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Dedicated to Professor Riemenschneider for his 60th birthday

Abstract. — There are many generalizations of the McKay correspondence for higher
dimensional Gorenstein quotient singularities and there are some applications to com-
pute the topological invariants today. But some of the invariants are completely dif-
ferent from the classical invariants, in particular for non-Gorenstein cases. In this
paper, we would like to discuss the McKay correspondence for 2-dimensional quo-
tient singularities via “special” representations which gives the classical topological
invariants and give a new characterization of the special representations for cyclic
quotient singularities in terms of combinatorics.
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1. McKay correspondence

The McKay correspondence is originally a correspondence between the topology
of the minimal resolution of a 2-dimensional rational double point, which is a quo-
tient singularity by a finite subgroup G of SL(2,C), and the representation theory
(irreducible representations or conjugacy classes) of the group G. We can see the
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correspondence via Dynkin diagrams, which came from McKay’s observation in 1979
([16]).

Let G be a finite subgroup of SL(2,C), then the quotient space X := C2/G has a
rational double point at the origin. As there exists the minimal resolution X̃ of the
singularity, we have the exceptional divisors Ei. The dual graph of the configuration
of the exceptional divisors is just the Dynkin diagram of type An, Dn, E6, E7 or E8.

On the other hand, we have the set of the irreducible representations ρi of the
group G up to isomorphism and let ρ be the natural representation in SL(2,C). The
tensor product of these representations

ρi ⊗ ρ =
r⊕

j=0

aijρj ,

where ρ0 is the trivial representation and r is the number of the non-trivial irreducible
representations, gives a set of integers aij and it determines the Cartan matrix which
defines the Dynkin diagram. (1)

Then we have a one-to-one numerical correspondence between non-trivial irre-
ducible representations {ρi} and irreducible exceptional curves {Ei}, that is, the
intersection matrix of the exceptional divisors is the opposite of the Cartan matrix.

This phenomenon was explained geometrically in terms of vector bundles on the
minimal resolution by Gonzalez-Sprinberg and Verdier ([8]) (2) by case-by-case com-
putations in 1983. In 1985, Artin and Verdier ([1]) proved this more generally with
reflexive modules and this theory was developed by Esnault and Knörrer ([5], [6]) for
more general quotient surface singularities. After Wunram ([21]) constructed a nice
generalized McKay correspondence for any quotient surface singularities in 1986 in his
dissertation, Riemenschneider introduced the notion of “special representation etc.”
and made propaganda for the more generalized McKay correspondence (cf. [18]). (3)

In dimension three, we have several “McKay correspondences” but they are just
bijections between two sets: Let X be the quotient singularity C3/G where G is a
finite subgroup of SL(3,C). Then X has a Gorenstein canonical singularity of index
1 but not a terminal singularity. It is known that there exist crepant resolutions X̃
of this singularity. The crepant resolution is a minimal resolution and preserves the
triviality of the canonical bundle in this case.

As for the McKay correspondence, the followings are known:

(1) (Ito-Reid [12]) There exists a base of cohomology group H2i(X̃,Q), indexed
by the conjugacy classes of “age” i in G.

(1)More precisely, the Cartan matrix is defined as the matrix 2E − A, where E is the r × r identity

matrix and A = {aij} (i, j �= 0).
(2)They gave the name McKay correspondence (in French, la correspondance de McKay) in this

paper!
(3)Similar generalization for G ⊂ GL(2, C ) was obtained by Gonzalez-Sprinberg and the related

topics were discussed in [7].
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(2) (Ito-Nakajima [10]) There exists a base of Grothendieck group K(X̃), indexed
by the irreducible representations of G, when G is a finite abelian subgroup.

(3) (Bridgeland-King-Reid [3]) There exists an equivalence between the derived
categoryD(X̃) and the equivariant dereived categoryDG(C3) for any finite subgroup.

Remark 1.1. — In (1), the age of g ∈ G is defined as follows: After diagonalization, if
gr = 1, we obtain g′ = diag(εa, εb, εc) where ε is a primitive r-th root of unity. Then
age(g) := (a+ b+ c)/r. For the identity element id, we define age(id)= 0 and all ages
are integers if G ⊂ SL(3,C).

The correspondence (2) can be included in (3), but note that the 2-dimensional
numerical McKay correspondence can be explained very clearly as a corollary of the
result in [10].

As a generalization of the first McKay correspondence (1), we have a precise
correspondence for each 2i-th cohomology with conjugacy classes of age i for any
i = 1, . . . , n − 1 in dimension n which was given by Batyrev and Kontsevich via
“motivic integral” under the assumption of the existence of a crepant resolution, and
this idea was developed to “string theoretic cohomology” for all quotient singularities
(cf. [2]).

And we can see that the string theoretic Euler number of the resolution is the
same as the order of the acting group G in case G ⊂ GL(n,C), but it is different from
the usual topological Euler number of the minimal resolution. Of course, it is very
interesting to consider the geometrical meaning of these new invariants.

By the way, in (2) we don’t have such a difference among representations as age.
But the author is interested in the relation between the group theory and the classical
topological invariants. Then we would like to remind the reader of the notion of special
representations which gives some differences between irreducible representations. The
special representations were defined by Riemenschneider and Wunram ([18]); each of
the special irreducible respresentations corresponds to an exceptional divisor of the
minimal resolution of a 2-dimensional quotient singularity.

In particular, we would like to discuss special representations and the minimal res-
olution for quotient surface singularities from now on. Around 1996, Nakamura and
the author showed another way to the McKay correspondence with the help of the
G-Hilbert scheme, which is a 2-dimensional G-fixed set of the usual Hilbert scheme of
|G|-points on C2 and isomorphic to the minimal resolution. Kidoh ([14]) proved that
the G-Hilbert scheme for general cyclic surface singularities is the minimal resolution.
Then Riemenschneider checked the cyclic case and conjectured that the representa-
tions which are given by the Ito-Nakamura type McKay correspondence via G-Hilbert
scheme are just special representations in 1999 ([19]) and this conjecture was proved
by A. Ishii recently ([9]). In this paper, we will give another characterization of the
special representations by combinatorics for the cyclic quotient case, using results on
the G-Hilbert schemes.
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As a colorful introduction to the McKay correspondence, the author would like
to recommend a paper presented at the Bourbaki seminar by Reid ([17]) and also
on the Web page (http://www.maths.warwick.ac.uk/ ∼miles/McKay), one can find
some recent papers related to the McKay correspondence.

This paper is organized as follows: In this section, we already gave a brief history
of the McKay correspondence and we will discuss the special representations and the
generalized McKay correspondence in the following section. In section three, we treat
G-Hilbert schemes as a resolution of singularities, consider the relation with the toric
resolution in the cyclic case, and show how to find the special representations by
combinatorics. In the final section, we will discuss an example and related topics.

Acknowledgements. — Most of the contents of this paper are based on the author’s
talk in the summer school on toric geometry at Fourier Institute in Grenoble, France
in July 2000, and she would like to thank the organizers for their hospitarity and the
participants for the nice atmosphere. She would like to express her gratitude to Pro-
fessor Riemenschneider for giving her a chance to consider the special representations
via G-Hilbert schemes and for the various comments and useful suggestions on her
first draft.

2. Special representations

In this section, we will discuss the special representations. Let G be a finite small
subgroup of GL(2,C), that is, the action of the group G is free outside the origin, and
ρ be a representation of G on V . G acts on C2×V and the quotient is a vector bundle
on (C2 � {0})/G which can be extended to a reflexive sheaf F on X : = C2/G.

For any reflexive sheaf F on a rational surface singularity X and the minimal
resolution π : X̃ → X , we define a sheaf F̃ : = π∗F/torsion.

Definition 2.1 ([5]). — The sheaf F̃ is called a full sheaf on X̃ .

Theorem 2.2 ([5]). — A sheaf F̃ on X̃ is a full sheaf if the following conditions are
fulfilled:

(1) F̃ is locally free,
(2) F̃ is generated by global sections,
(3) H1(X̃, F̃∨ ⊗ ω

eX) = 0, where ∨ means the dual.

Note that a sheaf F̃ is indecomposable if and only if the corresponding represen-
tation ρ is irreducible. Therefore we obtain an indecomposable full sheaf F̃i on X̃
for each irreducible representation ρi, but in general, the number of the irreducible
representations is larger than that of irreducible exceptional components. Therefore
Wunram and Riemenschneider introduced the notion of speciality for full sheaves:
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Definition 2.3 ([18]). — A full sheaf is called special if and only if

H1(X̃, F̃∨) = 0.

A reflexive sheaf F on X is special if F̃ is so.
A representation ρ is special if the associated reflexive sheaf F on X is special.

With these definitions, the following equivalent conditions for the speciality hold:

Theorem 2.4 ([18], [21])

(1) F̃ is special ⇐⇒ F̃ ⊗ ω
eX → [(F ⊗ ω

eX)∨∨]∼ is an isomorphism,
(2) F is special ⇐⇒ F ⊗ ω

eX/torsion is reflexive,
(3) ρ is a special representation ⇐⇒ the map (Ω2

C2)
G ⊗ (OC2 ⊗V )G → (Ω2

C2 ⊗V )G

is surjective.

Then we have the following nice generalized McKay correspondence for quotient
surface singularities:

Theorem 2.5 ([21]). — There is a bijection between the set of special non-trivial
indecomposable reflexive modules Fi and the set of irreducible components Ei via
c1(F̃i)Ej = δij where c1 is the first Chern class, and also a one-to-one correspondence
with the set of special non-trivial irreducible representations.

As a corollary of this theorem, we get back the original McKay correspondence
for finite subgroups of SL(2,C) because in this case all irreducible representations are
special.

3. G-Hilbert schemes and combinatorics

In this section, we will discuss G-Hilbert schemes and a new way to find the special
representations for cyclic quotient singularities by combinatorics.

The Hilbert scheme of n points on C2 can be described as a set of ideals:

Hilbn(C2) = {I ⊂ C[x, y] | I ideal, dimC[x, y]/I = n}.

It is a 2n-dimensional smooth quasi–projective variety. The G-Hilbert scheme
HilbG(C2) was introduced in the paper by Nakamura and the author ([11]) as
follows:

HilbG(C2) = {I ⊂ C[x, y] | I G-invariant ideal, C[x, y]/I ∼= C[G]},

where |G| = n. This is a union of components of fixed points of G-action on Hilbn(C2)
and in fact it is just the minimal resolution of the quotient singularity C2/G. It was
proved for G ⊂ SL(2,C) in [11] first by the properties of Hilbn(C2) and finite group
action of G and a McKay correspondence in terms of ideals of G-Hilbert schemes was
stated.
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218 Y. ITO

Later Kidoh ([14]) proved that the G-Hilbert scheme for any small cyclic subgroup
of GL(2,C) is also the minimal resolution of the corresponding cyclic quotient singu-
larities and Riemenschneider conjectured that the irreducible representations which
are given from the ideals of G-Hilbert scheme, so-called Ito-Nakamura type McKay
correspondence, are just same as the special representations which were defined by
himself ([19]). Recently A. Ishii ([9]) proved more generally that the G-Hilbert scheme
for any small G ⊂ GL(2,C) is always isomorphic to the minimal resolution of the sin-
gularity C2/G and the conjecture is true:

Theorem 3.1 ([9]). — Let G be a finite small subgroup of GL(2,C).
(i) G-Hilbert scheme HilbG(C2) is the minimal resolution of C2/G.
(ii) For y ∈ HilbG(C2), denote by Iy the ideal corresponding to y and let m be the

maximal ideal of OC2 corresponding to the origin 0. If y is in the exceptional locus,
then, as representations of G, we have

Iy/mIy ∼=
{
ρi ⊕ ρ0 if y ∈ Ei and y �∈ Ej for j �= i,

ρi ⊕ ρj ⊕ ρ0 if y ∈ Ei ∩Ej ,

where ρi is the special representation associated with the ireducible exceptional curve
Ei.

Remark 3.2. — In dimension two, we can say that the G-Hilbert scheme is the same
as a 2-dimensional irreducible component of the G-fixed set of Hilbn(C2). A similar
statement holds in dimension three, for G ⊂ SL(3,C), that is, the G-Hilbert scheme is
a 3-dimensional irreducible component of the G-fixed set of Hilbn(C3), and a crepant
resolution of the quotient singularity C3/G (cf. [15], [3]). In this case, note that
Hilbn(C3) is not smooth.

Moreover, Haiman proved that the Sn-Hilbert scheme HilbSn(C2n) is a crepant
resolution of C2n/Sn = n-th symmetric product of C2, i.e.,

HilbSn(C2n) ∼= Hilbn(C2)

in the process of the proof of n! conjecture. (cf. [13])

From now on, we restrict our considerations to G ⊂ GL(2,C) cyclic. Wunram con-
structed the generalized McKay correspondence for cyclic surface singularities in the
paper [20] and we have to consider the corresponding geometrical informations (the
minimal resolution, reflexive sheaves and so on) to obtain the special representations.
Here we would like to give a new characterization of the special representations in
terms of combinatorics. It is much easier to find the special representation because
we don’t need any geometrical objects, but based on the result of G-Hilbert schemes.

Let us discuss the new characterization of the special representations in terms of

combinatorics. Let G be the cyclic group Cr,a, generated by the matrix
(
ε 0
0 εa

)
where

εr = 1 and gcd(r, a) = 1 and consider the character map C[x, y] −→ C[t]/tr given by
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x �→ t and y �→ ta. Then we have a corresponding character for each monomial in
C[x, y].

Let Ip be the ideal of the a point p in the G-Hilbert scheme, then we can define
the following sets.

Consider a G-invariant subscheme Zp ⊂ C2 for which H0(Zp,OZp) = OC2/Ip is the
regular representation of G. Then the G-Hilbert scheme can be regarded as a moduli
space of such Zp.

Definition 3.3. — A set Y (Zp) of monomials in C[x, y] is called G-cluster if all mono-
mials in Y (Zp) are not in Ip, and Y (Zp) can be drawn as a Young diagram of |G|
boxes.

Definition 3.4. — For any small cyclic group G, let B(G) be the set of monomials
which are not divisible by any G-invariant monomial. We call B(G) G-basis.

Definition 3.5. — If |G| = r, then let L(G) be {1, x, . . . , xr−1, y, . . . , yr−1}, i.e., the
set of monomials which cannot be divided by xr, yr or xy. We call it L-space for G
because the shape of this diagram looks like the capital letter “L”.

Definition 3.6. — The monomial xmyn is of weight k if m+ an = k.

Let us describe the method to find the special representations of G with these
diagrams:

Theorem 3.7. — For a small finite cyclic subgroup of GL(2,C), the irreducible repre-
sentation ρi is special if and only if the corresponding monomials in B(G) are not
contained in the set of monomials B(G) � L(G).

Proof. — In Theorem 2.4 (3), we have the definition of the special representation, and
it is not easy to compute all special representations. However look at the behavior of
the monomials in C[x, y] under the map Φi : (Ω2

C2)
G ⊗ (OC2 ⊗ Vi)G → (Ω2

C2 ⊗ Vi)G

for each representation ρi:
First, let us consider the monomial bases of each set. Let Vi = Cei and ρ(g)ei = ε−i.

An element f(x, y)dx ∧ dy ⊗ ρi is in (Ω2
C2 ⊗ Vi)G if and only if

g∗f(x, y)dx ∧ dy · ε1+a ⊗ ε−i = f(x, y)dx ∧ dy,

that is,
g∗(f(x, y)dx ∧ dy) = εi−(a+1)(f(x, y)dx ∧ dy).

Therefore the monomial basis for (Ω2
C2 ⊗ Vi)G is the set of monomials f(x, y) such

that
g : f(x, y) �−→ εi−(a+1)f(x, y)

under the action of G, that is, monomials of weight i− (a+ 1).
Similarly, we have the monomial basis for (Ω2

C2)
G as the set of monomials f(x.y)

of weight r − (a+ 1).
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The monomial basis for (OC2 ⊗ Vi)G is given as the set of monomials f(x, y) of
weight i.

Let us check the surjectivity of the map Φi. If Φi is surjective, then the monomial
basis in (Ω2

C2 ⊗ Vi)G can be obtained as the product of the monomial bases of two
other sets. Therefore the degree of the monomials in (Ω2

C2 ⊗Vi)G must be higher than
the degree of the monomials in (OC2 ⊗ Vi)G.

Now look at the map Φa+1. The vector space (OC2 ⊗ Va+1)G is generated by the
monomials of weight a + 1, i.e., xa+1, xy, . . . , yb where ab = a + 1 mod r. On the
other hand, (Ω2

C2 ⊗ Va+1)G is generated by the degree 0 monomial 1. Then the map
Φa+1 is not surjective.

By this, if a monomial of type xmyn, where mn �= 0, is a generator of (OC2 ⊗Vi)G,
then there exists a monomial xm−1yn−1 in (Ω2

C2 ⊗Vi)G and the degree become smaller
under the map Φi. This means Φi is not surjective.

Moreover, if the bases of (OC2 ⊗ Vi)G is generated only by xi and yj where aj ≡ i

mod r, then the degrees of the monomials in (Ω2
C2⊗Vi)G are larger and Φi is surjective.

Thus we have the assertion.

Remark 3.8. — From this theorem, we can also say that a representation ρi is special
if and only if the number of the generators of the space (OC2 ⊗Vi)G is 2. However, as
a module over the invariant ring OG

C2 it is minimally generated by 2 elements. In this
form, the remark is not new. It follows easily in one direction from the remark after
Theorem 2.1 in Wunram’s paper [21], and in the other direction from Theorem 2.1 in
combination with the fact proven in the first appendix of that paper that in the case
of cyclic quotient surface singularities a reflexive module is determined by the ”Chern
numbers” of its torsionfree preimage on the minimal resolution.

Theorem 3.9. — Let p be a fixed point by the G-action, then we can define an ideal Ip
by the G-cluster and the configuration of the exceptional divisors can be described by
these data.

Proof. — The defining equation of the ideal Ip is given by
xa = αyc,

yb = βxd,

xa−dyb−c = αβ,

where α and β are complex numbers and both xa and yc (resp. yb and xd) correspond
to the same representation (or character).

The pair (α, β) is a local affine coordinate near the fixed point p and it is also
obtained from the calculation with toric geometry. Moreover each axis of the affine
chart is just a exceptional curve or the original axis of C2. The exceptional curve is
isomorphic to a P1 and the points on it are written by the ratio like (xa : yc) (resp.
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SPECIAL MCKAY CORRESPONDENCE 221

(xd : yb)) which is corresponding to a special representation ρa (resp. ρd). The fixed
point p is the intersection point of 2 exceptional curves Ea and Ed.

Thus we can get the whole space of exceptional locus by deforming the point p and
patching the affine pieces.

We will see a concrete example in the following section. Here we would like to
make one remark as a corollary:

Corollary 3.10. — For An-type simple singularities, all n+ 1 affine charts can be de-
scribed by n+ 1 Young diagrams of type (1, . . . , 1, k).

Proof. — In An case, xy is always G-invariant, hence B(G) = L(G). Therefore
we have n + 1 G-clusters and each of them corresponds to the monomial ideal
(xk, yn−k+2, xy).

4. Example and related topics

First, we recall the toric resolution of cyclic quotient singularities because the
quotient space C2/G is a toric variety.

Let R2 be the 2-dimensional real vector space, {ei | i = 1, 2} its standard base, L
the lattice generated by e1 and e2, N := L +

∑
Zv, where the summation runs over

all the elements v = 1/r(1, a) ∈ G = Cr,a, and

σ :=

{
2∑

i=1

xie
i ∈ R2, xi � 0, ∀i, 1 � i � 2

}
the naturally defined rational convex polyhedral cone in NR = N ⊗Z R. The corre-
sponding affine torus embedding Xσ is defined as Spec(C[σ̌∩M ]), whereM is the dual
lattice ofN and σ̌ the dual cone of σ inMR defined as σ̌ := {ξ ∈MR|ξ(x) � 0, ∀x ∈ σ}.

Then X = C2/G corresponds to the toric variety Xσ which is induced by the cone
σ within the lattice N .

Fact 1. — We can construct a simplicial decomposition S with the vertices on the
Newton Boundary, that is, the convex hull of the lattice points in σ except the origin.

Fact 2. — If X̃ := XS is the corresponding torus embedding, then XS is non-singular.
Thus, we obtain the minimal resolution π = πS : X̃ = XS −→ C2/G = Y . Moreover,
each lattice point of the Newton boundary corresponds to an exceptional divisor.

Example. — Let us look at the example of the cyclic quotient singularity of type C7,3

which is generated by the matrix
(
ε 0
0 ε3

)
where ε7 = 1. The toric resolution of this

quotient singularity is given by the triangulation of the lattice N : = Z2 + 1
7 (1, 3)Z

with the lattice points: See Figure 4.1.
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(5,1)

(1,3)

(2.6)

(4,5)

(6,4)

(7,0)

(0,7)

(0,0)

Figure 4.1. Toric resolution of C 2/G

From this Newton polytope, we can see that there are 3 exceptional divisors and
the dual graph gives the configuration of the exceptional components with a deformed
coordinate from the original coordinate (x, y) on C2 as in Figure 4.2.
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2
3
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(3)

(4)

2

3

1

E
E

Figure 4.2. Configuration of X̃

Therefore we have 4 affine pieces in this example and we have 4 coordinate systems
corresponding to each affine piece. In this picture, we will see the corresponding
special irreducible representations, but we would like to use our method in the previous
section to find the representations.

Let us draw the diagram which corresponds to the G-basis and L-space. First we
have the following G-basis B(G) and the corresponding characters in a same diagram.
In Figure 4.3 we draw the L-space as shaded part in B(G).

Now we have three monomials xy, x2y and x3y in B(G) � L(G) and they cor-
respond to the characters (resp. representations) 4, 5 and 6 (resp. ρ4, ρ5 and ρ6).
Therefore we can find a set of special representations, that is, {ρ1, ρ2, ρ3}, and find the
corresponding G-clusters, representing the origin of the affine charts of the resolution,
can be drawn as 4 Young diagrams and get the corresponding special representations
in this case. See Figure 4.4.
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Figure 4.3. G-basis B(G) and the characters
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Figure 4.4. G-cluster Y (Zp)

Let us see the meaning of the corresponding G-clusters in this case. From Y (Zp)
for (2), we obtain an ideal I2 = (y5, x2, xy2) for the origin of the affine chart (2) in
Figure 4.2, and the corresponding representations are ρ1, ρ2 and ρ0. If we take the
maximal ideal m of OC2 corresponding to the origin 0, then we have

I2/mI2 ∼= ρ1 ⊕ ρ2 ⊕ ρ0.

Similarly we have the ideal I3 = (y3, x3, xy2) and

I3/mI3 ∼= ρ2 ⊕ ρ3 ⊕ ρ0.

These descriptions coincide with the results of Theorem 3.1 for a point at the inter-
section E1 ∩ E2.

For any other points p on the exceptional component Ei, we must have

(∗) Ip/mIp ∼= ρi ⊕ ρ0.
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In fact, we can see that a point on the exceptional divisor E2 in this example was
determined by the ratio x2 : y3, that is, the corresponding ideal of a point on E2

can be described as Ip = (αx2 − βy3, xy2 − γ). Therefore the ratio (α : β) gives the
coordinate of the exceptional curve (∼= P1) and we also have (∗).

We discussed special McKay correspondence in 2-dimensional case in this paper. In
dimension three, it is convenient to consider crepant resolutions as minimal resolutions
and we have a much more complicated situation. Even in the case G ⊂ SL(3,C), we
have H4(X̃,Q) �= 0 in general. Of course we can use the same definition for the
special representations in the higher dimensional case, but all non-trivial irreducible
representations of G ⊂ SL(3,C) are special. On the other hand, the number of the
exceptional divisors is less than that of the non-trivial irreducible representations.
Therefore, it looks very difficult to generalize this special McKay correspondence.
That is, we should make a difference, say a kind of the grading, in the set of the
special (or non-trivial) representations like “age” of the conjugacy classes.

However, there are good news: In 2000, Craw [4] constructed a cohomological
McKay correspondence for the G-Hilbert schemes where G is an abelian group, and
in this correspondence we can see the 2-dimensional special McKay correspondence.
And recently, the author found a way to obtain a polytope which corresponds to the
3-dimensional G-Hilbert schemes for abelian subgroups in SL(3,C) by combinatorics.
There are many crepant resolutions in general in higher dimension, but the G-Hilbert
scheme for G ⊂ SL(3,C) is a unique crepant resolution, and the configuration of
the exceptional locus of the special crepant resolution, G-Hilbert scheme, can be
determined in terms of a Gröbner basis. (Let us call this the Gröbner method.)
Moreover, we can get another characterization of special representations for cyclic
quotient surface singularities by this Gröbner method. So the author is dreaming of
having a more simple and beautiful formulation of the McKay correspondence in the
future.
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