Séminaires & Congrès 10, 2005, p. 233–241

SYMPLECTIC 4-MANIFOLDS CONTAINING SINGULAR RATIONAL CURVES WITH (2,3)-CUSP

by

Hiroshi Ohta & Kaoru Ono

Abstract. If a symplectic 4-manifold contains a pseudo-holomorphic rational curve with a (2, 3)-cusp of positive self-intersection number, then it must be rational.

Si une variété symplectique de dimension 4 contient une courbe rationnelle pseudo-holomorphe avec un point de rebroussement de type (2,3) de nombre d'auto-intersection positif, alors elle est elle-même rationnelle.

1. Introduction

In the previous paper [5], we studied topology of symplectic fillings of the links of simple singularities in complex dimension 2. In fact, we proved that such a symplectic filling is symplectic deformation equivalent to the corresponding Milnor fiber, if it is minimal, *i.e.*, it does not contain symplectically embedded 2-spheres of selfintersection number -1. In this short note, we present some biproduct of the argument in [5]. For smoothly embedded pseudo-holomorphic curves, the self-intersection number can be arbitrary large, *e.g.*, sections of ruled symplectic 4-manifolds. The situation is different for singular pseudo-holomorphic curves. In fact, we prove the following:

Main Theorem. — Let M be a closed symplectic 4-manifold containing a pseudoholomorphic rational curve C with a (2,3)-cusp point. Suppose that C is non-singular away from the (2,3)-cusp point. If the self-intersection number C^2 of C is positive, then M must be a rational symplectic 4-manifold and C^2 is at most 9.

Résumé (Variétés symplectiques de dimension 4 contenant des courbes rationnelles singulières avec points de rebroussement de type (2,3))

²⁰⁰⁰ Mathematics Subject Classification. — Primary 53D35; Secondary 14J80. Key words and phrases. — Symplectic fillings, pseudo-holomorphic curves.

H.O. is partly supported by Grant-in-Aid for Scientific Research No. 12640066, JSPS. K.O. is partly supported by Grant-in-Aid for Scientific Research No. 14340019, JSPS.

This is a corollary of the uniqueness of symplectic deformation type of minimal symplectic fillings of the link of the simple singularity of type E_8 , *i.e.*, the isolated singularity of $x^2 + y^3 + z^5 = 0$. There are similar applications of the uniqueness result for A_n and D_n cases. We can apply these results to classification of minimal symplectic fillings of quotient surface singularities other than simple singularities, which will be discussed elsewhere.

2. Preliminaries

In this section, we recall necessary materials from [5]. Let L be the link of an isolated surface singularity. L carries a natural contact structure ξ defined by the maximal complex tangency, *i.e.*, $\xi = TL \cap \sqrt{-1}TL$. Note that the contact structure on a (4k+3)-dimensional manifold induces a natural orientation on it. In particular, L, which is 3-dimensional, is naturally oriented. A compact symplectic manifold (W, ω) is called a strong symplectic filling (resp. strong concave filling) of the contact manifold (L,ξ) , if the orientation of L as a contact manifold is the same as (resp. opposite to) the orientation as the boundary of a symplectic manifold W and there exists a 1-form θ on L such that $\xi = \ker \theta$ and $d\theta = \omega$. This condition is equivalent to the existence of an outward (resp. inward) normal vector field around ∂W such that $\mathcal{L}_X \omega = \omega$ and $i(X)\omega$ vanishes on ξ . Hereafter, we call strong symplectic fillings simply as symplectic fillings, since we do not use weak symplectic fillings in this note. It may be regarded as a symplectic analog of (pseudo) convexity for the boundary. Such a boundary (or a hypersurface) is said to be of contact type. Simple examples are the boundaries of convex domains, or more generally star-shaped domains in a symplectic vector space. Namely, if the convex domain contains the origin, the Euler vector field $\sum (x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i})$ is a desired outward vector field. Here $\{x_i, y_i\}$ are the canonical coordinates.

Simple singularities are isolated singularities of \mathbb{C}^2/Γ , where Γ is a finite subgroup of SU(2). Such subgroups are in one-to-one correspondence with the Dynkin diagrams of type A_n , D_n $(n \ge 4)$, and E_n (n = 6, 7, 8).

In [5], we proved the following:

Theorem 2.1. — Let X be any minimal symplectic filling of the link of a simple singularity. Then the diffeomorphism type of X is unique. Hence, it must be diffeomorphic to the Milnor fiber.

Let us restrict ourselves to the case of type E_8 and give a sketch of the proof. Let X be a minimal symplectic filling of the link of the simple singularity of type E_8 . Using Seiberg-Witten-Taubes theory, we proved that $c_1(X) = 0$, which is a special feature for the Milnor fiber and that the intersection form of X is negative definite, which is a special feature for the (minimal) resolution. In the course of the argument, we also have $b_1(X) = 0$. We glue X with another manifold Y, which is given below, to

get a closed symplectic 4-manifold. To find Y, we recall K. Saito's compactification of the Milnor fiber [6]. The Milnor fiber $\{x^2 + y^3 + z^5 = 1\}$ is embedded in a weighted projective 3-space. Take its closure and resolve the singularities at infinity to get a smooth projective surface. Set Y a regular neighborhood of the divisor at infinity, which we call the compactifying divisor \tilde{D} . Then we may assume that the boundary of Y is pseudo-concave, hence strongly symplectically concave (see Proposition 4.2). Note that the compactifying divisor consists of four rational curves with self-intersection number -1, -2, -3 and -5, respectively, which intersect one another as in Figure 2.2.

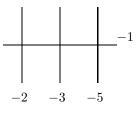
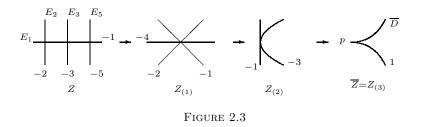


FIGURE 2.2

Topologically, the compactifying divisor \widetilde{D} is the core of the plumbed manifold. We glue X and Y along boundaries to get a closed symplectic 4-manifold Z. Since $c_1(X) = 0$, $c_1(Z)$ is easily determined as the Poincaré dual of an effective divisor. In particular, we have $\int_Z c_1(Z) \wedge \omega_Z > 0$, which implies that Z is a rational or ruled symplectic 4-manifold. Note that $b_1(Z) = 0$ because of the Mayer-Vietrois sequence and the fact that $b_1(X) = 0$. Hence Z is a rational symplectic 4-manifold. Combining Hirzebruch's signature formula and calculation of the Euler number, we get $b_2(Z) = 12$. Thus Z is symplectic deformation equivalent to the 11-point blow-up of $\mathbb{C}P^2$.

The remaining task is to determine the embedding of Y in Z, or the embedding of the compactifying divisor in Z. In [5], we successively blow-down (-1)-curves three times to get a singular rational pseudo-holomorphic curve \overline{D} , see Figure 2.3.



Then we showed that there are eight disjoint pseudo-holomorphic (-1)-curves $\{\varepsilon_i\}$ in \overline{Z} so that each ε_i intersects \overline{D} exactly at one point in the non-singular part of \overline{D}

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

transversally. Blowing-down ε_i , i = 1, ..., 8, we get $\mathbb{C}P^2$ and \overline{D} is transformed to a singular pseudo-holomorphic cubic curve D.

Conversely, we start from a singular holomorphic cubic curve D_0 in $\mathbb{C}P^2$ with respect to the standard complex structure, *e.g.*, the one defined by $x^3 + y^2 z = 0$. Pick eight points on the non-singular part of D_0 and blow up $\mathbb{C}P^2$ at these points to get \overline{Z}_0 . Denote by \overline{D}_0 the proper transform of D_0 . Blowing-up \overline{Z}_0 three more times by following the process in Figure 2.2 in the opposite way, we arrive at Z_0 , the 11-point blow-up of $\mathbb{C}P^2$. It contains the total transform \widetilde{D}_0 of \overline{D}_0 , which is the same configuration as in Figure 2.2. We showed, in [5], the following:

Theorem 2.4. — The pair (Z, \widetilde{D}) is symplectic deformation equivalent to the pair $(Z_0, \widetilde{D_0})$. In particular, \widetilde{D} is an anti-canonical divisor of Z.

Recall that X is the complement of a regular neighborhood of D in Z, hence it is symplectic deformation equivalent to the complement of a regular neighborhood of \widetilde{D}_0 in Z_0 . In particular, we obtained the uniqueness of symplectic deformation types.

By following the blowing-down process, we have

Corollary 2.5. — \overline{D} is an anti-canonical divisor of \overline{Z} .

Note that \overline{D}_0 in \overline{Z}_0 is a holomorphic rational curve with a (2,3)-cusp point and that $\overline{Z}_0 \setminus \overline{D}_0 = Z_0 \setminus \widetilde{D}_0$ is a minimal symplectic filling of the simple singularity of the type E_8 . We expect a similar phenomenon for our M and C in our Main Theorem. This is a key to the proof of Main Theorem.

3. Proof of Main Theorem

Let M be a closed symplectic 4-manifold and C a pseudo-holomorphic rational curve with a (2,3)-cusp point. Here a (2,3)-cusp point is defined as the singularity of $z \mapsto (z^2, z^3) + O(4)$ (see [3]). We assume that C is non-singular away from the cusp point. The following lemma is a direct consequence of McDuff's theorem in [4].

Lemma 3.1. — C can be perturbed in a neighborhood of the cusp point so that the perturbed curve is a pseudo-holomorphic rational curve with one (2,3)-cusp point with respect to a tame almost complex structure, which is integrable near the cusp point.

Proof. — Notice that $z \mapsto (z^2, z^3)$ is primitive in the sense of [4]. Then the conclusion follows from the proof of Theorem 2 in [4].

Remark. — The almost complex structure in the proof is not generic among tame almost complex structures, when the self-intersection number of C is less than 2.

Write $k = C^2$. Pick a tame almost complex structure on M such that C is J-holomorphic as in Lemma 3.1. If $M \setminus C$ is not minimal, we contract all J-holomorphic (-1)-rational curves which do not intersect C to get a pair (M', C) so that $M' \setminus C$

is minimal. We blow-up M' at (k-1) points on the non-singular part of C to get a closed symplectic 4-manifold \widetilde{M} . We denote the set of the exceptional curves by $\{e_i\}$. The proper transform \overline{D} of C is a pseudo-holomorphic rational curve with one (2, 3)-cusp point and $\overline{D}^2 = 1$. Now we perform the opposite operation to the one indicated in Figure 2.3. Namely, we blow-up \widetilde{M} at the cusp point of \overline{D} to get two non-singular rational curves of self-intersection number -1 and -3, respectively, which are tangent to each other. These two curves are simply tangent to each other. Now we blow up the point of tangency to get three non-singular rational curves meeting at a common point pair-wisely transversally. Their self-intersection numbers are -1, -2 and -4. Finally we blow up the intersection point to get a configuration of non-singular rational curves as in Figure 2.3. This configuration is exactly the compactifying divisor \widetilde{D} in section 2. We denote by N the ambient symplectic 4-manifold.

Lemma 3.2. — The complement of a regular neighborhood of \widetilde{D} in N is a symplectic filling of the link of the singularity of type E_8 .

Proof. — It is enough to see that the boundary of a regular neighborhood of D has a concave boundary. We can contract (-2), (-3) and (-5)-curves to get a symplectic V-manifold. The image D' of the (-1)-curve is still an embedded rational curve, whose normal bundle is of degree -1 + 1/2 + 1/3 + 1/5 = 1/30 > 0. Hence we can take a tubular neighborhood of D', whose boundary is strongly symplectically concave with the help of Darboux-Weinstein theorem [7]. Note that it is contactomorphic to the link of the simple singularity of type E_8 . Hence the complement of a regular neighborhood of D in N is a symplectic filling of the link of E_8 -singularity.

Now, we show the following lemma.

Lemma 3.3. — $N \setminus \widetilde{D}$ is minimal.

Proof. — Assume that it is not minimal. We contract pseudo-holomorphic (-1)rational curves f_j in $N \setminus \widetilde{D}$ to obtain $\pi : N \to \overline{N}$ such that $\overline{N} \setminus \widetilde{D}$ is minimal. Here, we use \widetilde{D} for the image of \widetilde{D} by π , since π is an isomorphism around \widetilde{D} . Then $\overline{N} \setminus \widetilde{D}$ is a minimal symplectic filling of the link of E_8 -singularity. After gluing it with Y in section 2, we get back \overline{N} . Then Corollary 2.5 implies that $\widetilde{D} + E_1$ is an anti-canonical divisor of \overline{N} , which is a rational symplectic 4-manifold, where E_1 is the (-1)-curve in \widetilde{D} as in Figure 2.3. Since each e_i in \widetilde{M} does not contain the cusp point of \overline{D} , it is also a symplectic (-1)-curve in N and does not intersect E_1 . By abuse of notation, we also denote it by e_i . Note that $f_j \cdot e_i \ge 1$ for some i, because $N \setminus \widetilde{D} \cup (\cup_i e_i)$ is minimal. On the other hand, we have

$$K_N = \pi^* K_{\overline{N}} + \sum f_j = -[\widetilde{D}] - [E_1] + \sum f_j.$$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

Since e_i is a pseudo-holomorphic (-1)-rational curve, $e_i \cdot K_N = -1$ by the adjunction formula. Thus we have

$$1 = e_i \cdot K_N = e_i \cdot (-[\widetilde{D}] - [E_1]) + \sum_j e_i \cdot f_j \ge 0,$$

which is a contradiction.

By Lemma 3.2 and Lemma 3.3, $N \\ \widetilde{D}$ is a minimal symplectic filling of the link of E_8 -singularity. Theorem 2.4 implies that (N, \widetilde{D}) is symplectic deformation equivalent to (Z_0, \widetilde{D}_0) . In particular, N is the 11-point blow-up of $\mathbb{C}P^2$. Hence \widetilde{M} is the 8-point blow-up of $\mathbb{C}P^2$. Note also that \overline{D} is an anti-canonical divisor (see section 3,4 in [5]). More precisely, Proposition 4.8 (n = 8 case) in [5] states that we can blow down \widetilde{M} along disjoint eight (-1)-rational curves to obtain $\mathbb{C}P^2$ and \overline{D} is transformed to a pseudo-holomorphic rational curve of degree 3 with one (2,3)-cusp point. It follows that M' is symplectic deformation equivalent to $\mathbb{C}P^2 \# (9 - k)\overline{\mathbb{C}P^2}$ (for $1 \leq k \leq 9$) or $\mathbb{C}P^1 \times \mathbb{C}P^1$ (only when k = 8). In particular, we obtain $k \leq 9$. Hence M is obtained from $\mathbb{C}P^2$ by blow-up and down process. Moreover, C corresponds either to the proper transform of the singular cubic curve or to the singular (2, 2)-curve in $\mathbb{C}P^1 \times \mathbb{C}P^1$.

4. Miscellaneous Remarks

Firstly, we show the following proposition, which is closely related to Lemma 4.4 in [5]. A homology class $e \in H_2(M; \mathbb{Z})$ is called a symplectic (-1)-class, if e is represented by a symplectically embedded 2-sphere of self-intersection number -1.

Proposition 4.1. — Let M be a closed symplectic 4-manifold and D an irreducible pseudo-holomorphic curve in M with respect to a tame almost complex structure J_0 . Suppose that D is not a smoothly embedded rational curve. Then there exists a tame almost complex structure J, which is arbitrarily close to J_0 , such that D is J-holomorphic and all symplectic (-1)-classes are represented by J-holomorphic (-1)-curves.

Proof. — We may assume that J_0 is generic outside of a small neighborhood U of D so that any simple J_0 -holomorphic curve, which are not contained in U, are transversal. Suppose that e and D cannot be represented by J-holomorphic curves simultaneously. Pick a sequence of tame almost complex structures J_n converging to J_0 so that e is represented by the embedded J_n -holomorphic (-1)-curve E_n for all n. By our assumption, E_n converges to the image of a stable map $\sum m_i B_i$, where B_i are simple. Here, it consists of at least two components or some multiplicity m_i is greater than 1. Firstly, we show the following:

Claim 1. — At least one of $\{B_i\}$ is contained in U.

SÉMINAIRES & CONGRÈS 10

Proof of Claim 1. — If any B_i is not contained in U, they are transversal. Hence, for a sufficiently large n, B_i deform to J_n -holomorphic B'_i . Thus the class e is represented by E_n and $\sum m_i B'_i$. Note that both are J_n -holomorphic. If E_n does not appear in $\{B_i\}$, their intersection number must be non-negative, which is a contradiction. So there is i so that $B_i = E_n$. Since the symplectic area only depends on the homology class, it never happens.

Claim 2. — Proposition 4.1 holds, when D is an immersed J_0 -holomorphic curve with nodes, i.e., transversal self-intersection points.

Proof of Claim 2

Case 1). — D is the image of an immersed J_0 -holomorphic sphere.

If the normal bundle ν of D satisfies $c_1(\nu)[D] \ge -1$, Hofer-Lizan-Sikorav's automatic regularity argument [1] implies the surjectivity of the linearized operator of the immersed pseudo-holomorphic spheres. Hence, D persists as a pseudo-holomorphic curve, under a small deformation of tame almost complex structures. Then we can show existence of pseudo-holomorphic (-1)-curve as in the proof of Claim 1. Hence the conclusion of Proposition 4.1 holds.

Suppose that $c_1(\nu)[D] < -1$. Then any multiple covers of D, especially D itself, are isolated J_0 -holomorphic curves, because of positivity of the intersection number of distinct J_0 -holomorphic curves. Thus the component $B_i \subset U$ in Claim 1 must be D. Hence, at least one of the components of the stable map above is possibly a multiple cover of D. Any J_0 -holomorphic sphere contained in U must be D. Therefore for a sufficiently large n, a part of E_n is C^1 -close to D. Some of B_i must intersect D. Firstly, we consider the case that the bubbling of D occurs away from nodes of D. Since transversal intersection points are stable, E_n contains at least one transversal intersection point, which is a contradiction to the fact that E_n is an embedded sphere. Next, we consider the case that E_n converges to a stable map so that the bubbling of D occurs at one of nodes of D. Take a small ball B^4 of the node of D. Then the intersection of the image of the limit stable map and B^4 consists of at least 3 irreducible components. Denote by S_1, S_2 irreducible components of $B^4 \cap D$ and by S_3 another component such that $S_2 \cap S_3$ is the image of a node of the domain of the stable map. We pick sufficiently small closed tubular neighborhoods N_k of $S_k \cap \partial B^4$ in ∂B^4 (k=2,3). Write $A = N_2 \cup N_3$ and denote by B the closure of the complement of A in ∂B^4 . We may assume that $S_1 \cap \partial B^4$ is contained in the interior of B. When n is sufficiently large, E_n is obtained by gluing the stable map. Hence the intersection of E_n and B^4 consists of 2 components T, which is close to $S_2 \cup S_3$, and S'_1 , which is close to S_1 . We may assume that $T \cap \partial B^4$ (resp. $S'_1 \cap \partial B^4$) is contained in the interior of A (resp. B). Then the local intersection number in B^4 is the same as the original case. Since S_1, S_2, S_3 are J-holomorphic curves passing through the node of D, the local intersection number is positive. This implies that

the glued pseudo-holomorphic curve must have a self-intersection point, which is a contradiction.

Case 2). — D cannot be represented by a J_0 -holomorphic sphere.

Note that D is homeomorphic to the quotient space of the domain Riemann surface by identifying some pairs of points. Hence, we have that $H_2(D; \mathbf{Z}) \cong \mathbf{Z}$ and the cup product $H^1(D; \mathbf{Z}) \times H^1(D; \mathbf{Z}) \to \mathbf{Z}$ is non-trivial. Let $\pi : U \to D$ be a deformation retraction. For any continuous map $f : S^2 \to U$, we find that the degree of $\pi \circ f$ must be zero. On the other hand, by Claim 1, we have at least one $B_i \subset U$ represented by a pseudo-holomorphic sphere. Since the degree of the composition of the representative and π is not zero, this is a contradiction. Thus the conclusion of Proposition 4.1 holds.

We can show the following:

Claim 3. — Proposition 4.1 holds, when D is a smoothly embedded surface of genus g > 0.

Proof of Claim 3. — Note that each component of the stable map above is of genus 0. If the conclusion of Proposition 4.1 does not hold, at least one of them is possibly a multiple cover of D, the genus of which is positive. This is impossible.

Based on Claim 2, we prove Proposition 4.1 in the case that D is not a nodal curve. By Claim 1, we may assume that B_1 is homologous to a positive multiple of D. If D is immersed with self-intersection points, but not nodal, we perturb J so that D is deformed to a pseudo-holomorphic nodal curve. If D is not immersed, we can find a small perturbation J of J_0 so that D is deformed to a J-holomorphic curve D', which has at most nodes, *i.e.*, transversal double points [2]. We assume that J is generic outside of a neighborhood of D'. Because we may assume that J is arbitrarily close to J_0 , each B_i , $i = 2, \ldots, m$ is deformed to a J-holomorphic B'_i . Then the class e is represented by $m_1D' + \sum_{i=2}^m m_i B'_i$. On the other hand, Claim 2 states that e is represented by a J-holomorphic (-1)-curve E. The rest of the argument continues as in the proof of Claim 1.

Secondly, we prove the following:

Proposition 4.2. — Let S be a projective algebraic variety, which is non-singular away from an isolated singularity P. Then the outside of the link of P is a strong concave filling.

Proof. — We assume that S is embedded in $\mathbb{C}P^N$ and P is the origin of $\mathbb{C}^N \subset \mathbb{C}P^N$. Note that the complex projective space $\mathbb{C}P^N$ is obtained by the symplectic cutting construction. Namely, take a round ball B(R) in the unitary vector space \mathbb{C}^N of radius R > 0. The boundary, *i.e.*, the round sphere of radius R is considered as the total space of the Hopf fibration. We identify points on $\partial B(R)$, if they belong to the same fiber. After taking the quotient under this equivalence relation, we get a topological

SÉMINAIRES & CONGRÈS 10

space homeomorphic to $\mathbb{C}P^N$. In fact, the symplectic structure on $B(R) \subset \mathbb{C}^N$ descends to the quotient and get a symplectic structure ω . This is a typical example of the symplectic cutting construction. Certainly, this is not really compatible with the complex structures. However, there is a strictly increasing function $\rho : [0, R) \to \mathbb{R}_{>0}$ such that $F(z) = \rho(|z|)z$ is a diffeomorphism from $\operatorname{Int} B(R) \to \mathbb{C}^N \subset \mathbb{C}P^N$ satisfying

$$R^2 F^* \omega_{FS} = \omega,$$

where ω_{FS} is the Fubini-Study Kähler form with $\int_{\mathbb{C}P^1} \omega_{FS} = \pi$. Let us take a positive number $r \ll R$. Then the intersection of S and the sphere of radius r is a link of the isolated singularity P. On $B(R) \subset \mathbb{C}^N$, the symplectic form is the linear form $\sum_i dx_i \wedge dy_i = d \sum_i (x_i dy_i - y_i dx_i)/2$. Note that the restriction of F to any round sphere centered at the origin preserves the complex structure on the contact distributions. Hence, $d \sum_i (x_i dy_i - y_i dx_i)/2$ is a contact form for the link of the isolated singularity. It implies that the boundary of $S \setminus B(r)$ is strongly symplectically concave, *i.e.*, it is a strong concave filling of the link.

References

- H. HOFER, V. LIZAN & J.-C. SIKORAV On genericity for holomorphic curves in 4dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997), p. 149–159.
- [2] H.-V. LÊ & K. ONO Perturbation of pseudo-holomorphic curves, Internat. J. Math. 7 (1996), p. 771–774.
- [3] D. MCDUFF The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom. 34 (1991), p. 143–164.
- [4] _____, Singularities of J-holomorphic curves in almost complex 4-manifolds, J. Geom. Anal. 2 (1992), p. 249–266.
- [5] H. Ohta & K. Ono Simple singularities and symplectic fillings, preprint.
- [6] K. SAITO A new relation among Cartan matrix and Coxeter matrix, J. Algebra 105 (1987), p. 149–158.
- [7] A. WEINSTEIN Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971), p. 329–346.

H. Ohta, Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, JapanE-mail:ohta@math.nagoya-u.ac.jp

K. ONO, Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan *E-mail* : ono@math.sci.hokudai.ac.jp