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ON THE KATO INEQUALITY
IN RIEMANNIAN GEOMETRY

by

David M. J. Calderbank, Paul Gauduchon & Marc Herzlich

Abstract. — We describe recent works of the authors as well as of T. Branson on
refined Kato inequalities for sections of vector bundles living in the kernel of natural
first-order elliptic operators

Résumé (Sur l’inégalité de Kato en géométrie riemannienne). — Nous faisons le point
sur des travaux récents, dus aux auteurs et aussi à T. Branson, sur des raffinements
de l’inégalité de Kato, valables pour des sections d’un fibré vectoriel annulées par un
opérateur différentiel naturel et elliptique du premier ordre.

1. Introduction

The Kato inequality is a classical tool in Riemannian geometry. It stands as a
useful way to relate vector-valued problems on vector bundles to scalar valued ones
involving only functions. It says that for a smooth section ξ of a Riemannian vector
bundle E equipped with a compatible connection ∇,∣∣d|ξ|∣∣ ≤ |∇ξ|

outside the zero-set of ξ. This is an easy consequence of the Schwarz inequality.
More surprisingly, some authors noticed that refined Kato inequalities, of the type∣∣d|ξ|∣∣ ≤ k |∇ξ| with k < 1 ,

were true for ξ in the kernel of an elliptic first-order differential operator acting on
sections of E. This remark was a crucial step in a number of problems involving
either decay estimates at infinity of the norm of sections satisfying an elliptic equa-
tion (curvature of Einstein metrics on asymptotically flat manifolds, second form of
minimal hypersurfaces in spaceforms, Yang-Mills fields on the flat four-space, etc...)
or fine-tuned spectral problems.
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The constants k that were found depended strongly on the elliptic operators in-
volved and it was observed that there should exist a systematic way to detect and
compute them and that there should be a strong link between their values and
representation-theoretic data of the given bundle.

At the time of the meeting in Marseille, we had devised a method leading to
computations of optimal refined Kato inequalities in a few cases including all possible
situations in dimensions 3 and 4 and a talk on that subject was delivered by the third
author. The method was extended shortly after to a systematic one that computes
almost all the possible constants and a large number of explicit values were then given
[6]. During the same period, T. Branson independently found a different method to
compute all of them [5], based on his earlier works on the spectrum of elliptic second-
order differential operators on the round sphere [4]. We intend here to report on these
two methods, and try to highlight their differences and their relationships. We shall
also give a few examples of old and new uses of refined Kato inequalities.
We have tried to make this survey accessible for a reader not acquainted with

slightly specialized tools of representation theory (all of which may however be found
in the textbook [8]). This led us to be somehow imprecise or unspecific at some
places in the main body of this text. We thought however that this could be useful
for those that were interested rather in the results or the applications of refined Kato
inequalities in global analysis on manifolds rather than in the precise course of the
proofs. Appendices have been added at the end, containing more elaborate details
and precise computations. We then hope that this text may serve as a reading guide
before entering the two more technical papers [5] and [6].

Acknowledgements. — We thank Jacques Lafontaine for his useful remarks on a draft
version of this paper.

2. Basics: the classical Kato inequality

We consider from now on an oriented Riemannian manifold M endowed with a
vector bundle E induced from a representation of the special orthogonal group SO(n)
or the spin group Spin(n) (in which case M will be supposed to be spin). If ∇ is any
metric connection on E and ξ is any section of E, then

2
∣∣d|ξ|∣∣ |ξ| = ∣∣d (|ξ|2)∣∣ = 2

∣∣〈∇ξ, ξ〉∣∣ ≤ 2 |∇ξ| |ξ|

(with the metric on T ∗M ⊗E given by the tensor product metric). Hence we get the
classical Kato inequality

(1)
∣∣d|ξ|∣∣ ≤ |∇ξ|
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outside the zero set of ξ. Moreover the equality case is achieved at a point if and only
if there is a 1-form α such that

∇ξ = α⊗ ξ.

Following J. P. Bourguignon [3], we now consider a section ξ lying in the kernel of
a natural first-order operator P on E. Any such operator is the composition of the
covariant derivative followed by projection Π on one (or more) irreducible components
of the bundle T ∗M ⊗ E, and its symbol reads: σ(P ) = σ(Π ◦ ∇) = Π. Now assume
(1) is optimal at some point. The discussion above shows that ∇ξ = α ⊗ ξ at that
point. But

0 = Pξ = Π ◦ ∇ ξ = Π(α ⊗ ξ).

Thus, optimality is possible if and only if P is not an elliptic operator. Conversely,
one might guess that any elliptic operator P gives rise, for any section ξ in its kernel,
to a refined Kato inequality

(2) |dξ| ≤ kP |∇ξ|

with a constant kP depending only on the operator P involved.

3. Background: conformal weights

We consider an irreducible natural vector bundle E over a Riemannian manifold
(M, g) of dimension n, with scalar product 〈·, ·〉 and a metric (not necessarily Levi-
Civita) connection ∇. By assumption, E is associated to an irreducible representation
λ of the group SO(n) (resp. Spin(n) if necessary). The tensor product of λ with
the standard representation τ splits in irreducible components as τ ⊗ λ = ⊕N

j=1µj .
Equivalently, and to set notations, we write

T ∗M ⊗ E = ⊕N
j=1Fj .

Projection on the j-th summand will be denoted by Πj . Apart from the exceptional
case where T ∗M ⊗E contains two irreducible components for SO(n) whose sum is an
irreducible representation for O(n), each Fj is an eigenspace for the endomorphism
B of T ∗M ⊗ E defined as

B(α ⊗ v) =
n∑

i=1

ei ⊗ (ei ∧ α) · v

where the dot means the action of so(n) on the representation space E. The en-
domorphism B plays an important role in conformal geometry [9]. Its eigenvalues
are called the conformal weights, denoted wj , and can be easily computed from
representation-theoretic data : the Casimir numbers [8] of representations λ, τ and
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µj (normalized as to ensure C(so(n), τ) = n − 1, see Appendix A for more on this
point). More precisely:

wj =
1
2
(C(so(n), µj)− C(so(n), λ) − C(so(n), τ)) .

We shall adopt here the convention not to split irreducible representations of O(n)
inside τ⊗λ into irreducibles for SO(n). This ensures the conformal weights are always
distinct, henceforth Fj will always denote the eigenspace associated to wj , and it
corresponds to an irreducible summand of τ ⊗λ except in the exceptional case quoted
above where it is a sum of two irreducibles. Moreover, irreducible components will
be ordered from 1 to N (the number of distinct eigenspaces) in (strictly) decreasing
order of conformal weights (see Appendix A for more details on the representation
theory involved).
Since they are easily computable, all the results that follow will be given in terms

of the conformal weights, or more precisely in terms of the modified conformal weights
w̃j = wj + (n− 1)/2, eigenvalues of the translated operator B̃ = B + (n− 1)/2 id.
Natural first order differential are indexed by subsets I of {1, . . . , N}. They all are

of the following form:

PI =
∑
i∈I

aiΠi ◦ ∇ ;

any such operator is said to be (injectively, or overdetermined) elliptic if its symbol
ΠI =

∑
i∈I aiΠi does not vanish on any decomposable element α⊗v of T ∗M⊗E. The

coefficients ai can all be set to 1 without harm as lying in the kernel of the operator
is equivalent to lying in the intersection of the kernels of all the elementary operators
Pi = Πi ◦∇ for i in I and being elliptic is equivalent to the fact that no decomposed
tensor product lives in the intersection of the kernels of the Πi.
Elliptic operators in this precise sense have been completely classified by T. Branson

in [4]. Since any set J containing a subset I such that PI is elliptic gives rise to an
operator PJ which is also elliptic, it suffices to describe the set of minimal elliptic
operators, i.e. the set of operators PI such that PJ is not elliptic for any proper subset
J of I. T. Branson’s result provides an explicit description of this set (see Appendix B
for more details). For example, the highest weight operator P{1} is always minimal
elliptic. Moreover and quite surprisingly, sets of indices corresponding to minimal
elliptic operators are always small: in fact they contain at most one or two elements.
Our guiding philosophy will now be to prove refined Kato inequalities for sections

lying in the kernels of natural first-order elliptic operators on E, with the constants
given in terms of the (modified) conformal weights. It is an intersting feature of the
problem to note that two genuinely different methods lead to the results. Both end
up with semi-explicit expressions of the constants, which can be obtained by solving
a minimization problem over a finite set of real numbers. The results can then be
made completely explicit in a large number of cases.
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ON THE KATO INEQUALITY IN RIEMANNIAN GEOMETRY 99

The first method, devised by the authors, can be considered as the local method.
It relies on elaborate algebraic considerations on the conformal weights together with
a “linear programming” problem. It is sharp and also provides an explicit description
of the sections satisfying equality in the refined Kato inequality at each point. It has
the unfortunate feature of being non-sharp for some small (precisely known) set of
operators, hopefully seldom encountered in practice.
The second one, or the global method, is due to T. Branson. It gives a refined Kato

inequality in every case, sharpness is also clear but the equality cases’ description is
less precise. The proofs rely on the spectral computations on the round sphere done in
[4] using powerful techniques of harmonic analysis, together with a clever elementary
lemma that relates the knowledge of the spectrum of an operator to information on
its symbol.

4. Kato constants: linear programming method of computation

The local method finds its roots in the proof of the classical Kato inequality: it
aims at obtaining a refined Schwarz inequality for∣∣〈∇ξ, ξ〉∣∣
when ξ is a section lying in the kernel of an elliptic first-order operator PI .

4.1. Ansatz. — Consider Φ an element of kerΠI at some point (as is ∇ξ at each
point) and v an element of E at the same point (as is ξ). We let I a subset of
{1, . . . , N}, denote by Î its complement in {1, . . . , N} and compute

sup
|v|=1

∣∣〈Φ, v〉∣∣ ≤ sup
|α|=|v|=1

∣∣〈Φ, α⊗ v〉
∣∣ = sup

|α|=|v|=1

∣∣〈Φ,ΠÎ(α⊗ v)〉
∣∣

≤
(

sup
|α|=|v|=1

|ΠÎ(α⊗ v)|
)

|Φ|.
(3)

This gives a refined Kato inequality with kI = sup|α|=|v|=1 |ΠÎ(α ⊗ v)|. Moreover,
equality holds in it if and only if it holds in the refined Schwarz inequality with v = ξ
and Φ = ∇ξ. Hence it is algebraically sharp since the supremum is always attained
by compactness. If equality holds, then ∇ξ = ΠÎ(α ⊗ ξ) for some α ⊗ ξ such that
|ΠÎ(α ⊗ ξ)| is maximal among all |ΠÎ(α ⊗ v)| with |α| = |v| = 1. Moreover such
a situation can easily be achieved in the flat case with a suitable affine solution of
PIξ = 0.

4.2. Resolution of the problem. — We now follow the standard method of Lag-
range interpolation. Each projection Πj can be written as

Πj =
∏
k �=j

B̃ − w̃k id
w̃j − w̃k

=

∑N
k=0 w̃

N−1−k
j

(∑k
�=0(−1)�σ�(w)B̃k−�

)
∏

k �=j(w̃j − w̃k)
,
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where σi(w) denotes the i-th elementary symmetric function of the modified weights
(as it will appear below, it is much easier to work with the modified rather than the
original weights). Defining Ãk as the operators

Ãk =
k∑

�=0

(−1)�σ�(w)B̃k−�,

we end up with

|Πj(α ⊗ v)|2 =
∣∣〈Πj(α⊗ v), α ⊗ v〉

∣∣ = ∑N
k=0 w̃

N−1−k
j 〈Ãk(α⊗ v), α⊗ v〉∏

k �=j(w̃j − w̃k)
.

This formula for the N quantities |Πj(α ⊗ v)|2 in terms of the other N quantities
Qk = 〈Ãk(α⊗v), α⊗v〉 is the heart of our method. But the crucial step comes from a
careful and quite technical analysis of the modified conformal weights. As is shown in
[6], they are intimately related with important representation-theoretic data of the Lie
algebra so(n) called higher order casimir operators. These are elements of the centre
of the universal enveloping algebra U(so(n)), which thus act on every irreducible
representation of SO(n) homothetically. These operators (or more precisely the value
of the ratio of the homothety on each representation λ) can be explicitely computed
from the knowledge of the operator B̃ associated to λ (this provides an alternative
proof of old results due to Perelomov and Popov [13]). This leads in turn to a precise
expression for the traces of the operators B̃k, hence for those of Ãk.
A result due to T. Diemer and G. Weingart (private communication) proves that

each family of polynomials in B̃ satisfying some special recurrence formula involving
their traces has nice symmetry properties. The preceding computations show that a
simple function of the Ãk satisfies the recurrence formula. The output of this technical
analysis is:

Lemma 1. — If N is odd, then Q2j+1 = 0 for every j. If N is even, then 2Q2j+1 +
Q2j = 0 for every j ≥ 1.

This enables us to eliminate approximately half of the Qk’s in the expressions
of |Πj(α ⊗ v)|2 given above. This Lemma stands as the main reason for using the
modified weights rather than the original weights (see Appendix C for more details).

Each quantity |Πj(α ⊗ v)|2 is then given as an affine function in the remaining
variables Qk = 〈Ãk(α⊗ v), α⊗ v〉. To avoid confusion, we now denote by pj(Q) this
affine function of the Qk’s it defines. Following the Ansatz above, our main goal is
now to find a supremum of the affine function∑

i∈Î

pi = 1−
∑
i∈I

pi
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over some subset of the points Q = (Qk) : precisely those such that there exists unit
α and v such that Qk = 〈Ãk(α ⊗ v), α ⊗ v〉 for each k (we shall call these points
admissible points).
Fortunately, this subset turns out to be contained in a compact convex polyhedron

in the Q-space: this comes from noticing that each norm |Πi(α ⊗ v)|2 = pi(Q) is
non-negative (and also no larger than 1, but this is a redundant information) if Q is
an admissible point.
Consider then an elliptic operator PI . We will now estimate the supremum of the

affine function ∑
i∈Î

pi = 1−
∑
i∈I

pi

over the polyhedron. Its extremal values are then achieved when the family of affine
hyperplanes it is associated with in the space of the variables (Qk) touches for the first
or last time the convex polyhedron. Hence, they are surely achieved at some vertex
of the polyhedron and we are now reduced to maximize the affine function over the
vertices of the polyhedron.
The next step relies on the fact that the vertices of the polyhedron are easy to

describe: they are points where a maximal number of functions pj = |Πj(α ⊗ v)|2
vanish. Among them are certainly the following admissible points: if J is the index
set of a non-elliptic operator of maximal length (i.e. involving a maximal number of
projections), there is α and v such that Πj(α⊗v) = 0 for each j in J . In other words,
the point q which is uniquely determined by the equations

pj(q) = 0, ∀j ∈ J, with PJ maximal non-elliptic,

is both an admissible point and a vertex. Non-elliptic operators of maximal length are
easy to determine from T. Branson’s work [4] (a complete list of these is given in [6]),
and it turns out that, in almost all cases, one can show that these form exactly the
set of vertices. In all these cases the sought supremum on the polyhedron is attained
at some vertex and since each of these is admissible, there exists a decomposed tensor
α⊗ v such that ΠJ(α⊗ v) = 0 (the set J corresponding to the vertex is non-elliptic).
As a result the estimate is sharp and equality case is achieved if and only if ∇ξ = α⊗ξ
with ΠI∪J (α⊗ ξ) = 0. However, here comes the main problem of our method: there
are some special, seldom encountered, circumstances where the vertices do contain
a few points corresponding to elliptic operators. In this case, if the supremum is
achieved at such a “bad point” (corresponding to index set J), it will not be sharp
since there does not exist any decomposed tensor such that ΠJ(α ⊗ v) = 0 and the
infimum of

∑
I pi on the polyhedron is smaller than the infimum of |ΠI(α ⊗ v)|2 on

all unit α and v.
The explicit values of the norms |Πi(α ⊗ v)|2 at each vertex turn out to be easily

expressible and we are now in a position to state our main formula. We denote by
NE the set of (sets of indices corresponding to) vertices (a complete list of these is
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given in [6], see also Appendix B) and we let, for J a subset of {1, . . . , N} and i an
element of {1, . . . , N}, εi(J) be 0 if i belongs to J and 1 if not. Then we can state :

Theorem 1. — Let I a subset of {1, . . . , N} corresponding to an elliptic operator PI

acting on E. Then a refined Kato inequality
∣∣d|ξ|∣∣ ≤ kI |∇ξ| holds for any section ξ

in the kernel of PI , outside the zero set of ξ.
If N is odd, then

(4) k2I = 1 − inf
J∈NE

(∑
i∈I

∏
j∈J\{i}(w̃i + w̃j)∏
j∈Ĵ\{i}(w̃i − w̃j)

εi(J)

)
.

These results are sharp except if n is odd where some “bad cases” may appear.
If N is even, then

(5) k2I = 1 − inf
J∈NE

(∑
i∈I

(
w̃i −

1
2

) ∏
j∈J\{i}(w̃i + w̃j)∏
j∈Ĵ\{i}(w̃i − w̃j)

εi(J)

)
.

This result is always sharp.

For sake of simplicity, we have not reproduced here the precise characterization
of the “bad set” of operators. Moreover, this theorem is a slightly simplified and
weakened version of the main result of [6], since, in the a priori non-sharp cases singled
out above, there are still a lot of operators where one can show that the infimum is
not achieved at a “bad vertex”. Hence our approach leads to sharp estimates. The
interested reader should find in Appendix A and B or in [6] all the details needed to
understand the “bad set” of operators.
There are a lot of cases where the constant kI can be more explicitely derived. The

idea is always to guess which is the vertex of the polyhedron where the minimum of the
function

∑
I pi is achieved. Such a work can be done without too much effort for a set

of indices I (or, equivalently, operators) containing, among others, the highest weight
set {1}, its complement, and all minimal elliptic operators (except one in the “bad”
case). It should be noticed that both the method and the results are straightforward
and simple-minded if the numberN of components of T ∗M⊗E is small, e.g. if N ≤ 4,
which is the general case in applications.
We shall give here the values of the constants for the highest weight (or twistor)

elliptic operator P1 and we refer to [6] or [5] for more complete expressions. In each
case, the value is optimal and the pointwise equality case may be studied precisely,
following the guiding philosophy given in the Ansatz 4.1.

Theorem 2. — Let ρ = E(N/2). If N is odd, then

(6) k2{1} = 1−
∏N

k=ρ+2(w̃1 + w̃k)∏ρ+1
k=2(w̃1 − w̃k)

.
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If N is even, then

(7) k2{1} = 1− (w̃1 −
1
2
)

∏N
k=ρ+2(w̃1 + w̃k)∏ρ+1

k=2(w̃1 − w̃k)
.

5. Kato constants: spectral method

The method devised by T. Branson relies on his explicit description of the spectrum
of operators of type P ∗

I PI on the standard sphere Sn, obtained by harmonic analysis
techniques [4]. The link with refined Kato inequalities is provided by the following
Lemma, which turns global estimates (on the spectrum of an elliptic second order
operator) into pointwise infinitesimal ones (on the symbol of the operator).

Lemma 2([5]). — Suppose D is a (self-adjoint) second-order differential operator on
E. If there is a constant η and a positive real number ε such that, for any smooth
compactly supported section ϕ,

(8) 〈Dϕ,ϕ〉L2 ≥ ε 〈∇∗∇ϕ,ϕ〉L2 − η 〈ϕ,ϕ〉L2 ,

then the symbol σα(D)− ε|α|2 id is a nonnegative symmetric endomorphism of E for
any 1-form α.

Proof. — Let ϕ, ψ be smooth functions onM . Then apply the estimate (8) above to
h = eitϕψ, divide by t2 and let t go to infinity. We get

〈σdϕ(D)ψ, ψ〉L2 ≥ ε |dϕ|2 〈ψ, ψ〉L2 .

Taking ψ as a member of a family of cut-off functions whose supports converge to a
single point gives the pointwise estimate on the symbol.

If we could apply the lemma to D = P ∗
I PI (keeping the same notations as in the

previous sections), we would get that the symbol

σα(P ∗
I PI)− ε|α|2 id

is a nonnegative map of E. Hence for any section ξ, and any 1-form α,

0 ≤ 〈σα(P ∗
I PI)ξ, ξ〉 − ε |α|2 |ξ|2

= |ΠI(α⊗ ξ)|2 − ε |α|2 |ξ|2 .
This can of course be rewritten as

(9) |ΠÎ(α⊗ ξ)|2 ≤ (1− ε) |α|2 |ξ|2

and we recognise here the desired inequality of Ansatz 4.1.
This reduces the problem of finding refined Kato inequalities to the problem of

comparing spectra of second order differential operators to that of the rough Laplacian
of E. This can be done on the sphere Sn = SO(n + 1)/ SO(n), where all operators
involved may be described completely algebraically. In [4], T. Branson computed
the spectrum and eigenspaces of any operator of type P ∗

i Pi (i in {1, . . . , N}) on the
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sphere: if λ is the representation attached to E, all of them are diagonalized by the
decomposition of the space of L2-sections into the Hilbert sum of

V(χ, λ) = χ⊗Homso(n)(χ, λ).

where χ runs over all representations for so(n+1) such that λ appears in the decom-
position of χ into so(n)-irreducible components. The values of the eigenvalues are
given fairly explicitely in terms of the weights λ and χ and the modified conformal
weights but the work requires extensive use of powerful techniques of harmonic ana-
lysis (see Appendix D for details and the exact values of the eigenvalues).
It is then possible to find spectral estimates of the type (8) for the pair of operators

P ∗
I PI and ∇∗∇ (note that the constant η appears there to take into account the fact
that non-parallel sections may exist in the kernel of PI). One obtains this way the
constants appearing in the refined Kato inequalities in a semi-explicit form as the
solution of a minimizing problem. Whereas the local method leads to minimization
over a set of vertices, i.e. is based on the selection rule that gives the irreducible
components of the tensor τ ⊗ λ, T. Branson’s methods leads to a minimizing process
based on the branching rule, i.e. the rule that gives the components of the repres-
entation λ seen as a module for the smaller Lie algebra so(n− 1) (further details and
explicit formulas are given in Appendix D).
This should not come as a surprise: to increase intuition on this phenomenon, let us

recall that ellipticity of an operator PI can be reinterpreted in terms of representations
of so(n− 1). Indeed, by naturality (equivariance under the group SO(n) or Spin(n))
and the transitive action of SO(n) on the round sphere in R

n, the symbol ΠI of PI

never vanishes on the decomposed tensors α⊗v if and only if the SO(n−1)-equivariant
homomorphism form V to R

n⊗V defined by v �−→ ΠI(e⊗v) (where e is an arbitrary
unit vector in R

n) is an injective map. Hence, SO(n − 1)-representations naturally
enter investigations of ellipticity of natural first-order operators and related questions.
Although appearing in a different form, the constants that arise this way are the

same as the ones found by the direct method. This is likely to confirm the intuition
gained in the previous sections that the inequalities find their equality cases in the
flat (or in the conformally equivalent round sphere) case. As the local method, the
global one is sharp. This relies on the following remarkable fact: if k′ = 1 − ε′ –in
the notation of (9)– was a better Kato constant than k = 1 − ε found by the above
procedure, formula (9) would imply that the operator P ∗

I PI − ε+ε′

2 ∇∗∇ is elliptic
with positive definite symbol. It should thus have only a finite number of negative
eigenvalues. But the explicit computations of [4] show that this is not the case on the
round sphere Sn as soon as ε < ε′.
Once again the semi-explicit expressions can be made fully explicit in a number of

cases (it does not come as a surprise to notice that these are more or less the same as
the ones that could be handled completely by the local method). As above we shall
give one explicit value, this time for the Rarita-Schwinger operator in odd dimensions

SÉMINAIRES & CONGRÈS 4
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[12] (if n = 3 this is an example of an operator to which the local method does not
apply, the local method however works for every other odd dimension but needs an ad
hoc substitute for dimension 3) and we refer to [5] or [6] for all other explicit values
and computations.

Theorem 3. — Let E be the twistor bundle of an odd-dimensional spin manifold Mn.
Then, for any section ψ of E in the kernel of the Rarita-Schwinger operator, we have
the refined Kato inequality ∣∣d|ψ|∣∣ ≤ n− 2

n(n+ 2)
|∇ψ|

outside the zero-set of ψ.

6. Epilogue: some old and new uses of Kato refined inequalities

We collect here a few uses of refined Kato inequalities. As it is easily understood
from the previous proofs, the inequalities show up whenever one uses a metric con-
nection, but not necessarily the Levi-Civita connection, and the value of the constant
only depends on the principal symbol of the operator involved. Hence they apply to
a very large number of operators and admit a wide range of applications.
For brevity’s sake, we have not tried to establish a full list of occurrences of such

refined inequalities, but have rather tried to detail three very different circumstances
where they already happened to be useful. It would certainly be desirable to find
new ones. From the beginning, we have restricted ourselves to a purely Riemannian
setting, i.e. SO(n)-equivariant operators, but there is little doubt that analogous
Kato inequalities could be found with special holonomy reductions. This may open
up further opportunities of applications.

6.1. Subelliptic estimates. — Consider a (usually complete, non-compact) man-
ifold M and a section ξ of a bundle E lying in the kernel of some natural first-order
elliptic operator P . We moreover assume that P is part of a Weitzenböck formula:

(10) P ∗P = ∇∗∇+R

where R is a curvature term. Standard computations then show that

(11) 〈ξ,∆ξ〉 − |∇ξ|2 = 1
2
∆|ξ|2 = |ξ|∆|ξ| −

∣∣d|ξ|∣∣2.
Substracting the latter from the former and taking into account the Weitzenböck
formula (10) and the classical Kato inequality yields the socalled subelliptic estimate

(12) ∆|ξ| ≤ |R| |ξ| outside {ξ = 0}.

If the manifold has a non-zero isoperimetric constant, the Moser iteration scheme
shows that |ξ| behaves at infinity (with respect to the geodesic distance r to a fixed
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point) as O(r−2). Now a refined Kato inequality of the type∣∣d|ξ|∣∣ ≤ k|∇ξ| with k < 1,

leads to a substantially improved version of (12):

(13) ∆
(
|ξ|2−1/k2

)
≤
(
2− 1

k2

)
|R| |ξ|2−

1
k2 outside {ξ = 0}

and Moser iteration procedures produces better decay estimates, for instance such as
ξ = O(r−2−ε) with ε > 0 around infinity.
Though history may be difficult to trace back, it seems that the subharmonicity

property (in case the curvature term R vanishes) was first remarked in the founda-
tional paper of E. Stein and G. Weiss [17] (see alo [16]). The full argument has been
used successfully in a number of cases, for example in S. Bando, A. Kasue and H. Na-
kajima’s study of Ricci-flat maximal volume growth complete Riemannian manifolds
(applied to the Weyl curvature, closed and co-closed if the metric is Einstein) [1], in
R. Schoen, L. Simon and S.-T. Yau’s work on the Bernstein problem (applied to the
second fundamental form of a minimal immersion in flat space) [15], in S.-T. Yau’s
proof of the Calabi conjecture [18], in J. Råde’s study of Yang-Mills fields on flat
four-space [14], and in P. Feehan study of PU(2)-monopoles and harmonic spinors for
the Spinc-Dirac operator [7] (notice that this is an example where the connection is
not Levi-Civita but where our computations still apply), etc.

6.2. Spectral problems. — The refined Kato inequality for spinors in the kernel
of the Dirac operator leads to a new proof of the well-known Hijazi inequality relating
the first eigenvalue of the Dirac operator to the first eigenvalue of the conformally
covariant Yamabe operator. We thank C. Bär and A. Moroianu (private communic-
ation) who suggested this application and kindly accepted to let it be reproduced
here.

Theorem 4(Hijazi [11]). — Let (M, g) be a compact spin Riemannian manifold of di-
mension n ≥ 3. Then the first eigenvalue λ1 of the Dirac operator and the first
eigenvalue µ1 of the conformal Laplacian 4n−1

n−2∆+ scal satisfy:

(14) λ21 ≥
n

4(n− 1) µ1.

Proof. — If ψ is an eigenspinor with eigenvalue λ, then ψ lies in the kernel of the
Dirac operator given by the Friedrich connection ∇̃Xψ = ∇Xψ+(λ/n)X ·ψ, which is
a metric connection on spinors. Hence we have the following refined Kato inequality
for ψ, wherever it is nonzero:

(15)
∣∣d|ψ|∣∣2 ≤ n− 1

n
|∇̃ψ|2.

We next consider the conformal Laplacian of |ψ|2α where α = n− 2/2(n− 1): the
conformal Laplacian is invariant on scalars of weight 2− n/2 and so this power is
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natural in view of the conformal weight 1− n/2 for the Dirac operator. Using the
Lichnerowicz formula, the elementary identity

d∗d(fα) = αfα−1d∗df − α(α− 1)fα−2|df |2

with f = |ψ|2 and |∇̃ψ|2 = |∇ψ|2 − 1
nλ

2|ψ|2, we obtain the following equality on the
open set where ψ is nonzero:

1
2αd

∗d
(
|ψ|2α

)
+ 1

4 scal |ψ|
2α − n−1

n λ2|ψ|2α = |ψ|2α−2
(

n
n−1

∣∣d|ψ|∣∣2 − |∇̃ψ|2
)
.

This is nonpositive by (15). In order to globalize, we consider the Rayleigh quotient
for the first eigenvalue µ1 of the conformal Laplacian with test-function ϕ = |ψ|2α

on the open set where ψ is nonzero, take λ = λ1 and integrate over {x, |ψ|(x) ≥ ε}.
Letting ε→ 0 easily gives (14).

6.3. Special properties of Einstein metrics. — Building on the computations
done in section 6.1 above, one may derive from refined Kato inequalities some powerful
integral estimates on the curvature of Einstein metrics. Following M. Gursky and
C. LeBrun [10], the refined Kato inequality for the co-closed positive half Weyl tensor
of an Einstein four-dimensional manifold (M, g) (outside its zero set):

(16)
∣∣d|W+|

∣∣ ≤√3
5
|∇W+|,

shows that the function u = |W+|1/3 satisfies:

6∆u+ (scalg −2
√
6|W+

g |)u ≤ 0.

Hence there exists a metric ĝ in the conformal class of g such that∫
M

(
scalĝ −2

√
6|W+

ĝ |ĝ
)
≤ 0

and one may conclude from this that the curvature of every four-dimensional Einstein
manifold (M, g) satisfies the following remarkable inequality:∫

M

|W+
g |2 ≥ 1

24

∫
M

scal2g .

Appendix A: more representation theory

We review here the basic concepts of representation theory which are necessary to
state completely and precisely all the results of [5] and [6]. All the facts quoted in
this appendix may be found in the book [8] or in analogous textbooks.
Finite dimensional irreducible representations of the Lie algebra so(n) are classified

by elements of the dual of a Cartan subalgebra of so(n) called dominant weights. If
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m = E(n/2), these are encoded by m-tuplets (λ1, . . . , λm), all integers or all properly
half-integers, satisfying the dominance conditions:

λ1 ≥ . . . ≥ λm−1 ≥ |λm|, if n = 2m,

λ1 ≥ . . . ≥ λm ≥ 0, if n = 2m+ 1.

In this notation, the standard representation is given by τ = (1, 0, . . . , 0) and we shall
hereafter identify any irreducible representation with its dominant weight.
The decomposition of the tensor product τ⊗λ into irreducibles obeys the following

selection rule: an irreducible representation µ appears in the decomposition iff.

1. µ± εj for some j (where (εj) is the standard basis of R
m) or, if n is odd, µ = λ,

and
2. µ is a dominant weight.

For each component µ, its conformal weight w is given by the rule

w =
1
2
(C(so(n), µ)− C(so(n), λ)− C(so(n), τ))

where the notation C(.) denotes a Casimir operator: letting 〈., .〉 be the standard
scalar product on R

m and nδ be the half-sum of the roots of the Lie algebra so(n),
given in coordinates by nδi = (n− 2i)/2, the Casimir operator of a representation µ
is the number C(so(n), µ) = 〈λ, λ〉 + 2〈λ, nδ〉.
A careful examination of the selection rule above shows that, if ν is the number of

different (absolute values of) integers or half-integers appearing as coordinates of a
given weight λ, the number N of irreducible components (according to the convention
of distinctness of conformal weights) in τ ⊗ λ is N = 2ν − 1 if λm = 0, N = 2ν + 1 if
n = 2m+ 1 and λm > 1/2 and N = 2ν in all other cases.
In view of appendix D below, it will also be useful to know which are the irreducible

factors which appear when decomposing an irreducible representation χ of so(n+ 1)
under the action of so(n) : this is known as the branching rule and an irreducible
representation of so(n) given by its dominant weight λ appears in χ iff.

χ1 ≥ λ1 ≥ . . . ≥ χm ≥ |λm| if n = 2m,

χ1 ≥ λ1 ≥ . . . ≥ λm ≥ |χm+1|, if n = 2m+ 1.

Following T. Branson [5], we shall consider, for a given dominant weight λ, the set
X (λ) of dominant weights χ for so(n+1) such that the interlacing inequalities above
are satisfied. We denote by T (λ) the set of indices i such that the squared i-th
coordinate of (χ + n+1δ) takes at least two different values when χ runs among all
elements of X (λ). Last, we denote by Y(λ) the set of dominant weights β for so(n−1)
such that β appears as an irreducible factor of λ when it is restricted to the smaller Lie
algebra so(n− 1). At this point, it is important to remark that a weight α = (α1, β)
belongs to X (λ) iff. α1 is in λ1 + N and β is in Y(λ).
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ON THE KATO INEQUALITY IN RIEMANNIAN GEOMETRY 109

Appendix B: elliptic and non-elliptic first-order operators

T. Branson describes in [4] the set of minimal elliptic first-order operators acting
on a bundle E. Following the notation given in Appendix A and the convention that
irreducible components are given in strictly decreasing order of conformal weights, its
elements are enumerated as follows:

1. the operator P1;
2. the operator Pν+1 if N = 2ν or if N = 2ν + 1 and λ is properly half-integral;
3. the operators Pj,N+2−j for j = 2, . . . , ν;
4. the operator Pν+1,ν+2 if N = 2ν + 1 and λ is integral.

We then notice the following remarkable facts : on the one hand, minimal elliptic
operators have small targets, but on the other hand, it is possible to find non-elliptic
operators with relatively large targets.
One may identify the set of maximal non-elliptic operators, which is build the

following way : one picks exactly one index in each of the ν − 1 sets {j,N + 2 − j}
(for j = 2, . . . , ν) and take the associated operator if N = 2ν − 1 or N = 2ν. If
N = 2ν + 1, one must either add the index ν + 2 if λ is properly half-integral or add
any of the two indices ν + 1, ν + 2 if not.
The set NE of vertices of the polyhedron built in the course of the linear program-

ming method of computation is exactly the set of maximal non-elliptic operators,
except in the case N = 2ν + 1 and λ properly half-integral where we define NE as
in the integral case. The reason for this is the following: recall the polyhedron is
defined as an intersection of half-spaces Hi = p−1

i ([0,+∞[), indexed by elements in
1, . . . , N . Its vertices lie among the larger set of points defined by (a number equal
to the dimension of the Q-space) of equations pi = 0. This latter set corresponds to
all subsets of {1, . . . , N} of that precise size. It is then possible to show with a few
algebraic manipulations (see [6]) that each would-be vertex corresponding to a subset
J such that PJ is elliptic lies outside the polyhedron (hence is not a vertex at all) in
almost all cases, except if N = 2ν + 1, λ properly half-integral when J contains the
index ν + 1 and no other minimal elliptic subset. This explains the occurrence of the
”bad” vertices in the computation in that case. With our extra notations, it is now
possible to strenghten a bit Theorem 1 as follows: in the ”bad” case (N = 2ν + 1,
λ properly half-integral), the value found at the end of the minimization procedure
is indeed sharp provided that it is achieved at a vertex whose associated subset does
not contain the index ν + 1.

Appendix C: higher order Casimir operators

It is an easy consequence of its definition that the trace of B2 on T ∗M ⊗ E is
related to the Casimir number C(so(n), λ) already defined. Equivalently, the partial
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trace on the R
n-factor

ptrB2 : v ∈ E �−→
∑
i=1

n〈ei, B2(ei ⊗ v)〉 ∈ E

is twice the Casimir operator of λ. For every k > 2, the partial traces ptrBk are,
similarly, higher order Casimir operators, i.e elements (and more precisely a basis) of
the center of the universal enveloping algebra U(so(n)). They act homothetically on
each irreducible representation and it is the aim of this section to give a few explicit
expressions for them.
As it already appeared (see also below), it is more natural to work with the modified

operator B̃ whose eigenvalues are the modified conformal weights introduced in section
3. This together with the Weyl dimension formula easily produces the following
generating series:

1 +
∑
�≥0

ptrB̃� t�+1 =
t

2
+
(
1− (−1)N t

2

) N∏
j=1

1 + w̃jt

1− w̃jt
.

This result may be modified in two different ways. Firstly, we may wish to express
the partial traces of the operators Ãk introduced in section 4. One gets

ptrÃj =
(
1 + (−1)j)σj+1(w̃) +

1
2
(
(−1)j − (−1)N

)
σj(w̃).

where σk(w̃) denotes the k-th elementary symmetric function of the weights w̃j (1 ≤
j ≤ N). Inspired by a work of T. Diemer and G. Weingart (private communication),
this led us to a simple recurrence formula for the family of operators C̃k = Ãk +
1
4

(
(−1)N − (−1)k

)
Ãk−1: for j ≥ 0,

C̃j+1 =
(
B̃ +

(−1)j
2

id
)
◦ C̃j + 1

8

(
1− (−1)N+j

)
C̃j−1 − 1

2ptrC̃j

+ 1
2

(
1− (−1)j

)(
σj+1(w̃)− 1

2

(
1− (−1)N

)
σj(w̃)

)
id .

The work of T. Diemer and G. Weingart already alluded to shows that any family
having a recurrence definition of this type has nice symmetry properties and this
result is a crucial step in the derivation of the explicit values of the refined constants
through the linear programming method.
Secondly, one may wish to express the partial traces of the operators B̃k directly in

terms of the dominant weight λ rather than in terms of the conformal weights. This
relies on the following elementary (but useful !) property: let us define the virtual
modified conformal weight w̃r,± = 1

2 ± (λr + nδr); such a weight is said to be effective
iff. µ = λ+ εr does appear as an irreducible component in the tensor product τ ⊗ λ,
and it indeed equals the eigenvalue of B̃ on this factor. It is moreover easily seen that
if λr = λr+1, then w̃r,+ + w̃r+1,− = 0. In other words, noneffective virtual weights
cancel pairwise. This trick allows to reintroduce all virtual non-effective weights in
the generating series quoted above. One gets at the end an explicit expression of the
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partial traces of B̃k in terms of the original weight λ. Our approach then provides a
different proof of the computations done by Perelomov and Popov [13] of the higher
order Casimir operators of the orthogonal groups. In our notation, the results are

1 +
∑
�≥0

ptrB̃� t�+1 =


t

2
+ (1− t

2
)

m∏
i=1

(1 + (12 + xi) t) (1 + (12 − xi) t)
(1− (12 + xi) t) (1− (12 − xi) t)

if n is even,

t

2
+ (1 +

t

2
)

m∏
i=1

(1 + (12 + xi) t) (1 + (12 − xi) t)
(1− (12 + xi) t) (1− (12 − xi) t)

if n is odd,

where we have denoted x = λ+ nδ.

Appendix D: spectra of natural second order differential operators and
refined Kato inequalities

The well known Peter-Weyl theorem asserts that the rough laplacian ∇∗∇ on E
provides a Hilbert sum splitting of the L2 sections of E into its eigenspaces. Using
the notation introduced in Appendix A,

L2(E) = ⊕χ∈X (λ) V(χ, λ) = ⊕X (λ) χ⊗Homso(n)(χ, λ),

where X (λ) has been defined earlier in Appendix A. As quoted in the main body of the
text, deep techniques of harmonic analysis, such as (g,K)-modules and Knapp-Stein
intertwining operators were used by T. Branson to show in [4] that each elementary
second-order operator P ∗

i Pi is also diagonalized in the same splitting. Eigenvalues
are given by the following formulae:

eig(∇∗∇,V(χ, λ)) = C(so(n+ 1), χ) − C(so(n), λ),

eig(P ∗
i Pi,V(χ, λ)) = ci(λ)

∏
r∈T (λ)

((
χr + n+1δr

)2 − (w̃i)2
)
.(17)

where T (λ) has also been defined in Appendix A. To explicit completely the last
eigenvalues, we only have to express the normalization constant ci(λ):

(18) ci(λ) =


(−1)ρ+2

(∏
j �=i(w̃i − w̃j)

)−1

if N is odd,

(−1)ρ+1(w̃i − 1
2 )
(∏

j �=i(w̃i − w̃j)
)−1

if N is even,

unless we are in the exceptional case already mentioned in section 3 where the i-th
component of T ∗M ⊗ E is an irreducible component for the full orthogonal group
O(n) which splits into two irreducible components for SO(n) (this corresponds to n
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even, λm = 0 �= λm−1 and |µm| = 1). In this case,

(19) ci(λ) = (−1)ρ+2

∏
j �=i

(
1
2
− w̃j)

−1

.

It is interesting to remark that the computations leading to the values of the normal-
ization constants involve VanderMonde systems and a Lagrange interpolation proced-
ure that is very similar (although not identical) to the one appearing in the linear
programming method.
We can now describe the precise contents of T. Branson’s minimization formula

for the refined Kato constants of all possible elliptic operators PI [5].

Theorem 5. — Let I a subset of {1, . . . , N} corresponding to an elliptic operator PI

acting on E. Then a refined Kato inequality
∣∣d|ξ|∣∣ ≤ kI |∇ξ| holds for any section ξ

in the kernel of PI , outside the zero set of ξ. Moreover,

(20) k2I = 1 − inf
β∈Y(λ)

∑
i∈I

ci(λ)
∏

r∈T (λ),r �=1

(
(βr−1 + n−1δr−1)2 − w̃2

i

)
.
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autoduale, Ann. Sc. Norm. Sup. Pisa 18 (1991), 563–629.

[10] M. Gursky and C. LeBrun, On Einstein manifolds of positive sectional curvature, Ann.
Glob. Anal. Geom. 17 (1999), 315–328.

[11] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator
and Killing spinors, Commun. Math. Phys. 104 (1986), 151–162.

[12] R. Penrose and W. Rindler, Spinors and space-time (2nd ed.), Cambridge Monographs
on Math. Physics, Cambridge Univ. Press, Cambridge, 1988.
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E-mail : pg@math.polytechnique.fr
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