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LÊ’S CONJECTURE FOR CYCLIC COVERS

by

Ignacio Luengo & Anne Pichon

Abstract. — We describe the link of the cyclic cover over a singularity of complex
surface (S, p) totally branched over the zero locus of a germ of analytic function
(S, p) → (C, 0). As an application, we prove Lê’s conjecture for this family of singu-
larities i.e. that if the link is homeomorphic to the 3-sphere then the singularity is
an equisingular family of unibranch curves.

Résumé(Conjecture de Lê pour les revêtements cycliques). — Nous décrivons le « link »
du revêtement cyclique sur une singularité de surface complexe (S, p) totalement
ramifiée sur le lieu des zéros d’un germe de fonction analytique (S, p) → (C, 0). A titre
d’application, nous prouvons la conjecture de Lê pour cette famille de singularités,
i.e. si le « link » est homéomorphe à la sphère de dimension 3, alors la singularité est
une famille équisingulière de courbes unibranches.

1. Introduction

The topology of singularities of complex surfaces has been studied thoroughly in

the case of isolated singularities (link, Milnor fibration, monodromy, etc.). For non

isolated singularities the situation is less known and more mysterious.

By this work, we start a serie of papers devoted to the study of the link of a non

isolated singularity (S, p) and its relations with the geometry of (S, p) through the

resolution and with the analytic properties of (S, p).

If (S, p) is a singularity of surface, one denotes by L(S, p) its link. One of the first

questions is to give a topological characterization of a non singular germ. When the

singularity (S, p) is isolated, Mumford’s theorem gives such a characterization in term

of L(S, p), namely (S, p) is not singular if and only if the link L(S, p) is homeomorphic

to the 3-sphere. If (S, p) is not isolated, this is not true. For instance if (S, p) ⊂ (C3, 0)

is given by the equation z2 − x3 = 0, or more generally if (S, p) is an equisingular

family of unibranch curves, then L(S, p) is also homeomorphic to S3.
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It has been conjectured by Lê D.T. (see for instance [19]) that the equisingular

families of unibranch curves are the only cases in which L(S, p) is homeomorphic

to S3. In this paper, we prove Lê’s conjecture for the singularities obtained as the

cyclic cover over a singularity of complex surface (S, p) totally branched over a curve

(Theorem 5.1). The proof is based on the explicit description of the link of such a

singularity by means of a plumbing graph which is the aim of Sections 2 to 4.

In Section 2, we study the topological action of the normalization morphism on the

links of the singularity. Namely, if (S, p) is a singularity of surface, then the normal-

ization morphism n : S → S restricts to the links, providing a map n| : L(S) → L(S)

which is an homeomorphism over the complementary of the singular locus LΣS
of S,

and which is a cyclic cover over each connected component of LΣS
.

In Section 3, we present some definitions and results about Waldhausen multilinks

and their fibrations over the circle which will be applied in the next sections to the

Milnor fibrations of some germs of analytic functions (S, p) → (C, 0) defined on a

surface singularity (S, p).

In Section 4, we describe the link of any singularity of complex surface obtained

as the cyclic cover over some germ of surface (S, p) totally ramified over a germ of

curve. These singularities include for instance the germs of hypersurfaces in (C3, 0)

with equations f(x, y) − zk = 0 or f(x, y) − zkg(x, y) = 0. Our method generalizes

that developed in [16] for the singularities f(x, y) − zk = 0 when f is reduced, using

the theory of fibred Waldhausen multilinks developped in Section 3. Similar results

have been obtained independently by A. Némethi and A. Szilárd ([14]) when (S, p) is

normal by performing direct calculus on plumbing graphs.

The method is sumarized in algorithms 4.5 and 4.7. We give several examples to

illustrate it, specially of singularities whose links are topological 3-manifolds. We also

show through some examples how that the computations presented in these algorithms

enable one to describe the link of any singularity (S, p) ⊂ (C3, 0) given by an equation

fd(x, y, z)+fd+k(x, y, z) = 0 where fd and fd+k denote two homogeneous polynomials

in C[X, Y, Z] with degrees d and d+k. As an application, we prove that the singularity

with equation (y2 −x2)2 + y4x = 0 gives a negative answer to a question of McEwans

and Némethi ([12])

In section 5, we prove Lê’s conjecture for the singularities C(F, k) obtained by

taking the cyclic cover ρ : C(F, k) → (S, p) of a normal surface (S, p) totally branched

over the zero locus of a germ of analytic function F : (S, p) → (C, 0) (Theorem 5.1).

The link L(C(F, k)) of C(F, k) can be defined as the inverse image of L(S, p) by ρ. Let

LF ⊂ L(S, p) be the link of the curve F−1(0). The main argument of the proof of 5.1

is the following surprising fact (Proposition 5.3): when LF is connected, the minimal

Waldhausen decomposition of L(C(F, k)) such that the link ρ−1(LF ) is a Seifert fibres

is also the minimal Waldhausen decomposition of L(C(F, k)).
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LÊ’S CONJECTURE FOR CYCLIC COVERS 165

2. Topological action of the normalization

Let (S, p) be a reduced germ of complex surface; in particular, the singularity at p

is allowed to be non-isolated. One denotes by ΣS the singular locus of S. Let us

identify (S, p) with its image by an embedding (S, p) → (CN , 0). The link L(S, p) of

(S, p) (resp. L(ΣS, p) of (ΣS , p)) is the intersection in CN between S (resp. ΣS) and

a sufficiently small sphere S2N−1
ε of radius ε centered at the origin of CN .

According to the cone structure theorem ([13]), the homeomorphism class of the

pair (L(S, p), L(ΣS , p)) does not depend on N , nor on the embedding of (S, p) in

(Cn, 0), nor on ε when ε is sufficiently small.

If the singularity (S, p) is isolated, then L(ΣS , p) is empty. Otherwise L(ΣS , p)

is a 1-dimensional manifold diffeomorphic to a finite disjoint union of circles.

L(S, p) r L(ΣS , p) is a differentiable 3-manifold and the topological singular lo-

cus of L(S, p) is included in L(ΣS , p). Note that L(S, p) may be a topological

manifold even if the singularity (S, p) is not isolated. For example, the link of

({(x, y, z) ∈ C3 | x2 + y3 = 0}, 0) is homeomorphic to the sphere S3 whereas the

singular locus is the z-axis.

In order to lighten the notations when dealing with some germ of analytic space

(X, p), we often remove p from the notations when no confusion on the point p is

possible, writing for example S, ΣS , L(S) and L(ΣS) instead of (S, p), (ΣS , p), L(S, p)

and L(ΣS , p). Furthermore, we also denote by (X, p) or simply X a sufficiently small

neighbourhood of p in X .

Let (S1, p), . . . , (Sr, p) be the irreducible components of (S, p). For each i =

1, . . . , r, let ni : (Si, pi) → (Si, p) be the normalisation of (Si, p), i.e. the morphism,

unique up to composition with an analytic isomorphism, such that ni is proper with

finite fibres, the germ (Si, pi) is normal, Si r n−1
i (ΣSi

) is dense in Si, and the restric-

tion of ni to Si r n−1
i (ΣSi

) is biholomorphic. The normalisation of (S, p) is the map

n :
∐r

i=1(Si, pi) → (S, p) defined by: ∀ i = 1, . . . , r, n|Si
= ni.

We call a circle an oriented topological space diffeomorphic to S1 ={z ∈ C | |z|=1}.

Definition. — Let T be a topological space, let C ⊂ T be a circle and let n > 1 be

an integer. Let us choose an orientation-preserving diffeomorphic γ : C → S1. One

defines an equivalence relation ∼ on T by setting:

(x ∼ y) ⇐⇒
(
(x = y) or (x ∈ C, y ∈ C, ∃ k ∈ Z such that γ(x) = e2ikπ/nγ(y) )

)

One calls n-curling on C the projection T → T/∼.

Note that the homeomorphism class of the quotient space T/∼ does not depend

on the choice of γ. One denotes by C/(n) the subspace C/∼ of T/∼.

Definition. — Let T be a topological space and let C and C′ be two disjoint circles

in T . Let us choose an orientation-preserving diffeomorphism δ : C → C′ and let us
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166 I. LUENGO & A. PICHON

consider the equivalence relation ∼′ defined on T by:

(x ∼′ y) ⇐⇒
(
(x = y) or (x ∈ C, y ∈ C′, δ(x) = y

)

One calls identification of the two circles C and C′ the projection T → T/∼′.

Note that the homeomorphism class of T/∼′ does not depend on the choice of δ.

When s is an integer > 3, the identification of s circles in T is defined from this by

induction.

Let (S, p) be a singularity of complex surface and let n :
∐r

i=1(Si, pi) → (S, p)

be its normalisation. According to the theory of semialgebraic or subanalytic neigh-

bourhoods (see [3] and [7]), there exists a subanalytic rug function φ : S → R for

{p} in S such that for ε > 0 sufficiently small, L(S, p) = φ−1(ε). As n is analytic,

φ ◦ n is a subanalytic rug function for
∐r

i=1{pi} in
∐r

i=1(Si, pi). Therefore, if ε > 0

is sufficiently small, then (φ ◦ n)−1(ε) can be taken as the link of
∐r

i=1(Si, pi). In

particular, we have that n−1(L(S, p)) =
∐r

i=1 L(Si, pi)

Proposition 2.1

(1) n is an homeomorphism over the complementary of a tubular neighbouhood N

of L(ΣS) in L(S, p).

(2) Let ΣS = ∪s
k=1Γk, with Γk irreducible, and for each k, let n−1(Γk) = ∪lk

j=1∆
k
j

with ∆k
j irreducible. Let ak

j be the degree of n on ∆k
j . Then the restriction of n

to N is the composition of the ak
j -curlings on the circles L(∆k

j ) for k = 1, . . . , s and

j = 1, . . . , lk and of the identifications of the lk circles L(∆k
j )/(ak

j ) for k = 1, . . . , s.

Proof. — This follows from the fact that, topologically, the normalisation just sepa-

rates the branches of the surface at each of its points.

Remark. — L(S, p) is a topological manifold if and only if for each irreducible com-

ponent Γk of ΣS , lk = 1 and ak
1 = 1.

Let (S, p) be a normal singularity of complex surface, and let π : Z → S be a resolu-

tion of (S, p) whose exceptional divisor π−1(p) has normal crossings. The dual graph

Gπ of the exceptional divisor π−1(p) with vertices weighted by the self-intersections

and the genus of the irreducible components of π−1(p) completely determines the

homeomorphism class of L(S, p); namely, L(S, p) is homeomorphic to the boundary

of the 4-dimensional manifold obtained from Gπ by a plumbing process, as described

in [15].

Let C ⊂ S be a germ of curve on (S, p). One calls embedded resolution of C any

resolution π : Z → S of (S, p) such that the total transform of C by π has normal

crossings. Such a π is obtained by composing any resolution of (S, p) with a suitable

finite sequence of blowing-up of points. A resolution graph of C is a resolution graph

Gπ of such a π to which one adds a stalk (see figure 1) for each component of the strict

transform of C by π at the corresponding vertex. (usually one uses arrows instead
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LÊ’S CONJECTURE FOR CYCLIC COVERS 167

of stalks, but arrows will be used later to represent the components of a multilink

associated with a germ of function).

-2 -2-3

-1

-2

stalk

[a]

a-curling
[a']

identification

Figure 1

Let now (S, p) be an arbitrary singularity of complex surface and let n :
∐r

i=1(Si, pi)

→ (S, p) be its normalization. For each i ∈ {1, . . . , r}, let us choose an embedded

resolution πi of the germ of curve (n−1(ΣS), pi) ⊂ (Si, pi) and let Gπi
be the cor-

responding resolution graph of (n−1(ΣS), pi). Then, according to Proposition 2.1,

the homeomorphism class of the link L(S, p) is encoded in the generalised plumbing

graph of L(S, p) obtained from the disjoint union of the graphs Gπi
by performing

the following operation for each irreducible component Γk of ΣS . Using again the

notations of Proposition 2.1, if ak
j 6= 1, the stalk corresponding to ∆k

j is weighted by

[ak
j ] in order to symbolize the quotient circle L(∆k

j )/(ak
j ). Then the extremities of

these lk stalks are joined in a single extremity which symbolizes the identification of

the lk circles links L(∆k
j ). if lk = 1 and a1 = 1, one simply remove from

∐r
i=1 Gi the

stalk representing L(∆i
1).

Example. — Let (S, 0) be the germ of hypersurface at the origin of C3 with equation

f(x, y) + zg(x, y) = 0, where f : (C2, 0) → (C, 0) and g : (C2, 0) → (C, 0) are two

analytic germs which have no irreducible components in common. Let f : U → C

and g : U → C be some representatives of the germs f and g. We will describe a

generalized resolution graph of the link L(S, 0) from a a resolution of the meromorphic

function h = (f : g) : U → P1, i.e. a finite sequence ρ : Û → U of blowing-up of point

such that the map ĥ : Û → P1 given by ĥ = h ◦ ρ is well defined (see for instance [9]).

Let Z0 (resp. Z∞) be the union of the irreducible components of the exceptional

divisor ρ−1(0) such that ĥ(Z0) = (0 : 1) (resp. ĥ(Z∞) = (1 : 0)). A component E of

ρ−1(0) is dicritical if the restriction of ĥ to E is not constant. One denotes by D the

union of the dicritical components.

If necessary, one composes ρ with a finite sequence of blowings-up in such a way

that the new morphism, again denoted by ρ, verifies that the strict transform of

f−1(0) by ρ does not intersect D.

Let Z1, . . . , Zm be the connected components of Z0. For each i = 1, . . . , m, one

denotes by Ûi a small regular neighbourhood of Zi in Û . As the intersection form

restricted to Zi is negative definite, one obtains a germ of normal surface (Si, pi) by

contracting Zi to a point pi ([5]). Then the projection ci : Ûi → Si is a resolution of

(Si, pi).
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168 I. LUENGO & A. PICHON

Proposition 2.2

(1) There exists a morphism n :
∐m

i=1(Si, pi) → (S, 0) which is the normalisation

of (S, 0).

(2) Let L be the z−axis in C3. L contains the singular locus of (S, 0), and for each

i = 1, . . . , m, ci : Ûi → Si is an embedded resolution of the germ of curve (L, pi), and

the strict transform by n ◦ ci of (L, 0) is D∩ Ûi. Moreover, for each point p ∈ Zi ∩D,

the degree ap of n on the germ (D, p) equals the multiplicity of ĥ along the irreducible

component E of Zi which intersects D at p, i.e. ap = mE(f ◦ ρ) − mE(g ◦ ρ).

Proof

(1) Let P : S → U be the projection P (x, y, z) = (x, y). According to ([9], 4.4 and

4.5), there exists a morphism n :
∐m

i=1(Si, pi) → (S, 0) such that ∀ i, ρ|bUi
= P ◦ n ◦ ci

and n is the normalisation of (S, p).

(2) The total transform of L by n ◦ ci is ρ−1 ∩ Ûi which has normal crossings, and

its strict transform is D ∩ Ûi. Let p ∈ Zi ∩ D and let (u, v) be local coordinates

at (Ûi, p) such that u = 0 (resp. v = 0) is an equation of E (resp. D). Then, ĥ is

locally given by ĥ(u, v) = (um1w1 : um2w2) = (um1−m2w : 1) where m1 = mE(f ◦ ρ),

m2 = mE(g◦ρ) and w1, w2 and w are a unities. This implies that locally, (n◦ci)(u, 0) =

(0, 0, um1−m2w). Therefore, ap = deg(n|ci(D)) = m1 − m2.

Propositions 2.1 and 2.2 enable one to explicitly compute a generalized plumbing

graph of the link L(S, 0) from any resolution graph of the meromorphic function

h = (f : g) weighted by the multiplicities of h along the irreducible components of

the exceptional divisor ρ−1(0). In particular, the dual graph of the divisor Z0 is a

plumbing graph of the link
∐r

i=1 L(Si, pi).

For each example below, the figure represents the exceptional divisor of a resolu-

tion of the meromorphic function (f : g) and a generalized plumbing graph of the link

L(S, 0). The numbers between parenthesis are the multiplicities of ĥ along the irre-

ducible components of the exceptional divisor, and the numbers without parenthesis

are their self-intersections in Û .

-1(-3)

-3-4

(-1)-1 -1

(0) (0)(1) (1)
-1 -1

(1)(1)

Figure 2. f(x, y) = xy; g(x, y) = x2 + y3.
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(-8)(-10)
(-6)

(-4)(-2)
(0)

(2)

(2)

-2 -2

-2
-2-2

-2
-1

(-12)

[2]
-1

Figure 3. f(x, y) = x2; g(x, y) = y12.

(1)(3) (2)
(0)

-1

(1)
-2

-2

(-1)

-2

-2

-2 -2

Figure 4. f(x, y) = x4 + y5; g(x, y) = y. Note that in this case, (S, 0) is normal.

3. Waldhausen multilinks and horizontal fibrations

In this section, we present classical definitions and some results on Waldhausen

multilinks which fibre over the circle. This section does not contain any proof as

it is an easy generalization to multilinks of definitions and results already presented

in [16] and [17], which concern Waldhausen links (called ”marked Waldhausen man-

ifolds” in [16]). This will be applied in the next sections to the Milnor fibration

F/|F | : L(S, p) r LF → S1, of a germ F : (S, p) → C, 0 of analytic function defined

on a normal singularity of surface (S, p).

A Waldhausen manifold is a compact oriented 3-manifold M such that there exists

a finite family T of tori embedded in M , called separating family, which has the

following property: if U(T ) is a sufficiently small regular neighbourhood of T in M ,

then each connected component of M r U(T ) is a Seifertic manifold. The manifold

M is equiped with a Waldhausen decomposition if a separating family T and a Seifert

fibration on each connected component Vν of M r U(T ) =
∐m

ν=1 Vν are fixed.

In this paper, we only consider Seifert fibrations whose base are orientable, as this

is the case for each Seifert fibration appearing in singularity theory.

A multilink is a 1-dimensional link L in a 3-manifold whose components are

weighted by some integers which are called the multiplicities of the components of L.

A Waldhausen link is a pair (M, L) where M is a Waldhausen manifold without

boundary and where L is a finite union of Seifert fibres in a Waldhausen decomposition

of M . Such a decomposition is called a Waldhausen decomposition of (M, L). A Wald-

hausen graph G(M, L) of (M, L) is a graph of M associated to such a Waldhausen

decomposition decorated with arrows corresponding to the components of L. For

more details, see [17]. When L is a multilink, one says that (M, L) is a Waldhausen

multilink.

Let (M, L) be a Waldhausen multilink equipped with a Waldhausen decomposition

M r U(T ) =
∐m

ν=1 Vν . Let us fix an orientation of the Seifert fibres on each Vν . One

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



170 I. LUENGO & A. PICHON

defines the Waldhausen graph of (M, L) associated with this decomposition and this

choice of orientation as follows. If L = ∅, then one defines by the same way the

Waldhausen graph of M .

1) The vertices (resp. the edges) of G(M) are in bijection with the Seifert manifolds

(resp. with the torii of T ) in such a way that for each T ∈ T and for ν, ν′ ∈ {1, . . . , m},

the edge corresponding to T joins the vertices ν and ν′ if and only if ∂U(T ) =

U(T ) ∩ (Vν ∪ Vν′), where U(T ) denotes the connected component of U(T ) which

contains T .

2) each edge is is endowed with an arbitrary orientation, and then, is weighted

by the normalized triple (α, β, ε) defined as in [18] (see also [15] p. 322) as follows:

Let T be a separating torus between the Seifert components Vν and Vνi
, let Ti ⊂ Vν

and T ′
i ⊂ Vνi

be the two connected components of the boundary of U(T ). Let us

orient Ti ∪ T ′
i as the boundary of U(T ). Let bi (resp. b′i) be a Seifert fibre of Vν on Ti

(resp. of Vνi
on T ′

i ) and let ai (resp. a′
i) be an oriented closed curve on Ti (resp. T ′

i )

such that ai ·bi = +1 in H1(Ti,Z) (resp. a′
i ·b

′
i = +1 in H1(T

′
i ,Z)). Let h : Ti → T ′

i be

an reversing orientation homeomorphism induced by the product structure of U(T ).

There exist some unique integers εi ∈ {1,−1}, αi > 0 and βi, β
′
i ∈ Z such that

εih
−1(b′i) = αiai + βibi in H1(Ti,Z) and εih(bi) = αia

′
i + β′

ib
′
i in H1(T

′
i ,Z).

Moreover, there exists up to homology a unique choice of the curves ai and a′
i such

that the pair (αi, βi) is normalized, i.e. 0 6 βi < αi et 0 6 β′
i < αi. If αi > 1, the

integers βi and β′
i are related by βiβ

′
i ≡ 1 mod αi.

If the edge joining νi and ν in G(M) is oriented from νi and ν, it is weighted by the

normalized triple (αi, βi, εi) as on figure 5. Otherwise, it is weighted by (αi, β
′
i, εi).

3) For each Seifert fibre of L ∩ Vν (resp. for each exceptional fibre of Vν which is

not a component of L) one attaches to the vertex ν an arrow (resp. a stalk) whose

extremity is weighted, as on figure 5, by the normalized Seifert invariants (αi, βi)

defined as follows: let Ni be a saturated small tubular neighbourhood of the Seifert

fibre of Vν indexed by i (i ∈ {1, . . . , d′}), and let bi be a Seifert fibre on ∂Ni. The

torus ∂Ni being oriented as the boundary of Ni, one choose on it an oriented closed

curve ai such that ai · bi = +1 in H1(∂Ni,Z). There then exists a unique pair (αi, βi)

such that αiai + βibi = 0 in H1(∂Ni,Z). Moreover, there exists up to homology a

unique choice of the curve ai such that (αi, βi) is normalized, i.e. 0 6 βi < αi.

Moreover, the extremities of the arrows are weighted by the multiplicities µi of the

corresponding components of L.

4) Each vertex ν is weighted by the genus gν of the base of the Seifert fibration

of Vν and by the Euler class eν defined in the following classical way: Let N be a

saturated solid torus in Vν r
∐d′

i=1 Ni and let b be a Seifert fibre on ∂N . Let F

be a surface in Vν r
∐d′

i=1 Ni which is horizontal in the sense of Waldhausen ([18]),

i.e. transversal to each Seifert fibre and whose boundary is the union of the d curves

ai defined in 3) and of a = F ∩ ∂N . Let us endow F with the orientation compatible
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with that of the ai’s, and then, let us orient a as a component of ∂F . The Euler class

eν is defined by

a − eνb = 0 in H1(V,Z)

(α  , β  )ii    (α  , β  , ε  )ii    i
{

{

{

(α  , β  )ii    

  e (ν)
0ν(g  ,        )

f stalks

i   1, ...,f=

d'-f arrows

i   f  1,..., d'= +

d   d' edges

i   d'  1,..., d= +

_

vertex ν

i
vertex ν

Figure 5

According to [15], the set of Waldhausen manifolds coincides up to homeomorphism

with the set of the boundaries of the 4-manifolds obtained by plumbing processes, and

there is a dictionary between the Waldhausen graphs and the plumbing graphs which

constitutes an important part of the so-called plumbing calculus. For more details,

see [15].

If (S, p) is a normal singularity of surface, then its link L(S, p) is a Waldhausen

manifold. A Waldhausen graph of L(S, p) can be computed from any resolution graph

of (S, p) by using plumbing calculus. Moreover, if F : (S, p) → (C, 0) is an analytic

germ, one denotes by LF the multilink associated with F , that is, for ε > 0 sufficiently

small, the link S2N−1 ∩ F−1(0) ((S, p) ⊂ (CN , 0)) whose components are weighted

by the multiplicities of the corresponding branches of F . Then the pair (L(S), LF ) is

a Waldhausen multilink. A Waldhausen graph of (L(S), LF ) can be computed from

any resolution graph of F by plumbing calculus.

Now, let (M, L) be a multilink which is fibred in the sense of [4]. Let Φ : M rL →

S1 be a fibration. Assume that we are not in the following special situation, which

can be treated by hand: M is a lens space and L is included in the union of the cores

of the two torii whose union is M . Then, if (M, L) is Waldhausen, the fibration Φ is

horizontal, i.e. each fiber of Φ is, up to isotopy, transversal to the separating family

T and to each Seifert fibre of M r L.

Let F be a compact oriented surface with strictly negative Euler class. An orienta-

tion-preserving diffeomorphism h : F → F is quasi-periodic if there exists a finite

family C of simple disjoint closed curves on F such that the restriction of h to the

complementary of a small regular neighbourhood U(C) of C in F is periodic. One calls

such a C is a reduction system of h.

Let (M, L) is a fibred multilink, let Φ : M r L → S1 be a fibration and let F be a

fibre of Φ. The monodromy of Φ is the conjugation class in the group of difféotopies of

F of a diffeomorphism h : F → F defined as the first return on F of a flow transversal
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to the fibres of Φ. This class is independant from the choice of the transversal flow.

Such a diffeomorphism h is called a representant of the monodromy.

If (M, L) is a fibred Waldhausen multilink and if Φ : M r L → S1 is an horizontal

fibration, then the monodromy of Φ admits some quasi-periodic representant. Indeed,

if F is a fibre of Φ transversal to the Waldhausen structure, then the diffeomorphism

h of first return on F of the Seifert fibres of M r U(T ) extends to a quasi-periodic

representant of the monodromy of φ whose reduction system is C = T ∩ F . Let us

consider the neighbourhood U(C) = F ∩ U(T ) of C and let N be the smaller positive

interger such that hN
|FrU(C) = Id|FrU(C). If c denotes a curve of C, then the restriction

of hN to U(c) de U(c) is a Dehn twist which is characterized by the rational number t,

called rational twist, defined as follows: let µ : S1 × [0, 1] → U(c) be a trivialization

of the annulus U(c) such that µ(S1 × { 1
2}) = c. Let δ be the oriented path in U(c)

defined by δ(s) := µ(x, s), where x is fixed on S1 and where s ∈ [0, 1]. Let us orient c

in such a way that δ · c = +1 in U(c). There then exists a unique rational number t,

such that the cycles Ntc and hNδ − δ are holomogous in U(c).

Example. — If (S, p) is a normal singularity of surface and if F : (S, p) → (C, 0) is

an analytic germ, then the pair (L(S), LF ) is a fibred multilink by considering the

Milnor fibration ΦF : L(S) r LF → S1 defined by

∀σ ∈ L(S) r LF , ΦF (σ) =
F (σ)

|F (σ)|

Let h : F → F be a quasi-periodic diffeomorphism of surface. A graph G(h), called

Nielsen graph of h, is defined in both [16] and [17] from the works of J.Nielsen. Let

us recall this definition.

Let F be a compact connected oriented surface and let τ : F → F be an orientation-

preserving periodic diffeomorphism with order n. The projection π : F → O on

the orbits space of τ is a n-sheeted cyclic cover branched over a finite number of

exceptional orbits. Let D1, . . . , Df be some open disjoint disks, neighbourhoods of

the exceptionnal orbits and let Ǒ = O r
∐f

i=1 Di. One associates to each oriented

simple closed curve Γ on O a triple (m, λ, σ) called valence of Γ which is defined as

follows: m is the number of connected components of π−1(Γ) and λ = n/m. Let

ρ : H1(Ǒ,Z) → Z/nZ be the homomorphism associated to the cover π over Ǒ, σ the

integer defined modulo λ by ρ([Γ]) = m · σ.

Let us orient O as F via π. For each i ∈ {1, . . . , f}, the valency of the exceptional

orbit indexed by i is by definition the valency of the curve ∂Di oriented as a component

of the boundary of Ǒ.

The Nielsen graph of τ is the graph G(τ) represented on figure 6. It has a single

vertex which carry some “stalks” and “boundary-stalks” which represent respectively

the exceptional orbits and the components of the boundary of O. This graph is

weighted by the following numerical data:
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• n, the order of τ ,

• g, the genus of O,

• (mi, λi, σi), i = 1, . . . , f , the valencies of the f exceptional orbits of O,

• (mi, λi, σi), i = f + 1, . . . , d, the valencies of the f − d boundary components of

O oriented as the boundary of O.

(m  ,λ  ,σ  )i i i

[n,g]

{ {(m  ,λ  ,σ  )i i i
f stalks

i   1, ...,f=

d-f boundary-stalks

i   f  1,..., d= +

Figure 6

Now let h : F → F be a quasi-periodic diffeomorphism and let C be a reduction

system of h. Let Gh be the graph defined as follows: the vertices (resp. the edges) of

Gh are in bijection with the connected components of F r C (resp. with the curves of

C) in such a way that if F et F ′ are some connected components of F r C and if c

is a curve of C such that c ⊂ F ∩ F ′, then the edge A(c) joins the vertices S(F ) and

S(F ′)

Let Gh be the quotient graph of the action induced by h on the graph Gh. The

Nielsen graph G(h) of h is constructed from Gh as follows.

Let ν be a vertex of Gh and let rν be the number of connected components of F r

U(C) represented by ν. The diffeomorphism h cyclically permutes these rν connected

components, and if Fν is one of them, the diffeomorphism hν = hrν

|Fν
is a periodic

diffeomorphism of Fν . For each vertex ν of Gh, one endow the vertex ν of the graph

G(hν) with the weight rν .

For each edge A of Gh with extremities ν and ν′ (ν = ν′ is allowed), one performs

the following operation: let c be a curve of C represented by A, let t be the twist of

h around c, and let U(c) be the connected component of U(C) which contains c. The

boundary components of the annulus U(c) are represented by two distinct boundary

stalks T et T ′ belonging respectively to the graphs G(hν) and G(hν′). One constructs

an edge joining the vertices G(hν) and G(hν′ ) by attaching T and T ′ by their ex-

tremities, and then, the middle of this edge is weighted by the corresponding rational

twist t (figure 7).

At last, let us call circuit of a graph G any subgraph of G isomophic to the graph

whose set of vertices is {1, . . . , n} and whose set of edges is {(1, 2), (2, 3), . . . , (n−1, n),

(n, 1)}. Each oriented circuit c of the obtained graph G(h) is weighted by the class

ωc modulo gcd(rν , ν vertex of c) defined in [1] as follows. The circuit c being also a

circuit c of Gh, let c be an oriented circuit of Gh such that p(c) = c, where p : Gh → Gh

denotes the projection. Let ν be a vextex on c and let s be a vertex on c such that

p(s) = ν. Then the vertices p−1(ν) ∩ c appear in the following order on the oriented
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(m,λ,σ)

G(h  )ν G(h   )ν'

T T'

(m,λ,σ)

(m',λ',σ')

r  r  t

[n  ,g  ]

(m',λ',σ')

ν ν

ν

[n  ,g  ]ν' ν'

ν'
[n  ,g  ]ν ν [n  ,g  ]ν' ν'

Figure 7

cycle c:

s, hωc(s), h2ωc(s) . . .

This achieves the definition of the Nielsen graph G(h).

The following result gives a dictionnary beetween the Waldhausen graph of a fibred

Waldhausen multilink and the Nielsen graph of a quasi-periodic representant of its

monodromy.

Lemma 3.1. — Let (M, L) be a Waldhausen multilink admitting an horizontal fibration

Φ : M r L → S1. Let G(M, L) be a Waldhausen graph of (M, L) and let G(h) be

the Nielsen graph of the corresponding quasi-periodic representative h : F → F of the

monodromy of Φ. There exists an isomorphism between the graphs G(M, L) and G(h)

which sends:

• the vertices of G(M, L) on the vertices of G(h),

• the edges of G(M, L) on the edges of G(h),

• the stalks of G(M, L) on the stalks of G(h),

• the arrows of G(M, L) on the boundary-stalks of G(h).

Moreover, let ν be a vertex of G(M, L) as on figure 8. The corresponding vertex ν of

g(h) is also represented on figure 8. Let us set Nν = nνrν . For each valency (m, λ, σ),

there exists a representative σ in his class modulo λ in such a way that the following

equalities hold:

∀ i ∈ {1, . . . , f}, (αi, βi) = (λi, σi)(1)

∀ i ∈ {f + 1, . . . , d′}, mi = 1, λi = Nν , and αiσi − Nνβi = −
µi

mi
(2)

∀ i ∈ {d′ + 1, . . . , d}, εi =
−Nνi

tiλi

| − Nνi
tiλi|

, αi = | − Nνi
tiλi|,(3)

and βi = εi
Nνi

− NνNνi
tiσi

Nν
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Let e0(ν) = eν − Σd
i=1βi/αi. Then

(4) e0(ν) =

d∑

i=1

(
σi

λi
−

βi

αi

)

d-d' edges 

1=d'+1,..., d

(α  , β  )ii    (α  ,β  )

d'-s arrows

i=s+1,..., d'

s stalks

i=1, ...,s

g  ,e

{

{

{ (α  , β  )ii    

i  i   

ν ν

G(M,L)

d-d' edges

i=d'+1,..., d

{
d'-s boundary-stalks

i=s+1,..., d'

s stalks

i=1, ...,s
(n ,g )

{
ν ν

rν

ti

(..,..,..)

(m ,λ ,σ )i    i    i    

{(m ,λ ,σ )i    i    i    

(m ,λ ,σ )i    i    i    

(n   ,g   )ν ν

rν
i

i i

G(h)

µ i

Figure 8

Proof. — This result is a generalization of ([P2], Lemma 2.2) which treats the case

of a Waldhausen link. In fact, the dictionary is identical, except the second formula

which takes into account the multiplicity µi of the corresponding component Ki of

the multilink and the number mi of boundary-components of the horizontal fibre in

the neighbourhood of Ki.

According to Lemma 3.1, the graph G(M, L) is entirely computed from the graph

G(h) and the multiplicities of the components of L as Seifert fibres and as components

of a multilink. Conversely, as mentioned in [17], if M is a rational homology sphere

(i.e. if G(M, L) is a tree and if all its vertices carry genus zero), then the graph

G(h) is completely determined by the graph G(M, L). In particular, if (S, p) is a

normal singularity of surface whose boundary is a rational homology sphere and if

F : (S, p) → (C, 0) is any analytic germ, then the Nielsen graph of the quasi-periodic

monodromy of its Milnor fibration is completely determined from any resolution graph

of F . The explicit calculus can be performed by using the formulae of Du Bois - Michel

([2], Proposition 1.6 and Theorem 2.21, see also [16] for the formulation in terms of

Nielsen graphs). In these papers, these formulae concern the case S smooth and F

reduced, but their proof in [2] also hold without any change in the general case.

4. Branched cyclic cover over a singularity of surface

In this section, we describe the link of any singularity of complex surface obtained

as the cyclic cover over some germ of surface (S, p) totally ramified over a germ of
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curve. This singularities include for instance the germs of hypersurfaces in (C3, 0)

with equations f(x, y) − zk = 0 or f(x, y) − zkg(x, y) = 0.

Our method generalizes that developed in [16] for the singularities f(x, y)−zk = 0

when f is reduced, using the theory of fibred Waldhausen multilinks presented in

Section 3.

Let (S, p) be a germ of complex surface, let F : (S, p) → (C, 0) be an analytic

function such that F−1(0) is a curve, and let k > 1 be an integer. One denotes

by C(F, k) (C for ”cover”) the germ of hypersurface at (p, 0) in S × C with equation

F − zk = 0. In other words, C(F, k) is the fibre-product of F and of the branched

cover ρk : C → C defined by ρk(z) = zk. In particular, the following diagram is

commutative

C(F, k)
ρ

//

F ′

��

S

F
��

C
ρk

// C

where ρ and F ′ are the restrictions of the natural projections S×C → S and S×C →

C respectively. The map ρ is nothing but the k-sheeted cyclic over (S, p) totally

branched over the germ of curve with equation F = 0.

Examples

(1) (S, p) = (C2, 0). Then, for any germ F : (C2, 0) → (C, 0), C(F, k) is the germ

of hypersurface at the origin of C3 with equation F (x, y) − zk = 0.

(2) Let f : (C2, 0) → (C, 0) and g : (C2, 0) → (C, 0) be two analytic germs, let

(S, 0) be the germ of hypersurface in C3 with equation f(x, y) + zg(x, y) = 0, and let

F : (S, p) → (C, 0) defined by F (x, y, z) = z. Then C(F, k) is analytically isomorphic

to the germ of hypersurface at the origin of C3 with equation f(x, y)− zkg(x, y) = 0.

Let I : (S, p) → (CN , 0) be an embedding. Let us identify C(F, k) with the image of

its embedding in CN+1 obtained by restricting the map I × IdC : S ×C → CN ×C.

According to [3], when ε and ε′ > 0 are sufficiently small, the link of C(F, k) can

be defined as the intersection in CN+1 between the complex surface C(F, k) and the

boundary of the “ball with corners”

B2N+2 = {(x, z) ∈ CN × C | ‖x‖ 6 ε, |z| 6 ε′}

Let us now choose ε′ so that ∀x ∈ CN such that ‖x‖ 6 ε, |F (x)|k < ε′. Then the

link L(C(F, k)) is contained in S2N−1
ε × {z ∈ C | |z| < ε′}.

Let η : C(F, k) → C(F, k) be the normalisation of C(F, k). As mentioned before

Proposition 1.3, one can define L(C(F, k) as η−1(L(C(F, k))). Let us denote again by

η : L(C(F, k)) → L(C(F, k)) the restriction of η.
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LÊ’S CONJECTURE FOR CYCLIC COVERS 177

Proposition 4.1

a) The restriction ρ : L(C(F, k)) → L(S) is a k-sheeted cyclic cover totally branched

over LF .

b) The map ρ = ρ◦η : L(C(F, k)) → L(S) is a k-sheeted cyclic cover with branching

locus included in the link LF ∪ L(ΣS).

Proof. — a) follows from the definition of ρ. The singular locus of C(F, k) is included

in the strict tranform by ρ of the germ of curve ΣS ∪ F−1(0). This leads to b).

Our aim is to describe a generalized plumbing graph of the multilink (L(C(F, k)), LF ′ )

from a resolution graph of the germ F by using the properties of the covers ρ and ρ.

Our study consists of two parts, the first one dealing with the particular case when

the singularity (S, p) is normal.

I - Description of the multilink (L(C(F, k)), LF ′ ) when (S, p) is normal. — This first

step is a generalization of the method developed in [16] in the smooth case and for

F : C2, 0 → C, 0 reduced.

Let us denote by F : C(F, k) → (C, 0) the analytic germ defined by F = F ′◦η. Then

LF = ρ−1(LF ), and a Waldhausen decomposition of the multilink (L(C(F, k)), LF )

can be defined via the branched cyclic cover ρ from any Waldhausen decomposition of

the multilink (L(S), LF ) — with separating family say T — as follows: the separating

family is T ′ := ρ−1(T ), U(T ′) := ρ−1(U(T )), and the Seifert fibres of L(S) r U(T )

are the images by ρ of the Seifert fibres of L(C(F, k)) r U(T ′).

Let us now fix on (L(S), LF ) a Waldhausen decomposition with separating fam-

ily T . We will describe the Waldhausen decomposition of the multilink (L(C(F, k), LF )

induced by this way via the cyclic cover ρ.

Lemma 4.2. — Let F be a fibre of the Milnor fibration ΦF = F/|F | : L(S, p) r LF →

S1. Then ρ−1(F) is the disjoint union of k fibres of the Milnor fibration ΦF of F ,

and if F ′ denotes one of them, the restriction ρ : F ′ → F is a diffeomorphism.

Furthermore, if h : F → F denotes a quasi-periodic representative of the monodromy

of ΦF , then a quasi-periodic representative of the monodromy of ΦF is ρ−1 ◦ hk ◦ ρ.

Proof. — The proof is analogous to that of ([16] 1.5) by using the commutativity of

the diagram

(d1)

L(C(F, k)) r LF

ρ
//

ΦF
��

L(S) r LF

ΦF

��

S1
ρk

// S1

where ρk(z) = zk.
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Lemma 4.3

(1) Let K be a component of LF and let m be the number of connected components

of the intersection of F with a small tubular neighbourhood of K in L(S). Then

ρ−1(K) is a disjoint union of gcd(m, k) components of LF .

(2) Let K ′ be one of them and let µ be the multiplicity of K as a component of the

multilink LF . Then the multiplicity µ′ of K ′ as a component of the multilink LF is

given by

µ′ =
µ

gcd(µ, k)

(3) Let V ′ be the Seifert component of L(C(F, k)) r U(T ′) which contains K ′. If

α′ (resp. α) is the multiplicity of K ′ (resp. K) as a Seifert fibre of V ′ (resp. ρ(V ′)),

and if N is the order of the periodic diffeomorphism h|F∩ρ(V ′), then

α′ =
k gcd(m, k)α

gcd(N, k) gcd(µ, k)

(4) η performs a gcd(µ,k)
gcd(m,k) -curling on each of the gcd(m, k) components of ρ−1(K),

and then, identifies the quotients in a single circle.

The proof of Lemma 4.3 uses the following topological result which will be used

again later on.

Lemma 4.4. — Let S1
0, S1

1 and S1
2 be three copies of S1 = {z ∈ C | |z| = 1} and let

r1 : S1
2 → S1

0 and r2 : S1
1 → S1

0 be two cyclic covers with degrees respectively d1 and

d2. Let Y be the fibre-product of r1 and r2 and let r′j : Y → S1
j , j = 1, 2 be the

natural projections. Then Y is the disjoint union of gcd(d1, d2) copies of S1 and r′j
is a dj-sheeted cyclic cover.

Y
r′1

//

r′2
��

S1
1

r2

��

S1
2

r1
// S1

0

Proof. — Let us identify S1
j with the standard circle S1. Then, up to conjugacy, rj

is the map defined by rj(e
2iπt)=e2iπdjt. Therefore Y ={(x, y) ∈ S1

1 × S1
2 | yd1 =xd2},

that is Y is the disjoint union of gcd(d1, d2) parallel copies of the torus knot

( d2

gcd(d1,d2)
, d1

gcd(d1,d2)
) on the torus S1

1 × S1
2.

Proof of Lemma 4.3

1) Let U(K) be a small tubular neighbourhood of K saturated with Seifert fibres

and let T be its boundary. As h cyclically permutes the m connected components of

F ∩ T , then these m curves split among gcd(m, k) orbits of the action of hk on F .

Then, according to Lemma 4.2, ρ−1(U(K)) is the disjoint union of gcd(m, k) solid

torii, and ρ−1(K) is the disjoint union of their cores.
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2) and 4) Let γ be a meridian of U(K) that is a simple closed curve on T which

borders a disk of compression in U(K). Restricting (d1), one obtains the following

diagram

ρ−1(γ)
ρ

//

ΦF
��

γ

ΦF
��

S1
ρk

// S1

which expresses that ρ−1(γ) is the fibre-product of the cyclic covers ρk and ΦF :

γ → S1. Applying Lemma 4.4 to these covers, whose degrees are respectively k

and µ, one obtains that ρ−1(γ) is the disjoint union of gcd(µ, k) curves which split

uniformically as meridians of the gcd(m, k) components of ρ−1(K). Therefore, the

restriction ρ : K ′ → ρ−1(K) is a gcd(µ,k)
gcd(m,k) -sheeted cyclic cover.

Furthermore, let T ′ be the boundary of the component of ρ−1(U(K)) which con-

tains K ′; according to Lemma 4.4, the restriction ΦF : ρ−1(γ)∩T ′ → S1 is a µ
gcd(µ,k) -

sheeted cyclic cover. By definition, this number of sheets is equal to the multiplicity µ′.

3) Let b be a Seifert fibre of ρ(V ′) on T . Let us orientate T as the boundary

of U(K) and γ in such a way that γ · b > 0 in H1(T,Z). Let us orientate ρ−1(T )

(resp. ρ−1(γ), resp. ρ−1(b)) as T (resp. γ, resp. b) via ρ. Then

(
ρ−1(γ) ∩ T ′

)
·
(
ρ−1(b) ∩ T ′

)
=

k

gcd(m, k)
γ · b

as the restriction ρ| : T ′ → T is a k
gcd(m,k) -sheeted cyclic cover.

According to Lemma 4.2, ρ−1(b)∩T ′ is the disjoint union of gcd(N,k)
gcd(m,k) Seifert fibres.

If b′ is one of them and if γ′ is one of the gcd(µ,k)
gcd(m,k) components of ρ−1(γ) ∩ T ′, one

therefore obtains

gcd(µ, k)

gcd(m, k)
×

gcd(N, k)

gcd(m, k)
γ′ · b′ =

k

gcd(m, k)
γ · b

This leads to 3) as γ · b = α and γ′ · b′ = α′.

Let (S, p) be a normal singularity of surface, let F : (S, p) → (C, 0) be any analytic

germ, and let k > 2 be an integer. Lemma 3.1, Proposition 4.1, Lemma 4.2 and

Lemma 4.3 lead to Algorithm 4.5, which computes a generalized plumbing graph of

the multilink (L(C(F, k)), LF ) from any resolution graph of F and from the Nielsen

graph of a quasi-periodic representative of the monodromy h : F → F of the Milnor

fibration ΦF .

Each step of the algorithm is illustrated on the example F : (C2, 0) → (C, 0)

defined by F (x, y) = (x2 + y3)2 and k = 3. C(F, 3) is the germ of hypersurface in

(C3, 0) with equation (x2 + y3)2 + z3 = 0 and F : (C(F, 3), 0) → C is the analytic

germ defined by F (x, y, z) = z. Figure 9 represents a resolution graph G of F and a
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Nielsen graph of the quasi-periodic representative of the monodromy of ΦF performed

from G by using Du Bois-Michel’s formulae ([2]).

-3(4)

-2-1

(6)(12)

(2)

(6,0) 2
(3,2,-1)

(2,3,-1)

(1,6,-1)

G G(h)

Figure 9

Algorithm 4.5
Step 1. Using Lemma 4.3, one computes the multiplicities of the components of the

multilink LF as Seifert fibres and as components of a multilink. In the example,

the single component of LF has multiplicity α′ = 1 as Seifert fibre and µ′ = 2 as

component of the multilink.

Step 2. One computes the Nielsen graph G(hk) from G(h) (using for instance ([16],

2.2 and 2.3; in particular, the classes ω of the circuits of G(hk) are obtained by

analogous formulas as the valencies of the curves).

(2,0)

2
(1,2,1)

(1,2,-1) (1,2,1)

(1,2,1)

Figure 10. G(h3)

Step 3. According to Lemma 4.2, hk is a quasi-periodic representative of the mon-

odromy of the horizontal fibration ΦF of the multilink (L(C(F, k)), LF ). Using Lemma

3.1, one computes the Waldhausen graph of this multilink from G(hk) and from the

multiplicities of the components of LF as Seifert fibres and as components of the

multilink.

0,1
(2,1)

(1,0) (2,1)

(2,1)

Figure 11

Step 4. Using plumbing calculus again, one computes from this Waldhausen graph a

plumbing graph of the link (L(C(F, k)), LF ).
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Step 5. Using 4) of Lemma 4.3, one computes from this a generalized plumbing

graph of (L(C(F, k)), LF ′ ). In our example, the restriction ρ : LF → ρ−1(LF ) is a

homeomorphism. Figure 12 represents the plumbing graph of (L(C(F, k)), LF ′ ).

-2

-2

-2

-2

Figure 12

II - Description of (L(C(F, k)), LF ′ ) in the general case. — Let (S, p) be any singu-

larity of surface and let F : (S, p) → (C, 0) be an analytic germ such that F−1(0)

is a curve. Let n :
∐r

i=1(Si, pi) → (S, p) be the normalisation of S, and for each

i ∈ {1, . . . , r}, let Fi : (Si, pi) :→ (S, p) be the germ defined by Fi = F ◦ n. Then∐r
i=1 C(Fi, k) is the fibre-product of n and ρ, as is expressed in the commutative di-

agram below, where n′ and ρ′ denote the natural projections. Again by argument of

[3], this diagram restricts to the links.

∐r
i=1 C(Fi, k)

ρ′
//

n′

��

∐r
i=1(Si, pi)

n
��

C(F, k)
ρ

//

F ′

��

(S, p)

F
��

C
ρk

// C

∐r
i=1 L(C(Fi, k))

ρ′
//

p
��

∐r
i=1 L(Si)

n
��

L(C(F, k))
ρ

// L(S)

As in Section 1, one denotes by ΣS the singular locus of S and by L(ΣS) ⊂ L(S)

its link. The following result describes the map n :
∐r

i=1 L(C(Fi, k)) → L(C(F, k)).

Lemma 4.6. — The map n′ :
∐r

i=1 L(C(Fi, k)) → L(C(F, k)) is a homeomorphism over

ρ−1(L(ΣS)). Moreover, let K be a component of L(ΣS) and let Kj, j = 1, . . . , lK be

the components of n−1(K). For each j = 1, . . . , lK, one denotes by aj the degree of

the restriction n : Kj → K.

a) If K ⊂ LF , then ρ−1(K) is a single Seifert fibre in L(C(F, k)), and for each

j = 1, . . . , lK , ρ′−1(Kj) is a single Seifert fibre in
∐r

i=1 L(C(Fi, k)). The restriction

n′ : ρ′−1(Kj) → ρ−1(K) is an aj-sheeted cyclic cover.

b) If K 6⊂ LF , let m be the degree of F|K and let mj be that of (F ◦ n)|Kj

(note that mj = maj. Then ρ−1(K) is the disjoint union of gcd(m, k) Seifert

fibres in L(C(F, k)), ρ′−1(Kj) is the disjoint union of gcd(mj , k) Seifert fibres in∐r
i=1 L(C(Fi, k)), and the restriction n′ : ρ′−1(Kj) → ρ−1(K) is an aj-sheeted cyclic

cover.
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Proof

a) The cover ρ : L(C(F, k)) → L(S) is a homeomorphism over K as K is contained

in its ramification locus. Then, a) follows by applying Lemma 3.4 to the covers

ρ : ρ−1(K) → K and n : Kj → K.

b) Applying Lemma 3.4 to ρk and F : K → C∗, one obtains that ρ−1(K) has

gcd(m, k) connected components. Applying Lemma 3.4 to ρk and F ◦ n : Kj → C∗,

one obtains that ρ′−1(Kj) has gcd(mj , k) connected components. The degree of the

cyclic cover n′ : ρ′−1(Kj) → ρ−1(K) is aj as the following diagram expresses that

ρ′−1(Kj) is the fiber product of ρ : ρ−1(K) → K and n : Kj → K

ρ′−1(Kj)
ρ′

//

n′

��

Kj

n
��

ρ−1(K)
ρ

// K

The following algorithm computes a generalized plumbing graph of the multilink

(L(C(F, k)), LF ′ ) from any resolution graphs of Fi, from the Nielsen graphs of the

quasi-periodic monodromies of the Milnor fibrations ΦFi
, and from the curlings and

identifications performed by the normalization n over the link of the singular locus

ΣS .

Algorithm 4.7
Step 1. By using Algorithm 4.5, one computes a generalized plumbing graph of the

multilinks (C(Fi, k), LFi
) for each i ∈ {1, . . . , r}.

Step 2. Using Lemma 4.6, one indicates on the disjoint union of these graphs the

curlings and identifications which have to be performed on the link (n ◦ ρ)−1(L(ΣS))

to obtain L(C(F, k)) from
∐r

i=1 L(C(Fi, k)).

Examples

(1) In the case (S, 0) = (C2, 0) and F : (C2, 0) → (C, 0) reduced, a lot of examples

are computed by this method in [16]. See also [Nem].

(2) f : (C2, 0) → (C, 0) and g : (C2, 0) → (C, 0) are the two analytic germs

defined by f(x, y) = x2 and g(x, y) = y12, (S, 0) is the germ of hypersurface in C3 with

equation x2+zy12 = 0, and F : (S, p) → (C, 0) defined by F (x, y, z) = z. Then C(F, k)

is the germ of hypersurface at the origin of C3 with equation x2 − zky12 = 0 and F :

(C(F, k), 0) → C is the analytic germ defined by F (x, y, z) = z. Figure 13 represents

a generalized plumbing graph G of the multilink LF , computed from Figure 3, the

Nielsen graph G(h) of the monodromy of LF , the Nielsen graph G(hk), a generalized

plumbing graph of the multilink (L(C(F, k)), LF ′ ) obtained by using Algorithm 4.7,

and the underlying minimal plumbing graph obtained from the latter by some suitable

blowing-down.
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[2] 

(2)

(2)

-2 -2

-2 -2

-1

-1

G

-1
[2]

[2]

[2]

-1

(2,1,-1)

2
(1,0)

G(h)

G(h   )

if k is odd if k is even

(2,1,-1)

2(1,0)

(1,1,-1)

(1,0) (1,0)

1 1
(1,1,-1)

k/2-1 vertices -2

-1

-1
[2]

[2]

k-1 vertices -2

-2-2-1

graph of (L(C(F,k)),L    )

minimal graph

k

[2]

F'

Figure 13

Let (S, 0) be the germ of hypersurface in C3 with equation

fd(x, y, z) + fd+k(x, y, z) = 0,

where fi is homogeneous of degree i. Let φ : (S̃, D) → (S, 0) be the blowing-up

of S with center 0. If p̃ ∈ D is a point in the exceptional divisor corresponding to a

tangent direction (x0, y0, z0) with z0 6= 0 then a local equation of (S̃, p̃) is fd(x, y, 1)+

zkfd+k(x, y, 1) = 0, and one can obtain a resolution graph of (S, O) using the previous

algorithms. Moreover one can give precise geometric conditions on fd and fd+k in

order the link L(S, p) to be a topological manifold (cf. [11].)

As an example let us consider the surface germ (S, 0) with equation

(zy − x2) + y4x = 0.

We can see that the resolution graph of (S, 0) is ◦ − 2 ◦ −2 ◦ −2. This is

the resolution graph of the Hirzebruch-Jung singularity with equation xy + z4 = 0

(A3 in Arnold’s notation). This example gives a negative answer to a question of

McEwans and Némethi (see [12] for other related questions). In order to state the

question, let us remind the concept of a quasi-ordinary surface singularity. A germ of

surface (S, 0) ⊂ (C3, 0) is called quasi-ordinary (QO) if there exists a linear projection

p : (C3, 0) → (C2, 0) such that p|S is finite and its discriminant has normal crossings at

0. This means that one can take local coordinates (x, y, z) such that the projection is

given by p(x, y, z) = (x, y), the local equation f of is (S, 0) is a Weierstrass polynomial

in z and its discriminant Discz(f) = xaybε(x, y) with ε(0, 0) 6= 0. McEwans and

Némethi asked for some intrinsic characterization of quasi-ordinary surface germ, for

instance in terms of its link. In our case (S, 0) is not QO and has the same (abstract)

link than A3, namely the lens space L(2, 1), but as embedded links in S5 which
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may be different. Question 2.9(a) of [12] asked if the fact that the normalization of

(S, 0) is is quasi-ordinary characterize the quasi-ordinary singularities in (C3, 0). The

above example gives a negative answer to this question, because (S, 0) is not QO, but

the above computations gives that its normalization is A3. One can check directly

that the map n(x1, y1, z1) = (−x1 + y1z1, y1,−z2
1) from the germ (S1, 0) defined by

x1y1 − z4
4 to (S, 0) is the normalization of (S, 0). In order to prove that (S, 0) is not

QO in any system of coordinates we can use the next property from [10]: Let (S, 0)

be QO in the coordinates (x, y, z) and let us denote by PN(f) ⊂ N3 its Newton

polygon (O0 = (0, 0, k) ∈ PN(f)) and by π0 : N3 → N2 × {0} the projection from

the point O0. If the coefficient of f in zk−1 is 0, then there exists a point O1 = (a, b, 0)

such that π0(PN(f)) = O1 + (N2 × {0}) Let us denote by l the segment [O0, O1]

then PN(f) ⊂ l + N3. As the tangent cone is a double conic then one can see that

O0 = (0, 0, 4) and O1 = (2, 2, 0)). For instance if a+b > 0 then k = 4 and the tangent

cone is a plane (the other cases are similar). Using again that PN(f) ⊂ l + N3 one

can see that the two axis Ex and Ey are contained in the singular locus ΣS and this

gives a contradiction because ΣS is a line.

5. Lê’s conjecture for the cyclic covers

Definition. — A germ of surface (S, p) is equisingular if either it is smooth or (ΣS , p) is

a smooth germ and the topological type of the germ of curve obtained by hyperplane

transversal section of S at a point p′ ∈ ΣS close from p does not depend of p′.

The link of an equisingular germ of surface with a single branch is homeomorphic

to the sphere S3. The converse has been conjectured by Lê D.T. in [19]:

Lê’s Conjecture. — If the link of a singularity of complex surface is homeomorphic to

the sphere S3 then the singularity is equisingular with a single branch.

The aim of this Section is to prove Lê’s Conjecture when the singularity is a cyclic

cover of a germ of normal surface totally branched over a germ of curve:

Theorem 5.1. — Lê’s Conjecture is true for the singularity C(F, k), where F : (S, p) →

(C, 0) is an analytic function on a germ (S, p) of normal surface such that F−1(0) is

a curve.

In the sequel, (S, p) is a singularity of normal surface and F : (S, p) → (C, 0)

is an analytic germ. Using again the notations of Section 3, one denotes by

ρ : (L(C(F, k)), LF ) → (L(S, p), LF ) the k-sheeted cyclic cover associated to F and k.

In order to prove Theorem 5.1, we will describe the minimal Waldhausen decom-

position of L(C(F, k)). The following is obtained as ([8],1.2.3) by using arguments

of [6].
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Proposition 5.2. — Let M be a Waldhausen manifold without boundary which is not

homeomorphic to a lens space, or to a torus bundle over the circle. There then ex-

ists, up to isotopy, a unique Waldhausen decomposition of M in which the following

conditions hold:

(i) if T is the separating family, then the Seifert fibres on both sides of any torus

T ⊂ T are not homologous on T .

(ii) No connected component of M r U(T ) is a solid torus or a product torus ×

interval.

This unique decomposition is called the minimal Waldhausen decomposition of M .

Let π : Z → S be a resolution of F and let Gπ the dual graph of the resolution.

Recall that Gπ is a plumbing graph of the multilink (L(S, p), LF ). One denotes

by R the set of rupture vertices of Gπ, that is the set of vertices carrying a non zero

genus or admitting at least 3 neighbouring vertices, the extremities of the arrows

being considered as true vertices. A long edge of Gπ is the adherence of a connected

component of Gπ r R whose two tips are rupture vertices.

If R 6= ∅, then it follows from [15] that L(S, p) admits a Waldhausen decomposition

whose Seifert components are in bijection with the rupture vertices of Gπ and whose

separating family T is in bijection with the set of long edges of Gπ. Actually, this

Waldhausen decomposition, which does not depend on Gπ, is the minimal one such

that LF is a union of Seifert fibres. Indeed, if U(LF ) denotes a small open tubular

neighbourhood of LF saturated with Seifert fibres, it coincides on the complementary

of U(LF ) with the minimal Waldhausen decomposition of L(S, p) r U(LF ).

The following result generalizes ([16], 6.4).

Proposition 5.3. — Let us assume that the graph Gπ admits at least one rupture vertex

and let us equip L(S, p) with the minimal Waldhausen decomposition such that LF is

a union of Seifert fibres. Then the link L(C(F, k)) is neither a lens space nor a torus

bundle over the circle. Moreover, if k > 3 or if k = 2 and LF has a single component,

then the Waldhausen decomposition of L(C(F, k)) induced via ρ by that of L(S, p) is

the minimal one.

Proof. — Let T be the separating family of L(S, p) and let T ′ := ρ−1(T ) be that of

L(C(F, k)).

At first, let us prove that the Waldhausen decomposition of L(C(F, k)) has the

properties (i) and (ii) of 5.3.

(i) holds by the same arguments as in the proof of ([16], 6.4).

(ii) Let V ′ be a Seifert component of L(C(F, k)) r U(T ′) and let V be the Seifert

component of L(S, p) r U(T ) defined by V = ρ(V ′). Let us assume that V ′ is either

a solid torus or a product torus × interval.

Let F ′ be a fibre of ΦF and let F be the fibre of ΦF defined by F = ρ(F ′).
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Assume that V ′ ∩ LF = ∅. Then V ′ ∩ F ′ is either a disjoint union of disks or a

disjoint union of rings. As the restriction ρ : F ′ → F is a diffeomorphism, F ∩ V also

is a disjoint union of disks or a disjoint union of rings. Therefore V is is either a solid

torus or a product torus × interval as V ∩ LF = ∅. This contradicts the minimality

of the Waldhausen decomposition of L(S, p) r U(LF ). Therefore V ′ ∩ LF ′ 6= ∅

If K is a component with multiplicity µ of the multilink LF , it follows from Lemma

3.3 that gcd(µ, k) = 1 as L(S, p) is a manifold. If r denotes the number of connected

components of F ∩ V , one then obtains that gcd(r, k) = 1 as r divides µ. This means

that V ′ is the single connected component of ρ−1(V ).

Under these conditions, we may use the following generalization of ([17], 6.2) which

follows from the computations of Section 3.

Lemma 5.4. — Let p : V → B be the Seifert fibration of V and let p′ : V ′ → B′ be

that of V ′. The map c : B′ → B defined by the commutativity of the diagram

V ′
ρ

//

p′

��

V

p
��

B′ c
// B

is a cyclic finite branched cover such that:

1) the number k′ of sheets of c is equal to gcd(n, k) where n is the order of the

restriction of hr to one of the connected components of F ∩ V .

2) Let K ′ be a Seifert fibre of V ′ and let α′ (resp. α) be the multiplicity of K ′

(resp. ρ(K ′)) as Seifert fibre.

a) If K ′ is an exceptional fibre of V ′ and is not a component of LF ′ then (p◦ρ)(K ′)

is a branching point of c of order α
α′

.

b) If K ′ is component of LF (not necessarily exceptional as Seifert fibre of V ′) then

(p ◦ ρ)(K ′) is a branching point of c of order k′, and α′ = k×α
k′

.

c) Otherwise (p ◦ ρ)(K ′) is a regular point for c.

Let us now apply the Hurwitz formula to the to the k′-sheeted cover c : B′ → B:

let g be the genus of B, let u (resp. u′) be the number of boundary components of B

(resp. B′), and let v be the number of connected components of V ∩ LF .

Let α1, . . . , αl be the multiplicities of the l exceptional fibres of V which are not

components of LF , and for all i ∈ {1, . . . , l}, let α′
i be the multiplicity of the Seifert

fibres of V ′ which project onto the exceptional fibre of V indexed by i. One then

obtains:

(∗) 2 −
l∑

i=1

k′α
′
i

αi
− u′ − v = k′(2 − 2g − l − u − v)
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If V ′ is a solid torus, then u = u′ = 1, V ′ has a maximum of one exceptional fibre,

and (∗) becomes

(k′ − 1)(v − 1) + 2k′g +

l∑

i=1

k′
(
1 −

α′
i

αi

)
= 0

Hence g = 0, (k′ = 1 or v = 1) and α′
i = αi for each i. This last condition implies

that the inverse image by ρ of any exceptional component of V rLF is an exceptional

component of V ′. Moreover, according to Lemma 5.4 (2b), the inverse image by ρ

of any exceptional component of V which is a component of LF is also exceptional

in V ′. Therefore, V is a solid torus.

But by minimality of the Waldhausen decomposition of L(S, p)rU(LF ), V rU(LF )

is not a product torus × interval. There must then exists a regular fibre K of V which

is a component of LF and whose inverse image by ρ is regular. This leads to k′ = k

(Lemma 5.4 (2b)) and v = 1. Hence l > 1, as V r U(LF ) is not a product torus ×

interval, and the inverse image by ρ of the Seifert fibre with multiplicity α1 consists

of k exceptional fibres of V ′ (Lemma 3.1). Then V ′ is not a solid torus as it has more

than one exceptional fibre. Contradiction.

If V ′ is a product torus × interval, then u′ = 2, and V ′ has no exceptional fibres.

In particular α′
i = 1 for each i, and, according to Lemma 5.4, k′ = k. Furthermore

u ∈ {1, 2}.

If u = 2, (∗) becomes

v(k − 1) + 2gk′ +
l∑

i=1

k
(
1 −

1

αi

)
= 0

This contradicts k > 2.

If u = 1, (∗) becomes

v(k − 1) − k + 2gk′ +

l∑

i=1

k
(
1 −

1

αi

)
= 0

Hence l ∈ {0, 1}, as αi > 2 for each i. If l = 0 (resp. if l = 1), then v = k
k−1

(resp. v = k
(k−1)α1

). As v is an integer, this implies that k = 2 and v = 2, i.e. LF has

more than one component. This is a contradiction as we have assumed that LF has

a single component when k = 2.

Then condition (ii) holds.

Let us now prove that L(C(F, k) is neither a lens space nor a torus bundle over the

circle.

Let us assume that L(C(F, k) is a lens space. Then, the condition (ii) implies

that T ′ and T are empty. Using the previous notations again with V = L(S, p) and
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V ′ = L(C(F, k), one obtains

(v − 2)(k′ − 1) +

l∑

i=1

k′
(
1 −

1

αi

)
= 0

Therefore g = 0, l = 0 and v = 2. Then the graph Gπ has no rupture vertex. This

contradicts our hypothesis.

Let us now assume that L(C(F, k) is a torus bundle over the circle. Then T ′ is empty

(condition (ii) again), and L(C(F, k) is homeomorphic to the product S1 × S1 × S1.

This is not possible as Grauert’s condition implies that the link of a normal surface

does not fibre over the circle.

Proof of Theorem 5.1. — Let us assume that the link of C(F, k) is homeomorphic to

the sphere S3. Then it follows from P.A. Smith’s theorem that the link LF have a

single component. Therefore, the link LF have also a single component, and, according

to Proposition 5.3, the graph Gπ has no rupture vertex. Then the graph Gπ is as on

figure 14, the multiplicities being writen between parenthesis.

µ

(n )
1 2 ν

e e e e

3
(n ) (n ) (n )

1 2 3 ν

Figure 14

Let us equip the pair (L(S), LF ) with the Seifert fibration obtained by extending

that of the manifold represented by the vertex of Gπ weighted by n1 and let us equip

C(F, k) with the Seifert fibration obtained by lifting that of (L(S), LF ) via ρ. As

C(F, k) is homeomorphic to the 3-sphere, i.e. to a lens space L(p, q) such that p = 1,

the corresponding Waldhausen graph of the link LF ′ has the following form:

µ'

(α',β') (α,β)

e

Figure 15

with

(1) 1 = p = βα′ + β′α − eαα′

Moreover, the order of the corresponding periodic monodromy of ΦF ′ is equal to

n1/gcd(n1, k). Then the monodromical system (see [17],) of the multilink LF ′ consists
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of the single equality
(β

α
+

β′

α′
− e

)
·

n1

gcd(n1, k)
=

µ′

α′

Then (1) implies
n1

gcd(n1, k)
= µ′α

Therefore µ′ divides n1. As C(F, k) is a manifold, µ = µ′, then µ divides n1. If m

denotes the greatest common divisor of the multiplicities carried by two consecutive

vertices of Gπ ( it does not depend of the choice of the two vertices), one therefore

obtains: m = gcd(n1, µ) = µ.

Let us choose Gπ minimal, that is either (ν = 1 and e1 = −1) or ei 6 −2 for each i.

Let us assume that ν > 2. Then, the equalities

eνnν + nν−1 = 0 and for i ∈ {2, . . . , ν − 1}, eini + ni−1 + ni+1 = 0

lead to nν = µ < nν−1 < · · · < n2 < n1. This contradicts the equality

e1n1 + n2 + µ = 0 as µ divides n1 and n2 and as e1 < −1.

Then, in fact, ν = 1, and the equality e1n1 + µ = 0 leads to e1 = −1 as µ

divides n1. This means that the link of (S, p) is homeomorphic to the sphere S3. As

(S, p) is normal, it implies that (S, p) is smooth according to [Mu]. Hence the germ F

is analytically equivalent to the germ G : (C2, 0) → (C, 0) defined by G(x, y) = xµ

and then, C(F, k) is equisingular with a single branch as it is equivalent to the germ

of hypersurface at the origin of C3 with equation xµ + zk = 0.

This achieves the proof of Theorem 4.1.
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