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PRODUCING GOOD QUOTIENTS BY EMBEDDING INTO
TORIC VARIETIES

by

Jürgen Hausen

Abstract. — Let an algebraic torus T act effectively on a Q-factorial algebraic variety
X. Suppose that X has the A2-property, that means any two points of X admit a
common affine open neighbourhood inX. We prove the following embedding theorem:
Let U1, . . . , Ur ⊂ X be T -invariant open subsets with good quotients Ui → Ui//T such
that the Ui//T are A2-varieties. Then there exists a T -equivariant closed embedding
X ↪→ Z into a smooth toric variety Z on which T acts as a subtorus of the big torus

such that each Ui is of the form Ui = Wi ∩ X with a toric open subset Wi ⊂ Z
admitting a good quotient Wi → Wi//T . This result applies in particular to the
family of open subsets U ⊂ X that are maximal with respect to saturated inclusion
among all open subsets admitting a good A2-quotient space. In the appendix to
this article we survey some general results on embeddings into toric varieties and
prevarieties.

Introduction

This article deals with toric varieties as ambient spaces in algebraic geometry. We
consider actions of algebraic tori T on a Q-factorial (e.g. smooth) algebraic variety X
and show that the problem of constructing good quotients for such an action extends
to a purely toric problem of a suitable ambient toric variety of X , provided of course
that X and the quotient varieties in question are embeddable into toric varieties.

Let us recall the basic notions and some background. A good quotient for the action
of an algebraic torus T on a varietyX is a T -invariant affine regular map p : X → X//T

such that the natural homomorphism OX//T → p∗(OX)T is an isomorphism. In
general, the wholeX need not admit a good quotient, but there always exist nonempty
open T -invariant subsets U ⊂ X with a good quotient U → U//T . It is one of the
central problems in Geometric Invariant Theory to describe or even to construct all
these open subsets.
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194 J. HAUSEN

In the special case of toric varieties the above problem can be solved: Let Z be a
toric variety, and let T be a subtorus of the big torus TZ ⊂ Z. The description of Z
in terms of its fan allows to figure out explicitly all the toric open W ⊂ Z admitting
a good quotient W →W//T , see [9], [18] and also Section 1. Moreover, every further
open subset of Z admitting a good quotient by the action of T occurs as a saturated
subset of one of these W . A different but also combinatorial approach for Z = Pn is
presented in [3].

We shall show that in principle the general problem of constructing good quotients
for torus actions can be reduced to the toric setting by means of embedding. Of
course, in this approach one has to restrict oneself to embeddable spaces. In view
of W2lodarczyk’s theorem [20], this amounts to considering spaces Y with the A2-
property: Any two points of Y admit a common affine open neighbourhood in Y .
Our main result is the following, see Theorem 2.4:

Theorem. — Let an algebraic torus T act effectively on a Q-factorial A2-variety X,
and suppose that the T -invariant open subsets U1, . . . , Ur ⊂ X admit good quotients
Ui → Ui//T with A2-varieties Ui//T . Then there exists a T -equivariant closed embed-
ding X ↪→ Z into a smooth toric variety Z on which T acts as a subtorus of the big
torus such that each Ui is of the form Ui =Wi ∩X with a toric open subset Wi ⊂ Z
admitting a good quotient Wi →Wi//T .

This applies to the general problem: It suffices to consider the (T, 2)-maximal
subsets of a given T -variety X , i.e., the invariant open subsets U ⊂ X that admit a
good quotient with an A2-variety U//T and do not occur as a saturated subset of some
properly larger U ′ having the same properties. Świȩcicka showed that the family of all
(T, 2)-maximal subsets of X is finite [19]. Consequently, we obtain, see Corollary 2.6:

Corollary. — Let an algebraic torus T act effectively on a Q-factorial A2-variety X.
Then there exists a T -equivariant closed embedding X ↪→ Z into a smooth toric variety
Z on which T acts as a subtorus of the big torus such that every (T, 2)-maximal open
U ⊂ X is of the form U =W ∩X with a toric open subset W ⊂ Z admitting a good
quotient W →W//T .

Note that this generalizes the following result due to Świȩcicka [19]: If the torus
T acts on a smooth projective variety X with Pic(X) = Z and U ⊂ X is (T, 2)-
maximal, then there is a T -equivariant embedding X ⊂ Pn such that U = W ∩ X
with a (T, 2)-maximal and hence Tn-invariant W ⊂ Pn.

The present article is organized as follows: In Section 1 we introduce the basic
notions and discuss some known results on good quotients for toric varieties. Section 2
is devoted to giving the precise formulation of our main result. In Section 3 we provide
the techniques for the proof of our main result which is performed in Section 4. Finally,
in the appendix, we survey some general results on embeddings into toric varieties
and prevarieties.
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1. Good quotients of toric varieties

In this section we discuss some well-known results on good quotients for subtorus
actions on toric varieties. As we shall need this later, we perform our fixing of termi-
nology in the more general setting of possibly non separated prevarieties.

Throughout the whole article we work over an algebraically closed field K. A toric
prevariety is a normal (algebraic) prevariety X (over K) together with an algebraic
torus TX ⊂ X such that TX is open in X and a regular action TX × X → X that
extends the group structure of TX ⊂ X . We refer to TX ⊂ X as the big torus of X .
A toric variety is a separated toric prevariety.

A toric morphism of two toric prevarieties X,X ′ is a regular map f : X → X ′ that
restricts to a group homomorphism ϕ : TX → TX′ of the respective big tori satisfying
f(t·x) = ϕ(t)·x for all (t, x) ∈ T ×X . Similarly to the separated case, the category
of toric prevarieties can be described by certain combinatorial data, see [1].

A good prequotient for a regular action G × X → X of a reductive group on a
prevariety X is a G-invariant affine regular map p : X → X//G of prevarieties such
that the canonical map OX//G → p∗(OX)G is an isomorphism. A good prequotient
p : X → X//G is called geometric, if it separates orbits. If both spaces X and X//G
are separated, then we speak of a good or a geometric quotient.

Now, let X be a toric prevariety. As announced above, we consider actions of
subtori T of the big torus TX ⊂ X . Concerning good prequotients of such subtorus
actions, the first observation is, see e.g. [1, Corollary 6.5]:

Remark 1.1. — If the action of T ⊂ TX has a good prequotient p : X → X//T , then the
quotient space X//T inherits the structure of a toric prevariety such that p becomes
a toric morphism.

In our article the following property of varieties will play a central rôle: We say
that a variety X has the A2-property, if any two points x, x′ ∈ X admit a common
affine open neighbourhood in X . This notion is due to J. W2lodarczyk. In [20] he
proves among other things that a normal variety X admits a closed embedding into
a toric variety if and only if X is A2.

The next statement is a simple, but useful toric version of [4, Theorem C]. It
shows that the A2-property is in a natural way connected with good quotients of toric
varieties:

Proposition 1.2. — Let X be a toric variety with big torus TX ⊂ X. For every subtorus
T ⊂ TX the following statements are equivalent:
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196 J. HAUSEN

i) The action of T on X has a good quotient X → X//T .
ii) Any two points x, x′ ∈ X with closed TX-orbit have a common T -invariant

affine neighbourhood in X.

Proof. — If the action of T on X admits a good quotient X → X//T , then the
quotient space inherits the structure of a toric variety and hence has the A2-property.
Since the quotient map X → X//T is affine and T -invariant, it follows that X fullfills
Condition ii).

Now suppose that ii) holds. According to [4, Theorem C], we only have to show
that any two points of X have a common affine T -invariant neighbourhood in X . So,
given z, z′ ∈ X , choose

x ∈ TX ·z, x′ ∈ TX ·z′

such that the orbits TX ·x and TX ·x′ are closed in X . By assumption, there exists a
T -invariant affine open U ⊂ X with x, x′ ∈ U . Consider the sets

S := {t ∈ TX ; t·z ∈ U}, S′ := {t ∈ TX ; t·z′ ∈ U}.

These are non empty open subsets of TX and hence we have S∩S′ 
= ∅. Let t ∈ S∩S′.
Then t−1 ·U is the desired common affine neighbourhood of the points z and z′.

Finally, we characterize existence of good quotients in terms of fans. For the
terminology, see [8]. Let ∆ be a fan in some lattice N , and let L ⊂ N be a primitive
sublattice. Then ∆ defines a toric variety X , and L corresponds to a subtorus T of
the big torus TX ⊂ X .

Up to elementary convex geometry, the following statement is a reformulation
of a well-known characterization obtained by J. Świȩcicka [18, Theorem 4.1] and,
independently, by H. Hamm [9, Theorem 4.7]. For convenience, we present here a
direct proof in our setting.

Proposition 1.3. — The action of T on X admits a good quotient if and only if any two
different maximal cones of ∆ can be separated by an L-invariant linear form on N .

Proof. — First suppose that the action of T has a good quotient q : X → X ′. Then
X ′ inherits the structure of a toric variety such that q becomes a toric morphism. So
we may assume that q arises from a map of fans Q : N → N ′ from ∆ to a fan ∆′ in a
lattice N ′.

Note that the sublattice L ⊂ N is contained in ker(Q). Let QR : NR → N ′
R
be the

linear map of real vector spaces associated to Q : N → N ′. We claim that there are
bijections of the sets ∆max and (∆′)max of maximal cones:

∆max → (∆′)max, σ �→ QR(σ),(1)

(∆′)max → ∆max, σ′ �→ Q−1
R

(σ′) ∩ |∆|(2)

To check that the first map is well-defined, let σ ∈ ∆max. Then the image QR(σ)
is contained in some maximal cone σ′ ∈ ∆′. In particular, q(Xσ) ⊂ Xσ′ holds. Since
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PRODUCING GOOD QUOTIENTS BY EMBEDDING 197

q is affine, the inverse image q−1(Xσ′) is an affine invariant chart of X , and hence
necessarily equals Xσ. Since q is in addition surjective, we must have q(Xσ) = Xσ′ .
This means QR(σ) = σ′. So we see that (1) is well defined.

To see that also the second map is well defined, let σ′ ∈ (∆′)max. The inverse
image of the associated affine chart Xσ′ ⊂ X ′ is given by the general formula

q−1(Xσ′) =
⋃

τ∈∆;QR(τ)⊂σ′

Xτ .

Since q is affine, this inverse image is an affine invariant chart Xσ given by some cone
σ ∈ ∆. It follows that

σ = cone(τ ∈ ∆; QR(τ) ⊂ σ′) = Q−1
R

(σ′) ∩ |∆|.

We still have to check that σ is maximal. By surjectivity of q, we see QR(σ) = σ′

holds. Now assume, that σ ⊂ τ for some τ ∈ ∆max. As seen above, QR(τ) is a
maximal cone of ∆′. Since QR(τ) contains the maximal cone σ′, we get QR(τ) = σ′.
By definition of σ, this implies τ = σ. So, also (2) is well defined.

Obviously, the maps (1) and (2) are inverse to each other. We use them to find
separating linear forms. Let σ1, σ2 be two different maximal cones. Then the maximal
cones σ′i := QR(σi) of ∆′ can be separated by a linear form u′ on N ′, i.e.,

u′|σ′
1
≥ 0, u′|σ′

2
≤ 0, (u′)⊥ ∩ σ′1 = (u′)⊥ ∩ σ′2 = σ′1 ∩ σ′2.

Now consider the linear form u := u′ ◦Q. Then u is L-invariant, nonnegative on σ1
and nonpositive on σ2. Using (1) and (2) we obtain:

u⊥ ∩ σi = Q−1
R

((u′)⊥) ∩ (Q−1
R

(σ′i) ∩ |∆|)
= Q−1

R
((u′)⊥ ∩ σ′i) ∩ |∆|

= Q−1
R

(σ′1 ∩ σ′2) ∩ |∆|
= (Q−1

R
(σ′1) ∩ |∆|) ∩ (Q−1

R
(σ′2) ∩ |∆|)

= σ1 ∩ σ2.

Now suppose that any two different maximal cones of ∆ can be separated by an
L-invariant linear form on N . Let P : N → N/L denote the projection. We claim
that the projected cones PR(σ), where σ runs through the maximal cones of ∆, are
the maximal cones of a quasifan Σ in N/L, i.e., this Σ behaves almost like a fan,
merely its cones need not be strictly convex.

To verify this claim, we have to find for any two σ′1 := PR(σ1) and σ′2 := PR(σ2),
where σ1, σ2 ∈ ∆max, a separating linear form. By assumption, there is an L-invariant
linear form u on N that separates σ1 and σ2. Let u′ denote the linear form on N/L
with u = u′ ◦ P . Then u′ is nonnegative on σ′1 and nonpositive on σ′2. Moreover, we
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have

(u′)⊥ ∩ σ′i = PR(P−1
R

((u′)⊥ ∩ σ′i))
= PR(u⊥ ∩ (σi + LR))

= PR((u⊥ ∩ σi) + LR)

= PR((σ1 ∩ σ2) + LR)

= PR(σ1 ∩ σ2)
⊂ σ′1 ∩ σ′2.

Conversely, σ′1 ∩ σ′2 is obviously contained in (u′)⊥ ∩ σ′i. So we checked that u′

separates the cones σ′1 and σ′2. Hence our claim is proved, and we know that Σ is
indeed a quasifan.

To proceed we need a further observation. For a given maximal cone σ′ ∈ Σ, we
choose a maximal cone σ ∈ ∆ with σ′ = PR(σ). We claim

P−1
R

(σ′) ∩ |∆| =
⋃

τ∈∆;PR(τ)⊂σ′

τ = σ.

Only the inclusion “⊂” of the last equation is not obvious. To obtain it, let τ ∈ ∆
with PR(τ) ⊂ σ′. Then any L-invariant linear form on N that is nonnegative on σ is
necessarily nonnegative on τ . Thus τ can not be separated from σ by an L-invariant
linear form and hence is a face of σ. So the claim is proved.

Projecting Σ along its minimal face gives a fan ∆′ in a lattice N ′ and a map
N → N ′ of the fans ∆ and ∆′. By the second claim, the associated toric morphism
q : X → X ′ is affine. Now it is a standard conclusion that over the invariant affine
charts of X ′, the map q is the classical invariant theory quotient for the action of T ,
see e.g. [18, Section 3].

2. Toric extension of good quotients

We come to the precise formulation of our main results. First consider the following
setting: Let Z be a toric variety and let T be a subtorus of the big torus TZ ⊂ Z.
Assume that X ⊂ Z is a T -invariant closed subvariety and that U ⊂ X is an open
T -invariant subset admitting a good quotient p : U → U//T .

Definition 2.1. — A toric extension of U ⊂ X is an open toric subvariety ZU ⊂ Z

with a good quotient ZU → ZU//T such that U = ZU ∩X holds.
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Remark 2.2. — Every toric extension ZU ⊂ Z of the subset U ⊂ X gives rise to a
commutative diagram

U
⊂ ��

//T
��

ZU

//T
��

U//T �� ZU//T

where the lower horizontal map is a closed embedding. In particular, if such a toric
extension exists, then U//T is an A2-variety.

Even if the quotient variety U//T is A2, one cannot expect that toric extensions
always exist. In the following example, we realize K2� {0} as an invariant subvariety
of a 3-dimensional toric variety such that the geometric quotient K2 � {0} → P1 of
the standard K∗-action admits no toric extension:

Example 2.3. — The toric variety X := K2 � {0} is given by the fan in Z2 with
maximal cones �1 := cone((1, 0)) and �2 := cone((0, 1)). The standard subtorus

T := {(t, t); t ∈ K∗} ⊂ TX

ofX corresponds to the sublattice Z·(1, 1) ⊂ Z2. The action of T onX has a geometric
quotient X → P1. We realize X as a T -invariant closed subvariety of a 3-dimensional
toric variety Z. In R3, let

τ1 := cone((1, 0,−1), (0, 1, 1)), τ2 := cone((2, 0, 1), (−3, 0,−1)).

As they intersect in {0}, these cones are the maximal cones of a fan. Let Z denote
the associated toric variety. The linear map F : Z2 → Z3 given by

F (1, 0) := (1, 1, 0), F (0, 1) := (−1, 0, 0)

defines a toric embedding X → Z. So we can regard X as a TX -invariant subvariety
of Z. Note that X intersects both closed orbits of the big torus TZ ⊂ Z, and that the
action of T on Z corresponds to the sublattice

F (Z·(1, 1)) = Z·(0, 1, 0) ⊂ Z3

It follows from Proposition 1.3, that the action of T on Z does not admit a good
quotient. In particular, there exists no toric extension of X .

In view of this example, the question is the following: Let U be an invariant open
subset of an arbitrary variety X with an effective action of an algebraic torus T , and
suppose that there is a good quotient U → U//T . Provided that X and U//T are
A2-varieties, can we realize X as a T -invariant closed subvariety of some toric variety
such that U becomes torically extendible?

Our main result gives a positive answer to this question if X is Q-factorial, i.e.
if X is normal and for any Weil divisor on X some multiple is Cartier. In fact, we
prove even more:
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Theorem 2.4. — Let X be a Q-factorial A2-variety with an effective regular algebraic
torus action T × X → X, and suppose that U1, . . . , Ur ⊂ X are T -invariant open
subsets admitting good quotients pi : Ui → Ui//T with A2-varieties Ui//T . Then there
exists a T -equivariant closed embedding X ↪→ Z into a smooth toric variety Z on
which T acts as a subtorus of the big torus such that every Ui ⊂ X has a toric
extension.

The proof of this theorem is performed in Section 4. Our motivation for the above
statement is its application to maximal sets with good quotients. Let us recall briefly
the basic notions, see [19, Definition 4.3]:

Let the algebraic torus T act on a varietyX . An inclusion U ′ ⊂ U of invariant open
subsets U ′, U ⊂ X is called T -saturated if for every x ∈ U ′ the closure of the orbit T ·x
in U ′ is also closed in U . An open invariant subset U ⊂ X is called (T, 2)-maximal if
it admits a good quotient with an A2-variety U//T and there is no open U ′ ⊂ X with
these properties containing U as a proper T -saturated subset.

Remark 2.5. — Every open subset U ′ ⊂ X admitting a good quotient with U ′//T an
A2-variety is of the form U ′ = p−1(V ), where p : U → U//T is the good quotient of
some (T, 2)-maximal open U ⊂ X and V ⊂ U//T is an open subset.

This observation reduces the study of good quotients with quotient spaces having
the A2-property to the study of (T, 2)-maximal subsets. As an immediate consequence
of Theorem 2.4, we obtain the following generalization of [19, Proposition 6.2]:

Corollary 2.6. — Let X be a Q-factorial A2-variety with an effective regular algebraic
torus action T ×X → X. Then there exists a T -equivariant closed embedding X ↪→ Z

into a smooth toric variety where T acts as a subtorus of the big torus such that every
(T, 2)-maximal U ⊂ X admits a toric extension.

Proof. — By [19, Theorem 4.4] there exist only finitely many (T, 2)-maximal open
subsets U ⊂ X . Thus the assertion follows from Theorem 2.4.

3. Ample groups and linearization

The proof of the embedding theorem 2.4 is based on the techniques introduced
in [11, Section 2]. We recall in this section the basic notions and results adapted
to our purposes and provide some additional details needed later on. We work here
in terms of Cartier divisors instead of using line bundles as in [11]. The idea is to
generalize the notion of an ample divisor to what we call an“ample group of divisors”.

Let X be an arbitrary irreducible algebraic variety. Denote by CDiv(X) the group
of Cartier divisors, and let Λ ⊂ CDiv(X) be a finitely generated free subgroup. For a
divisor D ∈ Λ let

AD := OX(D)
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denote the associated invertible sheaf on X . Given two sections f ∈ AD(U) and
f ′ ∈ AD′(U), we can multiply them as rational functions and get a section ff ′ ∈
AD+D′(U). Extending this operation, we obtain a Λ-graded OX -algebra

A =
⊕
D∈Λ

AD.

Remark 3.1. — The algebra A is reduced and locally of finite type over A0 = OX .

Now, we can glue the canonical maps Spec(A(U)) → U , where U ranges over small
affine neighbourhoods U ⊂ X , to obtain a variety and a regular map

X̂ := Spec(A), q : X̂ → X.

Note that A = q∗(O bX). We call X̂ the variety over X associated to the group
Λ ⊂ CDiv(X). It comes along with a torus action: The Λ-grading of the OX -algebra
A defines a regular action of the algebraic torus

H := Spec(K[Λ])

on X̂ such that for each affine open set U ⊂ X , the sections AD(U) are precisely
the functions of q−1(U) that are homogeneous with respect to the character χD ∈
Char(H). The following is standard:

Remark 3.2. — H acts freely on X̂, and the map q : X̂ → X is a geometric quotient
for this action.

We turn to equivariant questions. Let G denote a connected linear algebraic group
and assume that G acts by means of a regular map G ×X → X on the variety X .
Recall that a G-sheaf on X is a sheaf F together with homomorphisms

F(U) → F(g ·U), s �→ g ·s

that are compatible with restriction and fulfil eG·s = s for the neutral element eG ∈ G
as well as g′g ·s = g′ ·(g ·s) for any two g, g′ ∈ G. The structure sheaf OX becomes in
a canonical way a G-sheaf of rings by setting

g ·f(x) := f(g−1 ·x).

Note that a G-sheaf structure on an OX -module or an OX -algebra requires by
definition compatibility with the above canonical G-sheaf structure on the structure
sheaf OX .

Definition 3.3. — A G-linearization of a finitely generated free subgroup Λ ⊂
CDiv(X) is a graded G-sheaf structure on the associated Λ-graded OX -algebra A
such that for every G-invariant U ⊂ X the representation of G on A(U) is rational.
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Note that for any G-linearization of a subgroup Λ ⊂ CDiv(X) the induced G-sheaf
structure on the (invariant) homogeneous component A0 = OX of the associated Λ-
gradedOX -algebraA is the canonical one. We list below some statements on existence
of G-linearizations.

Proposition 3.4. — Suppose that X is smooth in codimension one and that the finitely
generated free subgroup Λ ⊂ CDiv(X) consists of divisors with G-invariant support.
Then there is a canonical G-linearization of Λ given by

AD(U) → AD(g ·U), g ·f(x) := f(g−1 ·x).

Proof. — By our assumption on X , we may view CDiv(X) as subgroup of the Weil
divisors of X . Suppose that D is a G-invariant prime divisor, and let x ∈ X be a
smooth point. Fix g ∈ G and let Φ: OX,x → OX,g·x denote the homomorphism of
stalks induced by the map X → X , y �→ g−1 ·y. For a germ fx ∈ OX,x, we can
compute the vanishing order of its translate:

ordD,g·x(g ·fx) = ordD,g·x(Φ(fx)) = ordg−1·D,g−1g·x(Φ−1(Φ(fx))) = ordD,x(fx).

As the prime cycles of a given D ∈ Λ are G-invariant, it follows that for any section
f ∈ AD(U) the translate g ·f is a section of AD(g ·U). Moreover, setting W :=
U � Supp(D) for a given G-invariant U ⊂ X , we have a G-equivariant injection
AD(U) → OX(W ). This implies that the representation of G on A(U) is rational,
e.g. apply [13, Lemma p. 67] to the trivial bundle on W .

Proposition 3.5. — Let X be normal, and let Λ ⊂ CDiv(X) be a finitely generated free
subgroup. Then we have:

i) There exists a G-linearizable subgroup Λ′ ⊂ Λ of finite index.
ii) If G is factorial, then the group Λ ⊂ CDiv(X) is G-linearizable.

Proof. — We begin with some general preparing observations. Consider an arbitrary
D ∈ CDiv(X), and choose an open cover U = (Ui)i∈I of X such that D is represented
on each Ui by some fi ∈ K(X). This gives rise to a cocycle

ξij := fj/fi ∈ Z1(U,O∗
X).

Let Lξ be the line bundle over X defined by the cocycle ξ. We consider G-
linearizations of Lξ in the sense of [13, Section 2.1] and work with the following
description of such G-linearizations in terms of local data: For i, j ∈ I, let

U(i,j) := {(g, x) ∈ G× Ui; g ·x ∈ Uj}.

Having in mind that Lξ is the gluing of the products Ui × K, we see that a G-
linearization of the line bundle Lξ is locally of the form

U(i,j) × K → Uj × K, (g, x, t) �→ (g ·x, α(i,j)(g, x)t)
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with certain functions α(i,j) ∈ O∗
G×X(U(i,j)). These functions satisfy the following

compatibility conditions:

ξik(x)α(k,l)(g, x) = α(i,j)(g, x)ξjl(g ·x), if (g, x) ∈ U(i,j) ∩ U(k,l),

α(i,k)(g′g, x) = α(i,j)(g, x)α(j,k)(g′, g ·x), if (g, x) ∈ U(i,j), (g′, g ·x) ∈ U(j,k).

In fact, it turns out that the G-linearizations of Lξ correspond to such families of
functions. Now suppose that E ∈ CDiv(X) is a further Cartier divisor, defined on Ui

by functions hi ∈ K(X). Let η ∈ Z1(U,O∗
X) be the associated cocycle.

Given families α(i,j) and β(i,j) satisfying the above conditions with respect to the
cocycles ξ and η respectively, the products α(i,j)β(i,j) define a G-linearization of the
line bundle Lξ + Lη := Lξη. Similarly, the family α−1(i,j) provides a G-linearization of
−Lξ := Lξ−1 .

Now, the sheaf of sections of Lξ identifies canonically to the sheaf AD associated
to D. Thus a G-linearization of the line bundle Lξ induces a G-sheaf structure on
AD, namely

(g ·f)(x) := g ·(f(g−1 ·x)).

This is compatible with products: given f ∈ AD(U) and h ∈ AE(U), we can use the
local description of the G-linearizations in question in terms of families of functions
to verify

g ·(fh) = (g ·f)(g ·h).

We prove now assertions i) and ii). Choose a basis D1, . . . , Dm of the group Λ.
Then there is an open cover U = (Ui)i∈I such that all Dk are principal on the Ui. As
above, we associate to each divisor Dk a cocycle ξk ∈ Z1(U,O∗

X).
According to [13, Proposition 2.4], for some n ∈ N, we can fix a G-linearization of

every line bundle Lk := Lξn
k
. In the case of a factorial G, this can even be done with

n = 1, see again [13, Remark p. 67]. As explained above, the respective products of
the local data define a G-linearization of every linear combination a1L1+ · · ·+amLm,
where ai ∈ Z.

Let Λ′ ⊂ Λ be the subgroup generated by the divisors D′
k := nDk, k = 1, . . . ,m.

The G-linearizations of the bundles a1L1+· · ·+amLm carry over to G-sheaf structures
of the homogeneous components AD′ , D′ ∈ Λ′. Note that on A0 = OX we get back
the canonical G-sheaf structure.

Using the fact that the G-sheaf structures of the AD′ are compatible with multi-
plication, we see that they make the Λ′-graded OX -algebra A′ associated to Λ′ into
a G-sheaf. Finally, [13, Lemma p. 67] implies that for any G-invariant open U ⊂ X
the representation of G on A′(U) is in fact rational.

We need a condition on a finitely generated free subgroup Λ ⊂ CDiv(X) ensuring
that X̂ = Spec(A) is quasiaffine. This is the following:
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Definition 3.6. — We call a finitely generated free subgroup Λ ⊂ CDiv(X) ample
if for each x ∈ X there is a divisor D ∈ Λ and a section f ∈ AD(X) such that
Xf := X � Supp(D + div(f)) is an affine neighbourhood of x.

This generalizes the classical notion of an ample divisor in the sense that such a
divisor generates an ample group.

Remark 3.7. — Suppose that a connected linear algebraic group acts on a normal vari-
ety X . Then every ample group Λ ⊂ CDiv(X) admits G-linearizable ample subgroups
Λ′ ⊂ Λ of finite index.

By an affine closure of a quasiaffine variety Y we mean an affine variety Y con-
taining Y as an open subvariety. The constructions and results of [11, Section 2] are
subsumed in the following:

Theorem 3.8. — Let G be a linear algebraic group and let X be a G-variety. Suppose
that Λ ⊂ CDiv(X) is a G-linearized ample group and let X̂ denote the associated
variety over X.

i) X̂ is quasiaffine and the representation of G on O(X̂) induces a regular G-
action on X̂ such that the actions of G and H commute and q : X̂ → X becomes
G-equivariant.

ii) For any collection f1, . . . , fr ∈ A(X) satisfying the ampleness condition, there
exists a (G×H)-equivariant affine closure X of X̂ such that the fi extend to regular
functions on X and q−1(Xfi) = Xfi holds.

4. Proof of the main result

We come to the proof of Theorem 2.4. We shall need the following observation on
linearizations:

Lemma 4.1. — Let an algebraic torus T act regularly on a normal variety X, and
suppose that Λ = Λ0⊕Λ1 is a finitely generated free subgroup of CDiv(X). If Λ0 and
Λ1 are T -linearized, then these linearizations extend to a T -linearization of Λ.

Proof. — Given D ∈ Λ0 and E ∈ Λ1, we make the OX -module AD+E associated to
D + E into a T -sheaf: On small open sets U ⊂ X , each section f of AD+E is of the
form f |U = f0f1 with f0 ∈ AD(U) and f1 ∈ AE(U). For t ∈ T set

t·f |U := (t·f0)(t·f1).

Then the local translates t ·f |U patch together to a well defined translate t ·f . This
makes the OX -module AD+E into a T -sheaf. Note that these structures extend to a
T -sheaf structure of the graded OX -algebra A associated to Λ.

We still have to show that for a given T -invariant open U ⊂ X the representation
of T on A(U) is rational. For this, choose a non-empty affine T -invariant open subset
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V ⊂ U , use e.g. [16, Corollary 2]. Since the restriction A(U) → A(V ) is injective, it
suffices to verify that the T -representation on A(V ) is rational.

But this follows from the facts that for any D ∈ Λ0 and any E ∈ Λ1 we have an
equivariant isomorphism

AD(V )⊗O(V ) AE(V ) → AD+E(V ), f0 ⊗ f1 �→ f0f1

and the tensor product of two rational representations is again a rational representa-
tion.

Proof of Theorem 2.4. — For each index i, cover the quotient space Yi := Ui//T by
open affine subsets Vi1, . . . , Vini such that every pair y, y′ ∈ Yi is contained in some
common Vij . Let Dij ∈ CDiv(X) be effective Cartier divisors with

Uij := p−1i (Vij) = X � Supp(Dij).

Let Λ0 ⊂ CDiv(X) denote the subgroup generated by the Dij . Then we find a
finitely generated group Λ1 ⊂ CDiv(X) such that Λ0 ∩ Λ1 = 0 holds and for any two
x, x′ ∈ X there is an effective D ∈ Λ := Λ0⊕Λ1 such that X�Supp(D) is a common
affine neighbourhood of x and x′.

Let A denote the graded OX -algebra associated to Λ and let X̂ := Spec(A) be the
associated variety over X . Recall that the map qX : X̂ → X is a geometric quotient
for the action of H := Spec(K[Λ]) on X̂ . Since Λ is in particular ample, the variety
X̂ is quasiaffine, see Theorem 3.8.

We use Propositions 3.4 and 3.5 to linearize the group Λ = Λ0 ⊕ Λ1. Every
D ∈ Λ0 has T -invariant support and hence its sheaf AD = OX(D) is T -linearized by
t ·f(x) := f(t−1 ·x). Since T is factorial, we can choose a T -linearization of Λ1. By
Lemma 4.1 these linearizations extend to a T -linearization of Λ.

According to Theorem 3.8, the representation of T on O(X̂) = A(X) induces a
regular T -action on X̂ that commutes with the H-action and makes qX : X̂ → X a
T -equivariant map. Our next task is to construct an appropriate (T ×H)-equivariant
affine closure X of X̂.

Viewed as regular functions on X̂, the canonical sections fij := 1 ∈ ODij (X) are
T -invariant and H-homogeneous. Choose effective E1, . . . , Em ∈ Λ such that every
pair x, x′ ∈ X has a common affine neighbourhood of the form Vl := X � Supp(El).
Then every gl := 1 ∈ OEl

(X) is a H-homogeneous regular function on X̂.
According to Theorem 3.8, we find a (T × H)-equivariant affine closure X of X̂

such that the above functions fij and gl extend regularly to X and we have

Ûij := q−1X (Uij) = Xfij , V̂l := q−1X (Vl) = Xgl
.

Now choose (T × H)-homogeneous generators h1, . . . , hs of the algebra O(X).
Thereby make sure that the first h1, . . . , hk generate the ideal of the complement
X � X̂. Then we have a (T ×H)-equivariant closed embedding

X → Kn, x �→ (h1(x), . . . , hs(x), f11(x), . . . , frnr(x)),
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where n := s + n1 + · · · + nr and T × H acts diagonally on Kn. In the sequel we
regard X as a closed subvariety of Kn. Then the functions hi and fij are just the
restrictions of the respective coordinate functions zi and zij . Set

Ẑ :=
⋃

Tn·z∩ bX �=∅

Tn ·z.

This Ẑ is the minimal open toric subvariety of Kn containing X̂. Moreover, the
set X̂ is closed in Ẑ. This follows immediately from the fact that by our choice of Ẑ,
X and the embedding X → Kn we have:

X̂ = X ∩ (Kn
z1

∪ · · · ∪ Kn
zk
), Ẑ ⊂ Kn

z1
∪ · · · ∪ Kn

zk
.

Note that the torus H acts freely on Ẑ. Consequently this action has a geometric
prequotient qZ : Ẑ → Z with a smooth orbit space Z := Ẑ/H . Remark 1.1 tells us
that Z is again a toric prevariety and qZ is a toric morphism. Moreover, the properties
of a geometric prequotient yield a commutative diagram

X̂
⊂ ��

qX
��

Ẑ

qZ
��

X �� Z

where the lower horizontal map is a closed embedding. Note that T acts on Z as a
subtorus of the big torus TZ ⊂ Z making this embedding equivariant. In the sequel
we regard X as a subvariety of Z, and show that Z is the desired ambient space.

The first thing to check is that Z is separated. To verify this, it suffices to construct
for any two closed orbits B, B′ of the big torus TZ ⊂ Z an affine open subset W ⊂ Z
which intersects both orbits B and B′ non trivially, see e.g. [11, Corollary 4.4].

So, let B, B′ ⊂ Z be closed TZ-orbits. Since qZ : Ẑ → Z is a geometric prequotient,
the inverse images q−1Z (B) and q−1Z (B′) are closed Tn-orbits of Ẑ. By definition of Ẑ,
we find points z, z′ ∈ X̂ with qZ(z) ∈ B and qZ(z′) ∈ B′.

For one of the above functions gl ∈ O(X), we have z, z′ ∈ Xgl
. This gl is the

restriction of some H-homogeneous polynomial gl ∈ K[T1, . . . , Tn]. Let

Ŵl := Kn
gl
, A := Ŵl � Ẑ.

Then Ŵl is an open affine H-invariant subset of Kn containing V̂l = Xgl
as a closed

subset. Since also A is a closed H-invariant subset of Ŵl and we have A ∩ V̂l = ∅,
the good quotient Ŵl → Ŵl//H separates A and V̂l.

Thus we find an H-invariant function h ∈ O(Ŵl) that vanishes along A but satisfies
h(z) = h(z′) = 1. Consequently, removing the zeroes of this function h from Ŵl yields
an H-invariant open affine neighbourhood Ŵ ⊂ Ẑ of z and z′. Now, W := qZ(Ŵ ) is
as wanted and our claim is verified.
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To complete the proof we still have to show that all the open subsets Ui ⊂ X admit
toric extensions. For this, let Ûi := q−1X (Ui) and define

Ẑi :=
⋃

Tn·z∩bUi �=∅

Tn ·z.

Then each Ẑi is an open Tn-invariant subset of Ẑ. Moreover, we have Ûi = X̂ ∩ Ẑi.
Again this holds because by our choice of Ẑi, X and the embedding X → Kn we have

Ûi = X ∩ (Kn
zi1

∪ · · · ∪ Kn
zini

), Ẑi ⊂ Kn
zi1

∪ · · · ∪ Kn
zini
.

We shall show that Ẑi admits a good quotient for the action of T ×H . Once this
is settled, the proof is complete: The image Zi := qZ(Ẑi) is an open toric subvariety
of Z. Moreover, Ui = X ∩ Zi holds, and there is a commutative diagram

Ẑi
��

qZ
��

��
��

��
��

Ẑi//(T ×H)

Zi

������������

One easily checks that the induced map Zi → Ẑi//(T ×H) is a good quotient for
the action of T on Zi. That means that Zi ⊂ Z fulfills the desired conditions of a
toric extension of the open subset Ui ⊂ X .

Thus, the remaining task is to show that the action of T × H on Ẑi has a good
quotient. For this we use Proposition 1.2: It suffices to verify that any two points
of Ẑi having closed Tn-orbits in Ẑi admit a common (T × H)-invariant affine open
neighbourhood in Ẑi.

So, let z, z′ ∈ Ẑi with Tn ·z and Tn ·z′ closed in Ẑi. By the definition of Ẑi there
exist elements t, t′ ∈ Tn and an index j such that

t·z ∈ Ûij , t′ ·z′ ∈ Ûij .

The set Ŵij := Kn
zij

is an affine Tn-invariant neighbourhood of z and z′. Moreover

Ûij equals X ∩ Ŵij and hence is closed in Ŵij . The complement A := Ŵij � Ẑi is a
closed Tn-invariant subset of Ŵij with A ∩ Ûij = ∅. Consider the good quotient

o : Ŵij → Ŵij//(T ×H).

This is a toric morphism of affine toric varieties, see e.g. Remark 1.1. The images
o(Ûij) and o(A) are disjoint closed subsets of Ŵij//(T ×H). In particular, it follows

o(t·z) 
∈ o(A), o(t′ ·z′) 
∈ o(A).

Since A is Tn-invariant, we see that neither o(z) nor o(z′) lie in o(A). Consequently,
there exists a (T ×H)-invariant regular function g ∈ O(Ŵij) such that

g|A = 0, g(z) = g(z′) = 1
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holds. Thus, removing the zero set of g from Ŵij yields the desired common (T ×H)-
invariant affine open neighbourhood Ŵ ⊂ Ẑi of the points z and z′.

Appendix: A little survey on embedding theorems

This appendix is independent from the previous sections. We collect some general
results concerning embeddings into toric varieties and prevarieties. The little survey
begins with two classical statements on embeddings into the projective space Pn.

Let X be an irreducible algebraic variety over an algebraically closed field K. For
a Cartier divisor D on X , we denote by OD its associated invertible sheaf. The set
of zeroes of a section f ∈ OD(X) is

Z(f) := Supp(div(f) +D).

Following [6, Section 4.5], we call an effective Cartier divisor D on X ample if
every x ∈ X has an affine neighbourhood of the form Xf := X �Z(f) with a section
f ∈ OnD(X) where n ≥ 0.

Theorem A.1 ([6, Théorème 4.5.2]). — For a variety X the following statements are
equivalent:

i) There exists an ample Cartier divisor on X.
ii) X admits a locally closed embedding into a projective space Pn.

Given a quasiprojective varietyX , it is often important to find embeddingsX → Pn

that are compatible with respect to further structure on X . We concentrate here on
regular actions

G×X → X, (g, x) �→ g ·x
of algebraic groups G. A G-action on the projective space Pn is called linear if in
homogeneous coordinates it is given by g ·[z] = [�(g)z] with a regular representation
� : G→ GL(n+ 1,K).

Theorem A.2 ([14], [16, Theorem 1]). — Suppose that a connected linear algebraic
group G acts regularly on a normal quasiprojective variety X. Then X admits a
G-equivariant locally closed embedding into some Pn where G acts linearly.

Our intention is to present generalizations of these two classical results to non
quasiprojective varieties X . So, in this setting, the ambient space Pn has to be
replaced with more general objects:

A toric prevariety is a normal (possibly non separated) algebraic prevariety Z over
K together with regular action TZ × Z → Z of an algebraic torus TZ such that for
some z0 ∈ Z the orbit map T → Z, t �→ t·z0 is an open embedding.
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Theorem A.3 ([20, Theorem C]). — Every normal variety X admits a closed embedding
into a toric prevariety Z.

Similarly to the separated case, the category of toric prevarieties can be completely
described in terms of combinatorial data. For an introduction to this we refer to [1].
Concerning embbedings into separated ambient spaces we have:

Theorem A.4 ([20, Theorem A]). — For a normal variety X the following statements
are equivalent:

i) Any two points of X have a common affine neighbourhood in X.
ii) X admits a closed embedding into a toric variety Z.

We call a varietyX with Property A.4 i) for short an A2-variety. There exist exam-
ples of normal varieties that don’t have this property and hence cannot be embedded
into separated toric varieties:

Remark A.5

i) The normal surfaces discussed in [12] are not A2.
ii) The Hironaka twist is a smooth threefold that is not A2, see e.g. [15, p. 83].

For several algebro-geometric constructions it is convenient to embed an arbitrary
singular variety X into a smooth ambient space. This requires some condition on X ,
namely divisoriality in the sense of Borelli [5]:

Theorem A.6 ([11, Theorem 3.2]). — For an irreducible variety X the following state-
ments are equivalent:

i) X is divisorial, i.e., every x ∈ X has an affine neighbourhood of the form
X � Supp(D) with an effective Cartier divisor D on X.

ii) X admits a closed embedding into a smooth toric prevariety Z having an affine
diagonal map Z → Z × Z.

Here the last condition on Z means just that for any two affine open subsets
U,U ′ ⊂ X their intersection U ∩ U ′ is again affine. We say that a prevariety having
this property is of affine intersection. The nonseparatedness of such a space is rather
mild.

Remark A.7

i) There exist three dimensional toric varieties that don’t admit nontrivial effective
Cartier divisors and hence cannot be embedded into smooth toric varieties, see e.g. [7,
Example 3.5].

ii) The normal surfaces discussed in [12] admit neither embeddings into Q-factorial
toric prevarieties nor into toric prevarieties of affine intersection.

Again, it is interesting to know, when one can reckon on a separated ambient space.
The criterion is related to W2lodarczyk’s A2-property:
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Theorem A.8 ([11, Corollary 5.4]). — For an irreducible variety X, the following state-
ments are equivalent:

i) Any two points x, x′ ∈ X have a common affine neighbourhood of the form
X � Supp(D) with an effective Cartier divisor D on X.

ii) X admits a closed embedding into a smooth toric variety.

We say that a variety satisfying Condition A.8 i) is 2-divisorial. Simlarly, one can
define k-divisoriality also for k > 2 and obtains analogous embedding results, see [11,
Theorem 5.3].

Remark A.9. — There exists a toric variety that is divisorial but not 2-divisorial,
see [2, Proposition 4.1].

Now we turn to equivariant embeddings, i.e. generalizations of Theorem A.2. Let
G be an algebraic group. First we have to generalize the notion of a linear G-action
on the ambient space:

Suppose that a subtorusH ⊂ (K∗)r acts freely on an open toric subvariety U ⊂ Kr.
Then there is a geometric prequotient q : U → Z for this action, and the quotient space
Z is a toric prevariety of affine intersection. Conversely every smooth toric prevariety
of affine intersection is of this form, see [1, Section 8].

Assume moreover, that an algebraic group G acts on Kr by means of a representa-
tion � : G→ GL(r,K) such that U is G-invariant and the actions G and H commute.
Then we call the induced G-action on Z linear.

Theorem A.10 ([11, Theorem 3.4 and Corollary 5.7]). — Suppose that a connected linear
algebraic group G acts regularly on a normal variety X.

i) If X is divisorial then it admits a G-equivariant closed embedding into a smooth
toric prevariety Z of affine intersection where G acts linearly.

ii) If X is 2-divisorial then it admits a G-equivariant closed embedding into a
smooth toric variety Z where G acts linearly.

An application of this result is that every Q-factorial toric variety admits a toric
embedding into a smooth one, see [11, Corollary 5.8].

Remark A.11

i) The Hironaka twist [15, p. 83] shows that Theorem A.10 does in general not
hold for disconnected groups G.

ii) The standard K∗-action on the complete rational curve with a node shows that
some condition like normality on X is necessary in Theorem A.10.

Of course it would also be interesting to have equivariant versions of Theorems A.3
and A.4. The only statement in this direction I know so far is:
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Theorem A.12 ([10, Theorem 9.1]). — Every normal K∗-variety admits a K∗-equivari-
ant closed embedding into a toric prevariety where K∗ acts as a subgroup of the big
torus.

References

[1] A. A’Campo-Neuen, J. Hausen – Toric prevarieties and subtorus actions. Geom. De-
dicata 87, 35–64 (2001)

[2] A. A’Campo-Neuen, J. Hausen – Orbit spaces of small tori. Preprint, Konstanzer
Schriften in Mathematik und Informatik 153.
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