, the fibres of the S1-bundle are
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lightlike. We call (F 2m+2, hθ) with its canonically induced spin structure Fefferman
space of the strictly pseudoconvex spin manifold (N,H, J, θ).
The Fefferman metric was first discovered by C. Fefferman for the case of strictly
pseudoconvex hypersurfaces N ⊂ Cm+1 ([Fef76]), who showed that N × S1 carries a
Lorentzian metric whose conformal class is induced by biholomorphisms.The consid-
erations of Fefferman were extended by Burns, Diederich and Snider ([BDS77]) and
by Lee ([Lee86]) to the case of abstract (not necessarily embedded) CR-manifolds. A
geometric characterisation of Fefferman metrics was given by Sparling (see [Spa85],
[Gra87]).

The spin structure of (N, gθ) induces a spin structure of the vector bundle (H,Lθ).
We denote the corresponding spinor bundle on N by SH . Then we can prove the
following

Proposition 4.1([Bau99a, Prop.22]). — Let (N,H, J, θ) be a strictly pseudoconvex spin
manifold with the Fefferman space (F, hθ) and the spinor bundle SH . Then

1. The 2-form dθ acts by Clifford multiplication as endomorphism on the spinor
bundle SH and has an eigenspace decomposition of the form

SH = S−ni ⊕ S−ni+2i ⊕ S−ni+4i ⊕ · · · ⊕ Sni−2i ⊕ Sni,

where the subbundles Ski are the eigenspaces of dθ to the eigenvalue ki which
have the rang

(
n

(n+k)/2

)
.

2. The lifts of the two line bundles S−ni and Sni over N to the Fefferman space F
are trivial bundles.

3. The spinor bundle SF of the Fefferman space can be identified with two copies
of the lifted bundle SH : SF = π∗SH ⊕ π∗SH .

4. There exist global non-projectable sections ψ± in the trivial line bundles π∗S±ni

such that the spinor fields

φ± = (ψ±, 0)

are twistor spinors on the Fefferman space (F, hθ).

Studying the properties of the spinor fields φ± we obtain the following twistorial
characterisation of Fefferman spaces

Proposition 4.2([Bau99a, Theorems 1 and 2]). — Let (N2m+1, H, J, θ) be a strictly pseu-
doconvex spin manifold and let (F, hθ) be its Fefferman space. Then there exist two
linearly independent twistor spinors ϕ on (F, hθ) with the following properties:

1. Vϕ is a regular, lightlike Killing field.
2. Vϕ · ϕ = 0.
3. ∇S

Vϕ
ϕ = i c ϕ, where c ∈ R \ {0}.

Conversely, let (B2m+2, h) be a Lorentzian spin manifold which admits a nontrivial
twistor spinor satisfying the conditions 1., 2. and 3., then there exists a strictly
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pseudoconvex spin manifold (N2m+1, H, J, θ) such that (B, h) is locally isometric to
the Fefferman space (F, hθ) of (N,H, J, θ).

The proof of Proposition 4.2 is based on the following characterisation of Fefferman
spaces given by Sparling and Graham ([Spa85], [Gra87]):
Let (Bn, h) be a Lorentzian manifold and let us denote by R the scalar curvature, by
Ric the Ricci-curvature, by W the (4,0)-Weyl tensor, by K the Rho tensor

K :=
1

n− 2

{
1

2(n− 1)
R · h− Ric

}
,

and by C the (3,0)-Cotton-York-tensor

C(X,Y, Z) := h
(
X, (∇YK)(Z)− (∇ZK)(Y )

)
of (B, h). If V is a regular lightlike Killing field on (B, h) such that

– V − W = 0 ,
– V − C = 0 and
– K(V, V ) = const < 0 ,

then there exists a strictly pseudoconvex manifold (N,H, J, θ) such that (B, h) is
locally isometric to the Fefferman space (F, hθ) of (N,H, J, θ).
The integrability conditions (2), (3), and (4) of Proposition 2.1 imply that for each
twistor spinor ϕ the equation Vϕ − C = 0 holds. Using in addition the assumptions
of Proposition 4.2 we obtain Vϕ − W = 0 and K(Vϕ, Vϕ) = −c2 < 0 .

5. Lorentzian manifolds with parallel spinors

From Riemannian geometry it is known that the existence of Killing spinors on
a Riemannian manifold M is strongly related to the existence of parallel spinors
on a certain Riemannian manifold M̂ associated to M (see [Bär93], [Bau89]). In
[BK99] we studied the relation between parallel spinors and the holonomy of pseudo-
Riemannian manifolds. Generalising a result of McK. Wang ([Wan89]) we showed

Proposition 5.1. — Let (M, g) be a simply connected, non locally symmetric, irredu-
cible semi-Riemannian spin manifold of dimension n = p+q and signature (p, q). Let
N denote the dimension of the space of parallel spinor fields on M . Then N > 0 if
and only if the holonomy representation H of (M.g) is (up to conjugacy in the full
orthogonal group) on of the groups listed in Table 1.

This list shows that there is no irreducible Lorentzian manifold with parallel
spinors. A special class of non-irreducible Lorentzian manifold with parallel spinors
is the following generalisation of pp-manifolds. Let (F, h) be a Riemannian manifold
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H p q N

SU(r, s) ⊂ SO(2r, 2s) 2r 2s 2

Sp(r, s) ⊂ SO(4r, 4s) 4r 4s r + s + 1

G2 ⊂ SO(7) 0 7 1

G∗
2(2) ⊂ SO(4, 3) 4 3 1

GC2 ⊂ SO(7, 7) 7 7 2

Spin(7) ⊂ SO(8) 0 8 1

Spin+(4, 3) ⊂ SO(4, 4) 4 4 1

Spin(7)C ⊂ SO(8, 8) 8 8 1

Table 1

with holonomy in SU(m) (Ricci flat Kähler), Sp(m) (hyperKähler), G2 or Spin(7)
and let f : R × F :−→ R be a smooth function. Then the Lorentzian manifold

M := R
2 × F , g(t,s,x) := −2dtds+ f(s, x)ds2 + hx

has parallel spinors. (M,h) is Ricci-flat iff the functions f(s, ·) : F −→ R are harmonic
for all s ∈ R.
Low dimensional Lorentzian manifolds with parallel spinors and their holonomy were
studied in [FO99a], [FO99b], [Bry99] and [Bry00]. R. Bryant obtained the local
normal form of all 11-dimensional Lorentzian manifolds with parallel lightlike spinors
and maximal holonomy (now called Bryant-metrics). In [Lei00a] indecomposable,
reducible Lorentzian manifolds with a special kind of holonomy and parallel spinors
are discussed.
It is known that an even-dimensional Riemannian manifold admits pure parallel
spinors iff it is Ricci-flat and Kähler. In [Kata] this fact is generalised to the pseudo-
Riemannian situation. The existence of a pure parallel spinor on a pseudo-Riemannian
manifold can be characterised by curvature properties of the associated optical struc-
ture.
Each homogeneous Riemannian manifold with parallel spinors is flat. The situation
changes in the pseudo-Riemannian situation. In [Bau99b] we describe all twistor
spinors on the Lorentzian symmetric spaces explicitly. In particular, we prove that
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each non conformally-flat simply connected Lorentzian symmetric space admits par-
allel spinors. These Lorentzian symmetric spaces have solvable transvection group
and are special pp-manifolds.

6. Lorentzian Einstein-Sasaki structures and imaginary Killing spinors

It is easy to check that a Lorentzian manifold (M, g) has imaginary Killing spinors
to the Killing number iλ iff the cone over M with timelike cone axis

C−
2λ(M) := (M × R , gC := (2λt)2g − dt2)

has parallel spinors. We describe here the case of irreducible cone C−(M). Pro-
position 5.1 shows that the only irreducible restricted holonomy representation of a
non locally-symmetric pseudo-Riemannian manifold of index 2 with parallel spinors
is SU(1,m). This leads to Lorentzian Einstein-Sasaki structures on M .
A Lorentzian Sasaki manifold is a tripel (M, g, ξ), where

1. g is a Lorentzian metric.
2. ξ is a timelike Killing vector field with g(ξ, ξ) = −1.
3. J := −∇ξ : TM −→ TM satisfies

J2(X) = −X − g(X, ξ)ξ and (∇XJ)(Y ) = −g(X,Y )ξ + g(Y, ξ)X

Lorentzian Sasaki structures are related to Kähler structures by the following

Proposition 6.1

1. (M2m+1, g) has a Lorentzian Sasaki structure iff the cone C−
1 (M) has a (pseudo-

Riemannian) Kähler structure.
2. (M2m+1, g) is a Einstein space of negative scalar curvature R = −2m(2m+ 1)
iff the cone C−

1 (M) is Ricci-flat.

This Proposition shows that the cone C−
1 (M) has holonomy in SU(1,m) if and

only if (M2m+1, g) is a Lorentzian Einstein-Sasaki manifold. Then we can prove a
twistorial characterisation of the Lorentzian Einstein-Sasaki geometry, similar to that
of Fefferman spaces in Proposition 4.2.

Proposition 6.2. — Let (M2m+1, g, ξ) be a simply connected Lorentzian Einstein-Sasa-
ki manifold. Then (M, g) is a spin manifold and there exists a twistor spinor ϕ ∈ Γ(S)
such that

1. Vϕ is a timelike Killing vector field with g(Vϕ, Vϕ) = −1.
2. Vϕ · ϕ = −ϕ.
3. ∇S

Vϕ
ϕ = − 1

2 i ϕ.

In particular, ϕ is an imaginary Killing spinor and Vϕ = ξ. Conversely, let (M2m+1, g)
be a Lorentzian spin manifold with a twistor spinor satisfying 1., 2. and 3., then
(M, g, ξ = Vϕ) is a Lorentzian Einstein-Sasaki manifold.

SÉMINAIRES & CONGRÈS 4
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If we proceed in the same way as above in the case of strictly pseudoconvex spin
manifolds but starting with Kähler manifolds we end up with Lorentzian Einstein-
Sasaki manifolds admitting imaginary Killing spinors:
Let (X2m, h, J) be a Kähler-Einstein spin manifold of negative scalar curvature RX <

0. Let us denote by (M,π,X) the S1-principal bundle associated to the square root
of the canonical line bundle K := Λm,0X defined by the spin structure of (X,h) and
let A be the connection form on M defined by the Levi-Civita connection of (X,h).
We consider the Lorentzian metric

g := π∗h− 16m
RX(m+ 1)

A ◦A.

The manifold (M, g) is a Lorentzian Einstein-Sasaki spin manifold. The spinor bundle
SX of (X,h, J) decomposes into the eigenspaces Ski of the Kähler form ω to the
eigenvalues ki:

SX = S−im ⊕ S−im+2i ⊕ S−mi+4i ⊕ · · · ⊕ Smi−2i ⊕ Smi.

The spinor bundle SM of (M, g) is isomorphic to the lift π∗SX . There exist global
sections ψε in the line bundles π∗Sεmi ⊂ SM which are imaginary Killing spinors to
the Killing number λε := (−1)mεm+1

√
−RX

16m(m+1) i , ε = ±1.

The above described construction is a special case of an investigation of I.Kath in the
general pseudo-Riemannian situation (see [Kata]), which extends the results of Ch.
Bär ([Bär93]) concerning the Riemannian case. If M is a simply connected pseudo-
Riemannian manifold such that the holonomy group of the cone of M is contained
in one of the groups H listed in Table 1 or in some of the other non-compact real
forms corresponding to these groups, then M admits Killing spinors and the special
geometry of the cone, defined by the holonomy, defines a special geometry on M .

Finally, let us give an example of a Lorentzianmanifold with imaginary Killing spinors,
which is non-Einstein: Let (F, h) be a Riemannian manifold with holonomy in SU(m),
Sp(m), G2 or Spin(7) and let f : F ×R −→ R be a smooth function. We consider the
manifold M = R3 × F with the metric

gu,s,t,x = e2u(−2dsdt+ f(s, x)ds2 + hx) + du2.

Then (M, g) is a Lorentzian manifold with imaginary Killing spinors which is Einstein
if and only if the functions f(s, ·) : F → R are harmonic for all s.

7. Lorentzian manifolds with real Killing spinors

Lorentzian manifolds with real Killing spinors were studied by Ch. Bohle in [Boh].
Similarly to the case of imaginary Killing spinors Lorentzian manifolds with real
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Killing spinors can be obtained by warped product constructions out of Riemannian
ones: It is easy to check that the warped product

F ×σ I := (F × I, g = σ2h+ εdt2)

has real Killing spinors to the Killing number λ iff (up to coordinate transformations)
one of the cases of the following Table 2 occur.

case (F, h) I σ ε

1 Riemannian manifold with real Killing spinor to

the Killing number λ

R cosh 2λt 1

2 Riemannian manifold with parallel spinor R e2λt 1

3 Riemannian manifold with imaginary Killing

spinor to the Killing number iλ

(0,∞) sinh 2λt 1

4 Lorentzian manifold with real Killing spinor to the

Killing number λ

(−π

4λ
,

π

4λ

)
cosλt −1

Table 2

On the other hand, each Lorentzian manifold with real Killing spinors has locally
such a warped product structure.
Let us denote by u := 〈ϕ,ϕ〉 ∈ C∞(M) the length function of a spinor field ϕ and by
Qϕ the function

Qϕ = u2 + g(Vϕ, Vϕ).

Now, let ϕ be a real Killing spinor. Then Vϕ is a closed conformal vector field
and grad(u) = −2λVϕ = 0. Hence, the level sets of u define a foliation of M into
submanifolds of codimension 1. Furthermore, the function Qϕ is constant on M .
Since g(Vϕ, Vϕ) ≤ 0 we have Qϕ ≤ u2. All level sets with u2 > Qϕ are timelike
submanifolds, those with u2 = Qϕ are degenerate. Let p ∈ M be a point where Vϕ(p)
is timelike, then around the point p the manifold (M, g) is locally isometric to the
following warped product

• Qϕ < 0: case 1 of Table 2
• Qϕ = 0: case 2 of Table 2
• Qϕ > 0: case 3 of Table 2

In particular, (M, g) is an Einstein manifold.
For a complete Lorentzian manifold one can prove, that the length function u : M →
R is surjective. Hence, on a complete Lorentzian manifold the first integral Qϕ is
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nonpositive. Using the results about parallel and Killing spinors in the Riemannian
situation ([BFGK91], [Bär93], [Wan89], we obtain the following Splitting Theorem
for complete Lorentzian manifolds in the presence of Killing spinors

Proposition 7.1. — Let (Mn, g) be a complete, connected Lorentzian manifold carrying
a real Killing spinor ϕ to the Killing number λ.

1. Qϕ < 0. Then (M, g) is of constant sectional curvature or is (up to a rescaling
of the metric) globally isometric to the warped product

(F × R, (cosh t)2 h− dt2),

where (F, h) is a complete Riemannian manifold which is covered by a simply
connected Einstein-Sasaki manifold (n = 2k), 3-Sasaki manifold (n = 4k),
nearly Kähler, non-Kähler manifold (n = 7) or a manifold admitting a nearly
parallel G2-structure (n = 8).

2. Qϕ = 0. Then {u = 0} is a degenerate hypersurface. (M, g) is of constant
sectional curvature or M \ {u = 0} is globally isometric to the disjoint union of
warped products

(F1 × R, e2λth1 − dt2) ∪ (F2 × R, e2λth2 − dt2),

where (F1, h1) and (F2, h2) are complete Riemannian manifolds which are covered
by products of simply connected manifolds with holonomy SU(m), Sp(m), G2,
Spin(7) or {1}.

We conjecture that the first integral Qϕ = 0 can only occur on manifolds with
constant sectional curvature. For example, each spinor field ϕ on the 3-dimensional
spaceform S3,1 of sectional curvature 1 has the first integral Qϕ = 0.
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