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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO

by

Pierre Schapira

Abstract. — We show how the ideas of Leray (sheaf theory), Grothendieck (derived
categories) and Sato (microlocal analysis) lead to the microlocal theory of sheaves
which allows one to reduce many problems of linear partial differential equations to
problems of microlocal geometry. Moreover, sheaves on Grothendieck topologies are
a natural tool to treat growth conditions which appear in Analysis.

Résumé(Faisceaux: de Leray à Grothendieck et Sato). — Nous montrons comment
les idées de Leray (théorie des faisceaux) Grothendieck (catégories dérivées) et Sato
(analyse microlocale) conduisent à la théorie microlocale des faisceaux qui permet
de réduire de nombreux problèmes d’équations aux dérivées partielles linéaires à des
problèmes de géométrie microlocale. Les faisceaux sur les topologies de Grothendieck
sont de plus un outil naturel pour traiter les conditions de croissance qui apparaissent
en Analyse.

1. Introduction

The “Scientific work” of Jean Leray has recently been published [7]. It is divided

in three volumes:

(a) Topologie et théorème du point fixe (algebraic topology),

(b) Équations aux dérivées partielles réelles et mécanique des fluides (non linear

analysis),

(c) Fonctions de plusieurs variables complexes et équations aux dérivées partielles

holomorphes (linear analytic partial differential equations, LPDE for short).

As we shall see, (a) and (c) are in fact closely related, and even complementary,

when translated into the language of sheaves with a dose of homological algebra.

Recall that sheaf theory, as well as the essential tool of homological algebra known

under the vocable of “spectral sequences”, were introduced in the 40’s by Leray. I do
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174 P. SCHAPIRA

not intend to give an exhaustive survey of Leray’s fundamental contributions in these

areas of Mathematics. I merely want to illustrate by some examples the fact that his

ideas, combined with those of Grothendieck [1] and Sato [10], [11], lead to an algebraic

and geometric vision of linear analysis, what Sato calls “Algebraic Analysis”.

I will explain how the classical “functional spaces” treated by the analysts in the

60’s are now replaced by “functorial spaces”, that is, sheaves of generalized holomor-

phic functions on a complex manifold X or, more precisely, complexes of sheaves

RHom (G,OX), where G is an R-constructible sheaf on the real underlying manifold

to X , the seminal example being that of Sato’s hyperfunctions [10]. I will also explain

how a general system of LPDE is now interpreted as a coherent DX -moduleM, where

DX denotes the sheaf of rings of holomorphic differential operators [3], [11].

The study of LPDE with values in a sheaf of generalized holomorphic functions is

then reduced to that of the complex RHom (G, F ), where F = RHomDX
(M,OX) is

the complex of holomorphic solutions of the systemM.

At this stage, one can forget that one is working on a complex manifold X and

dealing with LPDE, keeping only in mind two geometrical informations, the micro-

support of G and that of F (see [4]), this last one being nothing but the characteristic

variety ofM.

However, classical sheaf theory does not allow one to treat usual spaces of analysis,

much of which involving growth conditions which are not of local nature, and to

conclude, I will briefly explain how the use of Grothendieck topologies, in a very

special and easy situation, allows one to overcome this difficulty. References are made

to [4] and [5].

2. The Cauchy-Kowalevsky theorem, revisited

At the heart of LPDE is the Cauchy-Kowalevsky theorem (C-K theorem, for short).

Let us recall its classical formulation, and its improvement, by Schauder, Petrowsky

and finally Leray. As we shall see later, the C-K theorem, in its precise form given by

Leray, is the only analytical tool to treat LPDE. All other ingredients are of topological

or algebraic nature, sheaf theory and homological algebra.

The classical C-K theorem is as follows. Consider an open subset X of Cn, with

holomorphic coordinates (z1, . . . , zn), and let Y denote the complex hypersurface with

equation {z1 = 0}. Let P be a holomorphic differential operator of order m. Hence

P =
∑

|α|6m

aα(z)∂α
z

where α = (α1 . . . αn) ∈ Nn is a multi-index, |α| = α1 + · · · + αn, the aα(z)’s are

holomorphic functions on X , and ∂α
z is a monomial in the derivations ∂/∂zi.

One says that Y is non-characteristic if a(m,0...,0), the coefficient of ∂m
z1

, does not

vanish.

SÉMINAIRES & CONGRÈS 9



SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO 175

The Cauchy problem is formulated as follows. Given a holomorphic function g on X

and m holomorphic functions h = (h0, . . . , hm−1) on Y , one looks for f holomorphic

in a neighborhood of Y in X , solution of
{

Pf = g,

γY (f) = (h),

where γY (f) = (f |Y , ∂1f |Y , . . . , ∂1
m−1f |Y ) is the restriction to Y of f and its (m−1)

first derivative with respect to z1.

The C-K theorem asserts that if Y is non-characteristic with respect to P , the

Cauchy problem admits a unique solution in a neighborhood of Y . Schauder and

Petrovsky realized that the domain of existence of f depends only on X and the

principal symbol of P , and Leray gave a precised version of this theorem:

Theorem 2.1(The C-K theorem revisited by Leray). — Assume that X is relatively

compact in Cn and the coefficients aα are holomorphic in a neighborhood of X.

Assume moreover that am,0...,0 ≡ 1. Then there exists δ > 0 such that if g is

holomorphic in a ball B(a, R) centered at a ∈ Y and of radius R, with B(a, R) ⊂ X,

and (h) is holomorphic in B(a, R) ∩ Y , then f is holomorphic in the ball B(a, δR) of

radius δR.

This result seems purely technical, and its interest is not obvious. However it plays

a fundamental role in the study of propagation, as illustrated by Zerner’s result below.

To state it, we need to work free of coordinates. The principal symbol of P , denoted

by σ(P ), is defined by

σ(P )(z; ζ) =
∑

|α|=m

aα(z)ζα.

This is indeed a well-defined function on T ∗X , the complex cotangent bundle to X .

Identifying X to XR, the real underlying manifold, there is a natural identification

of (T ∗X)R and the real cotangent bundle T ∗(XR). The condition that Y is non-

characteristic for P may be translated by saying that σ(P ) does not vanish on the

conormal bundle to Y outside the zero-section, and one defines similarly the notion

of being non characteristic for a real hypersurface.

Proposition 2.2([13]). — Let Ω be an open set in X with smooth boundary S (hence

S is a real hypersurface of class C1 and Ω is locally on one side of S). Assume

that S is non-characteristic with respect to P . Let f be holomorphic in Ω and as-

sume that Pf extends holomorphically through the boundary S. Then f extends itself

holomorphically through the boundary S.

The proof is very simple (see also [2]). Using the classical C-K theorem, we may

assume that Pf = 0. Then one solves the homogeneous Cauchy problem Pf = 0,

γY (f) = γY (f), along complex hyperplanes closed to the boundary. The precised

C-K theorem tells us that the solution (which is nothing but f by the uniqueness) is
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holomorphic in a domain which“makes an angle”, hence crosses S for Y closed enough

to S.

A similar argument shows that it is possible to solve the equation Pf = g is the

space of functions holomorphic in Ω in a neighborhood of each x ∈ ∂Ω, and with some

more work one proves

Theorem 2.3. — Assume that ∂Ω is non-characteristic with respect to P . Then for

each k ∈ N, P induces an isomorphism on Hk
XrΩ(OX)|∂Ω.

3. Microsupport

The conclusion of Theorem 2.3 may be formulated in a much more general frame-

work, forgetting both PDE and complex analysis.

Let X denote a real manifold of class C∞, let k be a field, and let F be a bounded

complex of sheaves of k-vector spaces on X (more precisely, F is an object of Db(kX),

the bounded derived category of sheaves on X). As usual, T ∗X denotes the cotangent

bundle to X .

Definition 3.1. — The microsupport SS(F ) of F is the closed conic subset of T ∗X

defined as follows. Let U be an open subset of T ∗X . Then U ∩SS(F ) = ∅ if and only

if for any x ∈ X and any real C∞-function ϕ : X −→ R such that ϕ(x) = 0, dϕ(x) ∈ U ,

one has:

(RΓϕ>0(F ))x = 0.

In other words, F has no cohomology supported by the closed half spaces whose

conormals do not belong to its microsupport.

Let X be a complex manifold, P a holomorphic differential operator and let Sol(P )

be the complex of holomorphic solutions of P :

Sol(P ) := 0 −→ OX −→
P
OX −→ 0,

then Theorem 2.3 reads as:

(3.1) SS(Sol(P )) ⊂ char(P ).

This result can easily been extended to general systems (determined or not) of

LPDE.

Let DX denote the sheaf of rings of holomorphic differential operators, and let

M be a left coherent DX -module. Locally on X , M may be represented as the

cokernel of a matrix ·P0 of differential operators acting on the right. By classical

arguments of analytic geometry (Hilbert’s syzygies theorem), one shows that M is

locally isomorphic to the cohomology of a bounded complex

M• := 0 −→ DNr

X −→ · · · −→ DN1

X −−→
·P0

DN0

X −→ 0.
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The complex of holomorphic solutions of M, denoted Sol(M), (or better in

the language of derived categories, RHomDX
(M,OX)), is obtained by applying

HomDX
(·,OX) toM•. Hence

Sol(M) := 0 −→ ON0

X −−→
P0·
ON1

X −→ · · ·ONr

X −→ 0,

where now P0· operates on the left.

One defines naturally the characteristic variety of M, denoted char(M), a closed

complex analytic conic subset of T ∗X . For example, if M has a single generator u

with relation Iu = 0, where I is a locally finitely generated ideal of DX , then

char(M) = {(z; ζ) ∈ T ∗X ; σ(P )(z; ζ) = 0 ∀P ∈ I}.

Using purely algebraic arguments, one deduces from (3.1):

Theorem 3.2. — SS(Sol(M)) ⊂ char(M).

In fact, one can also prove that the inclusion above is an equality.

4. Functorial spaces

In the sixties, people used to work in various spaces of generalized functions on a

real manifold. The situation drastically changed with Sato’s definition of hyperfunc-

tions by a purely cohomological way. Recall that on a real analytic manifold M of

dimension n, the sheaf BM is defined by

BM = Hn
M (OX)⊗ orM

where X is a complexification of M and orM denotes the orientation sheaf on M . Let

CXM denote the constant sheaf on M with stalk C extended by 0 on X r M . By

Poincaré’s duality,

RHom (CXM , CX) ' orM/X [n]

where orM/X ' orM is the (relative) orientation sheaf and [n] means a shift in the

derived category of sheaves. An equivalent definition of hyperfunctions is thus given

by

(4.1) BM = RHom (D′
XCXM ,OX)

where D′
X = RHom (·, CX) is the duality functor.

The importance of Sato’s definition is twofold: first, it is purely algebraic (starting

with the analytic object OX), and second it highlights the link between real and

complex geometry.

LetAM denote the sheaf of real analytic functions on M , that is, AM = CXM⊗OX .

We have the isomorphism

AM ' RHom (D′
XCXM , CX)⊗OX ,
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from which we deduce the natural morphism

AM −→ BM .

Another natural “functorial space”, or better “sheaf of generalized holomorphic

functions”, is defined as follows. Consider a closed complex hypersurface Z of the

complex manifold X and denote by U its complementary. Let j : U ↪−→ X denote the

embedding. Then j∗j
−1OX represents the sheaf on X of functions holomorphic on U

with possible (essential) singularities on Z. One has

(4.2) j∗j
−1OX ' RHom (CXU ,OX),

where CXU is the constant sheaf on U with stalk C extended by 0 on X r U .

Both examples (4.1) and (4.2) are described by a sheaf of the type RHom (G,OX),

with G a constant sheaf on a (real or complex) analytic subspace, extended by zero.

However, this class of sheaves is not stable by the usual operations on sheaves, and it

is natural to consider R-constructible sheaves, that is, sheaves G such that there exists

a subanalytic stratification on which G is locally constant of finite rank. Indeed, it is

still better to consider G in Db
R−c(CX), the full triangulated subcategory of Db(CX)

(the bounded derived category of sheaves of C-vector spaces) consisting of objects

with R-constructible cohomology.

Hence, our functorial space is described by the complex RHom (G,OX) with G ∈
Db

R−c(CX), and given a system of LPDE, that is, a coherent DX -module M, the

complex of generalized functions solution of this system is given by the complex

RHomD(M, RHom (G,OX)) ' RHom (G, RHomD(M,OX)).

Setting F = RHomD(M,OX), we are reduced to study the complex

RHom (G, F ).

Our only information is now purely geometrical, this is the microsupport of G and

that of F (this last one being the characteristic variety of M). Now, we can forget

that we are working on a complex manifold and that we are dealing with LPDE. We

are reduced to the microlocal study of sheaves on a real manifold [4].

Let us illustrate this point of view with two examples.

5. Application 1: ellipticity

Let us show how the classical Petrowsky regularity theorem may be obtained with

the only use of the C-K-Leray Theorem 2.1, and some sheaf theory.

The regularity theorem for sheaves is as follows. Here X is a real analytic manifold,

k is a field and a sheaf on X means an object of Db(kX), the bounded derived category

of sheaves of k-vector spaces on X . If M is a submanifold, we denote by T ∗
MX the

conormal bundle to M in X . In particular, T ∗
XX denotes the zero-section, identified

with X .
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Theorem 5.1. — Let F, G be two sheaves on X. Assume that G is R-constructible and

SS(G) ∩ SS(F ) ⊂ T ∗
XX.

Then the natural morphism

RHom (G, kX)⊗ F −→ RHom (G, F )

is an isomorphism.

Let us come back to the situation where X is a complexification of M , and choose

k = C. Set G = D′(CXM ) and F = RHomD(M,OX). A differential operator P

on X is elliptic (with respect to M) if its principal symbol σ(P ) does not vanish on

the conormal bundle T ∗
MX outside of the zero-section. More generally a coherent

DX -moduleM is elliptic with respect to M if

char(M) ∩ T ∗
MX ⊂ T ∗

XX.

By Theorem 3.2

SS(F ) ∩ T ∗
MX ⊂ T ∗

XX.

The regularity theorem for sheaves gives the isomorphism

RHomDX
(M,AX)

∼−→ RHomDX
(M,BX).

In other words, the two complexes of real analytic and hyperfunction solutions of

an elliptic system of LPDE are quasi-isomorphic (they have the same cohomologies).

This is the Petrowsky’s theorem for D-modules.

Of course, this result extends to other sheaves of generalized holomorphic func-

tions, replacing the constant sheaf CXM with an R-constructible sheaf G. For further

developments, see [12].

6. Application 2: hyperbolicity

As it is well-known since Hadamard, the Cauchy-Kowalevsky theorem does not hold

any more in the real domain for general differential operators. One has to restrict

ourselves to a special class of operators, called hyperbolic operators. Here again,

Leray’s contribution is essential [6].

Let us show how to treat hyperbolicity (in the weak sense) using again sheaf the-

ory. The idea is as follows. First, and this is classical, one can reduce the Cauchy

problem to a question of propagation across hypersurfaces. Then we have to estimate

the directions of propagation of the sheaf of real solutions (let’s say hyperfunction so-

lutions, otherwise the general result is still unknown) of a linear differential operator,

knowing its characteristic variety, that is, the set of directions of propagation of its

holomorphic solutions. This is indeed a purely sheaf theoretical problem.

More precisely, consider a real manifold X and a submanifold M . There are natural

maps

T ∗M ↪−→ T ∗T ∗
MX ' TT∗

M
XT ∗X.
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Choosing a local coordinate system (x, y) ∈ X with M = {y = 0}, (x, y; ξ, η) ∈
T ∗X ; (x; η) ∈ T ∗

MX , the above isomorphism is described by

(x, η; ξ,−y) ∈ T ∗T ∗
MX ←→ (x, y; ξ, η) ∈ TT∗

M
XT ∗X.

If Z is a subset of a manifold X and W is a closed submanifold of X , the Whitney

normal cone CW (Z) of Z along W is a closed conic subset of the normal bundle TW X .

Hence, if S is a closed conic subset of T ∗X , the Whitney normal cone CT∗

M
X(S) of

S along T ∗
MX is a closed biconic (for the two actions of R

+) subset of TT∗

M
XT ∗X '

T ∗T ∗
MX .

Theorem 6.1. — Let F complex of sheaves on X. Then

SS(F |M ) ⊂ T ∗M ∩ CT∗

M
X(SS(F )),

SS(RΓM(F )) ⊂ T ∗M ∩ CT∗

M
X(SS(F )).

Now we assume that M is a real analytic manifold, X a complexification of M ,M
a coherent DX -module on X . Set F = RHomD(M,OX).

Definition 6.2. — One says that θ ∈ T ∗M is hyperbolic forM if θ /∈ CT∗

M
X(char(M)).

Example 6.3. — Assume M = DX/DX · P . Then θ is hyperbolic if and only if

σ(P )(x;
√
−1η + θ) 6= 0 for (x; η) ∈ T ∗

MX.

Applying Theorems 6.1 and 3.2, we get

Theorem 6.4. — The microsupport SS(RHomD(M,BM )) of the complex of hyper-

function solutions of M is contained in the normal cone of char(M) along T ∗
MX:

SS(RHomD(M,BM )) ⊂ CT∗

M
X(char(M)).

In other words, one has propagation in the hyperbolic directions.

The same result holds with BM replaced with AM .

One easily deduces from this result that the Cauchy problem is well-posed for

hyperbolic systems in the space of hyperfunctions.

7. From classical sheaves to Grothendieck topologies

Let M be a real analytic manifold. The usual topology on M does not allow one to

treat usual spaces of analysis with the tools of sheaf theory. For example, the property

of being temperate is not local, and there is no sheaf of temperate distributions. One

way to overcome this difficulty is to introduce a Grothendieck topology on M . Recall

that a Grothendieck topology is not a topology, and in fact is not defined on a space

but on a category. The objects of the category playing the role of the open subsets

of the space, it is an axiomatization of the notion of a covering. A site is a category

endowed with a Grothendieck topology.
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We denote by OpM the category whose objects are the open subsets of M and the

morphisms are the inclusions of open subsets. One defines a Grothendieck topology

on OpM by deciding that a family {Ui}i∈I of subobjects of U ∈ OpM is a covering of

U if it is a covering in the usual sense.

We denote by OpMsa
the full subcategory of OpM consisting of subanalytic and

relatively compact open subsets. We define a Grothendieck topology on OpMsa
by

deciding that a family {Ui}i∈I of subobjects of U ∈ OpMsa
is a covering of U if there

exists a finite subset J ⊂ I such that
⋃

j∈J Uj = U . We denote by Msa the site so

obtained.

We shall denote by

(7.1) ρ : M −→Msa

the natural morphism of sites associated with the embedding OpMsa
↪−→ OpM .

Definition 7.1. — Let U ∈ OpMsa
. We say that U is regular if for each x ∈ M , there

exists an open neighborhood V of x and a topological isomorphism φ : V
∼−→W where

W is open in some vector space E and φ(U ∩ V ) is convex in E.

If U ∈ OpM , we denote by U the closure of U in M . Note that if U is regular, the

dual of the constant sheaf on U is the constant sheaf on U . In other words,

D′
MCMU ' CMU .

Let us denote by C∞M the sheaf of rings of complex valued C∞-functions on M . Note

that if U is regular, the space ΓMrU (M ; C∞M ) of C∞-functions on M with support in

M r U coincides with the space of functions which vanish with all their derivatives

on U .

Proposition/Definition 7.2. — (i) There exists a unique sheaf C∞,ω
Msa

on Msa such that

Γ(U ; C∞,ω
Msa

) ' C∞M (U) for U ∈ OpMsa
, U regular.

(ii) There exists a unique sheaf C∞,w
Msa

on Msa such that

Γ(U ; C∞,w
Msa

) ' Γ(M ; C∞M )/ΓMrU (M ; C∞M )

for U ∈ OpMsa
, U regular.

Definition 7.3. — Let f ∈ C∞M (U). One says that f has polynomial growth at p ∈M if

it satisfies the following condition. For a local coordinate system (x1, . . . , xn) around p,

there exist a sufficiently small compact neighborhood K of p and a positive integer N

such that

(7.2) sup
x∈K∩U

(

dist(x, K r U)
)N |f(x)| <∞.

It is obvious that f has polynomial growth at any point of U . We say that f is

temperate at p if all its derivatives have polynomial growth at p. We say that f is

temperate if it is temperate at any point.
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For an open subanalytic subset U of M , denote by C∞,t
M (U) the subspace of C∞M (U)

consisting of temperate functions. Denote by DbM the sheaf of complex valued distri-

butions on M and, for Z a closed subset of M , by ΓZ(DbM ) the subsheaf of sections

supported by Z.

Definition 7.4. — (i) One denotes by C∞,t
M the presheaf U 7→ C∞,t

M (U) on Msa.

(ii) One denotes by Dbtemp
Msa

the presheaf U 7→ Γ(M ; DbM )/ΓMrU (M ;DbM ) on

Msa.

Proposition 7.5. — (i) The presheaf C∞,t
Msa

is a sheaf on Msa.

(ii) The presheaf Dbtemp
Msa

is a flabby sheaf on Msa.

One calls C∞,w
Msa

the sheaf of Whitney functions on Msa, C∞,t
Msa

the sheaf of temperate

functions on Msa, and Dbtemp
Msa

the sheaf of temperate distributions on Msa. For more

details on these sheaves, refer to [5].

Note that Propositions 7.2 and 7.5 follow from Lojasiewicz’s inequalities [8], (see

also [9]).

Finally, denote by C∞Msa
the image by ρ∗ of the sheaf C∞M . We get monomorphims

of sheaves on Msa

C∞,ω
Msa

↪−→ C∞,w
Msa

↪−→ C∞,t
Msa

↪−→ C∞Msa
.

Now let X be a complex manifold and denote by X the complex conjugate manifold.

Therefore, OX denotes the Cauchy-Riemann system on the real underlying manifold.

For λ = ω, w, t, ∅, one defines the objects Oλ
Xsa
∈ Db(βDXsa

) by the formula

Oλ
Xsa

= RHomβD
Xsa

(βOXsa
, C∞,λ

Xsa
),

where βOXsa
is the sheaf on Xsa associated with the presheaf U 7→ O(U ) and similarly

with βDXsa
. In other words, Oλ

Xsa
is the Dolbeault complex of C∞,λ

Xsa
.

We have a chain of morphisms in Db(βDXsa
)

Oω
Xsa
−→ Ow

Xsa
−→ Ot

Xsa
−→ OXsa

.

One can recover the sheaf of temperate distributions on Msa by mimicking Sato’s

construction of hyperfunctions given in (4.1).

Theorem 7.6. — There is a natural isomorphism of sheaves on Msa

Dbtemp
Msa

' RIHom (D′
XCXM ,Ot

Xsa
).

(Here, RIHom denotes the derived internal Hom in the category of sheaves on the

site Xsa.)

One recovers the usual sheaf of distributions DbM on M by the formula

DbM ' ρ−1Dbtemp
Msa

,

where ρ is given by (7.1).
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Hence, we have obtained an algebraic and functorial construction of Schwartz’s

distributions, starting with C∞-functions. This is an illustration of the strength of

sheaf theory, a theory invented by Leray and revisited by Grothendieck.
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