
Séminaires & Congrès

10, 2005, p. 1–10

NORMAL QUASI-ORDINARY SINGULARITIES

by

Fuensanta Aroca & Jawad Snoussi

Abstract. — We prove that any normal quasi-ordinary singularity is isomorphic to

the normalization of a complete intersection that we get from the group of the quasi-

ordinary projection. We give a new proof of the fact that any normal quasi-ordinary

singularity is a germ of a toric variety. We also study some particular aspects of these

singularities such as minimality, rationality and “cyclic quotient”.

Résumé(Singularités quasi-ordinaires normales). — Nous démontrons que toute sin-

gularité quasi-ordinaire normale est isomorphe à la normalisation d’une intersection

complète que l’on détermine à partir du groupe de la projection quasi-ordinaire. Nous

donnons une nouvelle preuve du fait qu’une singularité quasi-ordinaire normale est

un germe de variété torique. Nous étudions certains aspects de ces singularités : ra-

tionalité, minimalité et « quotient cyclique ».

1. Introduction

An analytic germ of dimension n is quasi-ordinary when it is a local covering of Cn,

unramified outside the coordinate hyperplanes. These singularities became a subject

of study with the so-called Jung’s method that led to the first resolution of surface

singularities.

They also appear as the “easiest” singularities. From different points of view they

are a generalization of curve singularities. They can all be parameterized à la Puiseux

([1] and [2]). For hypersurfaces, J. Lipman exhibited from the Puiseux parameteriza-

tion some characteristic exponents that determine the topological type of the embed-

ded singularity ([12], see also [10]). For general quasi-ordinary normal singularities

we refer to [7].

A full study of normal quasi-ordinary surfaces, linked with resolution of singularities

can be found in [3, III.5]. A part of this work is dedicated to study generalizations of

these results.
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2 F. AROCA & J. SNOUSSI

We start by giving simple models for normal quasi-ordinary singularities: We prove

that they are all normalization of some simple singularities that we determine from

the group of the unramified covering they induce outside the coordinate hyperplanes.

Then we link these models with toric varieties and prove that a normal quasi-ordinary

singularity is a germ of an affine toric variety (see also [14, 2.3.4]).

As a corollary we prove that any local quasi-ordinary morphism of Cn is equivalent

to a morphism of the form (x1, . . . , xn) 7→ (xa1

1 , . . . , xan
n ), for some positive integers

a1, . . . , an.

We study the case of finite cyclic quotient singularities, and give examples of normal

quasi-ordinary singularities that are neither finite cyclic quotient nor minimal.

The authors would like to thank Alberto Verjovsky and Romain Bondil for fruitful

discussions during the preparation of this work.

2. The subgroup of a quasi-ordinary projection

Let (X, 0) be a reduced and irreducible germ of analytic space of dimension n and

let

(f, 0) : (X, 0) −→ (Cn, 0)

be a germ of finite morphism (i.e. proper with finite fibers).

Given a representative f : X → U of the germ (f, 0), there exists a nowhere dense

subset B of U such that the restriction of f to X rf−1(B) is locally biholomorphic; in

particular it is a topological covering of U r B (see [15, 12.9]). The smallest analytic

subset B of U with this property is called the branching locus of f . The map f is

called an analytic covering.

Definition 2.1. — Let (X, 0) be a germ of reduced and irreducible analytic space of

dimension n. The germ (X, 0) is quasi-ordinary if there exist a finite morphism

f : (X, 0) → (Cn, 0) and a local system of coordinates x1, . . . , xn in Cn such that the

branching locus of f is contained in the hypersurface of Cn defined by x1 · · ·xn = 0.

Such a morphism is called a quasi-ordinary projection.

Let (X, 0) be quasi-ordinary of dimension n and let f : X → U be a sufficiently

small representative of a quasi-ordinary projection; U being a poly-disk around the

origin in Cn. Choose a system of coordinates (x1, . . . , xn) in U , in such a way that

the branching locus of f is contained in the space H defined by x1 · · ·xn = 0.

Set U∗ = U r H and X∗ = X r f−1(H). The restricted map f : X∗ → U∗ is a

topological covering. The space U∗ is homeomorphic to the complex torus C∗n. Since

π1(U
∗) ' Zn is abelian, the image of the induced map f∗ : π1(X

∗, x) → π1(U
∗, u)

does not depend on the choice of x ∈ f−1(u); we will call this image the subgroup of f

and we will denote it by Γf .

We say that two analytic coverings f : X → U and f ′ : X ′ → U are equivalent if

there exists an analytic isomorphism h : X → X ′ such that f = f ′ ◦ h.
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Proposition 2.2. — Let (X, 0) and (X ′, 0) be normal quasi-ordinary germs. Two quasi-

ordinary projections f : (X, 0) → U and f ′ : (X ′, 0) → U are equivalent if and only if

Γf = Γf ′ .

Proof. — The topological coverings f : X∗ → U∗ and f ′ : X ′∗ → U∗ are equivalent

if and only if Γf = Γf ′ (see for example [13, th 6.6]). The isomorphism X∗ ' X ′∗

extends to X ' X ′ by the Riemann extension theorem for normal complex spaces

(see [15, 13.6]).

3. Some simple quasi-ordinary singularities

Let A := (ai,j)16i,j6n be an invertible lower triangular matrix with non-negative

integer entries and let m be a positive integer. Let XA,m be an irreducible com-

ponent of the space defined in C2n by the following equations in coordinates

(x1, . . . , xn, z1, . . . , zn):

(1)

zm
1 = x

a1,1

1
...

zm
n = x

an,1

1 · · ·xan,n

n

XA,m is of dimension n and contains the origin.

Consider the restriction to XA,m of the linear projection:

(x1, . . . , xn, z1, . . . , zn) 7−→ (x1, . . . , xn)

and denote it by fA,m.

The branching locus of the map fA,m is contained in the space defined by

x1x2 · · ·xn = 0. The space XA,m has then a quasi-ordinary singularity at the origin

and fA,m is a quasi-ordinary projection.

We will now compute the subgroup of fA,m.

Proposition 3.1. — Let A be an invertible lower triangular n × n-matrix with non-

negative integer entries and let m be a positive integer. An n-tuple b ∈ Zn is in the

subgroup of the projection fA,m if and only if m divides all the entries of the vector Ab.

Proof. — The canonical isomorphism ϕ : Zn → π1(C
∗n, (1, . . . , 1)) is given by

ϕ(b1, . . . , bn)(t) = (eb12iπt, . . . , ebn2iπt).

The lifting of ϕ(b1, . . . , bn) with base point (1, . . . , 1) is

L(b1,...,bn)(t) = (eb12iπt, . . . , ebn2iπt, e

Pn
j=1

a1,jbj

m
2iπt, . . . , e

Pn
j=1

an,jbj

m
2iπt).

It is a loop if and only if, for any 1 6 i 6 n,

m divides
n∑

j=1

ai,jbj .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



4 F. AROCA & J. SNOUSSI

Corollary 3.2. — Let M be a lower triangular n×n-matrix with integer entries. Sup-

pose that the determinant of M is positive and that all the entries of the adjoint

of M are non-negative so that XAdj M,detM is well defined. Then, the subgroup of the

projection fAdj M,detM is the subgroup of Zn generated by the vector columns of M .

Proof. — An n-tuple b = (b1, . . . , bn) ∈ Zn belongs to the subgroup of Zn spanned by

the vector columns of M if and only if there exists a vector k ∈ Zn such that b = Mk.

Since M is invertible

k = M−1b =
1

detM
(Adj M)b

The right-hand side of the equality above has integer coordinates if and only if detM

divides all the entries of the product (Adj M)b.

4. Characterization by the subgroups of Zn

We will now see that any subgroup of Zn with finite index is the subgroup of a

quasi-ordinary projection of type fA,m.

Let Γ be a subgroup of Zn. There exists a system of generators u1, . . . , un of Γ such

that ui = (0, . . . , 0, ui,i, . . . , un,i). We can get such a system by considering first a

generator of Γ∩{0}×· · ·×{0}×Z, call it un, then a generator of Γ∩{0}×· · ·×{0}×Z×Z

and so on.

We will call such a system, a lower triangular system of generators. The matrix

M , whose columns are the vectors u1, . . . , un, is a lower triangular matrix.

Note that, by this process, the diagonal terms of M are unique up to a sign. If Γ

is of finite index, then the diagonal terms are non-zero. The non-diagonal ones are

determined up to a congruence modulo the diagonal term on their column ; therefore

they can be chosen all non-positive.

Because of the choice of the entries of M and by linear calculus, all the entries of

the adjoint matrix of M are non-negative integers.

Summarizing, we have:

Remark 4.1. — Let Γ ⊂ Zn be a subgroup of finite index. There exists an invertible

lower triangular matrix M such that, the adjoint of M has no negative entries and

the vector columns of M generate Γ.

We can then define a space XAdj M,detM as in (1). By corollary 3.2, the subgroup

of the canonical quasi-ordinary projection fAdj M,detM is precisely Γ.

Thus any subgroup of Zn of finite index is the subgroup of a morphism of the

type fA,m : XA,m → Cn. Moreover A can be chosen to be lower triangular and

m = n−1
√

det A.

Theorem 4.2. — For any germ (X, 0) of normal quasi-ordinary singularity of dimen-

sion n there exists a lower triangular matrix A of order n and a positive integer m such
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that (X, 0) is isomorphic to the normalization of an irreducible space XA,m defined as

in (1).

Proof. — Let Γ be the subgroup of a quasi-ordinary projection associated to (X, 0).

Let M be as in 4.1. By proposition 2.2, (X, 0) is isomorphic to the normalization of

(XAdj M,detM , 0).

Example 4.3. — Let Γ be the subgroup of Z2 generated by the lower triangular system

{(1,−1), (0, 2)}. Then any normal quasi-ordinary singularity of dimension 2 having

Γ as subgroup for some quasi-ordinary projection is isomorphic to the normalization

of an irreducible component of the space defined in C4 by:

z2
1 = x2

1

z2
2 = x1x2.

It is then isomorphic to the hypersurface of C3 defined by z2 = xy.

Remark 4.4. — Theorem 4.2 generalizes the well known result for normal quasi-

ordinary surfaces to normal quasi-ordinary singularities of any dimension and

codimension (see [3, p. 82]).

5. Affine Toric varieties

In this section we will show that any normal quasi-ordinary singularity is a toric

affine variety.

In [10], P. González Pérez proved theorem 5.2 stated below, for quasi-ordinary

hypersurfaces of C3. In his Ph.D. thesis [14, 2.3.4], P.Popescu-Pampu gave an other

proof for the same result, and as he says, his proof extends to general normal quasi-

ordinary singularities. We give here a “hand-made” proof of that theorem.

Let Γ be a subgroup of Zn of finite index. Let M be as in 4.1. If we call v1, . . . , vn

the rows of the matrix M−1, then (detM)vi is the ith row of the adjoint matrix

AdjM .

Recall that XAdj M,detM is an irreducible component of the space defined by the

ideal of C[X1, . . . , Xn, Z1, . . . Zn] generated by ZdetM
i = X(detM)vi , 1 6 i 6 n; where

X(a1,...,an) = Xa1

1 · · ·Xan
n .

Hence, the ring C[Xi, X
vj , 1 6 i, j 6 n] is isomorphic to the ring of regular func-

tions of XAdj M,detM . This leads us to speak about toric varieties.

We will introduce the main definitions and some properties of toric varieties that

we will use. For more details and proofs we refer to [9].

Given a subgroup Γ of Zn, we call the dual of Γ and denote by Γ∗ the group

Hom(Γ, Z). The intersection of Γ∗ with the positive orthant σ0 (:= (R>0)
n) is a

sub-semigroup of Zn.
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Let us denote by C[Γ∗ ∩ σ0] the algebra of polynomials in n variables having their

powers in the semi-group Γ∗ ∩ σ0. By Gordan’s lemma [9, 1.2, Prop 1], this algebra

is finitely generated and hence it defines an affine algebraic variety.

Definition 5.1. — The affine toric variety T (Γ, σ0), determined by the group Γ and

the cone σ0, is the affine algebraic variety Spec C[Γ∗ ∩ σ0].

We can now state the link between affine toric varieties and normal quasi-ordinary

singularities:

Theorem 5.2. — Let (X, x0) be a germ of an irreducible quasi-ordinary singularity,

and let Γ be the subgroup of a quasi-ordinary projection associated to it. The normal-

ization of (X, x0) is isomorphic to the germ at the origin of the affine toric variety

T (Γ, σ0) determined by the group Γ and the positive orthant.

Proof. — If the dimension of (X, x0) is n, the group Γ is a subgroup of finite index

of Zn. Let M be as in remark 4.1, and let v1, . . . , vn be the rows of M−1, as in the

beginning of the section. The dual group Γ∗ is the subgroup of Qn generated by

{v1, . . . , vn}.
Denote by e1, . . . , en the canonical basis of Zn. Note that ei ∈ Γ∗ for 1 6 i 6 n.

The ring of regular functions of XAdj M,detM is the algebra C[Xei , Xvj , 0 6 i, j 6 n]

which is contained in the algebra C[Γ∗ ∩ σ0].

We are going to prove that the second ring is the integral closure of the first one

in its field of fractions.

Consider a vector l ∈ Γ∗ ∩ σ0. There exist α1, . . . , αn non-negative integers, a

positive integer s and a permutation τ of {1, . . . , n} such that

l = α1vτ(1) + · · · + αsvτ(s) − (αs+1vτ(s+1) + · · · + αnvτ(n)).

Therefore, the monomial X l belongs the field of fractions of the algebra

C[Xei , Xvj , 1 6 i, j 6 n].

Furthermore, since l ∈ σ0 ∩ Qn, there exist positive integers β and b1, . . . , bn such

that

βl =
n∑

1

biei

which implies the integral relation

(X l)β = (Xe1)b1 · · · (Xen)bn .

Hence the ring C[Γ∗ ∩ σ0] is contained in the integral closure of the ring

C[Xei , Xvj , 1 6 i, j 6 n] in its field of fractions. On the other hand, affine

toric varieties are normal ([9, 2.1, 2nd Prop]). This implies that the morphism

T (Γ, σ0) −→ XAdj M,detM

induced by the inclusion of the rings of regular functions, is a normalization.
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By theorem 4.2, the normalization of (X, x0) is isomorphic to a germ of the nor-

malization of XAdj M,detM and then to the germ at the origin of T (Γ, σ0).

As consequence of the theorem we have:

Corollary 5.3. — A finite morphism from (Cn, 0) to (Cn, 0) whose ramification locus

is contained in the coordinate hyperplanes is equivalent, in the sense of section 2, to a

morphism of the form xi 7→ xλi

i , where x1, . . . , xn are local coordinates and λ1, . . . , λn

are natural numbers.

Proof. — Let f : (Cn, 0) → (Cn, 0) be as in the corollary. It is a quasi-ordinary

projection. Since Cn is normal at any of its points, by theorem 5.2, the germ (Cn, 0)

is isomorphic to the germ of the affine toric variety T (Γf , σ0) at the origin. By [9,

2.1, 1st Prop], T (Γf , σ0) is non-singular if and only if there exist λ1, . . . , λn positive

integers such that (λ1, 0, . . . , 0), . . . , (0, . . . , 0, λn) generate the group Γf .

The morphism

Cn ϕ−−→ Cn

(x1, . . . , xn) 7−→ (xλ1

1 , . . . , xλn

n )

is a quasi-ordinary projection having Γf as subgroup.By proposition 2.2 there exists

an isomorphism h : (Cn, 0) → (Cn, 0) such that f = ϕ ◦ h.

6. Cyclic quotient singularities

When a finite cyclic group G acts on Cn, there exists a system of local coordinates

(x1, . . . , xn) such that the action, in a neighborhood U of the origin, is given by:

G × U −→ U

(k , (x1, . . . , xn)) 7−→ (x1e
2iπq1k/m, . . . , xne2iπqnk/m)

m being the order of the group G and q1, . . . , qn non negative integers such that

0 6 qi < m [6, 4.2]; we will call the qi’s linearization coefficients.

Proposition 6.1. — If a cyclic finite group G acts on Cn, then the quotient space has

a quasi-ordinary singularity at the origin.

Proof. — Suppose that the action is defined around the origin by the coefficients

q1, . . . , qn as above. Set mj := m/ gcd(m, qj) when qj 6= 0 and mj := 1 when qj = 0.

The map:

Cn −→ Cn

(x1, . . . , xn) 7−→ (xm1

1 , . . . , xmn
n )
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factors through the quotient and induces a quasi-ordinary projection from Cn/G

to Cn. Furthermore, the group of this projection will be generated by

(m1, 0, . . . , 0), . . . , (0, . . . , 0, mn), (q′1, . . . , q
′

n)

where q′j = qj/ gcd(m, qj) when qj 6= 0 and q′j = 1 when qj = 0.

Remark 6.2. — Every subgroup of Z2 of finite index can be generated by vectors of

the form {(m1, 0), (0, m2), (q1, q2)}. Hence any germ of normal quasi-ordinary surface

is isomorphic to the quotient of C2 by a finite cyclic group (see for example [3, p. 84]).

This is no longer true for dimension 3.

In fact, the quotient of Cn by Z/mZ is isomorphic to a product Cs/(Z/m′Z)×Cn−s;

where s is the number of the linearization coefficients q1, . . . , qs that are not zero (up

to a change of indexation) and m′ = m/ gcd(m, q1, . . . , qs). The action of Z/m′Z

over Cs defined by the coefficients q1, . . . , qs modulo m′ does not have any fixed point

outside the origin. Hence the quotient space Cs/(Z/m′Z) has an isolated singularity.

The singular locus of Cn/(Z/mZ) will be then isomorphic to Cn−s. The singularity

defined in C4 by the equation

t3 = xyz

is normal and quasi-ordinary. The singular locus of this space is the union of three

lines.

In [7, th. 3.1], A. Dimca proves that any normal quasi-ordinary singularity of di-

mension n is locally isomorphic to the quotient of Cn by a finite group (non-necessarily

cyclic). The converse is not true: the surface singularities Dn, (n > 4), E6, E7, and

E8 are quotient of C2 by finite groups (see for example [8, II, (4.3)]), but they are not

quasi-ordinary singularities (see, [3, III, th. 5.2])).

7. Rationality and minimality

Normal quasi-ordinary surfaces satisfy many properties, some of them are still valid

in higher dimension and others are not. We have seen in the previous section that

they are not always finite cyclic quotient singularities. We will see now that they are

rational but not necessarily minimal. Explaining correctly these notions would force

us to introduce many concepts. We will give references where the reader can find the

definitions and the properties we use.

Proposition 7.1. — A normal quasi-ordinary singularity is rational.

We refer to [5] for definitions and main properties.

Proof. — A normal quasi-ordinary singularity is the quotient of (Cn, 0) by a finite

group [7, th.3.1], and then, by [5, 4.1], it is a rational singularity.

SÉMINAIRES & CONGRÈS 10
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Two-dimensional normal quasi-ordinary singularities are minimal (see [11, §3.4] for

definition and [3, III. §5] for the proof). This is no longer true for higher dimension.

Example 7.2. — The 3-dimensional normal quasi-ordinary space (X, 0) defined in C4

by t3 = xyz does not have a minimal singularity at 0.

In fact, (X, 0) has a minimal singularity if and only if a generic hyperplane section

of X has a minimal singularity [11, 3.4.3].

For general a, b, c ∈ C, the equation z = ax + by + ct defines a generic hyperplane

section (S, 0) of (X, 0). The surface (S, 0) is defined in C3 by t3 = xy(ax + by + ct).

It is a normal surface.

Consider the restriction to S of the linear projection (x, y, t) 7→ (x, y). It is a

generic projection, for general a, b and c, in the sense that its degree is equal to the

multiplicity of (S, 0).

The discriminant of that projection is the hypersurface of C2 defined by

x2y2(−4c3xy + 27a2x2 + 54abxy + 27b2y2). Its multiplicity at the origin is 6.

By Lê-Greuel formula (see [16, 4.4]), the Milnor number of a generic hyperplane

section of S is 4, meanwhile its multiplicity is 3.

A germ of reduced curve has a minimal singularity if and only if its Milnor number

is equal to its multiplicity minus one [4, 5.5]. Hence, a generic hyperplane section of

S does not have minimal singularity. So the singularity of (S, 0) is not minimal, and

then (X, 0) is not minimal.
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malisés (multiplicité, multiplicité polaire, et singularités minimales), in Trends in sin-

gularities, Trends Math., Birkhäuser, Basel, 2002, p. 31–81.
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