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UPDATE ON TORIC GEOMETRY

by

David A. Cox

Abstract. — This paper will survey some recent work on toric varieties. The goal is
to help the reader understand how the papers in this volume relate to current trends
in toric geometry.

Introduction

In recent years, toric varieties have been an active area of research in algebraic
geometry. This article will give a partial overview of the work on toric geometry
done since the 1995 survey paper [90]. One of our main goals is to help the reader
understand the larger context of the eight papers in this volume:

[74] Semigroup algebras and discrete geometry by W. Bruns and J. Gubeladze.
[93] How to calculate A-Hilb C3 by A. Craw and M. Reid.
[94] Crepant resolutions of Gorenstein toric singularities and upper bound theorem

by D. Dais.
[96] Resolving 3-dimensional toric singularities by D. Dais.

[140] Producing good quotients by embedding into a toric variety by J. Hausen.
[159] Special McKay correspondence by Y. Ito.
[230] Lectures on height zeta functions of toric varieties by Y. Tschinkel.
[234] Toric Mori theory and Fano manifolds by J. Wísniewski.

These papers (and many others) were presented at the 2000 Summer School on the
Geometry of Toric Varieties held at the Fourier Institute in Grenoble.

We will assume that the reader is familiar with basic facts about toric varieties. We
will work over an algebraically closed field k and follow the notation used in Fulton
[121] and Oda [196], except that we use Σ to denote a fan. Recall that one can
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2 D.A. COX

think of a toric variety in many ways. First, we have the union of affine toric varieties
presented by Fulton [121] and Oda [196]:

(0.1) XΣ =
⋃
σ∈Σ

Xσ, Xσ = Spec(k[σ∨ ∩M ]).

Second, when the support of Σ spans NR, we have the categorical quotient repre-
sentation considered by Cox [89]:

(0.2) XΣ =
(
kΣ(1) � V(B)

)
/G, G = Hom(An−1(XΣ), k∗),

where B = 〈xσ̂ : σ ∈ Σ〉 and xσ̂ =
∏

ρ/∈σ(1) xρ. We call S = k[xρ : ρ ∈ Σ(1)] the ho-
mogeneous coordinate ring of XΣ, which is graded by An−1(XΣ). The representation
(0.2) is a geometric quotient if and only if Σ is simplicial.

Finally, A = {m1, . . . ,m�} ⊂ Zn gives the semigroup algebra k[tm1 , . . . , tm� ] ⊂
k[t±1

1 , . . . , t
±1
n ]. Then we have the (possibly non-normal) affine toric variety discussed

by Sturmfels [223, 224]:

(0.3) XA = Spec(k[tm1 , . . . , tm� ]).

The map xi 	→ tmi gives a surjection k[x1, . . . , x�] → k[tm1 , . . . , tm� ] whose kernel

(0.4) IA = ker(k[x1, . . . , x�] → k[tm1 , . . . , tm� ])

is the toric ideal of A. This ideal is generated by binomials and is the defining ideal
of XA ⊂ k�. If IA is homogeneous, then XA is the affine cone over the (possibly
non-normal) projective toric variety YA ⊂ P�−1.

This survey concentrates on work done since our earlier survey [90]. Hence most
of the papers we discuss appeared in 1996 or later. We caution the reader in advance
that our survey is not complete, partly for lack of space and partly for ignorance on
our part. We apologize for the many fine papers not mentioned below.

1. The Minimal Model Program and Fano Toric Varieties

The paper [234] by JarosAlaw Wísniewski discusses toric Mori theory and Fano
varieties. The main goal of the paper is to illustrate aspects of the minimal model
program using toric varieties. As Wísniewski points out, toric varieties are rational
and hence trivial from the point of view of the minimal model program. Nevertheless,
many hard results about minimal models can be proved without difficulty in the toric
case. It makes for an excellent introduction to the subject.

An important feature of the minimal model program is that singularities are un-
avoidable in higher dimensions. In our discussion of Wísniewski’s lectures, we will
assume that X is a normal projective variety such that KX is Q-Cartier (meaning
that some positive integer multiple of KX is a Cartier divisor). Such a variety is called
Q-Gorenstein. Given a resolution of singularities π : Y → X , we can write

KY = π∗(KX) +
∑

idiEi
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UPDATE ON TORIC GEOMETRY 3

where the exceptional set E =
⋃

i Ei is a divisor with normal crossings. We call∑
i diEi the discrepancy divisor. Then we say that the singularities X are:

(1.1)

terminal if di > 0 for all i;

canonical if di � 0 for all i;

log-terminal if di > −1 for all i; and

log-canonical if di � −1 for all i.

Furthermore, π : Y → X is crepant if the discrepancy is zero, i.e., di = 0 for all i or,
equivalently, KY = π∗(KX). In Section 2.2, we will explain what these singularities
mean in the toric case.

1.1. Extremal Rays, Contractions, and Flips. — The first three lectures in
Wísniewski’s article [234] are based primarily on Reid [209] and discuss aspects of
the minimal model program related to the Mori cone NE(X), which is the cone of
H2(X,R) generated by homology classes of irreducible curves on X . For a simplicial
toric variety, NE(X) is generated by the torus-invariant curves in X (which corre-
spond to codimension 1 cones of the fan of X). In [234, Lec. 1], Wísniewski describes
in detail how this relates to Mori’s move-bend-break strategy.

When X is projective, the 1-dimensional faces of NE(X) are extremal rays. In the
toric case, it follows that each extremal ray is the class of a torus-invariant curve in X .
Wísniewski contrasts this with the Cone Theorem of Mori and Kawamata, which for
a general variety X gives only a partial description of NE(X).

Extremal rays are important in the minimal model program because of the Contrac-
tion Theorem of Kawamata and Shokurov, which asserts that if a projective varietyX
has terminal singularities, then every Mori ray R (= an extremal ray with R ·KX < 0)
gives a contraction

ϕR : X −→ XR

with connected fibers such that XR is normal and projective and a curve in X is
contracted to a point if and only if its class lies in R.

For an extremal ray R on a simplicial projective toric variety of dimension n,
Wísniewski gives Reid’s construction [209] of the corresponding contraction. Here is
a brief summary. Given R, define α and β to be

α = |{Dρ : Dρ · R < 0}|
β = n+ 1− |{Dρ : Dρ · R > 0}|,

where the Dρ are the torus-invariant divisors of X . These will be important invariants
of the contraction ϕR. The formulas given in [234, Lec. 2] show that α and β are
easy to compute in practice.

Now let ω be a codimension 1 cone in the fan Σ of X such that the corresponding
curve lies in R. Then ω is a face of two top-dimensional cones δ, δ′ in Σ. One can
show that the sum δ+δ′ is again a convex cone. Then consider the “fan”Σ∗

R obtained
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4 D.A. COX

from Σ by removing all such ω’s and, for each such ω, replacing the corresponding
δ, δ′ with δ + δ′. We put “fan” in parenthesis because of the following result.

Lemma 1.1. — If α > 0, then Σ∗
R is a fan, but if α = 0, then there is a subspace µ(R)

of dimension n− β such that σ ∩ −σ = µ(R) for every cone σ ∈ Σ∗
R.

The extremal ray R then gives the desired contraction ϕR : X → XR as follows:

– When α = 0, Σ∗
R is a degenerate fan. Then Σ∗

R/µ(R) becomes a fan in NR/µ(R).
Furthermore, if XR is the toric variety of Σ∗

R/µ(R), then XR has dimension β
and ϕR is a toric fibration whose fibers are weighted projective spaces.

– When α > 0, then Σ∗
R is a fan, and if XR is the toric variety of Σ∗

R, then ϕR is
birational. Furthermore:

• If α = 1, then ϕR is the blow-up of a subset of XR of dimension β − 1.
Thus the exceptional set is a divisor. Also, XR is terminal if X is.

• If α > 1, then the exceptional set of ϕR has codimension > 1, so that ϕR
is an isomorphism in codimension 2. We say that R is a small ray.

Notice how degenerate fans arise naturally in this context.
In terms of the minimal model program, the cases when α = 0 or 1 work nicely,

since in these cases we can replace X with XR. But α > 1 causes problems because
in this case, the cones δ+ δ′ are not simplicial, so that XR has bad singularities from
the minimal model point of view. This is where the next big result of the minimal
model program comes into play, the Flip Theorem. This is more properly called the
Flip Conjecture, since for general varieties, it has been proved only for dimension � 3
(by Mori). However, it is true for all dimensions in the toric case.

The rough idea is that when R is a small ray, XR isn’t suitable, so instead we “flip”
R to −R on a birational model X1 and then replace X with X1. More precisely, the
Toric Flip Theorem, as stated in [234, Lec. 3], constructs a fan Σ1 with toric variety
X1 and a birational map

ψ : X1 −−→ X

with the following properties:

– If X is terminal with KX ·R < 0 (i.e., R is a Mori ray), then X1 is terminal.
– ψ is an isomorphism in codimension 1.
– R1 = −ψ∗(R) is an extremal ray for X1 and ϕ1 = ϕR ◦ ψ : X1 → XR is the

corresponding contraction of R1.

Furthermore, Σ1 is easy to construct: using the natural decomposition of δ + δ′ into
simplices described in [234, Lec. 3], one simply replaces each cone δ + δ′ ∈ Σ∗

R with
these simplices.

There are some recent papers related to these topics. First, concerning extremal
rays, Bonavero [47] observes that if X is a projective toric variety and π : X → X ′

is a smooth toric blow-down, then X ′ is projective if and only if a line contained
in a non-trivial fiber of π is an extremal ray. He then uses this to classify certain
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UPDATE ON TORIC GEOMETRY 5

smooth blow-downs to non-projective varieties. Second, concerning minimal models,
if Y ⊂ X is a hypersurface in a complete toric variety such that the intersection of
Y with every orbit is either empty or transverse of codimension 1, then S. Ishii [157]
uses the toric framework described above to show that minimal model program works
for Y , as described in the introduction to [234]. See also Ishii’s paper [156].

Returning to the lectures [234], Wísniewski points out that when X is toric and
projective, any face of NE(X) can be contracted, not just edges (= extremal rays).
This is not true for general projective varieties. Then [234, Lec. 3] ends with a
discussion of toric flips from the point of view of Morelli-WAlodarczyk corbodisms,
which is based on the work of Morelli [189] and WAlodarczyk [236]. In [234, Lec. 4],
Wísniewski defines terminal and canonical singularities as in (1.1) and explains how
these relate to the toric versions of the Contraction Theorem and Flip Theorem. He
also describes the Euler sequence of a smooth toric variety.

1.2. Fano Varieties. — In [234, Lec. 5], Wísniewski discusses Fano varieties. In
general, a normal variety X is Fano when some multiple of −KX is an ample Cartier
divisor. As explained in the introduction to [234], part of the minimal model program
includes Fano-Mori fibrations, whose fibers are Fano varieties. Wísniewski focuses on
the case of toric Fano manifolds for simplicity.

Results of Batyrev show that in any given dimension, there are at most finitely
many toric Fano manifolds (up to isomorphism). In dimension 2, it is easy to see
that there are only five: P1 × P1 together with the blow-up of P2 at 0, 1, 2 or 3 fixed
points of the torus action. In dimension 3, Wísniewski sketches the proof that there
are precisely 18 smooth toric Fano 3-folds. He also discusses the classification of
non-toric Fano manifolds, where the situation is considerably more complicated.

In dimension 4, Batyrev [28] recently published a classification of smooth toric
Fano 4-folds. As noted by Sato [220], Batyrev missed one, so that Batyrev’s list of
123 is now a list of 124 smooth toric Fano 4-folds. The key point is that toric Fano
manifolds of dimension n correspond to n-dimensional lattice polytopes P ⊂ NR � Rn

with the origin as an interior point such that the vertices of every facet are a basis of
N . (Given such a P , the cones over the faces of P give a fan whose toric variety is a
Fano manifold.) Hence the proof reduces to classifying the possible polytopes.

One can generalize the polytopes of the previous paragraph to the idea of a Fano
polytope. This is an n-dimensional lattice polytope P ⊂ NR � Rn with the property
that 0 is the unique lattice point in the interior of P . In this case, taking cones over
faces as above gives a Fano toric variety X . Furthermore, the singularities of S can
be read off from the polytope. For example, Section 2.2 below implies that:

– If the only lattice points in P are 0 plus the vertices, then X has terminal
singularities.

– If every facet of P is defined by an equation of the form 〈m,u〉 = 1 for some
m ∈M , then X is Gorenstein.
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6 D.A. COX

In the latter case, we say that P is reflexive. These polytopes play an important
role in mirror symmetry (see the book [91] by Cox and Katz) and are classified in
dimensions 3 and 4 by Kreuzer and Skarke [169, 170]. As noted by A. Borisov [50],
there are interesting similarities between the classification of toric Fano varieties and
the classification of toric singularities.

Other work on toric Fano varieties includes the paper [48], where Bonavero studies
toric varieties whose blow-up at one point is Fano. (This has been generalized to
the non-toric case by Bonavero, Campana and Wísniweski [49].) Also, Bonavero’s
paper [47] mentioned earlier contains results about toric Fano varieties. Birational
maps between toric Fano 4-folds are studied by Casagrande in [85], and forthcoming
papers of Casagrande [86] will generalize some of the results of [47]. In another
direction, Einstein-Kähler metrics and the Futaki invariant have been studied by
Batyrev and Selivanova [34] for symmetric toric Fano manifolds and by Yotov [240]
for almost Fano toric varieties. Finally, there has been a lot of work on non-toric Fano
manifolds. As a small hint, the reader might want to consult the 1994 paper [233],
where Wísniewski surveys Fano manifolds X such that b2(X) � 2 and KX is divisible
by dim(X)/2 in Pic(X). There is also the 2000 book [88] on the birational geometry
of 3-folds, which includes several papers on Fano 3-folds.

2. Singularities of Toric Varieties

The articles [94, 96] by Dimitrios Dais study the singularities of toric varieties.
The paper [96] surveys the problem of resolving toric singularities, with an emphasis
on dimension 3, while [94] studies crepant resolutions of Gorenstein toric singularities.

2.1. Singularities in Dimensions 2 and 3. — Our purpose here is to give a
introduction to Dais’ article [96]. In [96, Sec. 1] Dais defines various types of sin-
gularities encountered in algebraic geometry, including local complete intersections
and rational and elliptic singularities. Dais also defines crepant resolutions and ter-
minal, canonical, log-terminal and log-canonical singularities as we did (1.1), and he
discusses several general properties of these singularities.

Then [96, Sec. 2] summarizes facts about singularities in dimension � 3. For sur-
faces, this includes a careful statement of the classic classification of ADE singularities
(also called Kleinian or Du Val), as well as the following nice result.

Theorem 2.1. — Let (X,x) be a normal surface singularity. Then:

x is terminal ⇐⇒ x is a smooth point of X

x is canonical ⇐⇒ (X,x) � (C2/G, 0) with G
a finite subgroup of SL(2,C)

x is log-terminal ⇐⇒ (X,x) � (C2/G, 0) with G
a finite subgroup of GL(2,C).
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(The version of this theorem in [96] also includes the case when x is log-canonical,
which is a bit more complicated to state). In the 3-dimensional case, Dais recalls the
definition of compound Du Val singularity (cDV for short) and gives a weak analog
(due to Reid) of Theorem 2.1 for terminal and canonical singularities. He also explains
Reid’s four-step strategy for studying canonical singularities.

2.2. The Toric Case. — In [96, Sec. 3], Dais deals with toric singularities. After
a review of toric geometry, Dais explains what various types of singularities mean
in toric terms. Given an n-dimensional rational polyhedral cone σ ⊂ NR � Rn, we
let Xσ be the corresponding affine toric variety. Also let e1, . . . , es be the minimal
generators of σ. Then one easily sees that

– Xσ is Q-Gorenstein ⇐⇒ there is m ∈MQ such that 〈m, ei〉 = 1 for all i.

If we write the affine hyperplane as 〈m̃, u〉 = r where m̃ ∈M and r ∈ Z+ is minimal,
then we call r the index of the singularity. It is the smallest positive integer such that
rKXσ is Cartier. Thus Xσ is Gorenstein ⇐⇒ it is has index 1.

Furthermore, when Xσ is Q-Gorenstein, let m ∈MQ be as above. Then:

– Xσ is terminal ⇐⇒ σ ∩ {u ∈ N : 〈m,u〉 � 1} = {0, e1, . . . , es}.
– Xσ is canonical ⇐⇒ σ ∩ {u ∈ N : 〈m,u〉 < 1} = {0}.

Nice pictures of terminal and canonical cones can be found in Reid’s article [209].
Dais also points out the following easy implications among these singularities:

– Xσ is Q-Gorenstein =⇒ Xσ is log-terminal.
– Xσ is Gorenstein =⇒ Xσ is canonical.

In the Gorenstein case, the convex hull of {e1, . . . , es} is a lattice polytope P of
dimension n− 1. By changing coordinates in N , we can assume that

(2.1) σ is the cone over {1} × P ⊂ R × Rn−1.

As Dais notes in [96, Rem. 3.15], it follows that n-dimensional Gorenstein terminal
singularities correspond to (n − 1)-dimensional elementary polytopes, which are lat-
tice polytopes whose only lattices points are vertices. In general, there is a strong
relation between Gorenstein singularities and lattice polytopes. Numerous references
are given, to which we would add the paper [50] of A. Borisov discussed earlier.

Note also that [96, Sec. 3] contains a characterization of when a Gorenstein Xσ

is a local complete intersection. The result involves Nakajima polytopes, which are
defined in [96, Def. 3.10].

In [96, Sec. 4], Dais explains how to resolve toric singularities in dimensions 2
and 3. To resolve a singularity in dimension 2, we can use the Hilbert basis of σ ∩N ,
which is the set of elements of σ∩N not expressible as the sum of two or more nonzero
elements of the semigroup. Then subdividing σ using rays through the points of its
Hilbert basis gives the minimal resolution of Xσ.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



8 D.A. COX

The situation in dimension 3 is more complicated since minimal resolutions no
longer exist. So instead the goal is to find a resolution which is “canonical” in some
sense. For example, one could try to mimic the 2-dimensional case by using the Hilbert
basis of σ ∩ N . As Dais points out, this has been done by Bouvier and González-
Sprinberg [54] and Aguzzoli and Mundici [14], but in both cases the resolution is
not unique. Another approach deals with the special case when Xσ is simplicial
and Gorenstein. Since σ has dimension 3, this implies that Xσ = C3/G, where
G ⊂ SL(3,C) is a finite Abelian subgroup. As we will see in the paper of Ito [159]
to be discussed in Section 3, the G-Hilbert scheme of C3 gives a canonical crepant
resolution of Xσ in this case.

The paper [96] concludes with a description of a new approach to resolving Xσ

(still in dimension 3) which was inspired by the strategy of Reid mentioned above.
According to [96, Thm. 4.1], this is done in five stages:

(i) Subdivide to make the singularities canonical.
(ii) Change the lattice to make them canonical of index 1, i.e., Gorenstein.
(iii) By working with lattice polygons and blowing up points, reduce to certain cDV

singularities.
(iv) Blow up certain 1-dimensional loci to make the singularities terminal.
(v) Finally, add diagonals to get a crepant resolution.

Steps (i)–(iv) are unique, while step (v) involves 2#diagonals choices. Dais gives an
example of this construction and notes that details may be found in the forthcoming
paper [102] of Dais, Henk and Ziegler.

2.3. Crepant Resolutions. — There are many situations in algebraic geometry
where one is interested in a crepant resolution of a singular Q-Gorenstein variety X .
For example:

– When X is an orbifold (i.e., has finite quotient singularities), the Euler char-
acteristic of a crepant resolution of X is an intrinsic invariant of X called the
stringy (or physicists) Euler number.

– When X is Calabi-Yau, its canonical divisor is trivial. If we want a resolution
π : X̃ → X such that X̃ is also Calabi-Yau, then π must be crepant.

We will discuss“stringy”matters briefly in Section 7.9, but for now we will concentrate
on the question of crepant resolutions of toric singularities. This is the main subject
of Dais’ second article [94] in this volume.

In Section 2.2, we saw that the affine toric variety Xσ of a n-dimensional cone
σ ⊂ NR � Rn is Gorenstein if and only if the minimal generators lie on an affine
hyperplane 〈m,u〉 = 1 for some m ∈ M . As in (2.1), we can change coordinates so
that σ becomes the cone over {1} × P . If T is a lattice triangulation of P (so the
vertices of each simplex in T are lattice points), then taking cones over these simplices
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gives a subdivision of σ. This gives a birational map XT → Xσ. We will be interested
in the following two kinds of lattice triangulations T :

– T is maximal if every simplex in T is elementary. As in the discussion following
(2.1), this means that the vertices of every simplex are its only lattice points.

– T is basic (or unimodular) if every simplex in T is basic (or unimodular). This
means that the vertices of every top-dimensional simplex form a basis of N .

Every unimodular triangulation is maximal, though the converse is true only in di-
mension 2. Furthermore, maximal triangulations always exist, but there are polytopes
which have no unimodular triangulations.

In terms of the singularities of Xσ, Dais [94, Sec. 1] considers the following three
possibilities:

(A) P is an elementary polytope, which means Xσ is terminal. The key point is that
when a singular variety has terminal singularities, then no crepant resolution
exists. This is why the name “terminal” is used for such singularities.

(B) P has no basic triangulation. Thus, if we pick a maximal triangulation T , then
XT is singular with terminal singularities. Hence XT → X is the closest we can
get to a crepant resolution.

(C) P has a basic triangulation. In this case, a crepant resolution exists.

In order to solve (A), one needs to classify elementary polytopes up to lattice isomor-
phism. The more general problem of classifying polytopes with few lattice points is
discussed by A. Borisov in [50]. For (C), there has been a lot of work finding inter-
esting examples of Gorenstein toric singularities which have crepant resolutions. For
example:

– Ito [158], Markushevich [175] and Roan [214] proved that all 3-dimensional
Gorenstein quotient singularities have crepant resolutions. (Such a singularity
is toric in the Abelian case.)

– Dais, Henk and Zeigler [101] showed that in any dimension, Abelian quotient
local complete intersections have crepant resolutions. This was generalized to
toric local complete intersections by Dais, Haase and Ziegler in [99].

– Dais and Henk [97] and Dais, Haus and Henk [100] show that certain infinite
families of Gorenstein cyclic quotient singularities (which are not local complete
intersections) have crepant resolutions.

This leaves (B), which leads to the question of finding a combinatorial charac-
terization of those polytopes which don’t have a basic triangulation. In [94, Sec. 3],
Dais explains how the Upper Bound Theorem leads to a necessary condition for a
polytope to have a basic triangulation. For this purpose, recall that the kth cyclic
polytope CycPn(k) is the convex hull of k distinct points on the monomial curve
t 	→ (t, . . . , tn) ∈ Rn. McMullen’s Upper Bound Theorem asserts that if a polytope
Q ⊂ Rn has k vertices and dimension n, then

fi(Q) � fi
(
CycPn(k)

)
, 0 � i � n− 1,
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10 D.A. COX

where as usual fi(Q) denotes the number of i-dimensional faces of Q. Using this and
other facts about f-vectors and Ehrhart polynomials, Dais proves the following result
[94, Thm. 3.1]:

Theorem 2.2. — Let the n-dimensional cone σ come from the (n− 1)-dimensional P
as in (2.1). If Xσ has a crepant resolution, then the normalized volume Voln−1(P )
satisfies the inequality

Voln−1(P ) � fn−1

(
CycPn(|P ∩M |)

)
− |(∂P ∩M)|+ n− 1.

Dais also mentions current work with Henk and Ziegler [103] to improve the bound
in Theorem 2.2. It follows that if P violates the inequality of this theorem, it cannot
have a basic triangulation and hence lies in (B). The challenge is to find other com-
binatorial conditions which lead to not only necessary but also sufficient conditions
for the existence of a basic triangulation.

2.4. Other Work on Toric Singularities. — Finally, we want to briefly mention
some other papers on toric singularities. In our 1996 survey [90], we reported on
the work of Altmann. He also has a paper [16] which reviews his work up to 1996.
Altmann’s basic objects of study are T 1

Xσ
and T 2

Xσ
, which determine the infinitesimal

deformations and obstructions to lifting deformations respectively. (As usual, Xσ is
the affine toric variety of σ.) The main goals of his paper [15] are to compute the
graded pieces of T 1

Xσ
and, for the case of 3-dimensional Gorenstein singularities, to

determine for exactly which degrees the graded piece is nonzero. Also, the paper [20]
by Altmann and Sletsjøe determines the André-Quillen cohomology groups T p

Xσ
for all

p when Xσ has an isolated singularity. In [21], Altmann and van Straten relate T p
Xσ

to invariants defined by Brion in [63] and prove a vanishing theorem for polytopes
arising from quivers. (We will discuss Brion’s paper [63] in Section 7.11 below.)

Matsushita [180] studies maps π : Y → Xσ where Xσ has canonical singularities,
Y has Q-factorial singularities, and KY = π∗KXσ +

∑
i aiEi, ai � 0. These are

classified by radicals of certain initial ideals. He also considers the case when Xσ is
Gorenstein. In [181], Matsushita studies simultaneous terminalizations of Gorenstein
homogeneous toric deformations F : X → Cm (as defined by Altmann). He proves
that simultaneous terminalizations exist when X has a crepant resolution and gives
examples to show that they do not exist in general.

Toric methods also play an interesting role in recent work on the resolution of
arbitrary singularities. We will discuss this in Section 7.3 below.

3. The McKay Correspondence and G-Hilbert Schemes

In 1979, McKay [186] observed that the irreducible representations of a finite group
G ⊂ SL(2,C) correspond naturally to the vertices of an (extended) Dynkin diagram
of type ADE. Since the Dynkin diagram is the dual graph of the exceptional fiber
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of the minimal resolution of singularities C2/G, we get a correspondence between
components of the exceptional fiber and the (nontrivial) irreducible representations
of the group. Following Ito and Nakajima [160], we get the following table:

finite subgroup G (nontrivial) irreducible decompositions of
of SL(2,C) representations tensor products
simple Lie algebra simple roots (extended) Cartan
of type ADE matrix
minimal resolution irreducible components of intersection matrix
X̃ → C2/G the exceptional set (= a

basis of H2(X̃,Z))

In the more general setting of a finite subgroup G ⊂ GL(n,C), this has led to the
problem of finding relations between the group theory ofG (representations, conjugacy
classes, etc.) and a resolution of singularities of Cn/G (exceptional fiber, cohomology,
derived category, etc.). These relations—many of which are still conjectural—are
collectively called the McKay correspondence. Surveys of the McKay correspondence
can be found in Reid’s Bourbaki talk [210] and Kinosaki lectures [211].

The papers in this volume by Yukari Ito [159] and Alastair Craw and Miles Reid
[93] touch on aspects of the McKay correspondence which use toric geometry. Ito’s
paper [159] also includes a brief introduction to the McKay correspondence.

3.1. Resolutions of Cn/G. — For a finite subgroup G ⊂ SL(n,C), one problem
with extending the McKay correspondence for n > 2 is the lack of a unique minimal
resolution of singularities of Cn/G. The best one can hope for is a crepant resolution
of Cn/G, as defined in the discussion following (1.1). Here, G ⊂ SL(n,C) implies that
the dualizing sheaf of Cn/G is trivial (hence Cn/G is Gorenstein), so that a resolution
X̃ → Cn/G is crepant if and only if ω

eX � O
eX . Crepant resolutions exist when n = 2

(classical) and n = 3 (see Section 2.3) but may fail to exist for larger n.
One attempt to avoid this non-uniqueness is the paper [162] of Ito and Reid, which

shows that the crepant divisors in any resolution (this has to be defined carefully)
correspond to junior conjugacy classes of G. We define junior as follows. Fix a
primitive rth root of unity ε, where r is divisible by the order of every element of
G. If g ∈ G is conjugate to a diagonal matrix whose ith diagonal entry is εai , then
the age of g is 1

r (a1 + · · · + an), which is an integer since G ⊂ SL(n,C). The junior
elements of G are those of age 1.

A more recent method to cope with non-uniqueness is Nakamura’s idea of using
the G-Hilbert scheme to resolve SL(n,C). Roughly speaking, G-Hilb Cn is the moduli
space of all G-invariant 0-dimensional subschemes Z ⊂ Cn such that the action of G
on H0(Z,OZ) is the regular representation. As explained by Craw and Reid [93], two
ways of making this precise can be found in the literature, which fortunately agree at
least when n = 2 or 3.
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Let X̃ = G-Hilb Cn. Then there is a well-defined morphism X̃ → Cn/G. The
amazing fact is that this is a crepant resolution when n = 2 (Ito and Nakamura
[161]) or n = 3 (Nakamura [193] for G Abelian, Bridgeland, King and Reid [59] for
G general). Hence, in these cases, we have a canonical choice of crepant resolution.
Furthermore, the authors of [59] also show that for n = 2 or 3, the Mukai transform
induces an equivalence of categories between the derived category D(X̃) and the
equivariant derived category DG(Cn). Hence we have a very sophisticated version of
the McKay correspondence in this case. (We should mention the paper [160] where
Ito and Nakajima study the McKay correspondence for n = 3 from the point of view
of K-theory. Batyrev and Dais also consider the McKay correspondence in [33].)

3.2. The Special McKay Correspondence. — In [159], Ito studies the McKay
correspondence for the cyclic group

(3.1) Cr,a =
〈(
ε 0
0 εa

)〉
⊂ GL(2,C),

where ε is a primitive rth root of unity. If a ≡ −1 mod r, then Cr,a ⊂ SL(2,C),
which allows us to use the McKay correspondence described above. But when a �≡
−1 mod r, there are more nontrivial irreducible representations than components of
the exceptional fiber of the resolution X̃ → C2/G. In 1988, Wunram [239] solved
this problem by using certain special representations of G, which gave rise to vector
bundles on X̃ whose first Chern classes are dual to the components of the exceptional
fiber. See Ito’s paper [159] for details. Ito also describes recent work of A. Ishii
[155] which explains how to interpret Wunram’s special representations in terms of
the Cr,a-Hilbert scheme of C2.

However, since Cr,a is Abelian, the quotient C2/G has a natural structure of a
toric variety, and, as described in Section 2.2, so does its minimal resolution X̃ . In
[159], Ito shows how to explicitly recover the special representations in this case. As
a preview of what she does, note that each monomial xiyj is an eigenvector for the
Cr,a action since the generator of Cr,a displayed in (3.1) acts on xiyj via

xiyj 	−→ (εx)i(εay)j = εi+ajxiyj .

In particular, you can read the character from the monomial. Hence the search for
special characters reduces to a search for certain special monomials, which is explained
in [159, Thm. 3.7]. Ito’s paper also includes explicit details for the group C7,3.

3.3. The A-Hilbert Scheme of C3. — If A ⊂ SL(3,C) is Abelian, we can assume
that A ⊂ (C∗)3. As with the case just considered, C3/A is a toric variety and hence
has toric resolutions (which are now non-unique). In the paper [93] in this volume,
Craw and Reid show that one of these toric resolutions is A-Hilb C3 and they give an
explicit algorithm for computing it.
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As we did above, fix a primitive rth root of unity ε, where r is divisible by the
order of every element of A. Then g ∈ A is a diagonal matrix with diagonal entries
εa1 , εa2 , εa3 , where 0 � ai � r−1. Then let L be the lattice generated by Z3 together
with the rational vectors 1

r (a1, a2, a3) for all g ∈ A. The junior elements of A are
those for which 1

r (a1 + a2 + a3) = 1. It follows that the junior elements give lattice
points of L which lie in the triangle ∆ = (1, 0, 0), (0, 1, 0), (0, 0, 1). In [93], Craw and
Reid call this the junior simplex.

The first main result of [93] is the description of an explicit set of triangles (called
regular triangles) which partition the junior simplex ∆. A nice example of this con-
struction can be found in Reid’s survey [211, Ex. 2.2]. Then the second main result
of Craw and Reid is as follows.

Theorem 3.1. — Let Σ denote the toric fan obtained by taking the regular tesselation
of all regular triangles in the junior simplex ∆. The associated toric variety XΣ is
Nakamura’s A-Hilbert scheme A-Hilb C3.

This toric fan is smooth by construction, and furthermore, since the lattice L
was generated by junior elements, standard discrepancy calculations (as explained in
Reid’s Bowdoin article [212]) imply that we get a crepant resolution. Thus the above
theorem shows that A-Hilb C3 gives a crepant resolution of C3/A.

Finally, we should also mention the paper [92], where Craw draws on [93] to give
an explicit version of the McKay correspondence for Abelian subgroups of SL(3,C).

4. Polytopal Algebra

In [74], Winfried Bruns and Joseph Gubeladze introduce the reader to polytopal
linear algebra, which is an ambitious program to understand the category of polytopal
semigroup algebras. To define such an algebra, let P ⊂MR � Rn be a lattice polytope
(so all vertices of P lie in M). This gives the polytopal semigroup algebra

k[P ] = k[tm : m ∈ A], A = {1} × (P ∩M) ⊂ Z ×M � Zn+1.

The factor of {1} means that the corresponding toric ideal IA is homogeneous, so
that k[P ] has a natural grading such that monomials of degree 1 correspond to lattice
points of P , monomials of degree 2 correspond to those lattice points of 2P which are
the sum of two lattice points of P , and so on. In particular, k[P ] is generated by its
elements of degree 1.

One sees easily that Spec(k[P ]) is the (possibly non-normal) affine toric variety
XA defined in (0.3) and that Proj(k[P ]) is the corresponding (possibly non-normal)
projective toric variety YA. To relate these to the more usual toric varieties, let
σ ⊂ R ×MR � Rn+1 be the cone over {1} × P as in (2.1). Then the semigroup
algebra k[σ ∩M ] is the normalization of k[P ]. This implies in particular that the
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normalization of YA is the projective toric variety determined by the polytope P .
Notice also that k[P ] agrees with its normalization in degree 1.

It follows that polytopal semigroup algebras are algebraic objects which in some
sense “remember” their geometric origin. This is emphasized by a theorem of Gube-
ladze [134], which states that two polytopal semigroup algebras k[P ] and k[Q] are
isomorphic as k-algebras if and only if the corresponding lattice polytopes P and Q
are integrally-affine equivalent (Bruns and Gubeladze discuss this in [74, Rem. 2.2.2]).

Polytopal semigroup algebras were introduced in the paper [75] by Bruns, Gube-
ladze and Trung. This paper also considers normal polytopes, which are those lattice
polytopes for which k[P ] is normal. One of the main results of [75] is that if P is a
lattice polytope, then cP is normal for any integer c � dimP − 1. This relates nicely
to the result of Ewald and Wessels [116] that for an ample divisor D on a complete
toric variety X , cD is very ample for any integer c � dimX − 1.

4.1. Triangulations and Coverings. — A strongly convex rational polyhedral
cone σ ⊂ NR � R2 of dimension 2 gives an affine toric surface Xσ with a unique
singular point (= the fixed point of the torus action). To resolve this singularity,
we noted in Section 2.2 that one can do this using the Hilbert basis of σ ∩M , since
subdividing σ using rays through the points of its Hilbert basis gives the minimal
resolution of Xσ.

For a polytopal semigroup algebra k[P ], the Hilbert basis of the semigroup can
be identified with the lattice points of P . Hence, to generalize the above paragaph,
we could use a unimodular (or basic) lattice triangulation, as defined in Section 2.3.
If such a triangulation exists, it automatically implies that the polytope is normal.
However, we noted in Section 2.3 that such triangulations don’t always exist. For-
tunately, for normality, we don’t need the unimodular simplices to triangulate P—if
P is simply a union of unimodular simplices, then P is normal. In this case, we say
that P is covered by unimodular lattice simplices. This leads to the question can all
normal polytopes be covered by unimodular lattice simplices?

Bruns and Gubeladze use this question to introduce the material of [74, Sec. 3],
which studies the relation between covering and normality in detail. One of the high
points is the description (based on the paper [69] of Bruns and Gubeladze) of a
counterexample to the existence of unimodular coverings. They also consider some
variants of the unimodular covering property.

4.2. Automorphisms and Retractions. — In [72], Bruns and Gubeladze study
the graded automorphisms of a polytopal semigroup algebra k[P ]. For them, the mo-
tivating example is the standard (n−1)-simplex Conv(e1, . . . , en). The corresponding
polytopal semigroup ring is k[x1, . . . , xn], which has GL(n, k) as its group of graded
automorphisms. In beginning linear algebra, one learns that an element of GL(n, k)
is a product of elementary matrices, which include:
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– permutations matrices (coming from symmetries of the (n− 1)-simplex);
– diagonal matrices (coming from the torus); and
– elementary matrices which add a multiple of one row to another.

The paper [72] explains how this generalizes to a polytopal semigroup algebra k[P ].
The reader should note that algebra automorphisms arise naturally in the theory

of toric varieties. For example, when X is simplicial, its automorphism group Aut(X)
is related to algebra automorphisms as follows. Let S be the homogeneous coordinate
ring of X and let X = (kΣ(1) �V(B))/G be the quotient presentation (0.2). Then the
group Autg(S) of graded automorphisms of S contains G is a normal subgroup, and
Cox [89] shows that Autg(S)/G is naturally isomorphic to the connected component of
the identity of Aut(X). Then one gets the full automorphism group using symmetries
of the fan ofX . (We should mention that Demazure’s description of the automorphism
group of a smooth complete toric varietyX was extended by Cox [89] to the simplicial
case and by Bühler [80] to the general case.)

In [74, Sec. 5], Bruns and Gubeladze describe the automorphisms of polytopal
semigroup algebras and explain the relation to automorphisms of toric varieties of
their results. The proofs use the divisor theory from [74, Sec. 4], which first appeared
in their paper [72] (with further developments in [67]).

Another topic of [74, Sec. 5] concerns retractions, which are graded algebra endo-
morphisms ϕ : k[P ] → k[P ] with the property that ϕ2 = ϕ. In linear algebra, such
an endomorphism ϕ : V → V of a vector space induces a decomposition

(4.1) V = ker(ϕ) ⊕ im(ϕ).

Is the same true for a retraction ϕ : k[P ] → k[P ]? Consider the following example.
Suppose that P ⊂ Rn and Q ⊂ Rm are lattice polytopes, and let PQ ⊂ Rn+m+1 be
their join (so PQ is the union of all line segments joining a point of P to a point of
Q). In this situation, one easily sees that

(4.2) k[PQ] � k[P ]⊗kk[Q].

Then tensoring the obvious maps k[P ] → k → k[P ] with the identity on k[Q] gives
a retraction ϕ : k[PQ] → k[PQ] such that the analog of (4.1) is (4.2). To see the
analogy, remember the natural isomorphism of symmetric algebras

Sym(V1 ⊕ V2) � Sym(V1)⊗kSym(V2).

Retractions are studied by Bruns and Gubeladze in [73], where they present two
conjectures about the structure of retractions, together with supporting evidence in
special cases. All of this is covered in [74, Sec. 5].

The final topic of [74, Sec. 5] concerns the structure of graded k-algebra homor-
phisms between polytopal semigroup algebras. This material is based on the authors’
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paper [71], which discusses a general conjecture for the structure of these homomor-
phisms. The results for automorphisms and retractions mentioned can be viewed as
confirmation of a refined version of special cases of this conjecture.

We should also mention that in [68, 70], Bruns and Gubeladze apply these ideas
to K-theory to define what the authors call higher polyhedral K-groups. Also, in [133],
Gubeladze studies the usual higher K-groups of various semigroup algebras.

5. Quotients and Embeddings

The paper in this volume by Jürgen Hausen [140] brings together ideas dealing
with quotients of toric varieties and embeddings into toric varieties. We begin by
discussing these topics separately. In this section we will work over k = C.

5.1. Quotients of Toric Varieties. — Given a subtorusH of the torus T of a toric
varietyX , one can ask for the quotientX//H . The most basic notion of quotient is that
of categorical quotient π : X → X//H , meaning that any morphism X → Y which is
constant on H-orbits factors through π. On the other hand, if π : X → X//H is affine
and satisfies OX//H � (π∗OX)H , then we call π a good quotient. These definitions
come from Mumford’s Geometric Invariant Theory (GIT), which is where the modern
study of quotients began. GIT seeks to construct projective good quotients and,
failing this, to describe maximal open subsets where such quotients exist. In general,
the existence of quotients is quite subtle.

In the toric situation described above, A’Campo-Neuen and Hausen [11] study
the existence of good quotients by first constructing a toric quotient, which is a
categorical quotient in the category of toric varieties and toric morphisms. This toric
quotient need not be a good quotient, but the authors construct an H-equivariant
toric morphism X → X such that X//H is a good quotient and coincides with the
toric quotient X//H .

The quotients of greatest interest are often projective or quasi-projective. When X
is quasi-projective, the same need not be true for the toric quotient X//H . A’Campo-
Neuen and Hausen define in [9] the quasi-projective reduction Y r of a toric variety
Y (for example, the 3-dimensional complete non-projective toric variety described in
[121, p. 71] has trivial quasi-projective reduction). Then the authors show that X
has a quotient by H in the category of quasi-projective varieties if and only if the
composed map X → X//H → (X//H)r is surjective, in which case (X//H)r is the
quotient.

In a related paper [7], A’Campo-Neuen studies when the toric quotient X//H is a
categorical quotient (for all varieties). She shows that if every curve in X//H is the
image of a curve in X and dimX//H = dimX − dimH , then X//H is a categorical
quotient. Furthermore, if the fan of X has convex support, then she shows that X//H
is a categorical quotient.
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One of the tools used in [7] is the notion of a toric prevariety, which is a non-
separated toric variety. Toric prevarieties were used by WAlodarczyk in 1993, but their
systematic study began with the paper [12] by A’Campo-Neuen and Hausen. In the
non-separated case, one has a finite index set I and a collection of fans Σij for i, j ∈ I
which satisfy the following two properties for all indices:

– Σij = Σji.
– Σij ∩ Σjk is a subfan of Σik.

The second item implies that Σij is a subfan of both Σii and Σjj . Then we get a toric
prevariety by gluing together XΣii and XΣjj along the open subvariety XΣij = XΣji .

In [12] the authors also study the notion of a good prequotient and give neces-
sary and sufficient conditions for the existence of a good prequotient. We should also
mention the related paper [8] by the same authors, which gives several examples to
illustrate the existence and non-existence of various sorts of quotients. In particu-
lar, they obtain an example of a toric variety acted on by a subtorus with a good
prequotient (as a toric prevariety) but without categorical quotient.

The paper [10] by A’Campo-Neuen and Hausen studies subtorus actions on di-
visorial toric varieties. A toric variety X is divisorial if for every x ∈ X there is
an effective Cartier divisor D such that X � Supp(D) is an affine neighborhood of
x. One can show that this condition is equivalent to assuming that X has enough
invariant effective Cartier divisors, as defined by Kajiwara [164]. When a subtorus
H acts on a divisorial toric variety X , the toric quotient X//H need not be diviso-
rial. The authors construct its divisorial reduction (X//H)dr and show that X has a
quotient by H in the category of divisorial varieties if and only if the composed map
X → X//H → (X//H)dr is surjective, in which case (X//H)dr is the quotient.

Good quotients of subtorus actions have been studied by other authors as well. For
example, Hamm [137] and Świȩcicka [227] independently discovered necessary and
sufficient conditions for the existence of a good quotient. An ambitious study of toric
quotients, which pays careful attention to the combinatorial aspects of the situation,
is due to Hu [149].

We should also mention that torus quotients play an important role in the study of
quotients by a reductive group G. BiaAlynicki-Birula and Świȩcicka [42] show that for
a normal variety X with an action by G, a good quotient X//G exists if and only if
there is a good quotient X//H for every 1-dimensional torus H ⊂ G. Also, in a series
of papers [41, 43, 226], these authors consider study G-actions where the goal is to
find maximal open subsets on which a good quotient exists. One of their ideas is to
restrict to the maximal torus. Note that quotients of affine or projective spaces by
tori are toric varieties. This work is used in the results discussed in Section 5.3.

5.2. Embeddings into Toric Varieties. — It is well known that a variety X can
be embedded into projective space if and only if every finite subset of X lies in an
affine open. In 1993, WAlodarczyk [237] proved the surprising result that any normal

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



18 D.A. COX

variety X can be embedded into a toric variety if and only if every two-element subset
of X lies in an affine open. A variety satisfying the latter condition is said to be A2.
WAlodarczyk also showed that if we drop the A2 condition, then every normal variety
can be embedded into a toric prevariety. This is the context in which toric prevarieties
were first introduced.

In [139], Hausen gives an C∗-equivariant version of the embedding theorem into
prevarieties. He also shows that if the normal variety is Q-factorial, then the toric
prevariety can be chosen to be simplicial and of affine intersection. (The latter con-
dition means that the intersection of two affine open subsets is affine.) Furthermore,
Hausen and Schröer [141] show that there are normal surfaces with 2 non-Q-factorial
points which are neither embeddable into a simplicial toric prevariety nor into a toric
prevariety of affine intersection.

Hausen’s paper [138] next studies what happens if one drops the normality hy-
pothesis. One of the main results is that an irreducible variety X is divisorial if and
only if X can be embedded into a smooth toric prevariety of affine intersection. Then
define X to be 2-divisorial if for every x, y ∈ X there is an effective Cartier divisor
D such that X � Supp(D) is an affine open subset containing x and y. In this situa-
tion, Hausen proves that an irreducible variety is 2-divisorial if and only if X can be
embedded into a smooth toric variety. He also provides equivariant versions of these
results for actions by connected linear algebraic groups.

5.3. Quotients of Embeddings. — When we combine the ideas of quotients by
tori and embeddings into larger toric varieties, we get the question of whether a
quotient can be extended to an embedding. Here is the situation studied in [140]: we
have a Q-factorialA2-varietyX with an effective action by a torusH . A good quotient
X//H need not exist, but there are always nonempty open H-invariant subsets U ⊂ X
such that we have a good quotient U//H . On the other hand, one way to obtain a good
quotient would be to find an equivariant embedding X → Z where Z is a toric variety
and H becomes a subtorus of the torus of Z. Then, given any open H-invariant subset
W ⊂ Z for which a good quotient exists, it follows automatically that W ∩X is an
open subset of X for which a good quotient also exists. Hence it makes sense to ask
if all open U ⊂ X as above arise in this way. The following result of [140, Cor. 2.6]
answers this question.

Theorem 5.1. — Given H and X as above, there is a H-equivariant embedding into a
smooth toric variety Z on which H acts as a subtorus of the torus of Z such that every
maximal open set U ⊂ X having a good A2 quotient U//H is of the form U =W ∩X
for some toric open set W ⊂ Z with good quotient W//H.

We also note that [140, Sec. 1] is a useful review of good quotients of toric varieties
and [140, Appendix] is a nice survey of embedding theorems.
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6. Heights on Toric Varieties

The study of rational points on a variety X defined over a number field K is an
important part of Diophantine geometry. The paper in this volume by Yuri Tschinkel
[230] discusses how some of these ideas apply to toric varieties. The basic object of
interest is

N(X,L, B) = |{x ∈ X(K) : HL(x) � B}|,
which counts the number of K-rational points of height at most B. Here, L is a
(metrized) line bundle on X and HL is the height function described in [230]. The
main question of interest concerns the asymptotic behavior of N(X,L, B) as B → ∞.

A first observation is that the canonical divisor KX plays an important role. For
curves, the Mordell conjecture (proved by Faltings) says that a smooth curve of genus
g > 1 has at most finitely many rational points over a number field. Since the
canonical divisor of a curve C has degree 2g− 2, the inequality g > 1 is equivalent to
the ampleness of KC . In general, if you want a good supply of rational points on a
variety X , then the canonical divisor KX should be far from ample.

A second observation is that some subsets of X may have too many rational points.
This happens, for example, if you blow up a rational point on a variety. The excep-
tional fiber will be a projective space and hence will have lots of rational points. So to
best reflect what’s happening “in general” on X , one studies the asymptotic behavior
of N(U,L, B) for sufficiently small Zariski open subsets U ⊂ X .

6.1. Asymptotic Formulas. — One case of interest is a smooth Fano variety X ,
which as in Section 1.2 means that −KX is an ample divisor. If we consider the height
function HL constructed using L = O(−KX), then Manin conjectured that

(6.1) N(U,L, B) ∼ cB(logB)r−1,

where c is a constant, r is the rank of Pic(U), and U ⊂ X is a suitably small Zariski
open. This conjecture was verified for for generalized flag manifolds G/P by Franke,
Manin and Tschinkel [120]. Their proof uses the height zeta function

Z(s) =
∑

x∈G/P (K)

HL(x)−s.

The authors of [120] identify this with a Langlands-Eisenstein series for G/P , which
gives knowledge about the analytic continuation and poles of Z(s). From here, adelic
harmonic analysis and Tauberian theorems imply the desired asymptotic estimates.
In [230], Tschinkel explains how this strategy (minus the Langlands-Eisenstein part)
is now standard.

If one uses other line bundles besides L = O(−KX), one gets different asymptotic
results. The main theorem proved in [230] goes as follows.

Theorem 6.1. — Let L be a line bundle on a smooth toric variety X. If the class
L = [L] ∈ Pic(X) is in the interior of the cone of effective divisors, then for a suitable
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Zariski open subset U ⊂ X, there are constants Θ(U,L), a(L) and b(L) such that

N(U,L, B) ∼ Θ(U,L)
a(L)(b(L)− 1)!

Ba(L)(logB)b(L)−1.

This theorem says that a(L) and b(L) depend only on the divisor class of L and
are independent of U . When L is given by the anticanonical divisor, the theorem was
first proved by Batyrev and Tschinkel in [35]. Note that we do not assume that X is
Fano. However, the standard formula KX = −

∑
ρDρ for the canonical divisor of a

toric variety shows that the anticanonical class is in the interior of the cone of effective
divisors. In the terminology of Peyre [202], this means that X is almost Fano. (Note
that [202] contains some detailed examples of asymptotic formulas.)

6.2. Tamagawa Numbers. — When L = O(−KV ), the constant Θ(U,L) is very
interesting. As conjectured by Peyre, it is related to the Tamagawa number τ(X)
of X defined by Peyre in [203]. More precisely, when U is the torus of X , then in
[35], Batyrev and Tschinkel give the formula

(6.2) Θ(U,L) = α(X)β(X)τ(X),

where τ(X) is the above Tamagawa number, α(X) depends only on the geometry of
the cone of effective divisors, and β(X) is the cardinality of a certain Galois cohomol-
ogy group (to be described below).

Motivated by (6.2) and Peyre’s paper [203], Salberger [218] realized that one could
explain the factor β(X)τ(X) in terms of the Tamagawa number of the universal
torseur of the toric variety X . Salberger worked out this theory in great general-
ity, not just for toric varieties. Peyre independently defined Tamagawa numbers for
universal torseurs in [204]. We should also mention the paper [36] of Batyrev and
Tschinkel which defines Tamagawa numbers for a broad class of varieties (even for
certain singular ones) and discusses the relation to the minimal model program.

Finally, we should note that over an algebraically closed field k, we’ve already seen
the universal torseur of a smooth toric variety X . In general, if G is an algebraic
group, then (roughly speaking) a torseur is a morphism T → X of varieties such that
G acts freely on T with X as quotient, and it is universal if a certain classifying map
is the identity. (Careful definitions can be found in [218, Sec. 3 and 5].) If X is a
smooth toric variety over k, then the quotient representation (0.2) can be written

X =
(
kΣ(1) � V(B)

)
/G, G = Hom(Pic(X), k∗)

since An−1(X) = Pic(X) in the smooth case. Then one can show that the projection
map kΣ(1) � V(B) → X is the universal G-torseur. See [218, Sec. 8] for a proof.

6.3. Toric Varieties over Number Fields. — In earlier sections, we always
worked over an algebraically closed field k. Given the above discussion, we should say
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a few words about toric varieties over a number field K. Details can be found in the
papers of Salberger [218] and Tschinkel [230].

We begin by describing a torus over K. Given a lattice M � Zn, we get the split
torus (Gm,K)n = Spec(K[M ]). Then any other torus T over K comes from a Galois
representation G→ GL(M), where G = Gal(E/K) for some finite extension K ⊂ E.
In this situation, T ×KE � (Gm,E)n.

Then a toric variety over K is determined by the following data. The lattices M
andN are now G-modules, where G = Gal(E/K) as above. If the fan Σ is G-invariant
(meaning that γ ∈ G and σ ∈ Σ implies γ(σ) ∈ Σ), then there is a variety X defined
over K containing T such that the T -action extends to X and

X ×KE �
⋃
σ∈Σ

Xσ,E, Xσ,E = Spec(E[σ∨ ∩M ]).

In this notation, the constant β(X) discussed earlier is the cardinality of the coho-
mology group H1(G,Pic(X ×KE)). Also, when X is smooth, the construction of the
universal torseur mentioned above also works over the number field K, with some
obvious modifications (see [218, Sec. 8]).

7. Further Developments

Besides the papers mentioned above, there has been a lot of other interesting work
on toric varieties since our earlier survey [90] appeared 1996. We will now discuss
some of this work. For reasons of brevity, we will not mention the many interesting
papers dealing with:

– Mirror symmetry and Lagrangian torus fibrations.
– Gromov-Witten invariants and quantum cohomology.
– GKZ hypergeometric functions.
– Resultants, residues, and solutions of polynomial equations.
– Symplectic geometry and toric varieties.

The first two items are discussed in the book by Cox and Katz [91] and the third is
covered in the book by Saito, Sturmfels and Takayama [217]. Unfortunately, we are
not aware of any survey of current work on the last two items.

7.1. Toric Ideals. — In [223], Sturmfels surveys work up to 1995 on toric ideals IA.
One area of recent study concerns invariants related to the free resolution of IA. For
example, Hibi and Ohsugi [143] give a criterion for when the toric ideal of a graph
is generated by quadratic binomials. Syzygies of toric ideals have been studied by
Campillo and Gimenez [82] and Pisón-Casares and Vigneron-Tenorio [205], and the
regularity of a toric ideal has been computed—without knowing the free resolution—
by Briales-Morales and Pisón-Casares [58]. A recent paper in this area is [57] by
Briales-Morales, Campillo and Pisón-Casares.
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Given a sublattice L ⊂ Zn, the corresponding lattice ideal IL ⊂ k[x1, . . . , xn] is
IL = 〈xa − xb : a, b ∈ Nn, a − b ∈ L〉. Every toric ideal is a lattice ideal, but not
conversely. The minimal free resolution of a generic lattice ideal (suitably defined) is
described by Peeva and Sturmfels in [200], and in [201], the same authors study the
minimal free resolution of a codimension 2 lattice ideal. (There is also related work
by Gasharov and Peeva in codimension 2 [125] and in dimension 2 [124].)

Eisenbud and Sturmfels [114] proved (among many other things) that the primary
components of a binomial ideal are binomial. For lattice ideals, the primary decom-
position has been studied further by Hoşten and Shapiro [147], and the associated
primes of their initial ideals have been studied by Hoşten and Thomas [148] and
Altmann [17].

Monomial ideals also play an important role here. For example, the resolution
described in [200] is constructed using the Scarf resolution of a reverse lexicographic
initial ideal of the lattice ideal. Other papers dealing with resolutions of monomial
ideals are [37, 39, 188, 225]. Also, the book [232] by Villarreal discusses mono-
mial ideals and their relation to affine toric varieties. An interesting monomial ideal
introduced by Hoşten and Maclagan [146] encodes the vertices of all fibers of a lattice.

We should also mention one special type of lattice ideal called a Lawrence ideal.
For example, if X is a toric variety with homogeneous coordinate ring S, then the
ideal of the diagonal of X ×kX is a Lawrence ideal in S ⊗k S. The minimal free
resolution of a unimodular Lawrence ideal is described in [38].

Finally, given a toric ideal IA, one can study the set of all ideals which have the
same multigraded Hilbert function as IA. This leads to the notion of the toric Hilbert
scheme HA, first introduced by Peeva and Stillman [199] (though inspired by earlier
work of Arnold, Sturmfels and others—see [199] for references). As a scheme, HA
is a union of irreducible components, each of which is a toric variety. When IA has
codimension 2, the results of Gasharov and Peeva [125] imply that HA is irreducible.
In general, it is an open question whether HA is connected. This question is studied
by Maclagan and Thomas in [174], and Macaulay2 algorithms for computing HA
are described by Stillman, Sturmfels and Thomas in [222]. Also, the paper [198] by
Peeva and Stillman gives local equations for HA.

7.2. Generalizations of homogeneous coordinates. — The quotient represen-
tation (0.2) shows that any toric variety is a categorical quotient of an (k∗)Σ(1)-stable
open subset of kΣ(1). This has been generalized in a variety of ways. For example,
Hamm [137] shows that any toric variety is a very good quotient of such an open
subset. More generally, A’Campo-Neuen, Hausen and Schröer [13] study quotient
representations of toric varieties, which are affine surjective toric morphisms X̂ → X

such that X̂ is quasiaffine and X̂ and X have the same invariant Weil divisors. Also,
Hu and Keel [151] consider a “Mori dream space”, which is a projective variety X
with the property that under Mori equivalence, the cone of effective divisors on X
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decomposes into polyhedral chambers in a suitably nice way. This leads to a represen-
tation of X as a GIT quotient of an affine variety by a torus, which reduces to (0.2)
for a simplicial projective toric variety. Every rational contraction of a Mori dream
space comes from GIT and all possible factorizations of a rational contraction can be
read off from the chamber decomposition.

7.3. Alterations, Weak Resolutions, and Semi-Stable Reductions. — In
1995, de Jong [105] proved that every variety X has a smooth alteration π : X̃ → X ,
meaning that X̃ is smooth and π is proper, surjective, and generically finite. The
important feature of this result is that it applies in arbitrary characteristic, in contrast
to Hironaka’s resolution of singularities, which was proved only in characteristic 0.
As reported in our earlier survey [90], this quickly led to the work of Abramovich
and de Jong [1] and Bogomolov and Pantev [44] on weak resolution of singularities in
characteristic 0. A weak resolution of X is a proper birational morphism π : X̃ → X

such that X̃ is smooth and the inverse image ofXsing is a divisor with normal crossings,
though π need not be an isomorphism overX�Xsing. The interesting feature of [1, 44]
is that in addition to de Jong’s results, both papers use the toroidal embeddings of
Kempf, Knudsen, Mumford and Saint Donat [167].

The recent survey [3] by Abramovich and Oort includes numerous references and
sketches the proofs of the major results in this area. Their paper appears in the 2000
book [142], which includes other interesting applications of alterations. This volume
also contains the paper [126] by Goldin and Teissier, which uses toric morphisms to
resolve singularities of plane analytic branches. A generalization of their method to
the case of quasi-ordinary singularities appears in the thesis of González Pérez [129].
Part of this has been published in [130].

There has also been interesting work on semi-stable reduction, which was proved
for a one-dimensional base in [167]. In [105], de Jong does semi-stable reduction for
families of curves, which plays an important role in his work on alterations as well as in
the papers on weak resolution cited above. Going beyond this, Abramovich and Karu
[2] prove the existence of weak semi-stable reduction in characteristic 0. Furthermore,
the analysis of triangulations done by Abramovich and Rojas in [4] implies that the
reduction morphism constructed in [2] is semi-stable in codimension 1. We should
also note that Karu [166] has proved semi-stable reduction in characteristic 0 for
families of surfaces and 3-folds.

7.4. Factorization of Birational Maps. — In the middle 1990s, Morelli [189]
and WAlodarczyk [235] proved that a proper equivariant birational map between
smooth toric varieties factors into a sequence of smooth toric blow-ups and blow-
downs. This is called a weak factorization since the blowups and blowdowns can
occur in any order. Morelli also claimed strong factorization, where all of the blowups
occur first.
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Using a toroidal version of Morelli’s arguments, this was extended by WAlodarczyrk
[236, 238] and Abramovich, Karu, Matsuki andWAlodarczyrk [6] to weak factorization
of birational maps between smooth varieties in characteristic 0. (The paper [236] did
the case of quasi-smooth centers and introduced the Morelli-WAlodarczyrk cobordisms
which were mentioned in Wísniewski’s lectures [234, Lec. 3] at the end of Section 1.1.)
However, gaps were noticed in Morelli’s proof of π-desingularization, which were filled
by Abramovich, Matsuki and Rashid in [5]. Unfortunately, as noted by Matsuki in
[179], the strong factorization in the toric case claimed in [5] is still an open problem,
even in dimension 3. For more details, we refer the reader to Bonavero’s Seminar
Bourbaki lecture [46] and the very complete lecture notes of Matsuki [178].

In related work, Hu and Keel [150] have a different proof of WAlodarczyrk’s version
of weak factorization with quasi-smooth centers. Also, the paper [85] by Casagrande
mentioned in Section 1.2 concerns factorization of birational maps between toric Fano
4-folds.

7.5. Toric Clusters. — In the early 20th century, Enriques and Chisini studied
plane curves passing through collections of infinitely near points in the plane with
assigned multiplicities. Zariski later recast this as the theory of complete ideals in
the local ring of a point in the plane. In higher dimensions, one gets a constellation,
which is a finite sequence of maps · · · → Xi+1 → Xi → · · · → X0 such that X0 is
smooth, X1 is the blow-up of Q0 ∈ X0, X2 is the blow-up of Q1 in the exceptional
locus of X1, and so on. If in addition we specify a multiplicity mi � 0 for each Qi,
then we have a cluster. In [84], Campillo, González-Sprinberg and Lejeune-Jalabert
encode the combinatorics of the constellation in an oriented graph which generalizes
what Enriques and Chisini did in the 2-dimensional case. They also define idealistic
clusters and show that they are related to certain complete ideals. In the toric case,
[84] contains a combinatorial description of toric clusters and a characterization of
toric idealistic clusters. In [132], González-Sprinberg and Pereyra extend the charac-
terization to all toric clusters, not just the idealistic ones. The survey paper [131] by
González-Sprinberg covers these and other topics, along with further references.

7.6. Cohomology of Toric Varieties. — Eisenbud, Mustaţǎ and Stillman con-
sider the cohomology of coherent sheaves on a toric variety X in [113]. Using the
homogeneous coordinate ring of X , the problem reduces to computing local cohomol-
ogy with supports in a monomial ideal, which in turn is a direct limit of Ext groups.
By using Mustaţǎ’s paper [190] and working with graded pieces, the authors reduce
the computation to finding a graded piece of a single Ext group. In [191], Mustaţǎ
uses these results to prove refined versions of the Kawamata-Viehweg vanishing the-
orem and Fujita’s conjecture in the toric case. The latter was proved earlier (also in
the toric case) by Laterveer in [172]. We should also mention the paper [194], where
Nikbakht-Tehrani considers the cohomology of toric varieties.
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7.7. Toric Nakai Criterion. — In [196, p. 86], Oda proves the toric Nakai cri-
terion, which states that a Cartier divisor D on a smooth complete toric variety is
ample if and only if D · C > 0 for every torus-invariant curve C ⊂ X . While many
experts knew that this criterion applied more generally, only recently did Mavlyutov
[184] and Mustaţǎ [191] independently publish proofs that the toric Nakai criterion
holds for all complete toric varieties, not just smooth ones.

7.8. Cohomology of Toric Hypersurfaces. — The cohomology of an ample toric
hypersurface in a simplicial toric variety was studied by Batyrev and Cox [31]. These
results were generalized to the semiample case by Mavlyutov [184, 185], who also
worked out formulas for cup product. This led to a generalization of the monomial-
divisor mirror map in mirror symmetry. The papers [184, 185] also include a careful
study of semiample divisors. In a related paper [183], Mavlyutov describes the chiral
ring of a Calabi-Yau toric hypersurface.

7.9. Stringy Hodge Numbers and Orbifold Cohomology. — String-theoretic
Hodge numbers were introduced by Batyrev and Dais in [33] to give the desired equal-
ity of Hodge numbers for certain singular mirror pairs in mirror symmetry. Batyrev
[30] gave a different definition, calling them stringy Hodge numbers hp,qst . The intro-
ductions to these papers explain why the usual Hodge numbers hp,q don’t work. For
complete intersections in toric varieties, these numbers were computed by Batyrev
and L. Borisov in [32].

Stringy Hodge numbers are defined when X has finite quotient singularities or
Gorenstein toric singularities. In [30], Batyrev shows that if such an X has a crepant
resolution X̃ → X , then

(7.1) hp,q(X̃) = hp,qst (X).

These numbers also arise when considering the stringy (or physicists) Euler num-
ber. If a finite group G acts on a smooth variety M such that KM is G-invariant,
then X =M/G is Gorenstein, and its stringy Euler number is

est(X) =
1
|G|

∑
gh=hg

e(Mg ∩Mh),

where e denotes the usual Euler number and Mg is the fixed point locus of g ∈ G.
This number arose in string theory in the 1980s (see Reid [210] for references). A key
result is that if X̃ → X is a crepant resolution, then e(X̃) = est(X). This follows by
combining (7.1) with the result of Batyrev and Dais [33] that est(X) can be computed
using stringy Hodge numbers.

As explained by Batyrev and Dais [33] and Reid [210], stringy Euler numbers are
related to the McKay correspondence discussed in Section 3. Also, Dais and Roczen
[98] and Dais [95] compute the stringy Euler numbers of various singularities, and
Batyrev [29] defines stringy Euler numbers for log terminal pairs.
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A recent development is the definition of orbifold cohomology due to Chen and
Ruan [87]. The idea is to create cohomology groups whose Hodge numbers will be
the stringy Hodge numbers. A good survey can be found in Ruan [215], which includes
references and relations with quantum cohomology and mirror symmetry. In [207],
Poddar computes h1,1

orb and hn−2,1
orb for a hypersurface in a n-dimensional symplicial

Fano toric variety. Also, L. Borisov and Mavlyutov [53] propose a definition of stringy
cohomology of a semiample anticanonical hypersurface in a simplicial toric variety.
Their definition depends on a parameter, which for a special value gives the definition
of Chen and Ruan. The paper [53] also discusses conditions under which the stringy
Hodge numbers defined in [33] and [30] coincide.

7.10. Intersection Cohomology. — The intersection cohomology of toric vari-
eties was described in 1991. In [154], Ishida describes the intersection complex of a
toric variety (for any perversity) in terms of its fan, and for middle perversity, the
author derives a decomposition which allows him to give a new proof of McMullen’s
conjecture for the h-vector of a simplicial polytope (as described by Fulton in [121,
Ch. 5]). There is also the work of Timorin [229], who studies an analog of Hard Lef-
schetz for polytopes such that each facet contains at most one nonsimple vertex and
each edge is incident to exactly d−1 facets, where d is the dimension of the polytope.
In a different direction, a face F of a rational polytope P gives toric varieties XF

and XP . In [55], Braden and MacPherson study the relation between the intersection
homologies of XF and XP . They use this to prove a combinatorial conjecture of Kalai
for rational polytopes.

The equivariant intersection cohomology of a toric variety is described by Barthel,
Brasselet, Fiesler and Kaup in [23]. The authors use sheaves on a finite topological
space determined by the fan, which allows them to introduce “virtual” intersection
cohomology for equivariant non-rational fans. In [24], the same authors prove the
Kalai conjecture mentioned above as well as Hard Lefschetz for the combinatorial
intersection cohomology of a polytopal fan which satisfies a certain vanishing con-
dition. A somewhat similar approach to combinatorial intersection cohomology is
due to Bressler and Lunts [56], drawing on ideas introduced by Bernstein and Lunts
in [40]. In both [24] and [56], the major open problem is whether Hard Lefschetz
holds for all non-rational fans. There is also the work of Fine [117, 118, 119] who
defines new intersection homology groups (“local-global” intersection homology) and
the 1996 paper [25] of Barthel and Fiesler which investigates which Betti numbers of
a non-simplicial toric variety are combinatorial invariants of the fan.

7.11. The Polytope Algebra and Equivariant Chow Groups. — The poly-
tope algebra over an ordered field K was introduced by McMullen [187] and related
to toric varieties by Fulton and Sturmfels [122] when K = Q. In [61], Brion intro-
duces a new approach to studying the polytope algebra over Q which relates it to the
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equivariant cohomology of toric varieties, and in [63] he proves a structure theorem
for the polytope algebra when K is a subfield of R.

The equivariant approach is also used by Brion and Vergne in their paper [64] on
the equivariant Riemann-Roch theorem for complete simplicial toric varieties. They
use this to extend previous results on counting lattice points in polytopes, including a
version of the Euler-Maclaurin formula for lattice polytopes. In [60], Brion discusses
the algebraic equivariant Chow groups of Edidin and Graham [111] for torus actions
and computes these groups for simplicial toric varieties. The papers [65, 66] of Brion
and Vergne use non-toric methods to study lattice points in integer and rational
polytopes. For a survey of toric and non-toric methods of counting lattice points in
polytopes, the reader should consult the paper [26] by Barvinok and Pommersheim.
Pommersheim’s paper [206] is also relevant.

7.12. K-theory and Topology. — An open question concerns the two flavors of
K-theory, one computed using vector bundles and the other using coherent sheaves.
These coincide for quasi-projective smooth varieties and are conjectured to be the
same for quasi-projective orbifolds after tensoring with Q. Edidin and Laterveer [112]
claim to prove this for simplicial quasi-projective toric varieties, though it appears
that their argument has a gap. Also, the equivariant K-theory of toric varieties is
studied by Vezzosi and Vistoli in [231] and their KO-theory is computed by Bahri
and Bendersky in [22].

In topology, there is a generalization of smooth toric varieties called toric manifolds
due to Davis and Januszkiewicz [104]. In [79], Buchstaber and Ray show that toric
manifolds generate the complex cobordism ring. In [77, 78], Buchstaber and Panov
study toric manifolds, and in [197], Panov computes the χy-genus of a toric mani-
fold. Also, Battaglia and Prato [27] study complex quasifolds, which are (possibly
non-Hausdorff) topological spaces associated to simple polytopes. Finally, a unitary
generalization of toric varieties is considered by Masuda [176].

7.13. Toric Fibrations. — In toric geometry, there is a well-defined notion of a
equivariant toric fibration—see, for example, [196, p. 58] in Oda. These have been
used in classify toric varieties of low dimension [196, p. 59]. However, in mirror
symmetry, one encounters slightly different notions of what a toric fibration means.
For example, Kreuzer and Skarke [168, 171] have studied the classification of low
dimension toric fibrations coming from reflexive polytopes. For them, a toric fibration
means having a subfan Σ′ ⊂ Σ whose support is a subspace N ′

R ⊂ NR such that the
image of Σ in (N/N ′)R is a fan. In a slightly different direction, Hu, Liu and Yau
[152] define a toric fibration to be a surjective morphism of toric varieties X → X ′

coming from a map of fans with the property that all components of all fibers have
the same dimension. This paper also includes a careful study of toric morphisms.
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7.14. Degenerations to Toric Varieties. — In [91, 12.2.9], Cox and Katz survey
work about how a Grassmannian and other flag varieties can degenerate to a toric
variety. This has implications for mirror symmetry. One paper not mentioned in [91]
is [128] by Gonciulea and Lakshmibai.

In an earlier paper [127], the same authors show that Kempf varieties in
SL(n,C)/B and Schubert varieties in a minuscule G/P also degenerate to toric
varieties. This line of thought was pursued by Dehy and Yu [106, 107] who show
that many other Schubert varieties in SL(n,C)/B degenerate to toric varieties. The
most general result in this area is due to Caldero [81], who proves that if G is a
semisimple algebraic group over C, then every Schubert variety in G/B degenerates
to a toric variety.

7.15. Characteristic p. — Using the fact the Frobenius morphism of a toric vari-
ety in characteristic p lifts to p2, Buch, Thomsen, Lauritzen and Mehta [76] prove the
Bott vanishing theorem for all toric varieties (previously known only in the simplicial
case) and the degeneration of the Danilov spectral sequence. Also, if L is a line bundle
on a smooth toric variety over an algebraically closed field of characteristic p, then
F∗L, where F is the Frobenius morphism, is a direct sum of line bundles. This was
proved independently by Bøgvad [45] and Thomsen [228].

7.16. Toric Varieties and Modular Forms. — In [52], L. Borisov and Gunnells
show how to construct modular forms (with character) of level @ using a piecewise
linear function on the cones of a complete rational polyhedral fan. The resulting mod-
ular forms are stable under the action of Hecke operators and the Fricke involution
and are related to products of logarithmic derivatives of theta functions with charac-
teristic. In [51], the authors show that modulo Eisenstein series, the weight two toric
forms coincide exactly with the vector space generated by all cusp eigenforms f such
that L(f, 1) �= 0. A survey of more recent work of L. Borisov, Gunnells and Popescu
can be found in [135].

7.17. Shokurov’s Conjecture. — In 1997, Shokurov [221] conjectured that if
we have a projective log variety (X,D), D =

∑
diDi, with KX + D numerically

trivial and at worst log canonical singularities, then
∑
di � rankNS(X) + dim(X).

Furthermore, equality should hold if and only if X is a toric variety and the Di are the
torus-invariant divisors on X . Shokurov proved this for surfaces and then Prohkorov
[208] proved a special case in dimension 3.

7.18. Other Results of Interest. — Here is a selection of some of the many
interesting papers dealing with toric varieties:

– In [18], Altmann computes the torsion submodule of Ω1
Y , where Y is any affine

toric variety.
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– In [62], Brion characterizes rationally smooth points on a variety with a torus
action. Although not mentioned in [62], this implies the “folklore” result that a
toric variety is an orbifold (i.e., has at worst finite quotient singularities) if and
only if its fan is simplicial.

– In [83], Campillo, Grabowski and Müller study when a non-normal affine toric
variety is determined by the Lie algebra of derivations of its coordinate ring.

– In [108], DiRocco studies k-jet ample line bundles on smooth toric varieties.
The key tool is the notion of a k-convex support function.

– In [109], DiRocco and Sommese obtain strong lower bounds for the Chern num-
bers of ample vector bundles E on smooth projective toric surfaces.

– In [110], Druel shows that the only toric varieties with a contact structure (hence
of odd dimension) are P2n+1 and the projectivized tangent bundle of (P1)n+1.

– In [115], Elizondo shows that for a Cartier divisor on a complete toric variety,
the ring of global sections of multiples of the line bundle associated to the divisor
is finitely generated.

– In [123], Garoufalidis and Pommersheim relate special values of zeta functions
to invariants of toric varieties and generalized Dedekind sums. The Todd class
of a toric variety is used to give new formulas for the zeta function of a real
quadratic field at nonpositive integers.

– In [136], Halic describes a compactification of the space of morphisms from a
smooth projective curve to a smooth projective toric variety representing a fixed
homology class.

– In [144], Hille shows that certain moduli spaces of quivers are toric varieties
and describes the fan explicitly. In a follow-up paper [19], Hille and Altmann
study the universal bundle over this moduli space.

– In [145], Hoşten verifies a conjecture of Batyrev by constructing a smooth poly-
tope whose normal fan has a very large number of primitive collections.

– In [153], Huber and Thomas describe an algorithm for computing the Gröbner
fan of a toric ideal.

– In [165], Kajiwara and Nakayama show that for an r-dimensional complete toric
variety over a finite field k, the l-adic cohomology group Hm(X ⊗kk,Ql) is of
pure weight if m = 0, 1, 2, 3, 2r− 3, 2r − 2, 2r − 1, 2r.

– In [173], Liu and Yau study the splitting type of equivariant vector bundles on
smooth toric varieties. They show by example that the tangent bundle does not
always have a splitting type.

– In [177], Materov computes the global sections of the sheaf Ωp
X(D) of Zariski

p-forms twisted by an ample divisor D on a complete simplicial toric variety X .
The answer involves a generalization of the Ehrhart polynomial.
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– In [182], Mavlyutov uses the Cayley trick to study the cohomology of complete
intersections in toric varieties.

– In [192], Mustaţǎ, Smith, Tsai and Walther study D-modules on smooth toric
varieties algebraically using the ring of differential operators on the homogeneous
coordinate ring of the toric variety.

– In [195], Occhetta and Wísniewski show that if we have a surjective mapX → Y

where X is a complete toric variety and Y is a smooth projective variety with
Picard number one, then Y � Pn.

– In [213], Reyes, Villarreal and Zárate study when kn → V(IA) ⊂ k� is onto,
where IA is the toric ideal (0.4) and k is an arbitrary field.

– In [216], Russell studies certain toric varieties which arise naturally when study-
ing the subscheme of Hilbd(k[[x1, . . . , xn]]) parametrizing subschemes isomor-
phic to k[[x1, . . . , xn]]/I, where I is a fixed monomial ideal of colength d.

– In [219], Sankaran investigate the possibility of embedding minimal abelian
surfaces in smooth toric 4-folds with Picard number two. See also [163].
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presentations for toric varieties, preprint, 2000; math.AG/0005083.

[14] S. Aguzzoli and D. Mundici, An algorithmic desingularization of 3-dimensional toric
varieties, Tohoku Math. J. 46 (1994), 557–572.

[15] K. Altmann, One-parameter families containing three-dimensional toric Gorenstein
singularities, in Explicit Birational Geometry of 3-Folds (A. Corti and M. Reid, edi-
tors), London Math. Soc. Lecture Notes Ser. 281, Cambridge Univ. Press, Cambridge,
2000, 21–50; alg-geom/9609006.

[16] K. Altmann, Singularities arising from lattice polytopes, in Singularity Theory (Liver-
pool, 1996) (B. Bruce and D. Mond, editors), London Math. Soc. Lecture Note Ser.
263, Cambridge Univ. Press, Cambridge, 1999, 1–23.

[17] K. Altmann, The chain property for the associated primes of A-graded ideals, Math.
Res. Lett. 7 (2000), 565–575; math.AG/0004142.

[18] K. Altmann, Torsion of differentials on toric varieties, Semigroup Forum 53 (1996),
89–97.

[19] K. Altmann and L. Hille, A vanishing result for the universal bundle on a toric quiver
variety, preprint, 1997; alg-geom/9706008.

[20] K. Altmann and A. Sletsjøe, Andre-Quillen cohomology of monoid algebras, J. Algebra
210 (1998), 708-718; alg-geom/9611014.

[21] K. Altmann and D. van Straten, The polyhedral Hodge number h2,1 and vanishing of
obstructions, Tohoku Math. J. 52 (2000), 579–602; math.AG/9904034.

[22] A. Bahri and M. Bendersky, The Ko-theory of toric manifolds, Trans. Amer. Math.
Soc. 352 (2000), 1191–1202; math.AT/9904087.

[23] G. Barthel, J.-P. Brasselet, K.-H. Fieseler and L. Kaup, Equivariant intersection coho-
mology of toric varieties, in Algebraic geometry: Hirzebruch 70 (P. Pragacz, M. Szurek
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



32 D.A. COX

[31] V. Batyrev and D. Cox, On the Hodge structure of projective hypersurfaces in toric
varieties, Duke Math. J. 75 (1994), 293–338; alg-geom/9306011.

[32] V. Batyrev and L. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent.
Math. 126 (1996), 183–203; alg-geom/9509009.

[33] V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge num-
bers and mirror symmetry, Topology 35 (1996), 901–929; alg-geom/9410001.

[34] V. Batyrev and E. Selivanova, Einstein-Kähler metrics on symmetric toric Fano man-
ifolds, J. Reine Angew. Math. 512 (1999), 225–236; math.AG/9901001.

[35] V. Batyrev and Y. Tschinkel,Manin’s conjecture for toric varieties, J. Algebraic Geom.
7 (1998), 15–53; alg-geom/9510014.

[36] V. Batyrev and Y. Tschinkel, Tamagawa numbers of polarized algebraic varieties, in
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Astérisque 251 (1998), 299–340; alg-geom/9712002.

[37] D. Bayer, I. Peeva and B. Sturmfels, Monomial resolutions, Math. Res. Lett. 5 (1998),
31–46; alg-geom/9610012.

[38] D. Bayer, S. Popescu and B. Sturmfels, Syzygies of unimodular Lawrence ideals, J.
Reine Angew. Math. 534 (2001), 169–186; math.AG/9912247.

[39] D. Bayer and B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew.
Math. 502 (1998), 123–140; alg-geom/9711023.

[40] J. Bernstein and V. Lunts, Equivariant sheaves on toric varieties, Compositio Math.
96 (1995), 63–83.
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