
Séminaires & Congrès

10, 2005, p. 233–241

SYMPLECTIC 4-MANIFOLDS CONTAINING

SINGULAR RATIONAL CURVES WITH (2, 3)-CUSP

by

Hiroshi Ohta & Kaoru Ono

Abstract. — If a symplectic 4-manifold contains a pseudo-holomorphic rational curve
with a (2, 3)-cusp of positive self-intersection number, then it must be rational.

Résumé(Variétés symplectiques de dimension4 contenant des courbes rationnelles sin-
gulières avec points de rebroussement de type(2, 3))

Si une variété symplectique de dimension 4 contient une courbe rationnelle
pseudo-holomorphe avec un point de rebroussement de type (2, 3) de nombre
d’auto-intersection positif, alors elle est elle-même rationnelle.

1. Introduction

In the previous paper [5], we studied topology of symplectic fillings of the links

of simple singularities in complex dimension 2. In fact, we proved that such a sym-

plectic filling is symplectic deformation equivalent to the corresponding Milnor fiber,

if it is minimal, i.e., it does not contain symplectically embedded 2-spheres of self-

intersection number −1. In this short note, we present some biproduct of the argu-

ment in [5]. For smoothly embedded pseudo-holomorphic curves, the self-intersection

number can be arbitrary large, e.g., sections of ruled symplectic 4-manifolds. The

situation is different for singular pseudo-holomorphic curves. In fact, we prove the

following:

Main Theorem. — Let M be a closed symplectic 4-manifold containing a pseudo-

holomorphic rational curve C with a (2, 3)-cusp point. Suppose that C is non-singular

away from the (2, 3)-cusp point. If the self-intersection number C2 of C is positive,

then M must be a rational symplectic 4-manifold and C2 is at most 9.
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This is a corollary of the uniqueness of symplectic deformation type of minimal

symplectic fillings of the link of the simple singularity of type E8, i.e., the isolated

singularity of x2 + y3 + z5 = 0. There are similar applications of the uniqueness

result for An and Dn cases. We can apply these results to classification of minimal

symplectic fillings of quotient surface singularities other than simple singularities,

which will be discussed elsewhere.

2. Preliminaries

In this section, we recall necessary materials from [5]. Let L be the link of an

isolated surface singularity. L carries a natural contact structure ξ defined by the

maximal complex tangency, i.e., ξ = TL ∩
√
−1TL. Note that the contact structure

on a (4k + 3)-dimensional manifold induces a natural orientation on it. In particular,

L, which is 3-dimensional, is naturally oriented. A compact symplectic manifold

(W, ω) is called a strong symplectic filling (resp. strong concave filling) of the contact

manifold (L, ξ), if the orientation of L as a contact manifold is the same as (resp.

opposite to) the orientation as the boundary of a symplectic manifold W and there

exists a 1-form θ on L such that ξ = ker θ and dθ = ω. This condition is equivalent

to the existence of an outward (resp. inward) normal vector field around ∂W such

that LXω = ω and i(X)ω vanishes on ξ. Hereafter, we call strong symplectic fillings

simply as symplectic fillings, since we do not use weak symplectic fillings in this note.

It may be regarded as a symplectic analog of (pseudo) convexity for the boundary.

Such a boundary (or a hypersurface) is said to be of contact type. Simple examples

are the boundaries of convex domains, or more generally star-shaped domains in a

symplectic vector space. Namely, if the convex domain contains the origin, the Euler

vector field
∑

(xi
∂

∂xi

+ yi
∂

∂yi

) is a desired outward vector field. Here {xi, yi} are the

canonical coordinates.

Simple singularities are isolated singularities of C
2/Γ, where Γ is a finite subgroup

of SU(2). Such subgroups are in one-to-one correspondence with the Dynkin diagrams

of type An, Dn (n > 4), and En (n = 6, 7, 8).

In [5], we proved the following:

Theorem 2.1. — Let X be any minimal symplectic filling of the link of a simple singu-

larity. Then the diffeomorphism type of X is unique. Hence, it must be diffeomorphic

to the Milnor fiber.

Let us restrict ourselves to the case of type E8 and give a sketch of the proof. Let X

be a minimal symplectic filling of the link of the simple singularity of type E8. Using

Seiberg-Witten-Taubes theory, we proved that c1(X) = 0, which is a special feature

for the Milnor fiber and that the intersection form of X is negative definite, which

is a special feature for the (minimal) resolution. In the course of the argument, we

also have b1(X) = 0. We glue X with another manifold Y , which is given below, to
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get a closed symplectic 4-manifold. To find Y , we recall K. Saito’s compactification

of the Milnor fiber [6]. The Milnor fiber {x2 + y3 + z5 = 1} is embedded in a

weighted projective 3-space. Take its closure and resolve the singularities at infinity

to get a smooth projective surface. Set Y a regular neighborhood of the divisor

at infinity, which we call the compactifying divisor D̃. Then we may assume that

the boundary of Y is pseudo-concave, hence strongly symplectically concave (see

Proposition 4.2). Note that the compactifying divisor consists of four rational curves

with self-intersection number −1, −2, −3 and −5, respectively, which intersect one

another as in Figure 2.2.

−2 −3 −5

−1

Figure 2.2

Topologically, the compactifying divisor D̃ is the core of the plumbed manifold.

We glue X and Y along boundaries to get a closed symplectic 4-manifold Z. Since

c1(X) = 0, c1(Z) is easily determined as the Poincaré dual of an effective divisor.

In particular, we have
∫

Z
c1(Z) ∧ ωZ > 0, which implies that Z is a rational or

ruled symplectic 4-manifold. Note that b1(Z) = 0 because of the Mayer-Vietrois

sequence and the fact that b1(X) = 0. Hence Z is a rational symplectic 4-manifold.

Combining Hirzebruch’s signature formula and calculation of the Euler number, we

get b2(Z) = 12. Thus Z is symplectic deformation equivalent to the 11-point blow-up

of CP 2.

The remaining task is to determine the embedding of Y in Z, or the embedding of

the compactifying divisor in Z. In [5], we successively blow-down (−1)-curves three

times to get a singular rational pseudo-holomorphic curve D, see Figure 2.3.
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Figure 2.3

Then we showed that there are eight disjoint pseudo-holomorphic (−1)-curves {εi}
in Z so that each εi intersects D exactly at one point in the non-singular part of D
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transversally. Blowing-down εi, i = 1, . . . , 8, we get CP 2 and D is transformed to a

singular pseudo-holomorphic cubic curve D.

Conversely, we start from a singular holomorphic cubic curve D0 in CP 2 with

respect to the standard complex structure, e.g., the one defined by x3 + y2z = 0.

Pick eight points on the non-singular part of D0 and blow up CP 2 at these points

to get Z0. Denote by D0 the proper transform of D0. Blowing-up Z0 three more

times by following the process in Figure 2.2 in the opposite way, we arrive at Z0, the

11-point blow-up of CP 2. It contains the total transform D̃0 of D0, which is the same

configuration as in Figure 2.2. We showed, in [5], the following:

Theorem 2.4. — The pair (Z, D̃) is symplectic deformation equivalent to the pair

(Z0, D̃0). In particular, D̃ is an anti-canonical divisor of Z.

Recall that X is the complement of a regular neighborhood of D̃ in Z, hence it

is symplectic deformation equivalent to the complement of a regular neighborhood of

D̃0 in Z0. In particular, we obtained the uniqueness of symplectic deformation types.

By following the blowing-down process, we have

Corollary 2.5. — D is an anti-canonical divisor of Z.

Note that D0 in Z0 is a holomorphic rational curve with a (2, 3)-cusp point and

that Z0 rD0 = Z0 r D̃0 is a minimal symplectic filling of the simple singularity of the

type E8. We expect a similar phenomenon for our M and C in our Main Theorem.

This is a key to the proof of Main Theorem.

3. Proof of Main Theorem

Let M be a closed symplectic 4-manifold and C a pseudo-holomorphic rational

curve with a (2, 3)-cusp point. Here a (2, 3)-cusp point is defined as the singularity of

z 7→ (z2, z3) + O(4) (see [3]). We assume that C is non-singular away from the cusp

point. The following lemma is a direct consequence of McDuff’s theorem in [4].

Lemma 3.1. — C can be perturbed in a neighborhood of the cusp point so that the

perturbed curve is a pseudo-holomorphic rational curve with one (2, 3)-cusp point with

respect to a tame almost complex structure, which is integrable near the cusp point.

Proof. — Notice that z 7→ (z2, z3) is primitive in the sense of [4]. Then the conclusion

follows from the proof of Theorem 2 in [4].

Remark. — The almost complex structure in the proof is not generic among tame

almost complex structures, when the self-intersection number of C is less than 2.

Write k = C2. Pick a tame almost complex structure on M such that C is J-

holomorphic as in Lemma 3.1. If M rC is not minimal, we contract all J-holomorphic

(−1)-rational curves which do not intersect C to get a pair (M ′, C) so that M ′
r C
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is minimal. We blow-up M ′ at (k − 1) points on the non-singular part of C to get a

closed symplectic 4-manifold M̃ . We denote the set of the exceptional curves by {ei}.
The proper transform D of C is a pseudo-holomorphic rational curve with one (2, 3)-

cusp point and D
2

= 1. Now we perform the opposite operation to the one indicated

in Figure 2.3. Namely, we blow-up M̃ at the cusp point of D to get two non-singular

rational curves of self-intersection number −1 and −3, respectively, which are tangent

to each other. These two curves are simply tangent to each other. Now we blow up

the point of tangency to get three non-singular rational curves meeting at a common

point pair-wisely transversally. Their self-intersection numbers are −1, −2 and −4.

Finally we blow up the intersection point to get a configuration of non-singular rational

curves as in Figure 2.3. This configuration is exactly the compactifying divisor D̃ in

section 2. We denote by N the ambient symplectic 4-manifold.

Lemma 3.2. — The complement of a regular neighborhood of D̃ in N is a symplectic

filling of the link of the singularity of type E8.

Proof. — It is enough to see that the boundary of a regular neighborhood of D̃ has a

concave boundary. We can contract (−2), (−3) and (−5)-curves to get a symplectic

V -manifold. The image D′ of the (−1)-curve is still an embedded rational curve,

whose normal bundle is of degree −1 + 1/2 + 1/3 + 1/5 = 1/30 > 0. Hence we can

take a tubular neighborhood of D′, whose boundary is strongly symplectically concave

with the help of Darboux-Weinstein theorem [7]. Note that it is contactomorphic to

the link of the simple singularity of type E8. Hence the complement of a regular

neighborhood of D̃ in N is a symplectic filling of the link of E8-singularity.

Now, we show the following lemma.

Lemma 3.3. — N r D̃ is minimal.

Proof. — Assume that it is not minimal. We contract pseudo-holomorphic (−1)-

rational curves fj in N r D̃ to obtain π : N → N such that N r D̃ is minimal. Here,

we use D̃ for the image of D̃ by π, since π is an isomorphism around D̃. Then N r D̃

is a minimal symplectic filling of the link of E8-singularity. After gluing it with Y in

section 2, we get back N . Then Corollary 2.5 implies that D̃+E1 is an anti-canonical

divisor of N , which is a rational symplectic 4-manifold, where E1 is the (−1)-curve

in D̃ as in Figure 2.3. Since each ei in M̃ does not contain the cusp point of D, it is

also a symplectic (−1)-curve in N and does not intersect E1. By abuse of notation,

we also denote it by ei. Note that fj · ei > 1 for some i, because N r D̃ ∪ (∪iei) is

minimal. On the other hand, we have

KN = π∗KN +
∑

fj = −[D̃] − [E1] +
∑

fj .
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Since ei is a pseudo-holomorphic (−1)-rational curve, ei ·KN = −1 by the adjunction

formula. Thus we have

−1 = ei · KN = ei · (−[D̃] − [E1]) +
∑

j

ei · fj > 0,

which is a contradiction.

By Lemma 3.2 and Lemma 3.3, N r D̃ is a minimal symplectic filling of the link of

E8-singularity. Theorem 2.4 implies that (N, D̃) is symplectic deformation equivalent

to (Z0, D̃0). In particular, N is the 11-point blow-up of CP 2. Hence M̃ is the 8-point

blow-up of CP 2. Note also that D is an anti-canonical divisor (see section 3,4 in [5]).

More precisely, Proposition 4.8 (n = 8 case) in [5] states that we can blow down M̃

along disjoint eight (−1)-rational curves to obtain CP 2 and D is transformed to a

pseudo-holomorphic rational curve of degree 3 with one (2, 3)-cusp point. It follows

that M ′ is symplectic deformation equivalent to CP 2#(9 − k)CP 2 (for 1 6 k 6 9)

or CP 1 × CP 1 (only when k = 8). In particular, we obtain k 6 9. Hence M is

obtained from CP 2 by blow-up and down process. Moreover, C corresponds either

to the proper transform of the singular cubic curve under the blow-up at (9 − k)

points of the non-singular part of the cubic curve or to the singular (2, 2)-curve in

CP 1 × CP 1.

4. Miscellaneous Remarks

Firstly, we show the following proposition, which is closely related to Lemma 4.4

in [5]. A homology class e ∈ H2(M ;Z) is called a symplectic (−1)-class, if e is

represented by a symplectically embedded 2-sphere of self-intersection number −1.

Proposition 4.1. — Let M be a closed symplectic 4-manifold and D an irreducible

pseudo-holomorphic curve in M with respect to a tame almost complex structure J0.

Suppose that D is not a smoothly embedded rational curve. Then there exists a

tame almost complex structure J , which is arbitrarily close to J0, such that D is

J-holomorphic and all symplectic (−1)-classes are represented by J-holomorphic (−1)-

curves.

Proof. — We may assume that J0 is generic outside of a small neighborhood U of D so

that any simple J0-holomorphic curve, which are not contained in U , are transversal.

Suppose that e and D cannot be represented by J-holomorphic curves simultaneously.

Pick a sequence of tame almost complex structures Jn converging to J0 so that e is

represented by the embedded Jn-holomorphic (−1)-curve En for all n. By our as-

sumption, En converges to the image of a stable map
∑

miBi, where Bi are simple.

Here, it consists of at least two components or some multiplicity mi is greater than 1.

Firstly, we show the following:

Claim 1. — At least one of {Bi} is contained in U .
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Proof of Claim 1. — If any Bi is not contained in U , they are transversal. Hence, for

a sufficiently large n, Bi deform to Jn-holomorphic B′

i. Thus the class e is represented

by En and
∑

miB
′

i. Note that both are Jn-holomorphic. If En does not appear in

{Bi}, their intersection number must be non-negative, which is a contradiction. So

there is i so that Bi = En. Since the symplectic area only depends on the homology

class, it never happens.

Claim 2. — Proposition 4.1 holds, when D is an immersed J0-holomorphic curve with

nodes, i.e., transversal self-intersection points.

Proof of Claim 2

Case 1). — D is the image of an immersed J0-holomorphic sphere.

If the normal bundle ν of D satisfies c1(ν)[D] > −1, Hofer-Lizan-Sikorav’s auto-

matic regularity argument [1] implies the surjectivity of the linearized operator of the

immersed pseudo-holomorphic spheres. Hence, D persists as a pseudo-holomorphic

curve, under a small deformation of tame almost complex structures. Then we can

show existence of pseudo-holomorphic (−1)-curve as in the proof of Claim 1. Hence

the conclusion of Proposition 4.1 holds.

Suppose that c1(ν)[D] < −1. Then any multiple covers of D, especially D itself,

are isolated J0-holomorphic curves, because of positivity of the intersection number of

distinct J0-holomorphic curves. Thus the component Bi ⊂ U in Claim 1 must be D.

Hence, at least one of the components of the stable map above is possibly a multiple

cover of D. Any J0-holomorphic sphere contained in U must be D. Therefore for

a sufficiently large n, a part of En is C1-close to D. Some of Bi must intersect D.

Firstly, we consider the case that the bubbling of D occurs away from nodes of D.

Since transversal intersection points are stable, En contains at least one transversal

intersection point, which is a contradiction to the fact that En is an embedded sphere.

Next, we consider the case that En converges to a stable map so that the bubbling

of D occurs at one of nodes of D. Take a small ball B4 of the node of D. Then

the intersection of the image of the limit stable map and B4 consists of at least 3

irreducible components. Denote by S1, S2 irreducible components of B4 ∩ D and

by S3 another component such that S2 ∩ S3 is the image of a node of the domain

of the stable map. We pick sufficiently small closed tubular neighborhoods Nk of

Sk ∩ ∂B4 in ∂B4 (k = 2, 3). Write A = N2 ∪ N3 and denote by B the closure of the

complement of A in ∂B4. We may assume that S1 ∩ ∂B4 is contained in the interior

of B. When n is sufficiently large, En is obtained by gluing the stable map. Hence

the intersection of En and B4 consists of 2 components T , which is close to S2 ∪ S3,

and S′

1, which is close to S1. We may assume that T ∩ ∂B4 (resp. S′

1 ∩ ∂B4) is

contained in the interior of A (resp. B). Then the local intersection number in B4

is the same as the original case. Since S1, S2, S3 are J-holomorphic curves passing

through the node of D, the local intersection number is positive. This implies that
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the glued pseudo-holomorphic curve must have a self-intersection point, which is a

contradiction.

Case 2). — D cannot be represented by a J0-holomorphic sphere.

Note that D is homeomorphic to the quotient space of the domain Riemann surface

by identifying some pairs of points. Hence, we have that H2(D;Z) ∼= Z and the cup

product H1(D;Z) × H1(D;Z) → Z is non-trivial. Let π : U → D be a deformation

retraction. For any continuous map f : S2 → U , we find that the degree of π ◦ f must

be zero. On the other hand, by Claim 1, we have at least one Bi ⊂ U represented by a

pseudo-holomorphic sphere. Since the degree of the composition of the representative

and π is not zero, this is a contradiction. Thus the conclusion of Proposition 4.1

holds.

We can show the following:

Claim 3. — Proposition 4.1 holds, when D is a smoothly embedded surface of genus

g > 0.

Proof of Claim 3. — Note that each component of the stable map above is of genus 0.

If the conclusion of Proposition 4.1 does not hold, at least one of them is possibly a

multiple cover of D, the genus of which is positive. This is impossible.

Based on Claim 2, we prove Proposition 4.1 in the case that D is not a nodal curve.

By Claim 1, we may assume that B1 is homologous to a positive multiple of D. If D

is immersed with self-intersection points, but not nodal, we perturb J so that D is

deformed to a pseudo-holomorphic nodal curve. If D is not immersed, we can find a

small perturbation J of J0 so that D is deformed to a J-holomorphic curve D′, which

has at most nodes, i.e., transversal double points [2]. We assume that J is generic

outside of a neighborhood of D′. Because we may assume that J is arbitrarily close

to J0, each Bi, i = 2, . . . , m is deformed to a J-holomorphic B′

i. Then the class e

is represented by m1D
′ +

∑m

i=2
miB

′

i. On the other hand, Claim 2 states that e is

represented by a J-holomorphic (−1)-curve E. The rest of the argument continues as

in the proof of Claim 1.

Secondly, we prove the following:

Proposition 4.2. — Let S be a projective algebraic variety, which is non-singular away

from an isolated singularity P . Then the outside of the link of P is a strong concave

filling.

Proof. — We assume that S is embedded in CPN and P is the origin of C
N ⊂ CPN .

Note that the complex projective space CPN is obtained by the symplectic cutting

construction. Namely, take a round ball B(R) in the unitary vector space C
N of radius

R > 0. The boundary, i.e., the round sphere of radius R is considered as the total

space of the Hopf fibration. We identify points on ∂B(R), if they belong to the same

fiber. After taking the quotient under this equivalence relation, we get a topological
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space homeomorphic to CPN . In fact, the symplectic structure on B(R) ⊂ C
N

descends to the quotient and get a symplectic structure ω. This is a typical example

of the symplectic cutting construction. Certainly, this is not really compatible with the

complex structures. However, there is a strictly increasing function ρ : [0, R) → R>0

such that F (z) = ρ(|z|)z is a diffeomorphism from IntB(R) → C
N ⊂ CPN satisfying

R2F ∗ωFS = ω,

where ωFS is the Fubini-Study Kähler form with
∫
CP 1 ωFS = π. Let us take a positive

number r � R. Then the intersection of S and the sphere of radius r is a link

of the isolated singularity P . On B(R) ⊂ C
N , the symplectic form is the linear

form
∑

i dxi ∧ dyi = d
∑

i(xidyi − yidxi)/2. Note that the restriction of F to any

round sphere centered at the origin preserves the complex structure on the contact

distributions. Hence, d
∑

i(xidyi−yidxi)/2 is a contact form for the link of the isolated

singularity. It implies that the boundary of SrB(r) is strongly symplectically concave,

i.e., it is a strong concave filling of the link.
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005




