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Abstract. — The genus of projective curves discretely separates decidedly different
two variable algebraic relations. So, we can focus on the connected moduli Mg of
genus g curves. Yet, modern applications require a data variable (function) on such
curves. The resulting spaces are versions, depending on our need from this data
variable, of Hurwitz spaces. A Nielsen class (§1) is a set defined by r ≥ 3 conjugacy
classes C in the data variable monodromy G. It gives a striking genus analog.

Using Frattini covers of G, every Nielsen class produces a projective system of
related Nielsen classes for any prime p dividing |G|. A nonempty (infinite) projective
system of braid orbits in these Nielsen classes is an infinite (G,C) component (tree)
branch. These correspond to projective systems of irreducible (dim r − 3) compo-
nents from {H(Gp,k(G), C)}∞

k=0
, the (G, C, p) Modular Tower (MT). The classical

modular curve towers {Y1(pk+1)}∞
k=0

(simplest case: G is dihedral, r = 4, C are
involution classes) are an avatar.

The (weak) Main Conjecture 1.2 says, if G is p-perfect, there are no rational points
at high levels of a component branch. When r = 4, MTs (minus their cusps) are
systems of upper half plane quotients covering the j-line. Our topics.

– §3 and §4: Identifying component branches on a MT from g-p′, p and Weigel
cusp branches using the MT generalization of spin structures.

– §5: Listing cusp branch properties that imply the (weak) Main Conjecture
and extracting the small list of towers that could possibly fail the conjecture.

– §6: Formulating a (strong) Main Conjecture for higher rank MTs (with ex-
amples): almost all primes produce a modular curve-like system.
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Résumé(La conjecture principale sur les tours modulaires et sa généralisation en rang supé-
rieur)

Le genre des courbes projectives est un invariant discret qui permet une première
classification des relations algébriques en deux variables. On peut ainsi se concentrer
sur les espaces de modules connexes Mg des courbes de genre g donné. Pourtant
de nombreux problèmes nécessitent la donnée supplémentaire d’une fonction sur la
courbe. Les espaces de modules correspondants sont les espaces de Hurwitz, dont il
existe plusieurs variantes, répondant à des besoins divers. Une classe de Nielsen (§1)
est un ensemble, constitué à partir d’un groupe G et d’un ensemble C de r ≥ 3 classes
de conjugaison de G, qui décrit la monodromie de la fonction. C’est un analogue
frappant du genre.

En utilisant les revêtements de Frattini de G, chaque classe de Nielsen fournit
un système projectif de classes de Nielsen dérivées, pour tout premier p divisant
|G|. Un système projectif non vide (infini) d’orbites d’actions de tresses dans ces
classes de Nielsen est une branche infinie d’un arbre de composantes. Cela corres-
pond à un système projectif de composantes irréductibles (de dimension r − 3) de
{H(Gp,k(G), C)}∞

k=0
, la tour modulaire. La tour classique des courbes modulaires

{Y1(pk+1)}∞
k=0

(le cas le plus simple où G est le groupe diédral D2p, r = 4 et C la
classe d’involution répétée 4 fois) en est un avatar.

La conjecture principale (faible) dit que, si G est p-parfait, il n’y a pas de points
rationnels au delà d’un niveau suffisamment élevé d’une branche de composantes.
Quand r = 4, les tours modulaires (privées des pointes) sont des systèmes de quotients
du demi-plan supérieur au-dessus de la droite projective de paramètre j. Nos thèmes.

– §3 et §4 : Identification des branches de composantes sur une tour modulaire à
partir des branches de pointes g − p′, p et Weigel, grâce à la généralisation des
structures de spin.

– §5 : Énoncé d’un ensemble de propriétés des branches de pointes impliquant la

conjecture principale (faible) et réduction à un nombre limité de cas de tours
pouvant encore éventuellement la mettre en défaut.

– §6 : Formulation d’une conjecture principale forte pour des tours modulaires de
rang supérieur (avec des exemples) : presque tous les premiers conduisent à un
système semblable à celui des courbes modulaires.
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Luminy in March 2004 gave me a chance to show the growing maturity of Modular

Towers (MTs). Documenting its advances, however, uses two other sources: Papers

from this conference; and a small selection from the author’s work. §C.1 lists the

former. While the first two papers in that list have their own agendas, they show

the influence of MTs. The last two papers aim, respectively, at the arithmetic and

group theory of MTs. This paper concentrates on (cusp) geometry. As [Fri07] is

not yet complete, I’ve listed typos corrected from the print version of [BF02] — our

basic reference — in the on-line version (§C.2). From it came the serious examples

(see partial list of §6.2.3) that graphically demonstrate the theory.

A glance at the Table of Contents shows §4 is the longest and most theoretical in

the paper. It will figure in planned later papers. We have done our best in §6 to get

serious examples to illustrate everything in §4. (Constraints include assuring we had

in print enough on the examples to have them work as we wanted.) So, we suggest

referring to §4 after finding motivation from other sections.
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Many items in this paper would seem to complicate looking at levels of a MT: types

of cusps, Schur multipliers of varying groups, component orbits. It behooves us to

have an organizing tool to focus, label and display crucial and difficult computations.

Further, we find that arithmetic geometers with little group theory background just

don’t know where to start. What surely helps handle some of these problems is the sh-

incidence matrix. I suggested to Kay Maagard that the braid package (for computing

Nielsen class orbits) would gain greatly if it had a sub-routine for this. He said he

would soon put such in [MSV03].

We use the sh-incidence Matrix on Ni(A4,C±32)in,rd in §6.4.2 to show what we

mean. More elaborate examples for level 1 of this MT and also for Ni(A5,C34)in,rd

are in [BF02, Chaps. 8 and 9]. All these are done without [Sch95] or other computer

calculation, and they figure in many places in this paper as nontrivial examples of

the mathematical arguments that describe the structure of MT levels. Still, [BF02,

§9.2.1 and 9.2.2] list what [Sch95] produced for all branch cycles (see §5.2.2 and

§6.2.3) for both (j-line covering) components at level 1 in the (A5,C34 , p = 2) MT.

1. Questions and topics

In this paper the branch point parameter r ≥ 3 is usually 4 (or 3). Results (based

on §3 and §4) on MTs with r arbitrary are in a companion paper [Fri06a] that

contains proofs of several results from the author’s long-ago preprints. For example: It

describes all components of Hurwitz spaces attached to (An,C3r), alternating groups

with 3-cycle branch cycles running over all n ≥ 3, r ≥ n− 1.

1.1. The case for investigating MTs. — A group G and r conjugacy classes

C = C1, . . . ,Cr fromG define a Nielsen class (§2.4.1). The Hurwitz monodromy group

Hr acts on (we say braids) elements in representing Nielsen classes. Components of

MT levels correspond to Hr orbits. Other geometry, especially related to cusps,

corresponds to statements about subgroups of Hr on Nielsen classes.

Sometimes we use the notation rC for the number r of conjugacy classes.

Mostly, however, we concentrate on MTs defined by reduced (inner) Nielsen classes

Ni(G,C)in,rd where rC = 4 (sometimes one conjugacy class, repeated four times).

Then, the sequence of reduced inner Hurwitz spaces ({H(Gp,k(G),C)in,rd}∞k=0 below)

defining their levels are curves. Here H4, acting on a corresponding projective

sequence of Nielsen classes, factors through a mapping class group we denote as M̄4.

It is naturally isomorphic to PSL2(Z).

In this case, a projective sequence of finite index subgroups of PSL2(Z) acting on

the upper half-plane, indexed by powers of a prime p, do correspond to these levels.

Yet, this sequence appears indirectly in MTs, unlike the classical approach to the

special case of modular curve sequences. The closure H̄(Gp,k(G),C)in,rd is a ramified
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cover of the j-line (§2.3) that includes cusps (lying over j = ∞). Each cusp identifies

with a Nielsen class cusp set (as in (2.5a)).

Like modular curves towers, the usual cusp type is a p cusp. Also, like modular

curve towers, special cusp sets correspond to actual cusps with special geometric

properties. The technical theme of this paper: MTs with g-p′ cusps (§3.2.1) have a

special kinship to modular curves (a subcase). That is because g-p′ cusps potentially

generalize a classical meaning for those modular curve cusps akin to representing

degenerating Tate elliptic curves. This relates to the topic of tangential base points

(Princ. 4.10 and §6.2). The other kind of cusp type called o-p′ has no modular curve

analog. We give many examples of these occurring on MTs where p = 2 and G0 is

an alternating group.

Direct interpretation of cusps and other geometric properties of MT levels com-

pensates for how they appear indirectly as upper half-plane quotients. This allows

defining MTs for r > 4. These have many applications, and an indirect relation with

Siegel upper half-spaces, though no direct analog with modular curves.

1.1.1. Why investigate MTs?— We express MTs as a response to these topics.

T1. They answer to commonly arising questions:

T1.a. Why has it taken so long to solve the Inverse Galois Problem?

T1.b. How does the Inverse Galois Problem relate to other deep or important

problems?

T2. Progress on MTs generates new applications:

T2.a. Proving the Main Conjecture shows MTs have some properties anal-

ogous to those for modular curves.

T2.b. Specific MT levels have many recognizable applications.

Here is the answer to T1.a. in a nutshell. MTs shows a significant part of the

Inverse Galois Problem includes precise generalizations of many renown statements

from modular curves. Like those statements, MT results say you can’t find very

many of certain specific structures over Q.

For example, §6.1.2 cites [Cad05b] to say the weak (but not the strong) Main

Conjecture of MTs follows from the Strong Torsion Conjecture (STC) on abelian

varieties. Still, there is more to say: Progress on our Main Conjecture implies specific

insight and results on the STC (subtle distinctions on the type of torsion points in

question), and relations of it to the Inverse Galois Problem.

1.1.2. Frattini extensions of a finite group G lie behind MTs. — Use the notation

Z/n for congruences mod n and Zp for the p-adic integers. Denote the profinite

completion of Z by Z̃ and its automorphisms (invertible profinite integers) by Z̃∗.

Suppose p is a prime dividing |G|. Group theorists interpret p′ as an adjective

applying to sets related to G: A set is p′ if p does not divide orders of its elements.
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We say G is p-perfect if it has no Z/p quotient. For H ≤ G, denote the subgroup

of G generated by commutators (hgh−1g−1, h ∈ H, g ∈ G) by (H,G). Then, G is

perfect if and only it is p-perfect for each p dividing |G| (equivalent to (G,G) = G).

§2.1 explains the point of the p-perfect condition.

A covering homomorphism ϕ : H → G of pro-finite groups is Frattini if for any

proper subgroup H∗ < H , the image ϕ(H∗) is a proper subgroup of G. Alternatively,

the kernel ker(ϕ) of ϕ lies in the Frattini subgroup (intersection of all proper maximal

subgroups of G) of G. For P a pro-p group, the closure of the group containing pth

powers and commutators is its Frattini subgroup Φ(P ). Iterate this k times for

Φk(P ) < Φk−1(P ) < · · · < P.

Consider a reduced Nielsen class (§2.4.2) defined by r (p′) conjugacy classes

C = (C1, . . . ,Cr) in a finite group G = G0.

Defining the characteristic (projective) series of Nielsen classes from this requires the

characteristic (projective) sequence {Gk}
∞
k=0 of p-Frattini covers of G0. Each Gk

covers G and is a factor of the universal p-Frattini cover ψ : pG̃ → G, versal for all

extensions of G by p-groups ([Dèb06, §1.2], [FJ86, Chap. 20]):

{Gk = Gp,k(G)
def
= pG̃/Φ

k(P̃p)}
∞
k=0 with P̃p = ker(ψ : pG̃→ G).

Then, Gk+1 → Gk is the maximal Frattini cover of Gk with elementary abelian p-

group as kernel. Further, ker(Gk+1 → Gk) is a Gk module whose composition factors

consist of irreducible G0 modules. The most important of these is 111Gk
= 111G0 , the

trivial 1-dimensional Gk module.

[Fri02, §2.2] shows how to find the rank of the pro-p, pro-free group P̃p. Its

subquotients figure in the geometry of the attached MT levels.

Consider any cover H → G of profinite groups with kernel (ker(H → G) a (pro-)p

group. If C is a p′ conjugacy class in G, then above it in H there is a unique p′

conjugacy class. This is the most elementary case of the Schur-Zassenhaus Lemma.

When we have this situation it is natural to retain the notation C for the conjugacy

class in H , so long as we are clear on which group contains the class. Conversely, if

C is a p′ conjugacy class of H it has a unique image p′ conjugacy class in G.

This setup applies whenever we refer to MTs, as in this. The MT attached to

(G,C, p) is a projective sequence of spaces {H(Gk,C)in,rd
def
= Hk}

∞
k=0. We also use

this lifting principle even when H → G is not a Frattini cover (as in §4.3).

1.1.3. MTs and the Regular Inverse Galois Problem. — Use the acronym RIGP for

the Regular Inverse Galois Problem. For any field K, Kcyc is K with all roots of 1

adjoined. Let F (≤ C for simplicity) be a field and G = G0 any finite p-perfect group.

An F regular realization of G∗ is a Galois cover ϕ∗ : X∗ → P1
z over F with group G∗

(with automorphisms also defined over F ). Then, the branch point set zzz of ϕ∗ is an

F set, with corresponding conjugacy classes C∗ in G∗.
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We use the Branch Cycle Lemma (BCL, §3.1.1; [Dèb06, Thm. 1.5] has example

uses when Q = F ). It says the branch points and respective conjugacy classes satisfy

a compatibility condition: For each τ ∈ Aut(C/F ), zτi = zj implies

(1.1) (C∗i )
nτ = C∗j with τ 7→ nτ ∈ G(Qcyc/F ∩ Qcyc) ≤ Z̃∗(§1.1.2).

We say the conjugacy classes are F -rational if (1.1) holds without our having to know

anything more about the branch points than they are an F set. That is, if (as a set

with multiplicity) (C∗)n = C∗ for each n ∈ G(Qcyc/F ∩ Qcyc).

A significant conclusion is that if G∗ is centerless, and C∗ is F -rational, then such

ϕ∗ s correspond one-one with F points on the space H(G∗,C∗)in ([FV91, Thm. 1];

each then gives an F point in H(G∗,C)in,rd). The quotients of pG̃ differ in a style

akin to the difference between Dp and Dpk+1 ; in some ways not a big difference at all.

So, we ask if they are all regular realizations from one rubric?

(1.2a) Minimum: Can all be realized with some bound on the number of branch

points (dependent on G0 and p)?

(1.2b) Maximum: Can all be realized with the same branch point set zzz?

For many fields F , including number fields (Rem. 1.3), the hypothesis of Prop. 1.1

implies its conclusion ([Dèb06, Thm. 2.6] outlines the proof). That is, if (1.2a), then

there is a specific MT with F points at each level.

Proposition 1.1. — Assume there is r0 so each Gk has an F regular realization, with ≤

r0 branch points. Then, there is a MT from (G,C) with rC ≤ r0 and each H(Gk,C)in

(and therefore H(Gk,C)in,rd), k ≥ 0, has an F point.

The last half answer to Quest. T1.a is the conjecture that the conclusion (and

therefore the hypothesis) of Prop. 1.1 doesn’t hold for number fields.

Conjecture 1.2(Weak Main Conjecture). — Suppose G0 is p-perfect and K is a num-

ber field. Then, there cannot be K points at every level of a MT. So, regular

realizations of all the Gk s over K requires an unbounded number of branch points.

A modular curve case of this is that Y1(p
k+1) (modular curve X1(p

k+1) minus its

cusps) has no K points for k >> 0. Thm. 5.1 says the Main Conj. holds for (G0,C, p)

unless there is a K projective sequence of components {H′k ⊂ H(Gk,C)in,rd}∞k=0 and

either none of the H′k has a p cusp; or H′k+1/H
′
k is equivalent to a degree p rational

function fk : P1
z → P1

z with fk either a polynomial, or totally ramified over two places.

Remark 1.3(F for which Prop. 1.1 holds). — Recall, compatible with (1.1), an

element g in a profinite group is F -rational if gn is conjugate to g for all

n ∈ G(Qcyc/F ∩ Qcyc) ≤ Z̃∗. Denote the the field generated by roots of 1 of

p′ order by Qcyc,p′ and let Fp′ = F ∩ Qcyc,p′ . [FK97, Thm. 4.4] shows that if no

p-power element g ∈ pG̃ is F -rational, then F satisfies Prop. 1.1. Further, this holds

if [Fp′ : Q] <∞.
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1.1.4. Limit groups. — Finding F regular realizations, and their relation to Conj. 1.2,

breaks into three considerations for the collection of p-Frattini covers G∗ → G.

(1.3a) For what G∗ s is H(G∗,C)in,rd nonempty (so it can have F points)?

(1.3b) Which of those nonempty H(G∗,C)in,rd s have some absolutely irreducible F

component H′(G∗,C)in,rd?

(1.3c) Which of the H′(G∗,C)in,rd s have F points.

Limit groups (a braid orbit invariant) are a profinite summary of what (1.3a) is

about (§4.1): A positive answer for G∗ holds in (1.3a) if and only if G∗ is a quotient

of a limit group for some braid orbit on Ni(G0,C). Note: There may be several limit

groups for a given level 0 braid orbit (as in App. B.1). Braid orbits in Ni(G0,C)

containing g-p′ cusps have the whole of pG̃ as one limit group (Princ. 3.6). §4.5

documents much evidence this is also necessary.

Fields F that are `-adic completions of a number field are examples for which

the maximum condition (1.2b) holds (see [Dèb06, §2.4]; though [Fp′ : Q] = ∞ in

Rem. 1.3). That means there is an F component branch (§1.2.1 — all levels defined

over F ) on some MT with a projective system of F points {pppk ∈ H(Gk,C)in}∞k=0. By

contrast, though (1.2a) (with Prop. 1.1) postulates F points at all levels of some MT,

over a number field we know they cannot form a projective system [BF02, Thm. 6.1].

Denote the completion of a field K at a valuation ν of K by Kν . Evidence from

the case of shifts of Harbater-Mumford representatives (H-M reps.) suggests an affir-

mative answer for the following. §1.2.1 explains the hypotheses opening Quest. 1.4.

Question 1.4. — Let K be a number field with {H′(Gk,C)in}∞k=0 a K component

branch defined by a g-p′ cusp branch. Does it have a projective system of Kν points

for each ν over any prime ` not dividing |G0|?

App. A and App. B give cases of Nielsen classes with limit groups other than pG̃.

App. A is a different angle on modular curves, where a universal Heisenberg group

obstruction explains the unique limit group.

App. B includes applying Thm. 4.12 (and Ex. 4.13). Here, each layer of an H-M

cusp branch has above it at least two components, one not an H-M component. Some-

thing similar happens for the main example MT of [BF02] (for G = A5; Ex. B.2).

So, each level of these examples has at least two components, one with pG̃ in its limit

group, and the other with pG̃ not in its limit groups.

A rephrase of (1.3b) would be to decide which limit groups produce a Q component

branch. When the limit group is pG̃ and the component branch is from an H-M cusp

branch it is sufficient that all H-M reps. fall in one braid orbit (see §1.4). We expect

this to generalize to g-p′ reps. The criterion of [Fri95, Thm. 3.21] for H-M reps. to

fall in one braid orbit holds at all levels of a MT, if it holds at level 0. Still, that

criterion never holds when r = 4, the main case of this paper.
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Finally, given that we know the answers for a particular Nielsen class to (1.3a) and

(1.3b), (1.3c) gets to the nub of our Main Conjecture: High MT levels should have

no rational points over a number field K (at least when the limit group is pG̃).

§6.3 gives a solid example of how to use the cusp rubric to compute. It shows the

nature of the two components, H+
0 ∪ H−0 at level 0 of a significant MT. Both have

genus 0, and H+
0 is an H-M component: Indeed, it contains all H-M cusps (Ex. 3.7,

shifts of special reps. in g-p′ cusps).. The other has nontrivial lifting invariant (§4.2)

and so nothing above it at level 1. Both are parameter spaces of genus 1 curves, and

both are upper half plane quotients. Yet, neither is a modular curve.

1.2. Five parts on a MT structure. — From this point r = 4. So, MT levels

are j-line covers [BF02, Prop. 2.3 and §2.3.1]. We list this paper’s six main topics.

(1.4a) §2.4.2: Tools for computing cusp widths (ramification orders) and elliptic

ramification of levels.

(1.4b) §3.1.1, §3.2.1 and §4.1: Relating infinite branches on the cusp and component

trees, a classification of cusp types and limit Nielsen classes.

(1.4c) §4.3 and §4.4: Describing infinite component branches.

(1.4d) §5: Outlining for r = 4 how to prove the (weak) Main Conjecture.

(1.4e) §6.1: Formulating the Strong Main Conjecture and comparing its expecta-

tions with that for modular curve towers.

(1.4f) §4.1, §6.2 and §6.3: Showing specific MT components apply to significant

Inverse Galois and modular curve topics.

These contribute to T1.b ((1.4a), (1.4c) and (1.4e)) and T2 ((1.4b), (1.4d) and (1.4f)).

1.2.1. Results on cusps. — Conj. 2.2 interprets the Main Conjecture as a statement

on computing genera of components. That starts the proof outline that (1.4c) alludes

to. §2.4 turns that computation into group theory and combinatorics.

Our main results relate cusps at a MT level to the components on which they

lie. The language uses a cusp (resp. component) tree CG,C,p (resp. TG,C,p) on a MT

(§3.1). The natural map CG,C,p → TG,C,p is from containment of cusps in components.

This interprets from a cusp set being in a braid orbit (2.5).

An infinite (geometric) component branch (§3.1) is a maximal projective sequence

B′ = {H̄′k ⊂ H̄(Gk,C)in,rd}∞k=0 of (geometric) Hurwitz space components.

With F a field, call B′ an F component branch if all levels have definition field F .

An infinite cusp branch is a maximal projective sequence

B = {p̄ppk ∈ H̄(Gk,C)in,rd}∞k=0 of (geometric) points over j = ∞.

There also exist finite branches, where the last component H′k has nothing above it on

H(Gk+1,C)in,rd. Our Main Conjecture only applies to infinite K component branches

where K is a number field. Still, describing the infinite component branches forces

dealing with the finite branches. From §2.4.2, B corresponds to a sequence of cusp
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sets defined by a projective system {kggg ∈ Ni(Gk,C)in}∞k=0 of Nielsen class elements.

Characterizations of such a B come from definitions of p, g-p′ and o-p′ cusps (§3.2.1).

Three Frattini Principles 3.5, 3.6 and 4.24 imply one of these three happens.

(1.5a) For k large, p̄ppk is a p cusp (p branch).

(1.5b) For all k, p̄ppk is a g-p′ cusp (g-p′ branch).

(1.5c) For k large, p̄ppk is an o-p′ cusp (Weigel branch).

In case (1.5a) there could be a string consisting of g-p′ and/or o-p′ cusps before the

p cusp part of the sequence. For many g-p′ cusps there are no o-p′ cusps above them

(for cusps of shifts of H-M reps., for example as prior to Prop. 3.12). So, if at level 0

you only have such g-p′ cusps, no projective sequence will include both g-p′ and o-p′

cusps.

Still, Prop. 3.12 produces MTs where an o-p′ cusp lies over some g-p′ cusps at each

high level. When finite exceptional strings don’t occur at the start of cusp branches,

we call them pure. Any MT level can be the start of the tower by applying a fixed

shift of the indices. Then these names would apply to cusps at that level.

1.2.2. g-p′ (cusp) versus Weigel cusp branches. — Any cusp branch B determines a

component branch B′. This allows naming an infinite component branch B′ of TG,C,p
by the name of the cusp branch.

For example, a g-p′ branch (as in Princ. 3.6) on the cusp tree produces a g-p′

branch on the component tree. A succinct phrasing of Princ. 3.6:

(1.6) Any g-p′ cusp starts at least one (infinite) g-p′ branch.

A succinct converse of this would help so much to decide which MTs most resemble

modular curve towers. Here is our best guess for such a converse.

Conjecture 1.5(g-p′ Conjecture). — Show for K is a number field, each K component

branch (§1.2.1) on a MT is defined by some g-p′ cusp branch.

Many papers consider H(arbater)-M(umford) cusp (Ex. 3.7) and component

branches ([Cad05b], [DD04], [DE06], [Wew02]; not using the term branch).

By contrast Weigel cusp branches are an enigma. Identifying g-p′ cusps and a

corresponding branch of CG,C,p has given the successes for finding infinite branches

of TG,C,p. The gist of Conj. 1.6 is they are necessary for a component branch. §4.6

lists evidence for it. Examples in §4.6.2 show the main issues.

Conjecture 1.6. — With K a number field, there are no Weigel cusp branches on any

infinite K component branch of a MT.

If Conj. 1.6 is true, then for any (infinite) K component branch either a g-p′ branch

defines it or it has only p cusp branches (see §1.3.3). We also suspect the latter cannot

hold, for such component branches would lack classical aspects.

SÉMINAIRES & CONGRÈS 13
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1.2.3. Setup for proving the (weak) Main Conjecture. — The group H4 acts (through

M̄4) compatibly on all Nielsen class levels of a MT. So any q ∈ H4 acts on a projective

system {kggg}
∞
k=0 defining a cusp branch B, with {(kggg)q}

∞
k=0 defining a new sequence

of cusps. (A different projective system of representatives for B likely gives a different

projective system of cusps from the q action.)

From this, many cusp branches may define the same component branch. So any

component branch could simultaneously be a g-p′, p and Weigel component branch.

Thm. 5.1 says, the (weak) Main Conjecture 1.2 essentially follows if there must be

more than one p cusp branch on a component branch. Since modular curve towers,

and all presently analyzed MTs have ∞-ly many p-cusp branches, this seems a sure

bet. An affirmative result like [BF02] paved the way if p̄ppk is a p cusp or the cusp of a

shifted H-M rep. So, here is the hardest remainder (modulo Conj. 1.6) for [Fri06b]:

(1.7) For k large, a g-p′ cusp braids to a p cusp.

We abstract the framework from [BF02, §8] for H-M cusps and p = 2 in §5.3 to show

both its likelihood and nontriviality.

1.3. MTs of arbitrary rank and full component branches. — For both appli-

cations and technical analysis we expand in two ways on what spaces come attached

to a definition of a MT.

1.3.1. Intermediate spaces and groups acting on free groups. — Our applications use

spaces intermediate to Hk → U∞ (notation of §2.3), just as modular curves use

Y0(p
k+1) as a space intermediate to Y1(p

k+1) → U∞. This gives the notions of full

cusp and component graphs (§1.3.2; these are rarely trees).

Also, starting with a finite group H acting faithfully on a free group Fu (or a

lattice Zu) replacing a finite group G, gives the concept of a MT of rank u. This

allows running over all primes, not explicitly excluded by our usual assumptions: G

is p-perfect and C consists of p′ classes.

We have two immediate reasons for doing this.

(1.8a) §1.4: For a version of Serre’s O(pen)I(mage)T(heorem) (OIT) [Ser98].

(1.8b) Res. 1.7: To compare MTs with the most compelling arithmetic statement

we know on modular curve towers.

Result 1.7(Mazur-Merel) . — For each number field K, there is a constant AK (depen-

dent only on K) so there are no rational points on Y1(p
k+1) (modular curve X1(p

k+1)

minus its cusps) if pk+1 > AK .

Our (strong) Main Conjecture (Conj. 6.2) formulates this to MTs of arbitrary rank.

[Fri06a] has applications to statements independent of MTs. Though MT levels are

rarely modular curves (quotients of congruence subgroups of PSL2(Z) acting on the

upper half plane), modular curve thinking guides their use.
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1.3.2. Expanding on cusp and component branches. — Using groups intermediate to

the Gk s produces (p)-limit Nielsen classes Ni(G∗,C) with G∗ a maximal quotient

(limit group) of pG̃ having Ni(G∗,C) nonempty. Limit groups are braid invariants on

projective systems of Nielsen class elements. Unless G∗ is pG̃, these give full MTs

whose infinite branches don’t have components of {Hk}
∞
k=0 cofinal among them. This

generalization has three motivations.

(1.9a) To include all modular curves for p odd in this rubric (not just those closely

related to Y1(p
k+1) s) requires a rank 2 MT.

(1.9b) Higher rank MTs for p can have special F-quotients (§6.2.2)— still based on

the universal p-Frattini cover — from low-level quotients.

(1.9c) Using [Wei05] gives some precise limit group properties.

App. A gives a full comparison of MTs with all modular curves. It shows the

unique limit group for (1.9a) is (Zp)
2×s{±1} (for p 6= 2). Cor. 4.20 explains how each

limit group is defined by a unique obstruction. Here that obstruction is universal

across all primes, coming from a Heisenberg group. §1.3.3 shows how (1.9c) helps

decide when the limits groups are pG̃, the case of our Main Conjecture. §1.4 is on

how F-quotients in (1.9b) point to generalizations of Serre’s OIT.

1.3.3. Component branches and Schur multipliers. — [BF02, §8] gave a procedure

for figuring components on a MT level. Making the computations at level 0 requires

detailed handling of conjugacy classes C for the group G0. Level 0 components in the

case of simple groups have contributed much of the success of the braid approach to the

Inverse Galois Problem. Though predicting how components and cusps work at level

0 is still an art, various families of groups (simple and otherwise) do exhibit similar

patterns when using related conjugacy classes (witness An and 3-cycles [Fri06a]).

Given the level 0 work, we organize for higher levels in three steps.

(1.10a) Inductive setup from level k to k+ 1: List cusps at level k within each braid

orbit, and choose one representative kggg for each braid orbit kOb.

(1.10b) List all preimages in Ni(Gk+1,C) lying over kggg and use this to list all cusps

k+1Oc at level k + 1 lying over cusps kOc in kOb.

(1.10c) Then, partition cusps lying over kggg according to their braid orbits.

The Gk module Mk = ker(Gk+1 → Gk) controls going from Gk to Gk+1. A

characteristic sequence of Mk subquotients (called Loewy layers; example §A.2.1 will

help the reader) are semi-simple G0 modules. Since [Fri95] we’ve known it is the

111G0 s in the Loewy layers that are critical to properties of higher MT levels.

The cardinality of the fiber in (1.10b) is a braid invariant. The first business is a

version of (1.3a): Decide effectively when the fiber is nonempty. Cor. 4.19 shows it is

the 111G0 s in the first Loewy layer of Mk — the maximal elementary p quotient of the

Schur multiplier of Gk (§2.1) — that controls this.
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Suppose O is a braid orbit in Ni(G = G0,C). Then, O defines a profinite cover

ψO : MO → G with this versal property (Lem. 4.14). For any quotient G′ of pG̃, each

braid orbit O′ ≤ Ni(G′,C) over O corresponds to ψ′ : MO → G′ factoring through

ψO. Weigel’s Th. 4.15 says MO is an oriented p-Poincaré duality group.

One consequence: Cor. 4.19 says that if the fiber over the orbit kOb is empty (as

in (1.10b)), then some Z/p quotient in the first Loewy layer of ker(Gk+1 → Gk)

obstructs it. To wit, if R → G is the central extension with ker(R → Gk) giving this

Z/p quotient, then MO → Gk for kOb does not extend to MO → R.

Further, Cor. 4.20 says that if G∗ is a limit group in a Nielsen class and it is

different from pG̃, then the following hold.

(1.11a) G∗ has exactly one nonsplit extension by a Z/p[G∗] module M ′.

(1.11b) M ′ is the trivial (one-dimensional) Z/p[G∗] module.

App. A and B give explicit examples identifying M ′.

The example of §6.3 combines the sh-incidence matrix with the natural division

into cusp types from §3.2.1 to show how we often manage figuring (1.10c). Princ. 4.24

frames in pure group theory how to deal with o-p′ cusps. So, it sets a module approach

for, say, Conj. 1.6. Here’s how this refined tool relates cusps with their components.

Suppose ggg ∈ O ≤ Ni(Gk,C) defines an o-p′ cusp. Then, having an o-p′ cusp

ggg′ ∈ O′ ∈ Ni(Gk+1,C) over ggg restates as a versal property for two profinite groups

extensions that induce ψO′ : MO′ → Gk+1. This characterizes with group theory

whether there are Weigel cusp branches through O. These formulas will generalize to

MTs of arbitrary rank and any value of r.

1.4. Generalizing complex multiplication and Serre’s OIT. — App. B gives

a significant example when there are several limit groups G∗ (one, at least, 6= pG̃) and

— as we show — the spaces are not modular curves. So, it is nontrivial that we can

here be explicit in formulating an OIT and a MT version of complex multiplication.

1.4.1. Decomposition groups. — Suppose j′ ∈ U∞(F ) (§2.3; with F a number field)

is a j value. Then, there is a decomposition group Dj′ from GF acting on projective

systems of points Fibj′ (G
∗,C) on the full MT over j′ defined by (G∗,C). [BF02,

Thm. 6.1] (when G∗ = pG̃) says no orbit has length one. It is far stronger than the

Main Conjecture to have Dj′ with large orbits on Fibj′ (G
∗,C), for all j′.

To go, however, beyond naiveté requires estimating how large Dj′ is. Lem. 3.1

explains how to use cusp branch types: Practical knowledge of how GF acts on

systems of components comes from knowing how GF acts on specific types of cusps.

The historical example is where we know all H-M cusps fall in one braid orbit.

Then, [Fri95, Thm. 3.21] says a component containing the H-M cusps has definition

field given by the BCL (§1.1.3; this is Q if C is Q-rational). [Cad05a] exploits this for

arbitrary r to produce many Nielsen classes where the corresponding reduced Hurwitz

space contains absolutely irreducible curves over Q (the first result of its kind).
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We expect g-p′ cusp types to be the main tool for many results. For example,

[Fri95, Thm. 3.21] should generalize to describe component branches with all levels

defined over some fixed number field. We guess this is exactly when all g-p′ cusps of

a fixed type fall in a bounded (independent of the level) number of orbits.

Here is another example. §6.2.4 notes that a g-p′ cusp branch B provides a tan-

gential base-point in the sense of Nakamura. Related cusps would allow following the

proof of Serre’s OIT for “large” j-invariant, by considering the arithmetic of these

cusps over all rank 1 complete fields.

1.4.2. Seeking OIT examples. — App. A has a (rank 2, as in §1.3.1) MT attached

to F2 ×
s Z/2. It describes the full MT whose levels identify with standard modular

curves. Here, for all (odd) p, there is a unique limit MT, and a unique (proper)

F-quotient of it. For each there is a (full) component graph, which we respectively

denote by TGL2
and TCM.

So, in this language, we expect j′ values that produce decomposition groups that

correspond to TGL2
(or to GL2) and to TCM (or to CM). That this is so is Serre’s

OIT, in our language. Our next example shows how to extend this to general higher

rank MTs. Seeking an OIT type result uses analog properties from Serre’s example.

It is crucial that we expect there to be Frattini properties for monodromy groups of

MT component branches, as in (6.2).

App. B has a rank 2 MT attached to G = F2 ×s Z/3 that shows possibilities

for general results like Serre’s OIT. We see the g-p′ cusp criterion (Princ. 3.6) for

identifying infinite component branches in a MT. For both p = 2 and p ≡ −1

mod 3, one limit group is pG̃ = F̃2,p ×
sZ/3, and its MT has no F-quotient. At least

for p = 2, there are other limit groups, explicitly showing Cor. 4.19. We conjecture

Dj′ in these cases always has a type we call F2.

For p ≡ +1 mod 3, F̃2,p ×
sZ/3 is also a limit group, but its MT has a unique

F-quotient. In this case we expect Dj′ has either type F2 or a type we call CM (and

both types occur).

1.4.3. Low MT levels apply to the RIGP and to Andre’s Theorem. — (1.4f) alluded

to the specific applications of its level 0 and 1 components for p = 2. None of

its levels are modular curves. Also, unlike modular curve levels, these levels have

several components. §6.3 labels the two level 0 components as H+
0 and H−0 . Level

1 has six, labeled Hx
1 with the x decoration signifying some special property. Here

appear generalizations of spin invariants (as in §1.3.3) that produce varying types of

component branches.

For p = 2, and level 0, H±0 (parametrizing families of genus 3 curves) map to

their absolute (reduced) Hurwitz space versions H±,abs
0 . Each, like a modular curve,

parametrizes genus 1 curves with extra structure and embeds naturally in P1
j × P1

j .

Suppose in this embedding the components have infinitely many coordinates in

complex quadratic extensions of Q. Then, we might be suspicious when p = 2 that
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this MT would have some complex multiplication property. A theorem, however, of

André’s (Prop. 6.15) says they don’t. This further corroborates our guess that for

p = 2, almost all Dj′ have type F2.

Two level 1 components (§6.4.5) contain H-M reps. We show what a serious chal-

lenge is deciding whether their defining field is Q, with its effect on the RIGP (applied

to the exponent 2 Frattini cover of A5).

2. Ingredients for a MT level

We start with some notation and an explanation of how Schur multipliers appear

here. Then we briefly try to comfort a reader about Hurwitz spaces as families of

covers of the Riemann sphere: P1
z = Cz ∪ {∞}.

2.1. p-perfectness and Schur multipliers. — Consider r conjugacy classes, C,

in G and ggg = (g1, . . . , gr) ∈ Gr. Then, ggg ∈ C means g(i)π is in Ci, for some π

permuting {1, . . . , r}. Also, Π(ggg)
def
=

∏r
i=1 gi (order matters). Lem. 2.1 shows how

p-perfect enters.

Lemma 2.1. — If p is a prime with G not p-perfect and C are p′ classes of G, then

elements in C are in the kernel of G to the corresponding Z/p quotient. So, if ggg ∈ C

then 〈ggg〉 = G is impossible: Ni(G,C) (and the Hurwitz space) is empty.

Here is another technical plus from the p-perfect condition. There is a Frattini

cover Rp → G with ker(Rp → G) in the center of Rp and equal to the p part of

the Schur multiplier of G. Further, Rp → G is universal for central p extensions of

G (for example, [BF02, §3.6.1]; call it the representation cover for (G, p)). We use

the notation SMG (resp. SMG,p) for the Schur multiplier (resp. p-part of the Schur

multiplier) of G. If G is p-perfect for all p||SMG|, then the fiber product over G of all

such Rp is truly a universal Frattini central extension of G. §2.5 lists properties we

use of Schur multipliers.

Identifying components of MT levels is a recurring theme. Whether a component

at level k has some component above it at level k + 1 — the level k component is

unobstructed — is controlled by Schur multipliers. Lem. 4.9 and Cor. 4.19 are our

main tools. Applying them is the heart of describing the type of infinite branches in

a MT. We conclude with comments on the literature.

The definition of homology groups of G (with coefficients in Z) came from topology.

These were the homology groups of a space with fundamental group G whose simply

connected cover is contractible. [Bro82, p. 2] discusses how Hopf used it to describe

H2(G,Z). Write G = F/R with F free. Then, H1(G,Z) = G/(G,G) and H2(G,Z) =

R ∩ (F, F )/(F,R) (the Schur multiplier of G).
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The expression for H1 is from general principles. For H2 it is not obvious. It is

usual to compute H2 using tricks to identify E that suits (2.1). If G is perfect, then

there is a universal (short exact) sequence

(2.1) 0 → H2(G,Z) → E → G→ 1.

The group E factors through all central extensions of G [Bro82, p. 97, Ex. 7] (by a

unique map through p group extensions if G is p-perfect). By contrast, the universal

Frattini cover G̃ → G of G is versal: It factors through all extensions of G including

E, but the factoring map isn’t unique. Then, Rp → G is the extension of G from

modding E out by the p′ part of ker(E → G). It is easy that p-perfectness is the same

as Rp → G being a universal p-central extension of G.

Also, if G is p-perfect and centerless, then all the characteristic Frattini quotients

(§1.1.2) Gp,k are too. That implies H(Gp,k,C)in (see below) has fine moduli [BF02,

Prop. 3.21]. Take Rp,k as the representation cover of (Gp,k, p). Then, H(Rp,k,C)in

does not have fine moduli. Both statements produce many Hurwitz space applications.

2.2. One cover defines a family of covers. — An analytic cover, ϕ : X → P1
z

of compact Riemann surfaces, ramifies over a finite set of points

zzz = z1, . . . , zr ⊂ P1
z : P1

z \ {zzz} = Uzzz.

Such a ϕ defines a system of covers by applying Riemann’s existence theorem and

deforming the branch points (keeping them distinct). We explain.

Represent projective r space Pr as nonzero polynomials of degree at most r modulo

scalar multiples. Then, polynomials (r unordered points) with at least two equal zeros

form its discriminant locus Dr. Denote Pr \Dr by Ur. By moving branch points zzz,

you can form along any path in Ur a unique continuation of the cover ϕ.

Given zzz and classical generators at zzz0 ([BF02, §2.1-2.2] or §4.3), this interprets

homotopy classes of paths in π1(Ur, zzz) as Hurwitz monodromy Hr (§2.4.1). Its action

on Nielsen classes then reproduces this deformation of covers.

Suppose given (G0,C, p) with p′ classes C = (C1, . . . ,Cr). [Dèb06, §1.2] reminds

how this produces a projective sequence {Hin
k }
∞
k=0, of inner Hurwitz spaces. Assuming

it is nonempty, the level k space has dimension r and is an affine variety étale over

Ur. These levels correspond to inner Nielsen classes as in §2.4.

Any ppp ∈ Hin
k corresponds to an equivalence class of Galois covers ϕppp : Xppp → P1

z,

with group denoted Aut(Xppp/P
1
z). The representative includes a specific isomorphism

µ : Aut(Xppp/P
1
z) → Gk(G). Another cover ϕ′ : X ′ → P1

z is in the same inner class

if the following holds. There is a continuous ψ : X ′ → Xppp, commuting with the

maps to P1
z, inducing conjugation by some g ∈ Gk(G) between identifications of

Aut(Xppp/P
1
z) and Aut(X ′/P1

z) with Gk(G). We say the cover is in the Nielsen class

Ni(Gk(G) = Gp,k(G),C)in.

More detail is in [BF02, §2], [Fri07, Chap. 4], [Völ96, Chap. 10]. The first two

especially discuss the motivation and basic definitions for MTs.
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2.3. Reduced inner spaces. — We use reduced inner Nielsen classes. This refer-

ences triples (ψ, µ, β) (not just (ψ, µ) as in §2.2): β ∈ PGL2(C), and ϕppp ◦ ψ = β ◦ ϕ′.

2.3.1. The j-invariant. — To an unordered 4-tuple zzz ∈ U4 we associate the j-

invariant jzzz of zzz, a point of U∞
def
= P1

j \ {∞}. To simplify, normalize so j = 0

and 1 are the usual elliptic points corresponding to jzzz having non-trivial (more than

a Klein 4-group; §2.4 and [Fri07, Chap. 4, §4.2]) stabilizer in PGL2(C).

Given j′ ∈ U∞ \ {0, 1}, there is an uncanonical one-one association: covers with

j-invariant j′ in the reduced Nielsen class ⇔ elements of the reduced Nielsen classes

(§2.4.2). So, reduced Nielsen classes produce {Hk = H(Gk(G),C)in,rd}∞k=0: a projec-

tive sequence of inner reduced Hurwitz spaces.

The map Hk+1 → Hk is a cover over every unobstructed component (§2.1) of Hk.

By cover we include that it is possibly ramified for k at points over j = 0 or 1. Each

nonempty component of Hk is an upper half-plane quotient and U∞ cover (ramified

only over j = 0 and 1) [BF02, §2].

Since the components of {Hk}
∞
k=0 are curves, they have natural nonsingular pro-

jective closures {H̄k}
∞
k=0, with each H̄k extending to give a finite map to P1

j . As

expected, we call the (geometric) points of H̄k \ Hk the level k cusps.

To see why we use reduced spaces consider the following statement (encapsulating

(6.11b)) where ∞-ly many means no two are reduced equivalent.

(2.2) For there to be ∞-ly many 4 branch point, reduced inequivalent Q regular

realizations of G1(A5), the H-M components of H(G1(A5),C±52)in,rd must

have infinitely many Q points.

The (two) H-M components in question have genus 1. We ask if they have infinitely

many Q points. Even one Q point ppp (not a cusp) on one of these components would

give a geometric cover ϕppp : Xppp → P1
z over Q with group G1(Ak). Further, running

over β ∈ PGL2(Q) the covers β ◦ ϕppp : Xppp → P1
z give ∞-ly many inner inequivalent

covers with the same group also over Q. These, however, are all reduced equivalent.

It is more significant to consider the outcome of (2.2).

The following statement implies Conj. 1.2 (special case of [BF02, Thm. 6.1]; outline

in [Dèb06, Thm. 2.6]).

Conjecture 2.2. — For large k, all components of H̄k have genus exceeding 1.

2.3.2. Definition fields. — All MT levels, with their moduli space structure, have

minimal definition field the same common cyclotomic field (§1.1.3). If C is Q-rational,

then this definition field is Q. Still, it is the absolutely irreducible components of levels

that require attention. For example, if our base field is Q, and some MT level has no

Q components, then this (or any higher) level can have no Q points. This case of the

weak Main Conjecture is then trivial (for Q).

§6.2.4 reminds of methods to find MTs with component branches over Q. They

don’t, however, apply when rC = 4. So, some component branch of a MT might have
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no number field definition: No matter what is K with [K : Q] < ∞, there may be a

value of k so the level k component has definition field outside K. Lem. 3.1 uses cusp

branches to limit, though not yet eliminate, this possibility. Thus, our approach to

the Main Conjecture aims at deciding it based only on the MT (cusp) geometry.

2.4. Nielsen classes, Hurwitz monodromy and computing genera. — We

can compute the genera of the components of H̄k using the Riemann-Hurwitz formula

by answering the following questions.

(2.3a) What are the H̄k components.

(2.3b) What are the cusp widths (ramification orders over∞) in each component.

(2.3c) What points ramify in each component over elliptic points (j = 0 or 1).

2.4.1. A Nielsen class dictionary. — Use notation of §2.1. Reduced Nielsen classes

let us calculate components, cusp and elliptic ramification. We’ll see how the Frattini

property controls growth of cusp widths (ramification) with k.

Here are definitions of Nielsen classes, and their absolute (requires adding a tran-

sitive permutation representation T : G → Sn) and inner quotients. In the absolute

case we equivalence Nielsen class elements ggg and hgggh−1 with h in the normalizer

NSn
(G) of G in Sn.

Nielsen classes: Ni(G,C) = {ggg ∈ C | 〈ggg〉 = G; Π(ggg) = 1}

Absolute classes: Ni(G,C)/NSn
(G,C)

def
= Ni(G,C, T )abs; and

Inner classes: Ni(G,C)/G
def
= Ni(G,C)in.

Elements qi, i = 1, 2, 3 (braids), generate the degree 4 Hurwitz monodromy group

H4. Each acts on any Nielsen classes by a twisting on its 4-tuples. Example:

q2 : ggg 7→ (ggg)q2 = (g1, g2g3g
−1
2 , g2, g4).

For β ∈ PGL2(C), reduced equivalence of covers (as in §2.3) works as follows:

ϕ : X → P1
z ⇐⇒ β ◦ ϕ : X → P1

z.

This equivalence preserves the j = jzzz-invariant of the branch point set zzz = zzzϕ.

Reduced equivalence on Nielsen classes results from each set zzzϕ having some Klein

4-group subgroup of PGL2(C) fixing it. This corresponds to modding out the Nielsen

class by Q′′ = 〈(q1q2q3)
2, q1q

−1
3 〉 ≤ H4 [BF02, Prop. 4.4].

So, the action of H4 on reduced Nielsen classes factors through the mapping class

group: M̄4
def
= H4/Q

′′ ≡ PSL2(Z). [BF02, §2.7] has normalized this identification

with PSL2(Z) (see §2.4.2). It uses generators

(2.4)
〈γ0, γ1, γ∞〉, γ0 = q1q2, γ1 = sh = q1q2q3, γ∞ = q2,

satisfying the product-one relation: γ0γ1γ∞ = 1.
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2.4.2. Reduced Nielsen classes and cusps. — Regard the words γ0, γ1, γ∞ in the qi s

of (2.4) as in H4. Usually the γ notation expresses them as acting in the quotient

group M̄4, on reduced Nielsen classes.

Here is the notation for absolute (resp. inner) reduced representatives:

Ni(G,C)/〈NSn
(G,C),Q′′〉

def
= Niabs,rd and

Ni(G,C)/〈G,Q′′〉
def
= Niin,rd.

The element sh acts like the shift. It sends a reduced rep. ggg = (g1, . . . , g4) to the

reduced class of (g2, g3, g4, g1). On reduced Nielsen classes, sh has order 2 (not 4 as it

does on Nielsen classes). Similarly, γ0 has order 3 on reduced Nielsen classes (absolute

or inner). Yes, these identify with the generating elements in PSL2(Z) having orders

2 and 3 corresponding respectively to j = 1 and j = 0! The action of γ∞ = q2 then

gives a combinatorial interpretation of cusps.

Definition 2.3. — The cusp group (a subgroup of H4) is Cu4 = 〈q2,Q
′′〉.

Orbits of Cu4 (resp. M̄4) on Nielsen classes correspond to cusps (resp. components)

of the corresponding Hurwitz spaces [BF02, Prop. 2.3]. In computational notation,

running over ggg ∈ Ni(Gk,C)in,rd:

(2.5a) Cusps on H̄k ⇔ (ggg)Cu4, a cusp set in the Nielsen classes.

(2.5b) Components on H̄k ⇔ (ggg)M̄4, a braid orbit on Nielsen classes.

We often refer to ggg ∈ Ni(G,C) as a cusp, shortening reference to its cusp set.

2.4.3. Riemann-Hurwitz on components. — Now we interpret Riemann-Hurwitz:

(γ0, γ1, γ∞) act on a M̄4 orbit ⇔ branch cycles for a component of H̄(G,C)rd → P1
j .

(2.6a) Ramified points over 0 ⇔ orbits of γ0.

(2.6b) Ramified points over 1 ⇔ orbits of γ1.

(2.6c) The index contribution ind(γ∞) from a cusp with rep. ggg ∈ Ni(G,C)in,rd is

|(ggg)Cu4/Q
′′| − 1.

Reminder: The index of g ∈ Sn with t orbits is ind(g)
def
= n − t. App. B does one

example computation of (2.6). [BF02, §2.8] computes modular curve genera from

this viewpoint, while [BF02, §2.10] and [BF02, Cor. 8.3] show how the sh-incidence

matrix works effectively to do much harder genus computations where the group is

respectively A5 and G1(A5).

2.5. More on Schur multipliers and Frattini covers of a subgroup. — We list

results on Schur multipliers and Frattini covers used, say, in examples like Ex. B.2 and

Ex. B.3. One thing they say is that a Z/p quotient at the head of Mk = ker(Gk+1 →

Gk) makes a special contribution to the Z/p quotients at the head of all Mt s, t ≥ k.

So, the appearance of a Schur multiplier of a simple group at level 0 affects all levels

of a MT.
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2.5.1. Two Schur multiplier topics. — Use notation of §2.1. A Z/p quotient of SMG

has height the largest u with SMG,p → Z/p factoring through Z/pu.

(2.7a) Given a Z/p quotient of SMG, what is its height?

(2.7b) When do Z/p quotients of SMG,p arise from pullback of Schur multipliers of

classical groups?

[Fri02] and [FS06] have a general classification of Schur multipliers by how they

append to Mk = ker(Gp,k+1 → Gp,k). Also, a Schur multiplier appearing at level k

replicates to higher levels in a form called antecedent (§4.2.2).

The archetype is the sequence of groups {G2,k(An)}
∞
k=0, n ≥ 4. For each k, there

is a Z/2 quotient of the Schur multiplier of G2,k(An) that is the antecedent of the

2-Frattini central Spin cover Spinn → An. Often antecedents inherit properties from

the original Schur multiplier. Here are two examples.

(2.8a) If u is the height of a Z/p quotient of SMG, then it is also the height of its

antecedent in SMGp,k
[FS06, §4.4].

(2.8b) For p = 2, if a Z/2 quotient of SMG is the pullback to SpinN of an embedding

G ≤ AN , some N , then an effective test decides if the antecedent of SMGp,k

is from an embedding Gp,k ≤ AN ′ , some N ′.

[BF02, §9.4] shows by example how (2.8b) contributes. It separates the two

braid orbits of Ni(G1(A5),C34) (as at the top of §1) by the lifting invariant (§4.2)

from the pullback of G1(A5) ≤ AN ′ with various values of N ′ (40, 60 and 120).

This isn’t so effective as to decide in one fell swoop the story of braid orbits for

{Ni(Gk(A5),C34)}∞k=0. Still, that is our heading.

Finally, Prop. 2.4 shows, even for p = 2, Schur multipliers relating to spin covers

of groups don’t exhaust all Schur multipliers that conceivably affect computations on

MT levels. [BF02, §5.7] explains its dependence on [GS78]: That the condition that

M0 (and so Mk) being 1-dimensional is equivalent to G0 being a slight generalization

(supersolvable) of dihedral groups. As a special case, if M0 is not 1-dimensional, then

111Gk
(see §1.1.2) appears with an explicit positive density in Mk for k large. Though

effective, for small k it is subtle to predict the appearance of 111Gk
and, for all k, where

in the Loewy display the 111Gk
s appear.

Recall: Over an algebraically closed field the set of simple G0 modules has the same

cardinality as the set of p′ conjugacy classes. Let S be any simple G0 module. Let K

be algebraically closed and retain the notation Mk after tensoring with K. We use

〈S,Mk〉, and related compatible notation, for the total multiplicity of S in all Loewy

layers of the Gk module Mk. Let Op′(G) be the maximal normal p′subgroup of finite

group G (it is the same for each Gk).

Proposition 2.4([Sem2, Thm. 4.1]). — If dimK(M0) 6= 1, then

lim
n7→∞

〈S,Mk〉

dimK(Mk)
=

〈S,K[G/Op′(G)]〉

dimK(K[G/Op′(G)])
.
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2.5.2. Frattini covers of a subgroup of G. — I can’t find the following useful lemma

(applied in Rem. 2.6, Lem. 4.23 and Princ. 4.24) in my previous publications.

Lemma 2.5. — Let H ≤ G. Then, for each k there is an embedding (not unique)

βk : Gp,k(H) → Gp,k(G) lying over the embedding of H in G.

Proof. — The lemma follows from Schur-Zassenhaus if H is a p′ group where we use

Gp,k(H) to be H itself. Now assume H is not p′. The pullback inj−1
k (H) of H in

Gp,k(G) is an extension with p group kernel having exponent pk. From the versal

property of Gp,k(H) that produces βk : Gp,k(H) → inj−1
k (H) ≤ Gp,k(G) lying over

the embedding of H in G.

Denote pullback of H in pG̃ by inj−1(H). Since pH̃ → H is the minimal cover

of H with kernel pro-free p-Sylow [FJ86, Prop. 20.33], there is a homomorphism

inj−1(H) → pH̃ . This induces ψk : inj−1
k (H) → Gp,k(H) in the other direction. The

compositions ψk ◦ βk : Gp,k(H) → Gp,k(H) are onto: They lie over the identity on

H and Gp,k(H) → H is a Frattini cover. So, acting on a finite group, they must be

one-one. In particular, βk is one-one.

Remark 2.6. — The proof that gives βk in Lem. 2.5 extends it inductively to some

βk+1. So, we may choose {βk}
∞
k=0 compatibly, coming from an injection β : pH̃ → pG̃.

Also, if Gk → G factors through any µ : G′ → G, then we may compose βk with µ.

When notation allows, continue to denote the resulting map Gp,k(H) → G′ by βk.

3. Projective systems of braid orbits

We consider two natural trees attached to the levels of a MT.

3.1. Projective systems of components. — Restrict the maps H̄k+1 → H̄k to

cusps and components to respectively define a cusp–tree CG,C,p and a component-tree

TG,C,p directed by increasing levels. A branch on one of these trees is a maximal (di-

rected upward) path; so it starts at level 0. Containment of cusps in their components

induces a map from CG,C,p to TG,C,p.

3.1.1. Cusp branches. — The Nielsen class view of this regards the vertices of CG,C,p
(resp. TG,C,p) as Cu4 (resp. M̄4) orbits on the collections {Ni(Gk,C)in,rd}∞k=0. Yet,

we need the spaces to consider absolute Galois groups acting on these trees.

Let FC be the subfield in the cyclotomic numbers fixed by {n ∈ Z̃∗ | Cn = C},

where equality is of sets with multiplicities. [FV91, Prop. 1] says (in general) the

spaces H(G,C)in (with their maps to Ur interpreted as moduli spaces) have minimal

definition field FC. This implies FC is a definition field for H(G,C)in,rd (with its

similar moduli properties), and so for the system of spaces {H̄(Gk,C)}in,rd}∞k=0 (with

their compatible maps to P1
j).
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Lemma 3.1. — The absolute Galois group GFC
acts compatibly on the vertices of

CG,C,p and TG,C,p. So, GFC
acts compatibly as permutations on (finite or infinite)

branches of CG,C,p and TG,C,p.

Assume a cusp branch B defines component branch B′. If, modulo braiding, GFC

has a finite orbit on (resp. fixes) B, then it has a finite orbit on (resp. fixes) B′.

§6.2.4 notes we know many places where the “finite orbit on B” hypothesis of

Lem. 3.1 holds, with B an H-M cusp branch (Ex. 3.7). The modular curve tower

{X1(p
k+1)}∞k=0 has just one component-branch. We understand its cusp-branches

well. Manin-Demjanenko ([Ser97b, Chap. 5] or [Fri02, §5.3]) gave this case of

Conj. 1.2 long before Faltings’ Theorem. (We apply Faltings to treat general MTs.)

It is typical to define a branch of TG,C,p by labeling it from the image of a branch of

CG,C,p. See Princ. 3.6 and Ex. 3.7.

There is nothing to prove in Conj. 1.2 if the Hk (or Ni(Gk,C)) are empty for large

k. This happens in one of the two components of the MT for (An,C3r , p = 2) with

r ≥ n ≥ 4 (or if r = n − 1 and n is even) [Fri06a, Main Result]. For n = 4 = r

see App. B.1. This gives a necessary situation for a number field K for considering

Conj. 1.2: There is an infinite component branch

(3.1) B′
def
= {H̄′k ⇔ M̄4 orbit Ni′k}

∞
k=0 fixed by GK (as in Lem. 3.1).

§3.2.1 divides cusps into three types. It is easier to describe the cusps than to place

them in components. §5.1 describes how projective systems of p cusps contribute to

indices in the Riemann-Hurwitz formula.

3.1.2. Sequences of component genera. — Restrict the γ s of (2.4) to Ni′k in (3.1).

This gives (γ′0,k, γ
′
1,k, γ

′
∞,k) defining the genus gH̄′

k
of H̄′k:

(3.2) 2(deg(H̄′k/P
1
j) + gH̄′

k
− 1) = ind(γ′0,k) + ind(γ′1,k) + ind(γ′∞,k).

Below we denote the genera sequence for the branch B′ by GeB′
def
= {gH̄′

k
}∞k=0. The

strongest results toward the Main Conjectures require two contributions:

(3.3a) Deciphering the infinite branches from the finite branches.

(3.3b) Separating cusp branches into types that indicate their contributions to

Riemann-Hurwitz.

[Fri05a, Lect. 1] starts by computing modular curve genera from a MT viewpoint.

§3.2.1 describes those cusp types, including the significant special cusps called g-p′,

and the corresponding g-p′ cusp branches. The following is a prototype modular curve

property, and [FS06] uses it as an explicit target.

Question 3.2. — Suppose K is a number field and B′ is an (infinite) K component

branch with B′ the image of a g-p′ cusp branch B ∈ CG,C,p. Is it possible to give a

closed expression for the elements of GeB′?
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3.1.3. Reduction to G0 = G has no p-part to its center. — One part of Princ. 3.5

says that p cusps contribute highly to cusp ramification. That result is a subtle use

of Prop. 3.3. This reduces considering MTs (or at least the Main Conjecture) to the

case where for all k, the p-part of the center is trivial. Denote the center of a group

G by Z(G), and the p-part of the center by Zp(G).

Proposition 3.3(p-Center Reduction). — Suppose G = G0 is a p-perfect group with

Zp(G) 6= {1}. Then, there is a p-Frattini cover ψc : G→ Gc with Zp(G
c) trivial (and

Gc is p-perfect). Any p′ conjugacy class C of G has a unique image class in Gc which

we also donate by C (§1.1.2). In particular, Main Conj. 1.2 holds for (Gc,Cc, p), if

and only if it holds for (G,C, p).

Proof. — Let Up be the maximal normal p-Sylow of G, and let Φ(Up) be the Frattini

subgroup of Up. Then, G→ G/Φ(Up) is a p-Frattini cover.

First consider the case G is p-split: G = Up ×
sG/Up. From G being p-perfect,

G/Up has no fixed points on Up/Φ(Up). So Zp(G/Φ(Up)) = {1}. General case: Form

G/Φ(Up). We’re done if Zp(G/Φ(Up)) is trivial. Otherwise iterate this to achieve Gc.

Now consider the last sentence of the proposition. Since G → Gc is a p-Frattini

cover, the universal p-Frattini cover of Gc is the same as that of G. Denote the

kth characteristic Frattini extension of Gc by Gck. From the construction, there is

a k0 so that Gck0 → Gc factors through G → Gc. Conclude easily for each k there

is a corresponding k′ so that Gck′ → Gc factors through Gk → G. Also, the map

ψk : Gk → G composed with ψc factors through Gck → G.

In particular, this means for k >> 0 there is a k′ so that H(Gck′ ,C)in,rd natu-

rally maps (surjectively, over any field containing their simultaneous definition fields)

to H(Gk,C)in,rd. So: if H(Gk,C)in,rd(K) = ∅, then H(Gck′ ,C)in,rd(K) = ∅; if

H(Gck′ ,C)in,rd(K) 6= ∅, then H(Gk,C)in,rd(K) 6= ∅; etc. Conclude (Gc,C, p) and

(G,C, p) simultaneously pass or fail the conclusion of the Main Conjecture.

Remark 3.4(Center considerations). — Do not conclude from Prop. 3.3 that MTs

can’t handle groups with centers. All our sections and also of [BF02] must consider

that pG̃ is full of subquotient sequences of the form ψ′ : R′ → G′, a central extension

of G′, with ker(ψ′) a quotient of G′ s Schur multiplier. As in §4.4, it is the maximal

elementary p-quotient of Gk ’s Schur multiplier that controls major properties of MT

levels.

Use the notation of Prop. 3.3. Denote the p′ part of Z(G) by Zp′(G). Then, for

all k, Zp′(Gk) = Zp′(G
c
k) = Zp′(G). (See this by identifying pG̃ with the universal

p-Frattini of G/Zp′ fiber product with G over G/Zp′ .) We could have continued the

map ψc : G → Gc through Gc → Gc/Zp′(G). That would, however, complicate

the final conclusion of Prop. 3.3. No longer could we canonically identify the image

conjugacy classes with C. So, while MTs already deals seriously with the p-part of
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centers, K. Kimura’s master’s thesis [Kim05] has a point in considering phenomena

that arise from the p′-part.

3.2. g-p′ and o-p′ cusps, and Frattini Principles 1 and 2. — §3.2.1 defines

the three cusp types using a representative ggg = (g1, . . . , g4) of the cusp orbit. We

expect g-p′ cusp branches to give outcomes like that of Quest. 3.2. Modulo Conj. 1.6,

we expect some g-p′ cusp branch defines any component branch with all levels having

a fixed number field as definition field. §3.2.3 considers cases when we can use g-p′

cusps to get a handle on o-p′ cusps.

3.2.1. The cusp types. — Use these notations:

H2,3(ggg)
def
= 〈g2, g3〉 and H1,4(ggg) = 〈g1, g4〉;

and (ggg)mp
def
= ord(g2g3), the order of the middle product. Primary contributions

after level 0 to (3.2) come from p cusps: p|(ggg)mp. Here are the other types.

(3.4a) g(roup)-p′: H2,3(ggg) and H1,4(ggg) are p′ groups.

(3.4b) o(nly)-p′: p 6 |(ggg)mp, but the cusp is not g-p′.

Let {kggg = (kg1, kg2, kg3, kg4) ∈ Ni′k}
∞
k=0 be a projective system of cusp represen-

tatives. Then kggg corresponds to a braid orbit Ni′k ⊂ Ni(Gk,C), and therefore to a

component H′k ⊂ H(Gk,C)in,rd. Denote the corresponding projective system of cusps

by {pppk ∈ H′k}
∞
k=0. When a point ppp′ on some space lies over another point ppp, denote

the ramification order (index, or width) of ppp′/ppp by e(ppp′/ppp). Crucial to our Main Con-

jecture is the phenomenon that p cusp widths grow automatically as we go up MT

levels. The formal statement, coming mostly from [BF02, §8.1], is our first use of the

Frattini property. Recall: Zp(G) is the p-part of the center of G (§3.1.3).

Principle 3.5(Frattini Princ. 1) . — If pu|(kggg)mp, u ≥ 1, then pu+1|(k+1ggg)mp.

Assume Zp(G) is trivial. Then, for p odd (resp. p = 2) and k ≥ 0 (resp. k >> 0)

e(pppk+1/pppk) is p.

Comments on explicitness. — The first part is a consequence of [FK97, Lift

Lem. 4.1] (for example). It comes from this simple statement: All lifts to Gk+1 of an

element of order p in Gk have order p2. That concludes the first part.

Denote the operator that takes any (a, b) ∈ G2 to (aba−1, a) by γ. Then, [BF02,

Prop. 2.17] — §C.2 has a typo free statement with (g1, g2) replacing (a, b) — tells how

to compute the length of the orbit (using no equivalence between pairs) of γ generated

by (a, b). The length of the γ2 orbit is

o(a, b)
def
= o = ord(a · b)/|〈a · b〉 ∩ Z(a, b)|.

Then, one of the following holds for the length o′(a, b) = o′ of the γ orbit on (a, b).

Either: a = b and o′ = 1, or;

(3.5) if o is odd and b(a · b)
o−1
2 has order 2, then o′ = o; or else o′ = 2 · o.
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[BF02, Lem. 8.2] of necessity was intricate, for it’s goal was to nail e(pppk+1/pppk)

from data on the group theoretic cusp from kggg and k+1ggg. This was to precisely list

genera of examples. We now say this result in a more relaxed way.

Assume Zp(G0) is trivial. From [BF02, Prop. 3.21] the same therefore holds for

Zp(Gk) for all k ≥ 0. All we care about in our conclusion is the p part of e(pppk+1/pppk).

We divide the contribution to the p part ep(pppk/∞) into two cases: p odd, and p = 2.

When p is odd, [BF02, Lem. 8.2] gives ep(pppk/∞) as the p-part of o(kg2, kg3). If the

p-part of |〈kg2 · kg3〉 ∩ Z(kg2, kg3)|
def
= kp(2, 3) is trivial, then the result is the p-part

of ord(kg2 · kg3). Since the p′-part of ord(kg2 · kg3) is unchanging with k, the first

statement in the proposition gives e(pppk+1/pppk) = p.

To see why kp(2, 3) = 1, use that the action of Q′′ expresses the cusp width also

from (kg4, kg1) (§2.4.1). The result must be the same, using an analogous expression

kp(1, 4). Since (kg4 · kg1)
−1 = kg2kg3, then kp(2, 3) = kp(1, 4). Now if both are

nontrivial, it means

Zp(kg2, kg3) ≥ (kg2 · kg3)
ord(kg2·kg3)/p ≤ Zp(kg4, kg1).

Since kg1, kg2, kg3, kg4 generate Gk, this implies Zp(Gk) is nontrivial.

For p = 2, the computation works similarly, except for factors of 2-power order

(bounded by 4) in e2(pppk/∞) from the action of Q′′ and the distinction between o = o′

and o = 2 · o′ given in (3.5). These are, however, regular behaviors. Observations like

those about Q′′ in §3.2.2, allow replacing k >> 0 by a more precise statement.

Principle 3.6(Frattini Princ. 2) . — The definition of p′ and g-p′ cusp doesn’t depend

on its rep. in (ggg)Cu4 [FS06, Prop. 5.1]. If 0ggg ∈ Ni(G0,C) represents a g-p′ cusp,

then above it there is a g-p′ cusp branch {kggg ∈ Ni(Gk,C)}.

Proof. — Use (g1, g2, g3, g4) for 0ggg. Let H ≤ 0G be a p′ group. Then, consider the

pullback ψ−1(H) in pG̃. The profinite version of Schur-Zassenhaus says the extension

ψ−1(H) → H splits [FJ86, 20.45]. Apply this to each p′ group H1,4(0ggg) and H2,3(0ggg).

This givesH ′1,4, H
′
2,3 ≤ pG̃, defined up to conjugation by P̃p, mapping one-one to their

counterparts modulo reduction by pP̃ .

Let g′1, g
′
4 ∈ H ′1,4 (resp. g′2, g

′
3 ∈ H ′2,3) be the elements over g1, g4 ∈ H1,4

(resp. g2, g3 ∈ H2,3). Then, g′2g
′
3 is conjugate to (g′1g

′
4)
−1 by some h ∈ pP̃ . Replace

H ′1,4 by its conjugate by h to find ggg′ = (g′1, . . . , g
′
4) ∈ Ni(pG̃,C) lying over 0ggg. The

images of ggg′ in each Ni(Gk,C) give the desired g-p′ cusp branch.

Example 3.7(sh of an H-M rep) . — §2.4.1 has the definition of the shift sh. A

H(arbater)-M(umford) rep. in the reduced Nielsen class Ni(G,C)rd (applies to inner

or absolute equivalence) has the shape ggg = (g1, g
−1
1 , g2, g

−1
2 ). Then, (ggg)sh is clearly a

g-p′ cusp. It has width 1 or 2. A formula distinguishes between the cases (proof of

Prop. 3.5). Typically our examples have H2,3(ggg) ∩H1,4(ggg) = 〈1〉, or else G = 〈g1, g2〉

has a nontrivial cyclic p′ kernel dividing the orders of 〈gi〉, i = 1, 2.
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3.2.2. Consequences of fine reduced moduli. — The reduced spaces of the levels of

a component branch are moduli spaces. Using them as moduli spaces behooves us

to know when they have (reduced) fine moduli: objects that represent points do

so in a unique way. There isn’t a prayer they have fine (reduced) moduli unless the

corresponding unreduced spaces H(Gk,C)in have fine moduli. For that the if and only

if criterion, given that G0 is p-perfect, is that G0 has no center [BF02, Prop. 3.21].

Given this, [BF02, Prop. 4.7] gives the if and only if criterion for level k0 of a

branch to have fine moduli. This says: Two computational conclusions hold from the

action of H4 and M̄4 on the corresponding level k0 braid orbit Ni′k0 :

(3.6a) Q′′ has all its orbits on Ni′k0 of length 4; and

(3.6b) both γ′0,k0 and γ′1,k0 act without fixed point.

Both Thm. 5.1 and §6.2.3, on the Branch Frattini Propery, use Lem. 3.8.

Lemma 3.8. — For any k, H̄′k+1/H̄
′
k ramifies only over cusps (points over j = ∞) if

and only if (3.6b) holds. If (3.6b) holds for k = k0, then it holds also for k ≥ k0,

and for each such k, p is the ramification index for each prime ramified in the cover

H̄′k+1/H̄
′
k. So, this holds if the component branch B′ has fine moduli (for k = k0).

Proof. — The cover H̄′k → P1
j ramifies only over j = 0, 1,∞. The lengths of the

disjoint cycles for γ′0,k (resp. γ′1,k) on Ni′k correspond to the orders of ramification of

the points of H̄′k lying over 0 (resp. 1).
Apply multiplicativeness of ramification to H̄′k+1

ψk+1,k

−−−−→H̄′k
ψk
−→P1

j . If pppk+1 ∈ H̄′k+1,

denote ψk+1,k(pppk+1) by pppk. Then, pppk+1/ψk ◦ ψk+1,k(pppk+1) has ramification index

(3.7) e(pppk+1/ψk ◦ ψk+1,k(pppk+1)) = e(pppk+1/pppk)e(pppk/ψk ◦ ψk+1,k(pppk+1)).

If ψk ◦ ψk+1,k(pppk+1) = 0, then e(pppk+1/0) = 1 and e(pppk/0) = 1 are each either 1 or 3

(§2.4.2). Conclude from (3.7):

e(pppk+1/0) = 3 and e(pppk+1/ψk ◦ ψk+1,k(pppk+1)) = 1

both hold if and only if e(pppk/0) = 3.

Statement (3.6b) for γ′0,k0 says e(ψk0/0) is 3 for each ψk0 lying over 0. This induc-

tively implies no point of H̄k+1 lying over 0 ∈ P1
j ramifies over H̄k if k ≥ k0. The

same argument works for γ1,k0 and concludes the lemma.

Example 3.9(When reduced fine moduli holds). — For all the examples of [BF02,

Chap. 9], reduced fine moduli holds with k0 = 1 in Lem. 3.8. [Fri06b] shows for p = 2

any H-M component branch has fine moduli. We hope to expand that considerably

before publishing a final version. If Conj. 1.5 is true, then that implies any (infinite)

component branch of any of the many A4 and A5 (p = 2 and any type of 2′ conjugacy

classes) MTs have reduced fine moduli.

Example 3.10((3.6b) can hold without fine moduli). — Here again, we have a modular

curve comparison with a highlight from [BF02, §4.3.2]. While there is a one-one map
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(onto) map H(Dpk+1 ,C24)in → Y1(p
k+1) (§4.1.4), the spaces, as moduli spaces, are

not exactly the same. The latter has fine moduli, but the former does not. The

distinction is that the moduli problem for H(Dpk+1 ,C24)in is finer than that for

Y1(p
k+1): There are “more” genus 1 Galois covers of P1

z with Dpk+1 monodromy than

there are corresponding elliptic curve isogenies. Still, (3.6b) holds.

3.2.3. Relations between g-p′ and o-p′ cusps. — For our arithmetic conjectures we

only care about infinite K component branches (§1.2.1) whereK is some number field.

For this discussion we accept Conj. 1.5. That means in dealing with the possibility of

o-p′ cusp branches, we only need to consider those that appear on a g-p′ component

branch. Since o-p′ cusp branches are so important, we hope thereby to be as explicit

with them as with g-p′ cusps.

This occurs, for example, if an o-p′ cusp is over a g-p′ cusp. To simplify, start with

a g-p′ cusp 0ggg at level 0 with (0ggg)mp
def
= v of order c. Prop. 3.12 shows the conditions

of (3.8) sometimes hold (though not for shifts of H-M reps., Ex. 3.7).

Expressions in (3.8) are in additive notation in M0 = ker(G1 → G0); the group

ring Z/p[G0] acts on the right. For g ∈ G0 and m ∈ M0, denote the subspace of M0

that commutes with g (on which g acts trivially) by Ceng, and its translate by m by

Ceng −m. Denote 1 + v + · · · + vc−1 : M0 →M0 by L(v).

Proposition 3.11. — Suppose ggg′ ∈ Ni(G1,C) lying over 0ggg is neither a g-p′, nor a p

(so is an o-p′), cusp. Let ggg ∈ Ni(G1,C) be a g-p′ cusp over 0ggg as in the conclusion

of Princ. 3.6. Then, with no loss we may assume

ggg′ = ((m∗)−1g1m
∗, g2,m3g3m

−1
3 , (m4m

∗)−1g4(m4m
∗))

with m∗,m3,m4 ∈Mk and (g2, g3) is not conjugate to (g2, g
′
3).

Then, the order of (ggg′)mp is c and the following are equivalent to ggg′ being o-p′.

(3.8a) Product-one: m3(0g3 − 1) +m4(0g4 − 1) +m∗(v − 1) = 0.

(3.8b) p′ middle-product: m3(0g3 − 1) is an element of M0(v − 1).

(3.8c) Not g-p′: It does not hold that m3(0g2 − 1) ∈ Ceng3(0g2 − 1).

Proof. — Since ggg′ is an o-p′ cusp, we may assume H2,3(ggg
′) is not a p′ group. Char-

acterize this by saying H2,3(ggg) is not conjugate to H2,3(ggg
′). By conjugating, we may

assume g2 = g′2 and g′3 = m3g3m
−1
3 for some m3 ∈Mk \ {0}. For (g′2, g

′
3) to be conju-

gate to (g2, g3) is equivalent to some m ∈M0 \ {0} commutes with g2 while m−m3

commutes with g3. The other normalization conditions are similar. Then, (3.8a) is

Π(ggg′) = 1 in additive notation.

Compute (g2m3g3m
−1
3 )c = (g2g3m

g2
3 m

−1
3 )c to get (g2g3)

c = 1 times an element

u ∈M0. That u, in additive notation, is just

(m3)(0g3 − 1)(1 + v + v2 + · · · vc−1) = (m3)(0g3 − 1)L(v).

Since g2g3 is assumed p′, that gives u = 0, or (m3)(0g3 − 1) is in the kernel of L(v).

As, however, v has p′ order, the characteristic polynomial xc− 1 of v has no repeated
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roots. So, M0 decomposes as a direct sum Z/p[x]/(x−1)⊕Z/p[x]/L(x) with v acting

in each factor as multiplication by x. Thus, the kernel of L(v) : M0 → M0 is exactly

the image of (1 − v). That is, v having p′ order is equivalent to m3(0g3 − 1) is an

element of M0(v − 1). That completes showing (3.8b).

Finally, suppose there is m ∈ M0 that conjugates (g′2, g
′
3) to (g2, g3). Compute to

see this is equivalent to Ceng2 −m3 ∩Ceng3 = ∅. An m in this overlap would satisfy

m3(0g2 − 1) = m(0g2 − 1). Statement (3.8c) says there is no such m.

Apply (3.8a) to the shift of an H-M cusp. Then, c = 1 and m3 commutes with g3,

contrary to assumption. So the shift of an H-M rep. cannot have an o-p′ cusp over

it. Still, Prop. 3.12 shows some g-p′ cusp branches produce a profusion of o-p′ cusps

over g-p′ cusps.

Proposition 3.12. — Let {kggg ∈ Ni(Gk,C)}∞k=0 represent a g-p′ cusp branch from

Princ. 3.6. Let ci be the order of 0gi, i = 1, 2, 3, 4. Assume

(3.9) O′p(G0) is trivial and 1/c2 + 1/c3 + 1/c4 + 1/c < 1.

Then, for k large, an o-p′ cusp k+1ggg
′ ∈ Ni(Gk+1,C) lies over gggk.

Proof. — Use notation of Prop. 3.11, starting with a g-p′ cusp 0ggg at level 0. Take

m∗ = 1. Consider what (3.8) forces on ggg′ = (g1, g2,m3g3m
−1
3 ,m−1

4 g4m4) to force it

to be an o-p′ cusp in Ni(G1,C). Condition (3.8b) says:

(ggg′)mp is p′ ⇔ m3(0g3 − 1) ∈M0(v − 1).

Also we must assure m3(0g2 − 1) is not in Ceng3(0g2 − 1).

Combine all conditions of (3.8). Then, there is an o-p′ cusp if and only if

(3.10) M0(0g3 − 1) ∩M0(0g4 − 1) ∩M0(v − 1) \ Ceng3(0g2 − 1) 6= ∅.

By the relative codimension or dimension of a subspace of Mk, we mean the codi-

mension or dimension divided by the dimension of Mk. While we can’t expect (3.10)

to hold at level 0, we show it holds with conditions (3.9) if we substitute kggg for 0ggg

(and Mk for M0) for k large.

If the relative codimension of

M0(0g3 − 1) ∩M0(0g4 − 1) ∩M0(v − 1)

plus the relative dimension of Ceng3 is asymptotically less than 1, then (3.10) holds

for k >> 0. Prop. 2.4 (using Op′(G) = {1}) gives this for k >> 0 if (3.9) holds. So,

these conditions imply an o-p′ cusp over kggg for k large.

Example 3.13(Case satisfying(3.9)). — Let G0 be the alternating group A7 and let

p = 7. Define the Nielsen class selecting 0ggg with g2, g3 ∈ A5 both 5-cycles generating

A5 and having v = g2g3 a 3-cycle. From [BF02, Princ. 5.13] there is just one choice

(up to conjugation) if g1 and g2 are in the two different conjugacy classes of order

5: g2 = (5 4 3 2 1) and g3 = (2 4 3 5 1), and g2g3 = (5 3 4). Now choose g1 and g4
analogously as 5-cycles acting on {3, 4, 5, 6, 7} so g4g1 is (4 3 5). Here, H2,3(0ggg) and
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H1,4(0ggg) are both copies of A5. All the ci s are 5, while c = 3. The inequality (3.9)

holds: 1/5 + 1/5 + 1/3 + 1/5 = 14/15 < 1.

4. Finer graphs and infinite branches in CG,C,p and TG,C,p

We don’t know what contribution o-p′ cusps in §3.2.1 make to the genera of com-

ponents at level k on a MT. Are they like g-p′ cusps in defining projective systems

of components through o-p′ cusps. Or, if you go to a suitably high level are all the

cusps above them p cusps? Conj. 1.6 says the latter holds. §4.6 consists of support

for and implications of this.

Schur multipliers of quotients of the universal p-Frattini cover pG̃ of G are at the

center of these conclusions in the form of lifting invariants (§4.2). We must deal with

these many Schur multipliers when considering graphs finer than CG,C,p and TG,C,p.

4.1. Limit Nielsen classes. — For a full analysis of higher rank MT examples

such as in (§4.1.4), §4.1.1 extends the previous component and cusp branch notions.

This extension uses all quotients of the universal p-Frattini cover (not just charac-

teristic quotients). Given the definition of cusps from [Fri05a, Lect. 4] for arbitrary

values of r, the concepts of this section work there, too.

4.1.1. Extending graphs to include any quotients of pG̃. — Let GG,p be all finite

covers G′ → G through which pG̃→ G factors. Given (G,C, p), consider components

and cusps of {Ni(G′,C)in}G′∈GG,p
. As in previous cases, they form directed graphs

CfG,C,p and T f
G,C,p (the f superscript for full) with maps between them.

Now, however, there may be many kinds of maximal directed paths (branches) not

just distinguishing finite from infinite). Also, among undirected paths there could

be loops because there may be several chief series for the Krull-Schmidt decomposi-

tion of ker(Gp,k+1 → Gp,k) into irreducible Gp,k modules. This doesn’t happen for

G2,1(An) → An for n = 4, 5, but does for G2,2(A4) → G2,1(A4) [BF02, Cor. 5.7].

A directed path on CfG,C,p is defined by {(gggHi
)Cu4}i∈I with I a directed set, Hi

a quotient of pG̃ and gggHi
∈ Ni(Hi,C). If i′ > i, then pG̃ → Hi factors through Hi′

sending (gggHi′
)Cu4 to (gggHi

)Cu4. This path defines a unique braid orbit in Ni(Hi,C)

for i ∈ I: A cusp path (resp. branch) defines a component path (resp. branch).

Lemma 4.1. — A directed path on T f
G,C,p defines a set of directed paths on CfG,C,p:

Each node from any of the latter sits on a corresponding node of the former (with the

obvious converse). If {(gggHi
)Cu4}i∈I is a directed path, then we can choose its cusp

representatives gggHi
to also be a projective system.

Proof. — A directed path on T f
G,C,p is defined by a directed system {Hi}i∈I . For each

i there is a node consisting of HHi
, a component of H(Hi,C)in,rd. The points RHi

of the nonsingular HHi
over j = ∞ have ramification degrees adding to the degree of
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H̄Hi
→ P1

j . For i′ ≥ i, the natural map RHi′
→ RHi

defines a projective system of

finite nonempty sets. So, the set of limits is nonempty, and each defines a directed

cusp path. Let {(gggHi
)Cu4}i∈I be one of these (as in the correspondence of §2.4.2).

The collections (gggHi
)Cu4, i ∈ I also form a projective system of finite nonempty

sets in the set of subsets of Nielsen classes. So, they too have projective limits. Each

is a projective system of the form {gggHi
}i∈I . That gives the final statement.

Definition 4.2(F paths, branches, ...). — For F a field the notion of F cusp path

(resp. cusp branch), component path (resp. component branch) on CfG,C,p or T f
G,C,p

extends naturally that for CG,C,p or TG,C,p (as in §1.2.1).

4.1.2. Limit Groups. — Our next definitions use notation from Lem. 4.1.

Definition 4.3. — A directed path from a projective system {gggHi
}i∈I has an attached

group lim∞←i∈I Hi = G∗. Call this a limit group (of (G,C, p)) if the directed path

is maximal. Then, Ni(G∗,C) is the limit Nielsen class attached to the maximal path,

and lim∞←i gggHi
∈ Ni(G∗,C) represents the limit braid orbit of the path.

We might also call G∗ the limit group of the braid orbit of gggG, or of the component

of H(G,C) attached to this orbit, etc.

Definition 4.4. — Suppose {gggHi
}i∈I defines a maximal path. Then, for each k ≥ 0

we can ask if Hi = Gk, for some i. If so, we say the path goes through level k of the

MT(and through braid orbit OgggHi
). If k0 is the biggest integer with {gggHi

}i∈I going

through level k, then call the MT obstructed along the path at level k0.

Obvious variants on Def. 4.4 refer to a braid orbit Oggg at level k being obstructed:

Every path through Oggg is obstructed at level k, etc.

If O∗ is the limit braid orbit in Ni(G∗,C) defined by a maximal path, then we say

the path is obstructed at O∗. We also use variations on this. Any quotient G′ of pG̃

(possibly a limit group) has attached component and cusp graphs, CfG,C,p(G
′) and

T f
G,C,p(G

′), by running over Nielsen classes corresponding to quotients of G′.

4.1.3. Setup for the (strong) Main Conjecture. — Suppose Fu is free of rank u and

J is finite acting faithfully on Fu. Consider Fu ×sJ , and let C = (C1, . . . ,Cr) be

conjugacy classes in J . (Our examples use r = 4.)

Form F̃u,p, the pro-p, pro-free completion of Fu. Then Φt = Φtp is the tth Frattini

subgroup of F̃u,p (§1.1.2). Consider two sets PC and P ′
C

of primes, with each consisting

of those p with F̃u,p/Φ
1 ×sJ not p-perfect, or p has this (respective) property:

– PC: p | (p, |J |) 6= 1.

– P ′
C

: p|ord(g) some g ∈ C.

For p 6∈ PC, denote (finite) J quotients of F̃u,p covering (Z/p)u by Vp(J).

Problem 4.5. — Which Ni(V ×sJ,C)in are nonempty, p 6∈ PC and V ∈ Vp(J).
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For p 6∈ PC, form the collection GJ,p of limit groups over nonempty Nielsen classes

(Def. 4.3). The P ′
C

version of this forms characteristic p-Frattini quotients of Fu ×
sJ

where p may divide the order of J , but not the orders of elements in C.

By taking Fu of rank 0 (u = 0), the P ′
C

version includes the weak Main Conjecture

as a special case of the strong Main Conjecture 6.1.

We also must consider the finite J quotients V of F̃u,p where we ask only that V

is nontrivial. Denote this set by V ′p(J).

Problem 4.6. — What are the G∗ ∈ GJ,p, p 6∈ P ′
C

(or just in PC)? What are the H4

(braid) orbits on Ni(G∗,C)in?

We say G∗ ∈ GJ,p is a C p-Nielsen limit. If O is a braid orbit in Ni(G,C) we may

consider only maximal paths (branches) over O. Then, maximal groups are p-Nielsen

limits through O (C is now superfluous). So a cusp or component branch through O

defines a p-Nielsen limit through O. Extend this to consider p-Nielsen limits through

any nonempty braid orbit on Ni(G′,C), G′ any p-Frattini cover of G.

4.1.4. Examples: u = 2, |J | is 2 or 3. — Take Fu = 〈x1, x2〉, Our two examples in

(4.1) illustrate limit Nielsen classes, and the questions we pose.

(4.1a) Z/2 case: J = J2 = Z/2 = {±1}; −1 acts on generators of F2 by xi 7→ x−1
i ,

i = 1, 2; and C = C24 is 4 repetitions of -1.

(4.1b) J3 = Z/3 = 〈α〉; α maps x1 7→ x−1
2 , x2 7→ x1x

−1
2 ; and C = C±32 is two

repetitions each of α, α−1.

The apparent simplicity of (4.1a) is misleading: It is the Nielsen class behind

Serre’s Open Image Theorem ([Fri05b, §6] explains this). The result (in App. A) is

that Ni(V ×sJ2,C) is nonempty precisely when V ∈ V ′
C24

is abelian.

App. B shows all Nielsen classes in (4.1b) are nonempty because they contain H-M

reps. (a special case of Princ. 3.6). That is, there are infinite component branches.

Yet, it remains a challenge to Prob. 4.6.

Problem 4.7. — Let K be any number field. Are all infinite K component branches

of T(Z/p)2×sZ/3,C
±32 ,p6=3, case (4.1b), defined by H-M rep. cusp branches?

Prop. B.1 gives an infinite limit group not equal to F̃2,2 ×
sJ3: H-M cusp branches

don’t give all infinite component branches of T f
(Z/p)2×sZ/3,C

±32 ,p6=3.

Remark 4.8. — It is essential for the RIGP (§1.1.3) that we consider questions like

Prob. 4.6 for all r, based on Conj. 1.5.

4.2. The small lifting invariant. — LetG be finite,ψ :R → G a Frattini central

extension, andC conjugacy classes ofG with elements of order prime to | ker(ψ)|.

For ggg ∈ Ni(G,C), we have a small lifting invariant sψ(ggg) = sR/G(ggg) = sR(ggg)

(notation of §2.1): Lift ggg to ĝgg ∈ C regarded as conjugacy classes in R and form

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



196 M. D. FRIED

Π(ĝgg) ∈ ker(R → G). It is an invariant on the braid orbit O = Oggg of ggg which we call

sR(O) [Fri95, Part III]. When ker(R → G) = SMG,p, denote this sG,p(O).

At times we regard ker(R → G) as a multiplicative (resp. additive) group: So,

sG,p(O) = 1 (resp. sG,p(O) = 0) when the invariant is trivial.

4.2.1. Component branch obstructions. — Consider a nontrivial Frattini central cover

R′ → G′ through which pG̃ → G0 factors. Then, ker(R′ → G′) is a quotient of the

Schur multiplier of G′ (§2.1). Denote the collection of such covers SMG,p, and the

subcollection of R′ → G′ that are a subfactor of Gk+1 → Gk with the notation

SMG,p,k. Suppose (G,C, p) satisfies the usual MT conditions.

Lemma 4.9. — In the above notation for R′ → G′ ∈SMG,p,k these are equivalent:

– the injection from braid orbits in Ni(R′,C) to braid orbits in Ni(G′,C) has

ggg ∈ Ni(G′,C) in its image;

– and sR′(ggg) = 1.

For each k ≥ 0, braid orbits in Ni(Gk+1,C) map onto compatible systems of braid

orbits O on Ni(G′,C) with R′ → G′ ∈ SMG,p,k and sR′(O) = 1.

Similarly, infinite branches of TG,C,p map onto compatible systems of braid orbits

O in Ni(G′,C) with R′ → G′ ∈ SMG,p and sR′(O) = 1; and this is one-one.

Comments. — Given ggg ∈ Ni(G′,C) there is a unique lift to ĝgg ∈ (R′)r ∩ C, and

ĝgg ∈ Ni(R′,C) if and only if sR′(ggg) = 1. This shows the first paragraph statement.

Consider any cover H ′′ → H ′ through which pG̃ → G factors. We can always

refine it into a series of covers to assume ker(H ′′ → H ′) = M ′ is irreducible (as an

H ′ module). For asking when braid orbits on Ni(H ′′,C) map surjectively to braid

orbits on Ni(H ′,C) it suffices to assume M ′ is irreducible. [FK97, Obst. Lem. 3.2]

says the map Ni(H ′′,C) → Ni(H ′,C) is surjective unless M ′ is the trivial H ′ module.

So, we have only to check surjectivity in those cases, using the lifting invariant. That

establishes the second paragraph statement.

§6.4.5 uses k = 1 for (A4,C±32 , p = 2) to show the braid orbit map of the second

paragraph is not necessarily one-one. This is from their being two orbits of H-M

reps. in Ni(G1(A4),C±32).

The only point needing further comment is why the onto map of the last paragraph

statement is one-one. That is because the collection of G′ with R′ → G′ ∈ SMG,p is

cofinal in all quotients of pG̃: Prop. 2.4.

Frattini Princ. 4.24 relates cusp branches (on CG,C,p) to component branches. This

is a tool for considering if there is an o-p′ cusp branch lying over a given o-p′ cusp. Re-

solving Conj. 1.6 is crucial to deciding what are the infinite MT component branches.

Though elementary, Lem. 3.1 is a powerful principle.

Principle 4.10. — Suppose B′ is a component branch on TG,C,p. The only way we

can now prove GF has a finite orbit on B′ (the hypothesis of (3.1)) is to find a cusp
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branch B that defines B′ for which, modulo braiding, GF has a finite orbit on B.

Further, all successes here are with g-p′ branches.

§4.6.2 has MTs with no g-p′ cusps where we don’t yet know if they have infinite

component branches. Conj. 1.6 says they should not. Prob. 4.7 (Z/3 rank 2 MT) has

similar challenges for Conj. 1.5: Do g-p′ cusps define all infinite component branches.

4.2.2. Replicating obstructed components. — Thm. 4.12 gives MTs with at least two

components at every level. One is an H-M component with an obstructed component

(Def. 4.4) lying above it at the next level (k ≥ 0).

Suppose ψ0 : R0 → G0 is a Frattini central extension of G0 with ker(ψ0) = Z/p:

a Z/p quotient as in §1.3.3. Further, suppose ψ1 : R1 → G1 is a Frattini central

extension of G1 with ker(ψ1) also a Z/p quotient, but antecedent to ker(R0 → G0).

This means: ker(ψ1) = 〈ãp〉 with ã ∈ ker(pG̃→ G0) a lift of a generator of ker(ψ0).

The idea of antecedents generalizes in the following technical lemma. It will seem

less technical from the proof by recognizing M ′k interprets as M0 multiplied by pk.

Lemma 4.11. — Then, ker(R1 → G0) is a Z/p2[G0] module. For all k ≥ 1, there is

a Frattini cover ψ∗k : R∗k → Gk with Z/p2[G0] acting on ker(ψ∗k) isomorphic to its

action on ker(R1 → G0). Also, ψ∗k factors through a cover G∗k → Gk with G0 acting

on ker(G∗k → Gk) = M∗k as it does on M0. Further:

(4.2a) M∗k is a quotient of Mk (§1.3.3) on which Gk acts through G0; and

(4.2b) (4.2a) extends to a Z/p2[Gk] action on ker(R∗k → Gk) that factors through

Z/p2[G0] acting on ker(R1 → G0).

Proof. — The condition that ker(R1 → G1) is a Z/p2[G0] module is the main condi-

tion for an antecedent Schur multiplier, part of the characterization of that condition

in [Fri02, Prop. 4.4].

The lemma says the Z/p2[G0] module ker(R1 → G0) “replicates” at all levels. It

comes from forming the abelianization pG̃/(ker0, ker0)
def
= pG̃

′ of pG̃ → G0 (as in

§5.3.2 and used many times in such places as [BF02, §4.4.3]).

Denote the characteristic Frattini quotients of pG̃
′ by {G′k}

∞
k=0. Then, M0 still

identifies naturally with ker(G′1 → G0). Since ker0 /(ker0, ker0) = ker′0 is abelian,

taking all pth powers (additively: image of multiplication by pk) in ker′0 gives the kth

iterate of its Frattini subgroup ker′k. Then, M ′k is the 1st Frattini quotient of ker′k.

Since G0 acts on ker′k this induces an action on M ′k. As ker(R1 → G0) is also abelian,

this replicates at level k as R′k, also by “multiplication by pk.”

The conclusion of the lemma follows from recognizing, inductively from the uni-

versal p-Frattini property, that Rk+1 → Gk must factor through R′k+1 → G′k, giving

R∗k+1 as the pullback over Gk of R′k+1 → G′k, etc.

Continue the notation of Lem. 4.11. We use it to replicate the event of having two

components, one an H-M component, at one MT level to higher tower levels.
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Theorem 4.12. — Let 0ggg = (0g
−1
1 , 0g1, 0g2, 0g

−1
2 ) ∈ Ni(G0,C) be an H-M rep. As in

Princ. 3.6, take {kggg}
∞
k=0 to define an H-M cusp branch above 0ggg. Assume there is a

level 1 braid orbit represented by 1ggg
′ ∈ Ni(G1,C) with these properties:

1ggg
′ 7→ 0ggg and sR1(1ggg

′) 6= 1.

Then, there is a sequence {kggg
′ ∈ Ni(Gk,C)}∞k=1 with kggg

′ lying over k−1ggg and

sR∗
k
(kggg
′) 6= 1. Finally, we don’t need to start these statements at level 0; they apply for

k ≥ k0, if the hypotheses hold replacing (G0,M0, R0, R1)) with (Gk0 ,Mk0 , Rk0 , Rk0+1).

Proof. — As in [BF02, §9], with no loss assume

1ggg
′ = (1g

−1
1 , a1(1g1)a

−1
1 , a−1

2 (1g2)a2, 1g
−1
2 )

with a1, a2 ∈ M0 the images of â1, â2 ∈ R1 lying respectively over them. A restate-

ment of sR1/G1
(1ggg
′) 6= 1 (multiplicative notation) is this:

(4.3) a0g1
1 a−1

1 a−1
2 a0g

−1
2

2 = 1, but â0g1
1 â−1

1 â−1
2 â0g

−1
2

2 6= 1.

Now let a1, a2 represent their respective images in M∗k and replace 1g1 and 1g2
in (4.3) by kg1 and kg2. This produces the kggg

′ in the theorem’s statement. The

corresponding expressions in (4.3) hold because we have a Z/p2[Gk] isomorphism of

ker(ψ∗k) with ker(ψ∗0).

The final statement applies the general principle that we can start a MT at any

level we want just by shifting the indices.

Example 4.13(Several components at high levels). — [BF02, Prop. 9.8] shows level 1

of the (A5,C34 , p = 2) MT has exactly two components, and these satisfy the hy-

potheses of Thm. 4.12 (more in Ex. B.2). Thus, each level k ≥ 1 of this MT has at

least two components. (Level 0 has just one.)

Level 1 of the (A4,C±32 , p = 2) MT has two H-M and four other components, each

over the H-M component (from two at level 0; see §6.4.5). Thm. 4.12 lets us select

whatever H-M cusp representatives we want over 0ggg. So, suppose there are several

braid orbits of H-M branches, and the hypothesis at one level holds. Then, each braid

orbit of an H-M cusp branch through that level gives a pair of components at higher

levels. Thus, Thm. 4.12 says each level k ≥ 2 of the (A4,C±32 , p = 2) MT has at

least eight components.

4.3. Weigel’s p-Poincaré Duality Theorem. — Let ϕ : X → P1
z, with branch

points zzz, be a Galois cover in Ni(G,C)in representing a braid orbit O.

With Uzzz = P1
z \{zzz}, use classical generators x1, . . . , xr to describe the fundamental

group π1(Uzzz , z0): x1, . . . , xr (in order corresponding to branch points of ϕ, z1, . . . , zr)

freely generate it, modulo the product-one relation
∏r
i=1 xi [BF02, §1.2]. Restrict ϕ

off zzz to give ϕ0 : X0 → Uzzz. Let ggg ∈ Ni(G,C) be the corresponding branch cycles

giving a representing homomorphism π1(Uzzz, z0) → G by xi 7→ gi, i = 1, . . . , r.
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Denote the pro-p completion of the fundamental group of the (compact) Riemann

surface X by π1(X)(p). [BF02, Prop. 4.15] produces a quotient Mϕ of π1(Uzzz, z0) with

ker(Mϕ → G) identifying with π1(X)(p) (proof of Lem. 4.14).

We sometimes denote Mϕ by Mggg when given ggg ∈ Ni(G,C) defined by classical

generators. Lem. 4.14 says — up to braiding —Mggg → G is independent of ggg. Since

ker(Mggg → Gk) is a pro-p group, the notation Ni(Mggg,C) makes sense (as in §1.1.2).

Lemma 4.14. — The action of Hr on ggg is compatible with its action on x1, . . . , xr.

This gives a braid orbit of homomorphisms starting with Mggg → G. As abstract group

extensions they are isomorphic.

Also, p-Nielsen limits through O are maximal among quotients of pG̃ through which

Mggg → G factors (up to conjugation by ker(Mggg → G)). So, O starts a component

branch of TG,C,p if and only if, running over R′ → G′ ∈ SMG,p (as in Lem. 4.9),

each ψG′ : Mggg → G′ extending Mggg → G extends to ψR′ : Mggg → R′.

The obstruction to extending ψG′ to ψR′ is the image in H2(Mggg, ker(R′ → G′)) by

inflation of α ∈ H2(G′, ker(R′ → G′)) defining the extension R′ → G′.

Comments. — Let W be the normal subgroup of π1(Uzzz , z0) generated by x
ord(gi)
i ,

i = 1, . . . , r. Identify U = ker(π1(Uzzz , z0)/W → G) with π1 of X ; what Weigel calls

a finite index surface group [Wei05, Proof of Prop. 5.1]. (If ϕ is not a Galois cover,

then it is more complicated to describe π1(X) by branch cycles [Fri89, p. 75–77].)

In Weigel’s notation, Γ = π1(Uzzz , z0)/W . Form Mggg by completing Γ with respect

to Γ normal subgroups in U of index (in U) a power of p. For more details see §4.4.1.

Then Mggg has a universal property captured in the second paragraph of the lemma.

In a characteristic 0 smooth connected family of covers the isomorphism class of

the monodromy group does not change. That is, the braiding of ggg ∈ Ni(G,C) to ggg′

from a deformation of the cover with branch point set zzz0 over a path in π1(Ur, zzz0)

produces another copy of G. The same is true if you apply this to a profinite family of

covers defining a cofinal family of quotients of Mggg. This shows that braiding induces

an isomorphism on Mggg as said in the first paragraph of the lemma.

This gives the first paragraph statement. The final paragraph statement is likely

well-known. See, for example, [Fri95, Prop. 2.7] or [Wei05, Prop. 3.2].

We continue notation of Lem. 4.14. The following translates [Wei05] for our group

Mggg. We explain terminology and module conditions for later use.

Theorem 4.15. — Mggg is a dimension 2 oriented p-Poincaré duality group.

Comments. — The meaning of the phrase (dimension 2) p-Poincaré duality is in

[Wei05, (5.8)]. It expresses an exact cohomology pairing

(4.4) Hk(Mggg, U
∗) ×H2−k(Mggg, U) → Qp/Zp

def
= IMggg ,p
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where U is any abelian p-power group that is also a Γ = Mggg module, U∗ is its dual

with respect to IMggg ,p and k is any integer. [Ser97a, I.4.5] has the same definition,

though that assumes in place of Mggg a pro-p-group. By contrast, Mggg is p-perfect, being

generated by p′ elements (Lem. 2.1). In the extension problems of §4.4, the quotients

of Mggg that interest us are Frattini covers of G, so also p-perfect.

[Ser97a, p. 38] points to Lazard’s result that a p-adic analytic group of dimension

d (compact and torsion-free) is a Poincaré group of dimension d. Since, however, our

group is residually pro-free, it isn’t even residually p-adic analytic.

Weigel’s result is for general Fuchsian groups Γ, and the dualizing module IΓ,p,

may not be the same as in this example. It is classical that π1(X) (and π1(X)(p))

satisfies Poincaré duality. [Bro82, Chap. VIII, §3, Remark] interprets this exactly

as the discussion of §2.1 suggests for group cohomology. [Ser97a, Prop. 18, p. 25]

applies Shapiro’s Lemma to show a dualizing module that works for Γ also works

for every open subgroup. Most of Weigel’s proof establishes the converse: That the

Iπ1(X),p used here does act as a dualizing module for Mggg.

Remark 4.16(Addendum to Lem. 4.14). — Suppose two extensions Mgggi
→ G, arise

from gggi ∈ Ni(G,C), i = 1, 2. Further, assume they are isomorphic. Then, it is still

possible they are not braid equivalent, though examples aren’t easy to come by. We

allude to one in (6.11a): Two extensions corresponding to the two H-M components

called H+,β
1 , H+,β−1

1 . The group G in this case is G1(A4). It has an automorphism

mapping ggg1 to ggg2, giving elements in different braid orbits. Since these are H-M

components, Princ. 3.6 gives isomorphic extensions Mgggi
→ pG̃, i = 1, 2 (Princ. 3.6)

in distinct braid orbits.

4.4. Criterion for infinite branches on TG,C,p. — Cor. 4.19 reduces finding in-

finite component branches on TG,C,p through a braid orbit (as in §1.3.3) to a sequence

of small lifting invariant checks from the Schur multiplier of each Gk, k ≥ 1. Cor. 4.20

is our major test for when we have a limit group.

4.4.1. One lifting invariant checks unobstructed braid orbits. — This subsection re-

gards the small lifting invariant in additive notation. Let Ok ≤ Ni(Gk,C) be a braid

orbit and kggg a representative of this orbit. The cardinality of the fiber in (1.10b) over

Ok is the degree of a level k + 1 MT component over its level k image defined by

Ok. This is a braid invariant. Cor. 4.19 is (at present) our best test for when it is

nonempty, unless ggg braids to a g-p′ representative (Princ. 3.6).

We may consider Mggg as a completion of a group, Dσ̄σσ, presented as 〈σ̄1, . . . , σ̄r〉

modulo the normal subgroup generated by σ̄σσ
def
= {σ̄

ord(gi)
i , i = 1, . . . , r, and σ̄1 · · · σ̄r}.

Let Kσ̄σσ∗ by the group from removing the quotient relation σ̄1 · · · σ̄r = 1. Denote

corresponding generators of it by σ̄∗1 , . . . , σ̄
∗
r . Then, the cyclic groups 〈σ̄∗i 〉/(σ̄

∗
i )

ord(gi),

i = 1, . . . r, freely generate Kσσσ.

SÉMINAIRES & CONGRÈS 13
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Complete Kσ̄σσ∗ with respect to p-power index subgroups of ker(Kσ̄σσ∗ → G), normal

in Kσσσ, calling the result K̃σ̄σσ∗ (forming a natural surjection ψσ̄σσ∗ : K̃σ̄σσ∗ →Mggg).

Lemma 4.17. — Mapping the K̃σ̄σσ generators σ̄∗1 , . . . , σ̄
∗
r , in order, to entries of kggg,

gives a homomorphism µk : K̃σ̄σσ∗ → Gk. If h∗1, . . . , h
∗
r ∈ C ∩ Grk+1 lie respectively

over entries of kggg, then the surjective homomorphism µk+1 : K̃σ̄σσ∗ → Gk+1 mapping

σ̄∗i 7→ h∗i , i = 1, . . . , r, extends µk.

Comments. — The construction is geometric: Remove an additional point z′ from

Uzzz to get π1(U{zzz,z′}, z0). We can identify this with notation coming from Dσσσ, as the

group freely generated by σ̄σσ. This identifies Kσ̄σσ∗ with its description above. It also

identifies ker(Kσ̄σσ∗ → G0) with the fundamental group of X ′
def
= X \ {ϕ−1(z′)}. As X ′

is a projective curve with a nonempty set of punctures, this is a free group.

Remark 4.18(Addendum to proof of Lem. 4.17). — The group Mggg is not p-projective.

Yet, here is why its cover K̃σ̄σσ∗ is. For P a p-Sylow of G, we can identify a p-Sylow of

K̃σ̄σσ∗ with the pro-p completion of the free group π1(X
′/P ). A profinite group with

pro-p p-Sylow is p-projective ([FJ86, Prop. 22.11.08], in new edition).

4.4.2. Two obstruction corollaries. — Continue the discussion of §4.4.1. If ggg ∈ Ok,

then it defines a cover ψggg : Mggg → Gk. A paraphrase of Cor. 4.19 is that if ψggg is

obstructed at level k then it is by some Z/p quotient of ker(Gk+1 → Gk). Cor. 4.20

tells us precisely what are the exponent p Frattini extensions of a limit group.

Corollary 4.19. — The fiber over Ok is empty if and only if there is some central

Frattini extension R → Gk with kernel isomorphic to Z/p for which ψggg does not

extend to Mggg → R→ G.

Proof. — In the notation of §2.5 we only need to show this: If the fiber of (1.10b)

is empty, then sR/Gk
(ggg) 6= 0 for some Z/p quotient R/Gk of the first Loewy layer

of Mk. [Fri95, Prop. 2.7] says H2(Gk,Mk) = Z/p: It is 1-dimensional. Lem. 4.14

says the obstruction to lifting ψ to Gk+1 is the inflation of some fixed generator

α ∈ H2(Gk,Mk) to α̃ ∈ H2(Mggg,Mk).

Though α̃ may seem abstract, the homomorphism µk+1 of Lem. 4.17 allows us

to form an explicit cocycle for the obstruction to lifting Mggg → G. For each ḡ ∈ Mggg

choose hḡ ∈ Gk as the image in Gk of one of the elements of K̃σ̄σσ∗ over ḡ. Now compute

from this the 2-cocycle

α̃(ḡ1, ḡ2) = hḡ1hḡ2(hg1g2)
−1, ḡ1, ḡ2 ∈Mggg

describing the obstruction. Since ψσ̄σσ∗ is a homomorphism, the only discrepancy be-

tween α(ḡ1, ḡ2) and the identity is given by the leeway in representatives for hg1g2 lying

over g1g2. So, the cocycle α̃(ḡ1, ḡ2) consists of words in the kernel of Kσ̄σσ∗ →Mggg, and

it vanishes if and only if it is possible to choose (h∗1, . . . , h
∗
r) (as in the statement of

Lem. 4.17) to satisfy h∗1 · · ·h
∗
r = 1.
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By (4.4) duality, H2(Mggg,Mk) has a perfect pairing with H0(Mggg,M
∗
k ), that initially

goes into H2(Mggg, IMggg ,p) by applying an element of H0(Mggg,M
∗
k ) to the values of a

2-cycle in H2(Mggg,Mk). Identify H0(Mggg,M
∗
k ) with

H0(Mggg, D ⊗Mk) ' D ⊗Z/p[Mggg] Mk,

with D = Z/p the duality module for Z/p[Mggg] (on which it acts trivially). Hence, the

tensor productD⊗Z/p[Mggg]Mk is canonically isomorphic to the maximal quotient ofMk

on which Mggg (and therefore Gk) acts trivially [AW67, p. 98]. That is, D⊗Z/p[Mggg]Mk

identifies with the kernel of the maximal central exponent p extension of Gk.

Now we check the value of the pairing of α̃(•, •) ∈ H2(Mggg,Mk) against an element

β ∈ H0(Mggg,M
∗
k ). Further, regard β

def
= βR as the linear functional on Mk from

ker(Gk+1 → R), with R → Gk a central extension defining a Z/p quotient, as above.

Being very explicit, this says the value of βR on α̃ is the lifting invariant sR(ggg) for

the image ggg of (h∗1, . . . , h
∗
r) in Ni(Gk,C). Since the pairing is perfect, conclude the

corollary: The obstruction for extending Mggg → Gk to Mggg → Gk+1 is trivial if and

only if sR(ggg) is trivial running over all such R → Gk.

The proof of the last result also applies to limit groups.

Corollary 4.20. — If G∗ is a limit group in a Nielsen class and a proper quotient of

pG̃, then G∗ has exactly one nonsplit extension by a Z/p[G∗] module, and that module

must be trivial.

Proof. — Suppose ggg∗ ∈ Ni(G∗,C) represents the braid orbit giving G∗ as a limit

group (Def. 4.3). From the proof of Cor. 4.19, we have only to show there cannot be

two Z/p quotients of the exponent p part of the Schur multiplier of G∗.

Suppose Ri → G∗, i = 1, 2, are two distinct central extensions defining Z/p quo-

tients. So, their kernels generate a 2-dimensional quotient of the Schur multiplier of

G∗. Since G∗ is a limit group, sRi/G∗(ggg∗) 6= 0 generates ker(Ri → G∗), i = 1, 2.

Apply Thm. 4.15: H2(Mggg,Z/p) = Z/p. Let αi ∈ H2(Mggg,Z/p) = Z/p be the

inflation of the element of H2(G∗,Z/p) defining Ri, i = 1, 2. So there are p′ integers

ai, i = 1, 2, with a1α1 + a2α2 = 0. Also, a1sR1/G∗(ggg∗) + a2sR2/G∗(ggg∗) 6= 0 defines a

Z/p quotient of the Schur multiplier of G∗.

This gives a central extension R∗ → G∗, and the inflation of an element of

H2(G∗,Z/p) to H2(Mggg∗ ,Z/p) defining it is 0. Thus Lem. 4.14 contradicts that G∗ is

a limit group since it says Mggg∗ → G∗ extends to Mggg∗ → R∗.

4.4.3. Why Cor. 4.19 is a global result. — Consider two (braid inequivalent) exten-

sions of ψi : Mggg → Gk+1, i = 1, 2, of ψ : Mggg → Gk. Assume, hypothetically, the

following holds (it does not in general):

(4.5) There is an extension of ψ1 to ψ′1 : Mggg → Gk+2 if and only if there is an

extension of ψ2 to ψ′2 : Mggg → Gk+2.
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Applying Princ. 3.6 would then give the following (false) conclusion from (4.5).

(4.6) If ggg is a g-p′ cusp, then any component branch of TG,C,p through the braid

orbit of ggg is infinite.

Cor. 4.19 works with G∗, any group through which pG̃ → G0 factors, replacing

Gk and with any G∗ quotient M∗ of ker(G1(G
∗) → G∗) replacing Mk. (Reminder:

G1(G
∗) is the 1st characteristic p-Frattini cover of G∗.) So, given an hypothesis like

(4.5), one might try to reduce the proof of Cor. 4.19 to where M∗ is simple. This

would allow stronger conclusions, eschewing considering one integer k at-a-time.

This, however, is a variant of the false conclusion (4.6). Examples 4.21 and 4.22

show (4.6) is false. They explain why applying Cor. 4.19 to detect an infinite branch

can’t be done by just testing the lifting invariant at one level. These examples —

based on [BF02, Chap. 9] — help understand this subtle argument.

Also, for a given MT level k, and R′ → G′ ∈ SMG,p,k (Lem. 4.9), precise genera

formulas for MT branches require knowing if braid orbits achieve other lift values than

the trivial one. Again, these examples illustrate. They rely on centralizer condition

(4.7). So, we don’t yet know how to generalize them to, say, replace An by Gk(An)

for k large, even for the antecedent Schur multiplier because (4.7) doesn’t hold.

Example 4.21(Level 1 of the(A5,C34 , p = 2) MT). — Here C34 is four repetitions of

the 3-cycle conjugacy class in A5. [BF02, Prop. 9.8] shows there are exactly two

braid orbits O1 and O2 on Ni(G1(A5),C34) where p = 2, both over the unique braid

orbit O on Ni(A5,C34). The 2-part, SMG1(A5),2, of the Schur multiplier of G1(A5)

is Z/2. Let R1 → G1 be the Z/2 quotient it defines. Then, sR1/G1
(O1) = 0 and

sR1/G1
(O2) 6= 0. In fact, O and O1 are orbits of H-M reps. So, at level 1 (but not at

level 0) all possible lift invariants are assumed. This pure module argument used a

strong condition:

(4.7) The rank of the centralizer in M0 = ker(G1(A5) → A5) of g ∈ C3 is the

same as the rank of SMG1,2, and R′ → G1(A5) is antecedent (§2.5).

Example 4.22. — [FS06] notes (4.7) also holds for (A4,C±32 , p = 2) (see §6.3; R′ →

G′ = G1(A4) is the antecedent Schur multiplier). The Schur multiplier of G1(A4)

is (Z/2)2. Ad hoc arguments show we achieve the other two values of the lifting

invariant running over R′′ → G′ = G1(A4), with R′′ → G the two non-antecedent

central Frattini extensions giving Z/p quotients.

4.5. Weigel branches in CG,C,p and Frattini Princ. 3. — [Fri05a, Lect. 4]

generalizes g-p′ reps. to all r. We believe having a g-p′ cusp branch B is necessary

for an infinite component branch in TG,C,p (Conj. 1.5). Here we approach Conj. 1.6

using multiplicative notation for the small lifting invariant (§4.2).

4.5.1. Set up for o-p′ cusps. — We introduce a practicum for deciding if a given

o-p′ cusp ggg ∈ Ni(Gk,C) has an o-p′ cusp ggg′ ∈ Ni(Gk+1,C) over it. (Compare with

the more restrictive search for an o-p′ cusp over a g-p′ cusp in §3.2.3.) From this
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comes Def. 4.26 of a Weigel cusp. Prop. 3.12 says there are MTs where o-p′ cusps

appear at all high levels. Still, the examples we know do not produce Weigel branches

(projective sequences of such cusps), so they do not contradict Conj. 1.6.

Assume ggg = (g1, g2, g3, g4) ∈ Ni(G,C) is an o-p′ cusp rep. As p′ elements generate

H2,3 = 〈g2, g3〉 = H it is p-perfect (Lem. 2.1). Consider diagram (4.8). The bottom

(resp. top) row has the sequence for the p-representation cover R′p of H (resp. G).

Pullback of H in Rp is a central extension of H . So, a unique map βH : Rp′ → Rp
makes (4.8) commutative:

(4.8)

1 −→ SMG,p −−−−→ Rp −−−−→ G −−−−→ 1
x





x





βH

x





inj

1 −→ SMH,p −−−−→ R′p −−−−→ H −−−−→ 1.

Unlike its Lem. 2.5 analog, β may not be an embedding. Example: Let H be simple,

with SMG,p 6= {1} (p odd), and embed it in an alternating group. The following

lemma summarizes this to show compatibility of (4.8) with Lem. 2.5.

Lemma 4.23. — Properties of (4.8) apply to any p-perfect (or p′) subgroup H ≤ G.

Further, the map βH is compatible with the map β : pH̃ → Rp defined in Rem. 2.6.

4.5.2. The 3rd Frattini Principle. — Princ. 4.24 relates cusp types and lifting in-

variants for component branches. Assume 0ggg = ggg = (g1, g2, g3, g4) ∈ Ni(G,C) is an

o-p′ cusp rep. Denote a 5th p′ conjugacy class containing (g2g3)
−1 by C5. Simi-

larly, its inverse is C−1
5 . Denote the collection C2,C3,C5 (resp. C1,C4,C

−1
5 ) by C2,3

(resp. C1,4). Also:

(g2, g3, (g2g3)
−1) = 0ggg

′ and ((g4g1)
−1, g4, g1)) = 0ggg

′′,

and let Oggg, O0ggg′ and O
0ggg′′ be the respective braid orbits of the corresponding Nielsen

class representatives.

Assume for some k ≥ 0, kggg ∈ Ni(Gk,C). Let RGk
→ Gk be the central extension

of Gk with ker(RGk
→ Gk) the maximal quotient of Mk on which Gk acts trivially.

Then, we have similar notation with

H2,3(kggg) = H2,3 and H1,4(kggg) = H1,4

replacing Gk. Diagram (4.8), with H = H2,3, induces maps β2,3 : RH2,3(ggg) → RG
from Lem. 4.23 as the situation deserves.

Principle 4.24(Frattini Principle 3) . — With the previous hypotheses

(4.9) sG,p(ggg) = β1,4(sRH1,4,p
((g4g1)

−1, g4, g1))β2,3(sRH2,3,p
(g2, g3, (g2g3)

−1)).

Suppose kggg ∈ Ni(Gk,C) is an o-p′ cusp. Consider:

kggg
′ = (kg2, kg3, (kg2kg3)

−1) ∈ Ni(Gk(H2,3(ggg)),C2,3) and

kggg
′′ = ((kg4kg1)

−1, kg4, kg1)) ∈ Ni(Gk(H1,4(ggg)),C1,4).
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Suppose sRH2,3(kggg)
(kggg
′) = 1 and sRH1,4(kggg)

(kggg
′′) = 1. Then, there is an o-p′ cusp

k+1ggg ∈ Ni(Gk+1,C) over kggg.

Assume there is an infinite component branch on the (H2,3(ggg),C2,3, p) MT over

O
0ggg′ , and also such a component branch on the (H1,4(ggg),C1,4, p) MT over O

0ggg′′ .

Then, an o-p′ cusp branch gives an infinite component branch on the MT over Oggg.

Proof. — Consider the 6-tuple, ggg∗ = ((g4g1)
−1, g4, g1, g2, g3, (g2g3)

−1). This is a jux-

taposition of two product-one 3-tuples. Since (g4g1)
−1(g2g3)

−1 = 1, we easily see

sG,p(ggg
∗) = sG,p(ggg). So, (4.9) follows from direct computation and the compatibil-

ity of the maps β2,3 and β1,4 defined in different places. Lem. 2.5 lets us assume

Gp,k(H2,3) and Gp,k(H1,4) are in Gp,k(G). Over kggg
′ (resp. kggg

′′) Lem. 4.14 produces

k+1ggg
′ ∈ Ni(Gk+1(H2,3(ggg)),C2,3) (resp. k+1ggg

′′ ∈ Ni(Gk+1(H1,4(ggg)),C1,4)).

Use Schur-Zassenhaus to produce h ∈ ker(Gk+1 → Gk) that conjugates

(k+1g
′
2 k+1g

′
3)
−1 ∈ C5 to k+1g

′
4k+1g

′
1 ∈ C5.

Replace (k+1g2, k+1g3, (k+1g2, k+1g3)
−1) with its conjugate by the image of h. So,

with no loss, (k+1g1, k+1g2, k+1g3, k+1g4) has product-one, is in Ni(Gp,k+1(G),C) and

lies over 0ggg. This concludes the proof.

The final paragraph is a simple induction on the previous argument.

If Conj. 1.6 holds, then the 3rd paragraph hypotheses of Princ. 4.24 can’t hold.

Remark 4.25(Extend Princ. 4.24). — [Fri06b] has a stronger version of the 2nd para-

graph of Princ. 4.24: If ggg ∈ Ni(G,C) is a rep. for an o-p′ cusp with any two of

sRH2,3,p
(0ggg
′), sRH1,4,p

(0ggg
′′) and sRG,p(ggg) equal 1, then the third is also 1.

4.6. Evidence for and consequences of no Weigel cusp branches. — This

subsection considers both evidence for and challenges to Conj. 1.6.

Definition 4.26(Weigel branch). — If kggg satisfies the hypotheses of Princ. 4.24, 2nd

paragraph, then we call (kggg)Cu4 a level k Weigel cusp. A cusp branch which for large

k consists of Weigel cusps is a Weigel branch.

We also refer to the component branch in TG,C,p defined by a Weigel cusp branch as

a Weigel component branch.

4.6.1. Example disappearances of o-p′ cusps. — For g ∈ An of odd order, let w(g)

be the sum of (l2 − 1)/8 mod 2 over all disjoint cycle lengths l in g (l 6≡ ±1 mod 8

contribute). [Fri06a, Cor. 2.3] has a short proof of Prop. 4.27 based on when C = C3r

is r repetitions of the 3-cycle class (guiding the original statement in [Ser90]).

Proposition 4.27. — Suppose ggg ∈ Ni(G,C) with G ≤ An transitive, and C consists of

conjugacy classes in G with elements of respective odd orders d1, . . . , dr. Assume also
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the genus of a degree n cover ϕ : X → P1
z with branch cycles ggg from this embedding

has genus 0. Then, sSpinn
(ggg) = (−1)

P

r
i=1 w(gi).

At level 0 of the (A5,C34) MT (p = 2), no cusps are 2 cusps: Widths are 1,1, 3,3,

5, 5 ([BF02, §2.9.3]; shifts of the cusps of width 1 are H-M reps.). By level 1, all o-2′

cusps disappear, leaving only g-2′ cusps (shifts of H-M reps.) as non-2 cusps [BFr02;

§9.1]. Combine this with the comment before Prop. 3.12 for the following.

Proposition 4.28. — The only infinite cusp branches on the CA5,C34 ,p=2 cusp tree are

g-p′ and p cusp branches.

Problem 4.29. — Are there component branches on TA5,C34 ,p=2 that contain only p

cusp branches?

4.6.2. Some Weigel cusps and challenges to Conj. 1.6. — We give an example Weigel

cusp in a Nielsen class containing no g-p′ cusps. Use notation from Ex. 3.13 and

the representative for the Nielsen class Ni(A5,C±53) given by ggg = (g1, g2, g3) with

g1 = (5 4 3 2 1) and g2 = (2 4 3 5 1), and g3 = (4 3 5).

There are two conjugacy classes of 5-cycles in A5: C+5 and C−5. Further, if

g ∈ C+5, then so is g−1. Let C±53 denote the collection of conjugacy classes consisting

of C+5, C−5 and C3 (class of a 3-cycle). [BF02, Princ. 5.15] shows Ni(A5,C±53)

(absolute or inner) has one braid orbit with lifting invariant +1. By Riemann-Hurwitz,

the genus g of absolute covers (degree 5 over P1
z) in this Nielsen class is 1, from

2(5+ g− 1) = 10. So Prop. 4.27 doesn’t apply directly. Rather, [BF02, §5.5.2] shows

how to compute beyond the genus 0 limitation. Now, take p = 2.

This Nielsen class clearly contains no g-2′ rep. Further, similar examples work for

any r ≥ 3 conjugacy classes. For r ≥ 5: juxtapose ggg ∈ Ni(A5,C±53) with (g, g−1)

or (g, g, g) (g ∈ C3) appropriately. For r = 4, replace C±53 by C±532 . Call the shift

(resp. conjugacy classes) of one of these reps. ggg′ (resp. C′).

Result 4.30. — For C′ = C±532 , the natural map Ni(G1(A5),C
′) → Ni(A5,C

′) is

onto: no level 0 braid orbit is obstructed. The cusp represented by

ggg′′ = ((3 4 5), (5 4 3 2 1), (2 4 3 5 1), (3 4 5))

has an o-p′ cusp in Ni(G1(A5),C
′) over it. So, ggg′′ is a Weigel cusp.

Comments. — With R → A5 the Spin5 cover of A5, sR(ggg′′) = sR((ggg′′)sh) = 1 as we

explained above. The only appearance of 111A5 in M0 = ker(G1(A5) → A5) is from

ker(R → A5) ([BF02, Cor. 5.7] or [Fri95, Part II])). So, the hypotheses of Princ. 4.24,

2nd paragraph, with k = 0 apply; and the conclusion does also.

If Conj. 1.6 holds for Ni(G1(A5),C
′ = C±532) in Res. 4.30, then the conclusion to

Prob. 4.31 is affirmative.
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Problem 4.31. — Are all o-p′ cusps gone at high levels of the Ni(G1(A5),C±532) MT?

Is it even possible this MT is empty at high levels (agreeing with nonexistence of

infinite component branches having only p cusp branches as in §1.2.2)?

Example 4.32(Ni(A4,C±32) with p = 2, see §6.3). — There is an o-p′ cusp:

ggg = ((1 2 4), (1 2 3), (1 3 4), (1 2 4)).

Apply the proof of Res. 4.30 here. A direct application of Prop. 4.27 — since the

genus 0 hypotheses holds — shows β2,3(s(0ggg
′)) = −1 while β1,4(s(0ggg

′′)) = +1 (in

analogous notation). So, the 2nd paragraph Prop. 4.24 conclusion is that the left side

of (4.9) is -1, and ggg is not in the image from Ni(Spin4,C±32).

5. Nub of the (weak) Main Conjecture

Use notation, especially for genera, around (3.2). Assume B′ = {H′k}
∞
k=0 is an

infinite branch of TG,C,p defined over a number field K. From Prop. 3.3, to consider

the Main Conj. we may assume G = G0 has the p-part of its center trivial. We make

that assumption throughout this section. This lets us use the 2nd part of Princ. 3.5.

We show the Main Conj. 1.2 (for r = 4) holds unless we are in one of three cases.

These we stipulate by listing how H̄′k+1/H̄
′
k ramifies when k >> 0:

– either it doesn’t ramify over cusps;

– it is equivalent to a degree p polynomial;

– or it is equivalent to a degree p rational function branched only at two points.

5.1. There should be no TG,C,p genus 0 or 1 branches. — We must consider

two possibilities that would contradict the Main Conjecture:

(5.1a) gH̄′
k

= 0 for all 0 ≤ k <∞ (B′ has genus 0; GeB′ consists of 0’s); or

(5.1b) For k large, gH̄′
k

= 1 (B′ has genus 1; almost all of GeB′ is 1’s).

5.1.1. Reduction of the Main Conj. to explicit cases. — An elementary corollary of

Riemann-Hurwitz says for k >> 0, (5.1b) implies H̄′k+1 → H̄′k doesn’t ramify. From

Princ. 3.5 this says:

(5.2) For no value of k does H̄′k have a p cusp.

Now assume, contrary to (5.2), ppp′k ∈ H′k is a p cusp for some k. Denote the degree

of H′k+1/H
′
k by νk and the number of primes ppp′k+1 ∈ H′k+1 over ppp′k by uk. Thm. 5.1

says possibilities for (5.1a) that [Fri06b] must eliminate are these. For k >> 0,

νk = p, uk = 1 and H̄′k+1/H̄
′
k is equivalent (as a cover over K) to either:

(5.3a) a degree p polynomial map; or

(5.3b) a degree p rational function ramified precisely over two K conjugate points.

Theorem 5.1. — If neither (5.2) nor (5.3) hold for the component branch B′, then B′

satisfies the conclusion of Main Conj. 1.2: High levels of B′ have no K points.
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For B′ with (3.6b) holding (full elliptic ramification; including when B′ has fine

reduced moduli — §3.2.2) for k >> 0, the Main Conj. holds unless (5.3b) holds.

Proof. — Assume (5.2) doesn’t hold and g′k = 0 for large k. That is,

(5.4) 2(deg(H̄′k/P
1
j) − 1) = ind(γ′0,k) + ind(γ′1,k) + ind(γ′∞,k) : (5.1a) holds.

Consider now what would allow g′k+u, u ≥ 0 to also be 0.

Denote the cardinality of the p cusps on H′k by tk. For each p cusp, ppp′k ∈ H′k,

Princ. 3.5 says the following.

(5.5a) Each ppp′k+1 over ppp′k ramifies with index p and H̄′k+1/H̄
′
k has degree νk = p ·uk.

(5.5b) Also, tk+1 ≥ tk · uk.

Apply (5.5a), by replacing k by k+ 1, to any ppp′k+2 ∈ H′k+2 over a ppp′k+1. Conclude:

(5.6a) there is an index contribution of tk · uk · uk+1 · (p − 1) from all ppp′k+2 s to

Riemann-Hurwitz from H̄′k+2 to H̄′k+1; and

(5.6b) Riemann-Hurwitz applied to H̄′k+2 → H̄′k+1 contradicts (5.4) if

tk · uk · uk+1 · (p− 1) > 2(p · uk+1 − 1).

Suppose tk ≥ 2. Then, we contradict (5.4) if (uk−1) ·p ≥ uk. This happens unless

uk = 1 or uk = 2 = p. In the latter case, with tk = 2, we would have tk+1 = 4 from

(5.5b). Then, putting p = 2 you see a contradiction by shifting k to k + 1. So, the

argument forces (with tk ≥ 2) uk = 1, tk = 2, and no ramification outside these two

cusps. Further, under these assumptions (and (5.1a)), (3.6b) must hold for k >> 0.

On the other hand, if tk = 1 for k >> 0, then (with (5.1a)), (5.5b) forces uk = 1.

That means H′k+1/Hk is a cover of genus 0 curves of degree p with one place totally

ramified. This is equivalent to a cover represented by a polynomial (see Prop. 5.4).

Result 5.2. — A branch B′ of TG,C,p contradicts case (5.1a) if there is a p cusp at

level k and H̄′k+u+1/H̄
′
k+u has degree ≥ p + 1. For B′ to contradict (5.1b), we only

need one p cusp at a high level k: Princ. 3.5 forces H′k+1/H
′
k to ramify.

5.1.2. Why (5.2) or (5.3) would contradict Conj. 1.2. — Prop. 5.4 shows the excep-

tional cases in §5.1.1 are serious.

Lemma 5.3. — For any projective genus 1 curve X over a number field K, we can

extend K to assume X(K) is an elliptic curve with infinitely many points.

Proof. — Extend K to assume X(K) 6= ∅, and use one of those points as an origin

to assume X is an elliptic curve. Now form µK : GK → GL2(Ẑ), the action of GK on

all division points of X . Put X in Weierstrass normal form, so its affine version has

the shape

{(x, y) | y2 = x3 − u2x− u3}.

Next we show X(L) cannot be finite for each number field L/K. Suppose it is.
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First we show µK is an embedding of GK . Suppose not. Let σ ∈ GK with

µK(σ) = 1, but assuming σ 6= 1, there is a finite extension L/K on which σ acts

nontrivially. Take a primitive generator x0 for L/K (that is, L = K(x0)). Solve for

y0 so that (x0, y0) ∈ X(L′), with L′ = K(x0, y0). By assumption (x0, y0) gives a

division point on X , and clearly σ acts nontrivially on it.

That gives that µK is an embedding. Yet, a simple consequence of Hilbert’s irre-

ducibility Theorem is that there is a Galois L/K with group Sn for any large integer

n. It is an elementary group observation that Sn for n > 5 large cannot embed in

GL2(Z/N) for any value of N . This contradiction finishes the proof.

Proposition 5.4. — A MT for which either (5.2) or (5.3) holds fails the conclusion of

Conj. 1.2.

Proof. — Recall: We start with a component branch B′ having definition field a

number field K ′. If B′ satisfies (5.2), then Lem. 5.3 gives k = k0, and K with

[K : K ′] < ∞ and |H̄′k0(K)| = ∞. Now we have a tower of elliptic curves, all

isogenous. Each therefore has infinitely many rational points. Only finitely many of

these can be cusps, and the rest will be rational points on H′k, for each k. That shows,

if (5.2) holds, we do contradict Conj. 1.2.

Now consider (5.3a): H̄′k+1 → H̄′k is a degree p cover (over K) of genus 0 curves

with a distinguished totally ramified point ppp′k ∈ H̄′k. Then, both ppp′k and the unique

point ppp′k+1 over it are K points. So, again H′k(K) is infinite and if (5.3a) holds, then

we contradict Conj. 1.2.

Finally, consider (5.3b). Suppose X → Y is a K map of genus 0 curves of degree N .

Then, they both define elements of order 2 in the Brauer-Severi group H2(GK , K̄
∗).

Denote these [X ] and [Y ]. Then, N ·[X ] = [Y ] (in additive notation – see the argument

of [BF02, Lem. 4.11] for example). In particular, if N = p is odd, and K is large

enough that X has a rational point, then [X ] = [Y ] = 0 and both have infinitely

many rational points. The case for N = 2 is even easier for it is automatic that

2 · [H̄′k+1] = 0 (= [H̄′k]). For this case we immediately have a tower of degree 2 maps

between P1 s. So, finishing (5.3b) reverts to the previous case.

5.2. What we need to complete the Conj. 2.2 proof. — The results of §5.1

show the main point in finishing the Main Conjecture for r = 4 is a p cusp at some

high level. Better yet, if the lim sup of deg(H̄′k+u+1/H̄
′
k+u) is not p, one such p cusp

guarantees the p cusp count (at level k) is unbounded as k 7→ ∞ . Prop. 5.5 gives

examples that show how to compute a (growing) lower bound to the p-cusp count

with the levels.

5.2.1. Reducing to pure cusp branches. — §1.2.1 calls an infinite cusp branch B pure

in cases (1.5a) and (1.5c) if these have no extraneous (finite) start strings of g-p′

(possibly followed by a string of o-p′) cusps. Continue that notation to define B by a

sequence of cusp sets (kggg)Cu4 ⊂ Ni(Gk,C)in. We can assume k is large. That allows
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starting at any desired level. So we revert to where B is one of the pure infinite cusp

branches B in CG,C,p with representatives

{kggg = (kg1, . . . , kg4) ∈ Ni′k}
∞
k=0.

Here Ni′k is the braid (M̄4 — §2.4.1) orbit on Ni(G,C)in,rd of kggg. For all k ≥ 0, either:

(5.7a) From Princ. 3.5, p|(kggg)mp; or

(5.7b) From Princ. 3.6, kggg is a g-p′ rep.; or

(5.7c) From Princ. 4.24 (or Rem. 4.25), kggg is a Weigel cusp with

sRH2,3
(kggg) = 1 = sRH1,4

(kggg).

5.2.2. Using a g-p′ cusp branch to get p cusps. — §6.2.3 [BF02, §9] does many cases

of (5.7b), where p = 2 and there is a g-p′ cusp that is the shift of an H-M rep. Here is

what we learned, by example, about getting p cusps from it. Our example continues

§4.6.1: the (A5,C34 , p = 2) MT where level 0 had no 2 cusps.

Prop. 4.27 applies with the Spin5 → A5 cover to show both level 1 components

have p cusps (with p = 2) [BF02, Cor. 8.3]. The full analysis says the component,

H+(G1(A5),C34)in,rd, containing all the H-M cusps, has genus 12 and degree 16 over

the unique component of H(A5,C34)in,rd. It also has all the real (and so all the Q)

points at level 1 [BF02, §8.6]. Further, all except the shift of the H-M cusps are 2

cusps. The other component, H−(G1(A5),C34)in,rd is obstructed, so no full branch

over it has 2G̃(A5) (the whole 2-Frattini cover of A5) as a limit group.

Proposition 5.5. — The number of p cusps at level k in any H-M component branch

over H+(A5,C34)in,rd is unbounded in k.

Proof. — The argument has this abstract idea. Let B = {pppk}
∞
k=0 be a g-p′ cusp

branch. Suppose for k ≥ k0 you can braid pppk to a p cusp ppp′k with ramification index

exactly divisible by p. Then, Princ. 3.5 allows, with k = k0 + u, inductively braiding

pppk to a sequence of cusps ppp′k(1), . . . , ppp′k(u) with ppp′k(t) having ramification index exactly

divisible by pt, u = 1, . . . , t. From their ramification indices over j = ∞, these give u

different p cusps at level k0 + u.

For Ni(Gk(A5),C34) you can take k0 = 1 and ppp′k is produced as the near H-M

rep. associated to pppk [BF02, Prop. 6.8].

5.2.3. Limit groups and field of moduli examples. — These examples show our

progress in computing, and that the consequences are relevant to the abstract results.

Problem 5.6. — What are the limit groups of full component branches (§4.1) over

H−(G1(A5),C34)in,rd?

Example 5.7(Continuing Prob. 5.6). — By contrast to examples in §A.2 and §B.1, we

don’t yet know the limit groups for H−(G1(A5),C34)in,rd. Example: Each space

H(A5,C3r )in,rd, r ≥ 5, has exactly two components H±(A5,C3r ) [Fri06a, Thm. 1.3].
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Also, H+(A5,C3r ) is a g-2′ component. So, from Princ. 3.6 it has 2G̃(A5) as a limit

group.

Further, H−(A5,C3r ) has a unique limit group, just A5. This is because the 1st

Loewy layer (§A.2.1) of M0(A5) consists of just the Schur multiplier Z/2 of A5 [BF02,

Cor. 5.7]. We know the Schur multiplier of G1(A5) is just Z/2. Still, what if other A5

irreducible modules appear in the first Loewy layer of the characteristic module M1?

Then, akin to Ex. B.3, the braid orbit corresponding to H−(G1(A5),C34)in,rd could

have all limit groups larger than G1(A5).

Problem 5.8. — [Fri06a, Thm. 1.3] says H(An,C3r )in,rd, r ≥ n, always has exactly

two components, which we can denote Hn,r,±. When p = 2, Hn,r,+ always has 2G̃(An)

as one limit group. Further, the limit groups of Hn,r,− never include 2G̃(An). Still,

as in Ex. 5.7, for which (n, r) is An a limit group? From [FK97, Obst. Lem. 3.2] (as

in Lem. 4.9), the result only depends on n: Whether there is another irreducible in

the 1st Loewy layer of M0(An). [FK97, Rem. 2.5] (based on [Ben83]) shows there

is a Frattini cover of A8 that doesn’t factor through Spin8. So, A8 is never a limit

group of H8,r,−. We know little about this for n 6∈ {4, 5, 8, 9}.

Our next example shows how significant are the cusps ppp′k in the braid from pppk to ppp′k
in the proof of Prop. 5.5. The topic shows how one MT produces an infinite number

of closely related situations contrasting the field of moduli and the field of definition

of covers corresponding to points on tower levels.

Example 5.9(Moduli field versus definition field). — Recall the cusps ppp′k achieved

from braiding from H-M cusps in the proof of Prop. 5.5. These and the H-M cusps

are are the only real (coordinates in R) cusps on the (A5,C34 , p = 2) MT at level

k > 0. Let Rk → Gk(A5) be the representation cover antecedent (§4.2.2) to the Schur

multiplier of A5.

Regard the branch as defined over R. Then, R points over any 1 < j < ∞ in

the real component abutting to pppk represent covers in Ni(Rk,C34) whose field of

definition is R equal to its field of moduli. By contrast, with similar words concluding

“real component abutting to ppp′k” (not pppk) here the moduli field is R, but it is not a

definition field [BF02, Prop. 6.8].

5.3. Chances for a genera formula. — Ques. 3.2 asks if a g-p′ cusp branch

represented by B = {kggg ∈ Ni′k}
∞
k=0 (notation like that of Princ. 3.5) can deliver

an analytic expression for genera akin to that for a modular curve tower. Further,

Prop. 5.5 supports why we expect to be able to braid from a g-p′ cusp at level 0, in

numbers increasing with k, a collection of p cusps resembling those on modular curve

towers (as in [Fri05a, Talk 1]). §5.3.1 lists the challenges for this. §5.3.2 suggests

simplifying to a, still valuable, abelianized version.
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5.3.1. Challenging a genera formula. — Our examples show Ques. 3.2 is difficult.

(5.8a) Are there o-p′ cusps in the orbit of kggg?

(5.8b) For k >> 0 are there any p-cusps in the orbit of 0ggg. If so, given how many

there are at level 0; how many will there be at level k?

(5.8c) Can we separate the braid orbit of kggg from other braid orbits?

We comment on these challenges. Example of (5.8a): Prop. 3.12 gives a MT with

related pairs of g-p′ and o-p′ cusps, represented respectively by kggg and kggg
′, at every

level. Can you braid between kggg and kggg
′?

Here is an immediate case wherein we must distinguish between (5.8a) and (5.8b).

If oggg = (g1, g
−1
1 , g2, g

−1
2 ) is an H-M rep., there are two possibilities since 〈g1, g2〉 = G0:

Either this is a p cusp or it is an o-p′ cusp. For the latter, we guess at high levels

that either the only cusps above it are p cusps. Princ. 4.24 presents this possibility

(contrary to Conj. 1.6):

(5.9) There is an infinite branch on the MT, (G0,C
′, p) with C′ the conjugacy

classes of g1, g2 and g1g
−1
2 .

Having such a branch is equivalent to having the homomorphism ψ′ : Mggg′ → G0

defined by ggg′ = (g1, g2, (g1g2)
−1) extending to ψ̃′ : Mggg′ → pG̃. [Fri06b] notes a

necessary condition from the genus of the 3 branch point cover X → P1
z representing

ψ′. It must exceed the rank of ker(pG̃ → G0). Apply (5.9) to the example of §4.6.2,

with Ni(A5,C±53). The genus g of the corresponding X satisfies

2(60 + g − 1) = 2(60/5) · 4 + (60/3) · 2,

so g = 9, while the rank of ker(pG̃→ G0) is 4.

Example of (5.8c): Thm. 4.12 gives examples with at least two components — one

H-M — at each higher level of a MT. The cases we give replicate (in the sense of

antecedent Schur multipliers) a two (or more) component situation at level 1. This

regularity of behavior is what we expect with g-p′ cusps. Yet, is it always like this?

5.3.2. Shimura-like levels and abelianized genera. — A level k MT component, H′k,

has above it a tower one may compare with Shimura varieties. That goes like this.

Let kerk = ker(pG̃ → Gk) (§1.1.2). The sequence of spaces comes from forming

pG̃/(kerk, kerk) = p,kG̃. This gives a p-Frattini extension of Gk by the abelian group

kerk /(kerk, kerk) = Lk, as in the proof of Lem. 4.11. The lift of g ∈ Gk to g̃ ∈ p,kG̃

gives an action of g on Lk by the conjugation by g̃.

Form the spaces {Hk,u}
∞
u≥0 corresponding to the Nielsen classes Ni(p,kG̃/p

uLk,C),

and denote by {H′k,u}
∞
u≥0 those (abelianized) components over H′k = H′k,0.

Let R′k → Gk (resp. Rk → Gk) be maximal among central, p-Frattini (resp. expo-

nent p Frattini) extensions of Gk. Then, ker(R′k → Gk) (resp. ker(Rk → Gk)) is the

maximal p quotient (resp. exponent p) of Gk s Schur multiplier. Cor. 4.19 checks for

an infinite branch above a given component by inductively checking Nielsen elements

kggg for sRk/Gk
(kggg) = 0 at successive levels for all k. §4.4.3 has examples that require

SÉMINAIRES & CONGRÈS 13
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successive checks. Finding, however, if there is a projective sequence of abelianized

components requires only one lifting invariant check.

Theorem 5.10. — For u >> 0, H′k,u is nonempty if and only if sR′
k
/Gk

(O′) = 0 (just

one test).

Ques. 3.2 has this easier, yet very valuable, variant.

Problem 5.11(Abelianized Tower Genera). — Label the precise ingredients needed to

compute genera of the {H′k,u}
∞
u≥0 components.

6. Strong Conjecture for r = 4

Our strong Main Conjecture 6.1 is an expectation that the best MTs are akin to

those of modular curves. §6.1 shows how the MT cusp language applies to modular

curves. §6.2 strengthens that, noting cusp branches defined by g-p′ cusps and p

cusps generalize projective sequences of modular curve cusps. Finally, §6.3 starts a

discussion (continued in the appendix) on a non-modular curve MT whose low levels

have genus 0 and 1 components with worthy applications.

6.1. Initial comparison of MTs with modular curves. — Let Dpk+1 be the

dihedral group of order 2 · pk+1 with p odd.

6.1.1. The strong Main Conjecture. — [Fri05a, Lect. 1] computes the genera of the

modular curves X0(p
k+1) and X1(p

k+1) as MT levels. Example: X1(p
k+1), defined

by Ni(Dpk+1 ,C24)in,rd with C2 the involution class, has these properties.

(6.1a) There is one M̄4 orbit.

(6.1b) We inductively compute all cusps at level k using an H-M rep. (width pk+1),

and the shift of H-M rep. cusps are g-p′ cusps of width 1.

(6.1c) γ′0 or γ′1 have no fixed points.

(6.1d) Q′′ (§2.4.1) acts trivially at all levels.

[FS06, Prop. 8.4] generalizes (6.1c) and (6.1d). This is the MT version of Serre’s

abelian variety lemma: (roughly) among automorphisms, only the identity fixes many

torsion points. Use the notation of §4.1.3 for a MT of rank u ≥ 0. Again, assume

r = 4 for these MTs.

Conjecture 6.1(Strong Main Conjecture). — PC Version: Over all p 6∈ PC, for only

finitely many V ∈ Vp(J), does H(V ×sJ,C)in,rd have genus 0 or 1 components.

There is a P ′
C

version, though the weak Conjecture and Conj. 6.1 imply it.

Conjecture 6.2(Mazur-Merel Version of the strong Main Conjecture)
With hypotheses of Conj. 6.1, over all p 6∈ PC, for only finitely many V ∈ Vp(J),

does H(V ×sJ,C)in,rd have a rational point.
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6.1.2. Comparison with the Strong Torsion Conjecture. — The following observation

generalizing [BF02, Thm. 6.1] appears in [Cad05b, Prop. 4.10]. For the MT of

(G,C, p), the (weak) Main Conjecture for all values of r follows from Conj. 6.3, called

by [Sil92] and [KW98] the Strong Torsion Conjecture. Let K be a number field.

Conjecture 6.3(STC). — For g, d ≥ 1, there exists n(g, d) ≥ 1 with this property. If

n ≥ n(d, g), then there are no dimension g abelian varieties A defined over K, with

[K : Q] ≤ d, and having a K torsion point of order n.

By contrast, the weak conjecture for the MT given by (Dp,C2r , p) (necessarily for

a nonempty MT, r = 2g + 2 ≥ 4 is even) is equivalent to the following.

Conjecture 6.4. — For k large there is no cyclic group C ∼= Z/pk+1 of torsion on a

hyperelliptic Jacobian of genus g for which GK acts on C through its cyclotomic

action on 〈e2πi/p
k+1

〉 [DF94, §5.2].

Further, the Strong Main Conjecture for a higher rank MT doesn’t follow from

Conj. 6.3 because the genus of the curves (and so the dimension of the Jacobians) in

question grows with primes p.

6.2. Modular curve comparison for Serre’s OIT. — Principles 3.6 and 4.24

help toward describing all branches in CG,C,p. This guides the strong Conjecture in

how it might effectively generalize Serre’s Open Image Theorem (OIT) [Ser98].

6.2.1. Frattini properties in the OIT. — Here are significant OIT ingredients.

(6.2a) Acting by GQp
on projective systems of points in neighborhoods of H-M

reps. on {X1(p
k+1)}∞k=0 gives a transvection in the projective sequence of

monodromy inertia groups.

(6.2b) The geometric monodromy group, PSL2(Z/p
k+1), for X1(p

k+1) → P1
j is a

p-Frattini cover of the monodromy at level 0 if p 6= 2 or 3.

Here is how (6.2b) works (p is odd). Let {pppk ∈ X0(p
k+1)}∞k=0 be a projective

sequence of points over j′ ∈ F . Then GF acts on these to give a map

GF
ψ2,j′

−→ lim
∞←k

GL2(Z/p
k+1)/{±I2} = GL2(Zp)/{±I2}

Det
−→GL1(Zp).

The induced map ψ1,j′ : GF → GL1(Zp) is onto an open subgroup because (es-

sentially) all the roots of 1 are present in the field generated by the division points

on elliptic curves. This deduction interprets from the Weil pairing on elliptic curves.

This is an alternating pairing on pk+1 division points into pk+1th roots of one —

interpreted as the cup product pairing from 1st (`-adic, but ` = p) cohomology to the

2nd `-adic cohomology. Rem. A.2 states the MT version of this.

Let G0
F be the kernel of ψ1,j′ . Consider the restriction ψ0

2,j′ : G0
F → PSL2(Zp),

and composite by going mod p to get ψ0
2,j′ mod p : G0

F → PSL2(Z/p).

SÉMINAIRES & CONGRÈS 13
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Result 6.5. — For p 6= 2 or 3, if ψ0
2,j′ mod p is onto, then ψ0

2,j′ : G0
F → PSL2(Zp) is

onto. If p = 3 (also for p = 2), and ψ0
2,j′ mod p2 is onto, then so is ψ0

2,j′ .

Comments. — First: The mod p map PSL2(Zp) → PSL2(Z/p) is a Frattini cover if

p 6= 2 or 3 [Ser98, IV-23 Lem. 2]. It isn’t, however, the universal p-Frattini cover

of PSL2(Z/p), ever! For example, consider the case p = 5: PSL2(Z/p) = A5. Then,

M0 = ker(G5,1(A5) → A5) (notation of §1.1.2) is a rank 6, A5 module. It fits in

a nonsplit short exact sequence 0 → M ′ → M0 → M ′ → 0 with M ′ the adjoint

representation of PSL2(Z/5) (on 2 × 2 trace 0 matrices [Fri95, Rem. 2.10]).

For p = 3, PSL2(Z/3) is not simple. Yet, PSL2(Z3) → PSL2(Z/3
2) is Frattini.

[Wei04, Thm. C] computes the rank of ker(Gp,1(PSL2(Fq)) → PSL2(Fq)) when

Fq is the finite field of order q = pu. The adjoint representation appears a lot. This

also computes this characteristic rank for the other primes dividing |PSL2(Fq)|, giving

important empirical data for effective computation of Frattini ranks.

Let Rq be the Witt vectors for Fq. [Völ95, §4] notes that GLn(Rq) → GLn(Fq) is a

Frattini cover so long as p > 2 does not divide n, and if p = 3, n ≥ 4. [Vas03, §4] uses

this Frattini principle in the full context of Shimura varieties, continuing the tradition

of [Ser98]. Those with Shimura variety experience know that the semi-simple groups

that arise, generalizing the PSL2 case (symplectic groups, for example), are from a

moduli problem on abelian varieties.

Remark 6.6. — It is elementary that ψ0
2,j′ mod p (in Res. 6.5) is onto for a dense set

j′ in any number field. For p 6= 2 or 3, just apply Hilbert’s Irreducibility Theorem to

the irreducible cover X0(p) → P1
j (for p = 3, to X0(p

2) → P1
j).

6.2.2. F(rattini)-quotients of MTs. — Consider a rank u MT from Fu ×sJ and 4

conjugacy classes in J (§4.1.3). For p 6∈ PC, assume G̃∗ = V ∗ ×sJ ∈ GJ,p is a C

p-Nielsen limit. That means there are projective systems of {gggV ∈ Ni(V ×sJ,C)}′

with ′ indicating running over finite J quotients of V ∗ covering Z/pu. This projective

system defines a cusp branch.

By taking braid orbits, these define a projective system of MT components on the

full component graph T f
Z/pu×sJ,C,p. Use our previous notation B for a cusp branch

and B′ for the component branch B defines. For a J quotient V of V ∗ use BV and

B′V for the corresponding cusp gggV and its component. Let FC be the definition field

of all the inner reduced Hurwitz spaces H(Gk((Z/p)
u) ×sJ,C)in,rd as in §3.1.1. To

simplify, assume FC = Q.

Definition 6.7. — Suppose V0 is a J quotient of (Z/p)u. We call the MT for (V0 ×s

J,C, p) an F-quotient of the MT for ((Z/p)u×sJ,C, p). Then, there is a natural map

from T f
Z/pu×sJ,C,p to T f

V0×sJ,C,p (on cusps also) induced by the map

H((Z/p)u ×sJ,C)in,rd → H(V0 ×
sJ,C)in,rd

def
= HV0 .
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We will refer to B′V on branch B′ as if it is the corresponding Hurwitz space. Also,

for V1 → V2 a homomorphism of J groups, denote the corresponding Hurwitz space

map as B′V1
→ B′V2

. Let GV be the geometric monodromy group of B′V → P1
j .

In the best circumstances for the cusp branch B, as in §1.3, we expect this.

(6.3a) Computable Qp action: We can decipher the GQp
orbit on B.

(6.3b) Branch Frattini Property: Excluding finitely many V2 corresponding to B′V2

on the branch B′, all the maps GV1 → GV2 are p-Frattini covers.

(6.3c) Smooth genera: The genera of B′V should have a modular curve-like formula,

coming from clear understanding of g-p′ and p-cusps on B′.

§6.2.4 notes results on the R and Q` nature of cusp branches, extending (6.3a).

6.2.3. More on Branch Frattini propery (6.3b). — A weaker version of (6.3b) would

assert that GV1 → GV2 is a p-group. In turn this implies all ramification groups are

p-groups, and Lem. 3.8 (condition (3.6b)) implies exactly that.

Property (6.3b) is an analog of Serre’s use of the p-Frattini property. We expect

something like it for all reasonable MTs. For example, suppose we have a g-p′ (or

even, shift of an H-M) cusp on a MT. Then, we expect the geometric monodromy

groups Gk of H̄(Gk(G),C) → P1
j to satisfy (6.3b).

That is, for k0 large and k ≥ k0, Gk → Gk0 should be a p-Frattini cover.

For certain, however, we can’t always take k0 = 0. For example, for the MT for

(A5,C34 , p = 2) we have these facts. This continues Ex. 4.13, Ex. 4.21, §4.6.1,§5.2.2,

Ex. 5.9 and §6.2.3.

(6.4a) There is exactly one H-M component B′1 at level 1.

(6.4b) the degree of B′1 → B′0 is 16, but

(6.4c) |H1,0|= | ker(G1 → G0)|= 3 · 26 with an S3 at the top [BF02, App. A].

So, H1,0 is not even a two group. We use proofs, not GAP calculations, so we know

why this is happening. Prob. 6.8 starts with a fixed g-p′ branch (as in §B).

Problem 6.8. — Show Hk+1,k = ker(Gk+1 → Gk) is a 2-group (resp. p-group) for

large k for the (A5,C34 , p = 2) (resp. ((Z/p)2 ×sZ/3,C±32 , p 6= 3) MT.

My thinking (6.3b) might hold came from [Iha86] (even though Ihara has p-groups,

the opposite of p-perfect groups).

Of course, if we knew explicitly the subgroups of PSL2(Z) defining the MT levels

that would answer Prob. 6.8. Even one other case than modular curves where we

could test these problems would be reassuring. In fact, [Ber99] almost includes the

non-trivial F-quotient of ((Z/p)2 ×sZ/3,C±32 , p ≡ 1 mod 3). Only, he has taken for

C the repetition 3 times of one conjugacy class, and the other just once? He uses

the Bureau representation of the braid group to effect his calculation. It promises

answering such questions as Prob. B.5 for at least this non-modular curve situation.
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6.2.4. Complete fields and tangential base points. — Suppose B is a cusp branch.

Much work on the Inverse Galois Problem is appropriate for service to this problem.

Problem 6.9. — What do we need to know to detect when B is a projective sequence

of Q` cusps, ` 6= p (including ` = ∞)?

The effective computation for R points on Hurwitz spaces in [FD90] works to

analyze higher MT levels (as in [BF02, §6], especially see the use made in Ex. 5.9).

The model for Q` has followed this. It is necessary for a positive answer to Prob. 6.9

that the manifolds H̄′k have definition field Q`.

The basic proposition in that direction is [Fri95, Thm. 3.21]. It says: If all H-M

reps. in the Nielsen classes for level k lie in one braid orbit (so all the H-M cusps

lie on H̄′k) then H̄′k has definition field Q. Further, it gives a criterion for this to

happen at level 0 that implies it automatically at all other levels. Then, Harbater

patching applies to produces a projective sequence of Q` cusps on {H̄′k}
∞
k=0. [Dèb06,

Thm. 2.7] has a precise statement from [DD04].

[DE06] redoes the author’s result using a more classical compactification. One

problem: When r = 4, the criterion of [Fri95, Thm. 3.21] never applies. An example

failure is the two H-M components at Level 1 in §6.4.5 (see Rem. 6.11).

So, we require deeper methods to analyze the definition field of a component branch

and its cusps when r = 4. Based on [IM95] and [Wew02], [BF02, App. D.3]

describes a method that will work with sufficient grasp of the group theory and use

of an especially good cusp branch.

Again, B is a g-p′ cusp branch, defining a component branch B′ on a MT. The

desired archetype for a tangential base point comes from X0(p
k+1). We identify this

space with H(Z/pk+1 ×s Z/2,C24)abs,rd; the absolute reduced Hurwitz space related

to the nontrivial F-quotient in Serre’s OIT. The unique cusp of width pk+1 identifies

with the unique H-M cusp, and so it has Q as definition field.

In the now classical picture, points on the space approaching this cusp preciously

go to a controlled p-catastrophe. A p-adic power series representing j, parametrizes

a Tate curve (p-adic torus) degenerating with j 7→ ∞ (p-adically).

Generalizing such constructions to g-p′ cusps cannot be trivial. Yet, the appa-

ratus for exploiting them as Serre does in [Ser98, IV.29–IV.45] is already in the

Grothendieck-Teichmüller motivated formulas of Ihara-Matsumoto-Wewers ([IM95],

[Wew02]; [BF02, App. D] discusses this). Making it work, à la [Nak99], in our

more general situation requires a dedicated project. Deciding the definition field of

the two genus 1 components in (6.11b) is a practical example of its value.

The groups H2,3(ggg) and H1,4(ggg) give a type to g-p′ cusps. [Fri05a, Lect. 4] defines

g-p′ rep. types in Nielsen classes for any r, making sense of Prob. 6.10 for all r.
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Problem 6.10. — Show this analog of [Fri95, Thm. 3.21] for general g-p′ cusp branches

of a given type holds. If there are finitely many (resp. one) braid orbit of this type,

then GF has a finite orbit (resp. is fixed) on their component branch(s).

Remark 6.11. — Examples show that outer automorphisms of Gk can conjugate dis-

tinct H-M components on H(Gk,C) ((6.11) and [BF02, §9.1]). Is this is a general

phenomenon? Nor do we know if there are always, modulo braiding, just finitely

many GF orbits of H-M reps. This consideration makes sense for all g-p′ cusps.

6.3. F2 ×sZ/3, p = 2: Level 0, 1 components. — Components on these levels

bring up deeper aspects of complex multiplication and the inverse Galois problem.

This example shows how such tools as the sh-incidence matrix can identify compo-

nents at a MT level. We now explain why at level 0 there are two components:

H(F̃2,2/Φ
1 ×sJ3,C±32)in,rd = H+

0 ∪H−0 .

Both have genus 0, and H+
0 is an H-M component. The other has nontrivial lifting

invariant; there is nothing above it at level 1. Though both are families of genus 1

curves, and upper half plane quotients, neither is a modular curve.

6.3.1. Setting up reduced Nielsen classes. — This Nielsen class has G = A4 with

C±32 as two pairs of 3-cycles in each of the conjugacy classes with order 3. First look

at the situation with A3 replacing A4.

The total Nielsen class Ni(A3, C±32)in contains six elements corresponding to the

six possible arrangements of the conjugacy classes. Since A3 is abelian, the inner

classes are the same. Also, the outer automorphism of An (n = 3 or 4) from con-

jugation by (1 2) ∈ Sn restricts to A3 to send a conjugacy class arrangement to its

complement. Here is a convenient list of the arrangements, and their complements:

[1] + − + − [2] + + −− [3] + −− +

[4] − + − + [5] −− + + [6] − + + −.

The group Q′′ = 〈q1q
−1
3 , sh2〉 equates elements in this list with their complements.

So, inner reduced classes and absolute (not reduced) classes are the same. Conclude:

H(A3,C±32)in,rd → P1
j is a degree three cover with branch cycles

(γ∗0 , γ
∗
1 , γ
∗
∞) = ((1 3 2), (2 3), (1 2)).

Check easily: If (g1, . . . , g4) maps to [1], and (with no loss) g1 = (1 2 3), then either

this is ggg1,1 (in (6.5)) or g1g2 has order 2. Listing the four order 2 elements gives a

total of five elements in the reduced Nielsen class Ni(A4,C±32)in,rd lying over [1].

6.3.2. Effect of γ∞ on Ni(A4,C±32)in,rd. — Start with an H-M rep over [1] in A3:

(6.5) ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3)) ∈ Ni(A4,C±32).

The middle twist squared on this conjugates the middle two by (1 4)(2 3) to give

ggg1,2 = ((1 2 3), (4 2 3), (4 2 1), (1 4 3)).
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The result is a γ∞ orbit of length 4. The middle twist squared on

ggg1,3 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2))

leaves it fixed, giving a γ∞ orbit of length 2. Similarly, the square of the middle twist

on ggg1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4)) conjugates the middle pair by (1 3)(2 4) pro-

ducing ggg1,5 = ((1 2 3), (1 2 4), (2 4 3), (1 4 3)). Again the middle twist gives an element

of order 4 on reduced Nielsen classes.

The H-M rep. ggg3,1 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4)) ∈ Ni(A4,C±32) maps to [3] in

A3. Applying γ∞ gives ggg3,2 = ((1 2 3), (1 2 4), (1 3 2), (1 3 4)), the same as conjugating

on the middle two by (2 4 3). The result is a length 3 γ∞ orbit.

On Nielsen class representatives over [3], γ∞ has one orbit of length 3 and two of

length one. See this by listing the second and third positions (leaving (1 2 3) as the

first). Label these as

1′ = ((1 3 2), (1 4 3)), 2′ = ((1 2 4), (1 3 2)), 3′ = ((1 2 4), (2 3 4)),

4′ = ((1 2 4), (1 2 4)), 5′ = ((1 2 4), (1 4 3)).

6.3.3. Using Wohlfahrt’s Theorem. — For Φrd : Hrd → U∞, one of our reduced

Hurwitz space covers, let Γ ≤ SL2(Z) define it as an upper half-plane quotient H/Γ

(§2.3.1). Now let NΓ be the least common multiple (lcm) of its cusp widths. Equiva-

lently: NΓ is the lcm of the ramification orders of points of the compactification H̄rd

over j = ∞; or the lcm of the orders of γ∞ on reduced Nielsen classes.

Wohlfahrt’s Theorem [Woh64] says Γ is congruence if and only if Γ contains the

congruence subgroup, Γ(NΓ), defined by NΓ. We have a situation with a modular

curve-like aspect, though we find these j-line covers aren’t modular curves by seeing

the cusps fail Wohlfahrt’s condition. Here is our procedure.

Compute γ∞ orbits on Nird. Then, check their distribution among M̄4 = 〈γ∞, sh〉

orbits (Hrd components). For each Hrd component H′, check the lcm of γ∞ orbit

lengths to compute N ′, the modulus if it were a modular curve. Then, see whether

a permutation representation of Γ(N ′) could produce Φ′ : H′ → P1
j , and the type of

cusps now computed. Denote Spin4 (§2.1) by Â4.

Use notation ending §6.3.2. Note: Neither of Hin,rd,±
0 have reduced fine moduli.

The Nielsen braid orbit for Hin,rd,−
0 (resp. Hin,rd,+

0 ) fails (6.6a) (resp. and also (6.6b)):

(6.6a) Q′′ has length 2 (not 4 as required in (3.6a)) orbits; and

(6.6b) γ1 has a fixed point (Lem. 6.13; contrary to (3.6b)).

Proposition 6.12. — Then, γ∞ fixes 4′ and 5′ and cycles 1′ → 2′ → 3′. So there are

two M̄4 orbits on Ni(A4,C±32)in,rd, Ni+0 and Ni−0 , having respective degrees 9 and 6

and respective lifting invariants to Â4 of +1 and −1. The first, containing all H-M

reps., has orbit widths 2,4 and 3. The second has orbit widths 1,1 and 4. Neither

defines a modular curve cover of P1
j .
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Denote the corresponding completed covers ψ̄±0 : H̄in,rd,±
0 → P1

j . Both H̄in,rd,±
0 have

genus 0. Both have natural covers µ̄± : H̄in,±
0 → P1

j by completing the map

(6.7) ppp ∈ Hin,rd,±
0 7→ β(ppp)

def
= j(Pic(Xppp)

(0)) ∈ P1
j .

Then, this case’s identification of inner and absolute reduced classes gives

(6.8) ppp ∈ Hin,rd,±
0 7→ (j(ppp), j(Pic(Xppp)

(0))),

a birational embedding of H̄in,rd,±
0 in P1

j × P1
j .

If we denote the corresponding H4 orbits on Ni(A4,C±32)in by Niin,±, then Q′′

orbits on both have length 2.

6.4. Proof of Prop. 6.12. — This proof takes up the next four subsections.

6.4.1. γ∞ orbits on Ni(A4,C±32)in,rd. — First: γ∞ fixes 4′ and it maps 5′ to

((1 2 3), (2 3 4), (1 2 4), (3 1 2)) (conjugate by (1 2 3) to 5′).

These computations establish the orbit lengths:

(g1,1)γ∞ = ((1 2 3), (1 4 2), (1 3 2), (1 4 3)) = (3′)sh,

(g1,3)γ∞ = ((1 2 3), (1 4 2), (1 2 4), (1 3 2)) = (1′)sh.

They put the H-M rep. in the M̄4 orbit with γ∞ orbits of length 2,3 and 4 (in the

orbit of the 1′ → 2′ → 3′ cycle). Use Ni+0 for the Nielsen reps. in this M̄4 orbit.

6.4.2. Graphics and Computational Tools: sh-incidence. — The sh-incidence matrix

of Ni+0 comes from the following data. Elements ggg1,1, ggg1,2, ggg1,3 over [1] are permuted

as a set by sh. They map by γ∞ respectively to ggg2,1, ggg2,2, ggg2,3 over [2]. Under γ∞
these map respectively to ggg1,2, ggg1,1, ggg1,3, while ggg3,1, ggg3,2, ggg3,3 cycle among each other.

So, there are three γ∞ orbits, O1,1, O1,3 and O3,1 on Ni+0 named for the subscripts of

a representing element.

The data above shows

|O1,1 ∩ (O3,1)sh| = 2, |O1,3 ∩ (O3,1)sh| = 1.

Compute: sh applied to ggg1,3 is ggg1,1 so |O1,1∩(O1,3)sh| = 1. The rest has two sources:

– symmetry of the sh-incidence matrix, and;

– elements in a row (or column) add up to ramification index of the cusp

labeling that row (or column).

Table 1. sh-Incidence Matrix for Ni+0

Orbit O1,1 O1,3 O3,1

O1,1 1 1 2

O1,3 1 0 1

O3,1 2 1 0
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Similarly, the sh-incidence matrix of Ni−0 comes from the following data. Elements

ggg1,4, ggg1,5 over [1] map by γ∞ respectively to ggg2,4, ggg2,5 over [2], and these map respec-

tively to ggg1,5, ggg1,4, while γ∞ fixes both ggg3,4, ggg3,5. So, there are three γ∞ orbits, O1,4,

O3,4 and O3,5 on Ni−0 .

Table 2. sh-Incidence Matrix for Ni−0

Orbit O1,4 O3,4 O3,5

O1,4 2 1 1

O3,4 1 0 0

O3,5 1 0 0

Lemma 6.13. — In general, the sh-incidence matrix is the same as the matrix obtained

by replacing sh = γ1 by γ0. Further, the only possible elements fixed by either lie in

γ∞ orbits O with |O ∩ (O)sh 6= 0|.

On Ni+0 (resp. Ni−0 ), γ1 fixes 1 (resp. no) element(s), while γ0 fixes none.

Proof. — We explain the first paragraph. From ((ggg)γ−1
∞ )γ0 = (ggg)γ1 on reduced

Nielsen classes, the range of γ0 and γ1 are the same on any γ∞ orbit. So, the sh-

incidence matrix is the same as the matrix obtained by replacing sh = γ1 by γ0.

A fixed point of γ1 = sh in O, a γ∞ orbit, would contribute to O∩(O)sh. Since the

sh-incidence matrix is the same as that for replacing γ1 by γ0, 0’s along the diagonal

also imply there is no γ0 fixed point.

We now show the statement about fixed points of γ1 = sh. Any fixed points must

come from a nonzero entry along the diagonal of the sh-incidence matrix. For Ni+0 ,

there is precisely one reduced Nielsen class ggg in O1,1 ∩ (O1,1)sh. Write ggg = (ggg′)sh.

Apply sh to both sides, and conclude (ggg)sh = ggg′. Therefore, as there is only one

element with this property, ggg = ggg′. Now return to the example details.

Apply the above to Ni−0 . Since |O1,4 ∩ (O1,4)sh = 2|, there are either two

fixed points, or none. Since sh preserves the fiber over [1], we need only check

if (ggg1,4)sh is reduced equivalent to ggg1,4. Apply q−1
1 q3 to (ggg1,4)sh: the result is

((1 2 3), (3 4 2), (1 3 4), (1 2 4)). Conjugate this by (1 2 3)−1 to get ggg1,5. So, γ1 has no

fixed points on Ni−0 . Since γ0 moves the fibers over [1], [2], [3] in a cycle, it fixes no

Nielsen class elements.

We know the degrees of ψ̄±o are respectively 9 and 6. Lem. 6.13 gives the genus g±0
of H̄in,±

0 from Riemann-Hurwitz:

(6.9)
2(9 + g+

0 − 1) = 3 · 2 + (9 − 1)/2 + (1 + 2 + 3) = 16, or g+
0 = 0;

2(6 + g−0 − 1) = 2 · 2 + 6/2 + 3 = 10, or g−0 = 0.

Remark 6.14. — In the M̄4 orbit on Niin,−0 there is a nonzero diagonal entry, though

neither γ0 nor γ1 has a fixed point in the corresponding γ∞ orbit.
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6.4.3. Checking sÂ4/A4
of §4.2 on two M̄4 orbits. — Apply sh to 4′. This shows

g1,4, g1,5, 4
′, 5′ all lie in one M̄4 orbit. Any H-M rep. has lifting invariant +1, and

since it is a M̄4 invariant, all elements in Ni+0 have lifting invariant +1. For the other

orbit, we have only to check the lifting invariant on 4′, written in full as

ggg1,4 = ((1 2 3), (1 2 4), (1 2 4), (4 3 2)) = (g1, . . . , g4).

Compute the lifting invariant as ĝ1ĝ2ĝ3ĝ4. Since g2 = g3 (and their lifts are the same),

the invariant is ĝ1ĝ
2
2 ĝ4. Apply Prop. 4.27 (not necessary, though illuminating). The

genus zero hypothesis for a degree 4 cover holds for ((1 2 3), (1 4 2), (4 3 2)):

sÂ4/A4
(ggg1,4) = (−1)3·(3

2−1)/8 = −1.

6.4.4. Why H±0 aren’t modular curves. — From §6.3.3, if the degree nine cover is

modular, the monodromy group of the cover is a quotient of PSL2(12). If the degree

6 orbit is modular, the monodromy group is a quotient of PSL2(4). Since PSL2(Z/4)

modular curve has the λ-line as a quotient, with 2,2,2 as the cusp lengths, these cusp

lengths are wrong for the second cover to correspond to the λ-line. Similarly, for the

degree nine cover, as PSL2(Z/12) has both PSL2(Z/4) and PSL2(Z/3) as a quotient,

the cusp lengths are wrong.

We can check the length of a Q′′ orbit on Niin,+0 and Niin,−0 by checking the length

of the orbit of any particular element. If an orbit has an H-M rep. like ggg1,1 it is always

convenient to check elements of Q′′ on it:

(6.10)
(ggg1,1)sh

2 = (1 3)(2 4)ggg1,1(1 3)(2 4) and;

(ggg1,1)q1q
−1
3 = (1 3)ggg1,1(1 3).

The top line of (6.10) says sh2 fixes ggg1,1. The bottom line, however, says (ggg1,1)q1q
−1
3

is absolute, but not inner equivalent to ggg1,1. For Niin,−0 , ggg1,4 is transparently fixed by

sh2, and (ggg1,4)q1q
−1
3 = (3 4)ggg1,4(3 4). Conclude the orbit length of Q′′ on both Niin,+0

and Niin,−0 is 2.

We finish Prop. 6.12 by producing the map β in (6.8), and thereby concluding

Prop. 6.15. Each ppp ∈ H(F̃2,2/Φ
1×sJ3,C±32)abs,rd gives a degree 4 cover ϕ : Xppp → P1

z

with four 3-cycle branch points. From R-H, the genus g of Xppp satisfies 2(4+g−1) = 8,

or g = 1. It may not, however, be an elliptic curve, though its degree 0 Picard variety

Pic(Xppp)
(0) is. Define β by taking its j-invariant.

Proposition 6.15. — The absolute space H(F̃2,2/Φ
1×sJ3,C±32)abs,rd at level 0 embeds

in P1
j × P1

j , but is not a Modular curve. So, André’s Thm. [And98] says it contains

at most finitely many Shimura-special points (unlike the J2 case).

Conjecture 6.16. — The conclusion of Prop. 6.15 is true for all other p 6= 3.

Yet, we have a problem: What does Shimura special mean when p 6= 2 or 3?
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6.4.5. Level 1 of (A4,C±32 , p = 2). — Level 1 of the MT covers H+
0 :

H(F̃2,2/Φ
2 ×sJ3,C±32)in,rd → H+

0 .

We know level 1 has two genus 0 components, H−,c1 ,H−,c
′

1 , complex conjugate and

spin obstructed; two genus 3 components, H+,3
1 ,H−,31 , one spin obstructed, the other

obstructed by another Schur multiplier; and two genus 1 components, H+,β
1 , H+,β−1

1

both H-M comps [FS06].

Significance of H+,β
1 , H+,β−1

1 :

(6.11a) Out(F̃2,2/Φ
2 ×sJ3) conjugates H+,β

1 toH+,β−1

1 .

(6.11b) The following are equivalent for K ≤ R a number field [BF02, Ex. 9.2].

– There are ∞-ly many (reduced inequivalent – §2.3.1) 4 branch point,

K regular realizations of the 2-Frattini extension G1(A5) of A5.

– H+,β
1 has ∞-ly many K points.

Appendix A

Nielsen classes for F2 ×
sZ/2

§A.1 does the Nielsen class version of all modular curves, by considering them

coming from a rank 2 MT. Prop. A.1 shows there is a unique limit group (Zp)
2×sZ/2

— not the whole universal p-Frattini cover — for each p 6= 2. Then, §A.2 shows the

Heisenberg group kernel acts here as a universal obstruction, running over all odd p.

A.1. Limit groups for the rank 2 MT of modular curves. — Following §6.2.2,

we consider the nonempty Nielsen classes of the form Ni(V ×sZ/2,C24), V ∈ V ′p (a

nontrivial F̃2,p quotient on which Z/2 acts, as in §4.1.3). The following formalizes an

argument of [Fri95, p. 114]. Form the projective completion of

K4 = 〈σσσ = σ1, . . . , σ4 mod σ1σ2σ3σ4 = 1 (product-one)〉.

Denote the result by K̂σσσ. Use the notation of §1.1.2.

Proposition A.1. — Let D̂σσσ (compatible with Cor. 4.19) be the quotient of K̂σσσ by

σ2
i = 1, i = 1, 2, 3, 4 (so σ1σ2 = σ4σ3).

Then,
∏

p6=2 Z2
p ×

sJ2 ≡ D̂σσσ and Z2
p ×

sJ2 is the unique C24 p-Nielsen class limit.

The component graph of Cf(Z/p)2×sZ/2,C
±32 ,p

(Z2
p ×

sJ2) (as in §4.1.1) is a principle

homogeneous space for G(Qcyc/Q).

Proof. — We show D̂σσσ is Z̃2×sJ2; σ1σ2 and σ1σ3 are generators of Z̃2; and then that

σ1 acts on Z̃2 by multiplication by −1.
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First: σ1(σ1σ2)σ1 = σ2σ1 shows σ1 conjugates σ1σ2 to its inverse. Also,

(σ1σ2)(σ1σ3)=(σ1σ3)σ3(σ2σ1)σ3 =(σ1σ3)(σ1σ2)

shows the said generators commute. The maximal possible quotient is Z2
p ×

s{±1}.

Now we show for G = V ×s J2, V a nontrivial quotient of Z2
p, that Ni(G,C24)

is nonempty. Use a cofinal family of V s, (Z/pk+1)2, p 6= 2. Two proofs, one pure

Nielsen class, the other with elliptic curves, appear in [Fri05b, §6.1.3]. That shows

Z2
p ×

s{±1} is a limit group.

Uniqueness of the limit group does follow if we know there is just one braid orbit

on the respective inner Nielsen classes. Alas, that isn’t so.

To finish we use absolute Nielsen classes as an aid. Apply the elementary divisor

theorem to (Zp)
2: Up to change of basis we may assume V = Zp/p

u1 × Zp/p
u2 with

u1 ≤ u2. If u1 = 0, [Fri78, p. 156] shows there is just one braid orbit: in agreement

with identifying H(Dpu2+1 ,C±32)in,rd with the irreducible modular curve Y1(p
k+1).

This argument also applies to the general case to reduce to when u1 = u2. That

case is the first two paragraphs of the proof of [Fri05b, Prop. 6.3]. Its essential gist,

where abs refers to modding out by GL2(Z/p
u+1) on Nielsen classes:

(A.1a) There is just one element in Ni((Z/pu+1)2 × Z/2,C±32)abs,rd;

(A.1b) each of the ϕ(pu+1)/2 inner classes defines a unique component of

H((Z/pu+1)2 × Z/2,C±32)in,rd; and

(A.1c) the classes of (A.1b) are conjugate under the action of G(Q(e2πi/p
u+1

)/Q).

With u varying this gives the last statement of the result.

Remark A.2(Comments on(A.1b) and (A.1c)). — Use the notation above. Excluding

multiplication by -1, the outer automorphisms (Z/pk+1)2×s(Z/pk+1)∗ of (Z/pk+1)2×s

{±1} act through GL2/SL2 on (Z/pk+1)2. By contrast the H4 action is through

SL2(Z/p
k+1) (explicitly in the proof). That is why you can’t braid between The

components of H((Z/pk+1)2 ×sZ/2,C24)in,rd. Yet, they form a single orbit under

G(Q(cos(2π/pk+1))/Q). This is the Hurwitz space interpretation of the Weil pairing.

The group (Z/p)2 ×sJ2 has quotients of the form Z/p×sJ2 = G∗. Corresponding

to that Z2
p×

sJ2 has the universal p-Frattini cover Z/p×sJ2 of G∗ as a quotient. This

is the source of the complex multiplication situation in Serre’s OIT (§6.2).

A.2. Heisenberg analysis of modular curve Nielsen classes. — We briefly

remind the reader of Loewy layers and apply Jenning’s Thm. in §A.2.1. Then, §A.2.2

applies this to explain a universal obstruction from a Heisenberg group.

A.2.1. A Loewy layer example. — [Ben91, p. 3] explains Loewy layers of a Z/p[G]

module M , though with no examples. Most readers won’t realize they are almost

always hard to compute (if p||G|).

Let JG,p = J be the intersection of the maximal left (or right) ideals of Z/p[G]:

The Jacobson radical of Z/p[G]. The basic lemma is that M/JG,pM , the first Loewy

SÉMINAIRES & CONGRÈS 13
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layer of M , is the maximal semi-simple quotient of M for the action of G. Then, to

continue the series inductively apply this with JG,pM replacing M .

Usually, however, this is far less information than you want. [Fri95, Part II] is

where I needed modular representations for the first time. This explains the following

point: Knowing M from its Loewy layers requires adding info on the nonsplit subquo-

tients M ′ of M of the form 0 → S1 → M ′ → S2 → 0 with S1 (resp. S2) irreducibles

in the ` + 1st) (resp. `th) Loewy layer. An arrow from the ` + 1st at S1 to a copy

of S2 in the `th Loewy layer represents M ′. These arrows give (anti-)directed paths

from layer 1 to any other layer `.

For G a p-group, and M = Z/p[G], J is the augmentation ideal:

ker
(

∑

g∈G

agg 7→
∑

g∈G

ag

)

.

Jenning’s Thm. [Ben91, Thm. 3.14.6] (based on [Qui68]) gives Loewy layer dimen-

sions with a Hilbert polynomial HG(t) (variable t). The only p-group irreducible is

111G. So, add the Loewy arrows from levels `+ 1 to ` and we know everything.

Let F †u(G) = {g ∈ G | g − 1 ∈ Ju}. So, F †1(G) = G. Then, the input for HG(t)

consists of the dimensions n1, n2, . . . , nu, . . . of the graded pieces of a Lie algebra

due to Jenning’s. The uth graded piece is F †u/F
†
u+1. Part of the proof shows

F †u is generated by commutators and pth powers from F s with lower subscripts. In

particular, if G = (Z/p)n, then n1 = n and F †u/F
†
u+1 is trivial for u ≥ 2. So, the

general expression
∏

u≥1(
1−tpu

1−tu )nu becomes just H(Z/p)n(t) = (1−tp

1−t )n.

Lemma A.3. — Then, H(Z/p)2(t) = (1+t+· · ·+tp−1)2 and the respective Loewy layers

of Z/p[(Z/p)2] have the dimensions 1, 2, . . . , p, p − 1, . . . , 1. Given generators x1, x2

of the Z/p module (Z/p)2, the symbols xα1x
`−α
2 , 0 ≤ α, `−α < p represent generators

of copies of 111 at Loewy layer `. Arrows from 111 associated to xα1x
`−α
2 go to copies of 111

associated to xα1 x
`−1−α
2 and to xα−1

1 x`−α2 under the above constraints.

Proof. — Calculate the coefficients of (1 + t+ · · ·+ tp−1)2 to see the numerical series

correctly expresses the dimensions. The Loewy arrow statements come from identify-

ing those subquotients of R = Z/p[G] that are module extensions of 111 by 111. For this

use the Poincaré-Birkoff-Witt basis for the universal enveloping algebra of R [Ben91,

p. 88].

A.2.2. A Heisenberg obstruction. — The situation of Prop. A.1 is an example of

Cor. 4.19. First, (Z × Z) ×sZ/2 is an oriented p-Poincaré duality group if p is odd:

the finite-index subgroup Z × Z is a surface group (the fundamental group of the

torus). Denote the matrix
(

1 x z
0 1 y
0 0 1

)

by M(x, y, z) and consider

HR,3 = {M(x, y, z)}x,y,z∈R,

the Heisenberg group with entries in the commutative ring R. Let H ≤ Sn. Then,

there is a 1-dimensional Z/p[Sn] (so also a Z/p[H ]) module whose action is m 7→
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(m)g = (−1)Det(g)m. Denote M by 111−. This extends to a Zp[H ] action on Zp.

Denote this module as Z−p .

In our usual notation, let G0 = (Z/2)2 ×sZ/2 and denote the 1st characteristic p-

Frattini cover ofG0 byG1. Prop. A.4 uses a universal Frattini extension. It specializes

for all odd primes p to the Z/p quotient obstructing (as in Def. 4.4) the unique braid

orbit in Ni(G0,C24) from lifting to Ni(G1,C24), as in Cor. 4.19. In fact, by pullback

we see it as the limit group obstruction in Cor. 4.20.

Proposition A.4. — The map HZ/p,3 → (Z/p)2 by M(x, y, z) 7→ (x, y) is a Frattini

extension. The p-Frattini module M0(G0) of G0 has 111G0 ⊕111−G0
⊕111−G0

at its head. The

extension defined by 111G0 gives the Heisenberg group, obstructing the MT at level 1.

Still, it gives an infinite limit group (Zp)
2 ×sZ/2 by regarding Zp × Zp as Z−p × Z−p .

Proof. — The characteristic Frattini cover ψ1,0 : G1((Z/p)
2) → (Z/p)2 factors

through ψab = (Z/p2)2 → (Z/p)2 (modding out by p). The nontrivial element of

Z/2 acts by multiplication by −1 on (Z/p2)2. In fact, ψab is the maximal abelian

extension through which ψ1,0 factors.

Loewy layers of any (Z/p)2 ×sZ/2 module are copies of 111 and 111−. So, any proper

extension of ψab through which ψ1,0 factors, also factors through ψ′ : H → (Z/p)2

with ker(ψ′) of dimension 3 and H not abelian.

We choose the Heller construction (in [Fri95, Part II], for example) to describe the

characteristic module

M0((Z/p)
2 ×sZ/2) = ker(G1((Z/p)

2 ×sZ/2) → (Z/p)2 ×sZ/2)(p odd).

Here is the rubric for this simple, though still nontrivial case. Suppose G0 is p-split:

G0 = P ∗×sH with (|H |, p) = 1 and P ∗ the p-Sylow, as in our case. Use the Poincaré-

Birkhoff-Witt basis of the universal enveloping algebra (from the proof of Lem. A.3)

to deduce the action of H from its conjugation action on P ∗. In our case, the `th

Loewy layer of Z/p[P ∗]
def
= P111, with P ∗ = (Z/p)2 consists of sums of 111 (resp. 111−)

if ` is even (resp. odd) from 0 to 2p − 2 (resp. 1 to 2p − 1). That is the projective

indecomposable module for 111.

Now list the Loewy display for the projective indecomposable modules for G0 by

tensoring the Loewy layers of the projective indecomposables for 111 with the semi-

simple modules for H [Sem, p. 737]. In our case, the semi-simples for Z/2 are just

111 and 111− giving P111 and P111− as the projective indecomposables, the latter having

the same look as the former except you switch the levels with 111 with those with 111−.

Finally, M0 is Ω2
def
= ker(ψ2 : P111− ⊕ P111− → ker(P111 → 111)) with this understanding:

ker(P111 → 111) has at its head 111− ⊕ 111− and ψ2 is the map from the minimal projective

(P111− ⊕ P111−) that maps onto ker(P111 → 111).

Using the arrows between Loewy layers that appear in Lem. A.3, we can be explicit

about constructing ψ2 (knowing the result is independent of our choices). For example,
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map the first copy of P111− in P111− ⊕ P111− so the image P ′ has 111− at its head coming

from the 3rd layer of P111− .

Then, map the second copy of P111− in P111− ⊕ P111− to see the head of the image in

ker(P111 → 111)/P ′ is 111 ⊕ 111−. These summands come from the respective 2nd and 3rd

Loewy layers of the copy of P111− . That concludes the head of M0. The rest follows by

identifying HZ/p,3 ×
sZ/2 with the quotient of G1 that extends G0 by 111G0 .

Appendix B

Nielsen classes for F2 ×
sZ/3

§6.3 used the p = 2 case of the MT with Z/3 acting on F2. §B.1 gives our

present knowledge of limit groups here. Finally, Ex. B.3 shows the effect of Schur

multiplier statements from §2.5: They account for much, but not all, of the six level

1 components for the case p = 2. §B.2 gives a meaning to complex multiplication by

considering the F-quotient from §6.2.2 when p ≡ 1 mod 3.

B.1. Limit groups for another rank 2 MT. — The next result works by proving

the existence of H-M reps. (whose shift gives example g-p′ cusps as in Ex. 3.7). So,

this produces F̃2,p ×
sJ3 as a limit group for each p 6= 3 from Princ. 3.6.

Recall the action of α from (4.1b). It induces the matrix
(

0 −1

1 −1

)

, with charac-

teristic polynomial x2 + x + 1, on the (Z/p)2 quotient of F2. Denote F2/(F2, F2) by

L2 and its completion at p by L2,p.

Proposition B.1. — The (A4,C±2) MT for p 6= 3 has F̃2,p×
sJ3 as a limit group. For

p = 2, the (A4,C±2) MT also has L2,p ×
sJ3 as a limit group.

Proof. — Let G = Gp = (Z/p)2 ×sJ3: 〈α〉 = J3. We find

g1 = (α,vvv1) and g2 = (α,vvv2)

so that 〈g1, g2〉 = G. The H-M rep. (g1, g
−1
1 , g2, g

−1
2 ) is in Ni(G,C±32)in. Conjugate

in G, to take a representative in the inner class with vvv1 = 000. Consider

g1g
−1
2 = (1,−vvv2) and g2

1g2 = (1, α−1(v2)).

So, g1, g2 generate precisely when 〈−vvv2, α
−1(v2)〉 = (Z/p)2. Such a vvv2 exists because

the eigenvalues of α are distinct. So (Z/p)2 is a cyclic 〈α〉 module.

Now consider Ni(G,C24)in with G = U ×sJ3 and U (a Z/3 module) having (Z/p)2

as a quotient. There is a surjective map ψ : G → (Z/p)2 ×sJ3: a Frattini cover.

So, if g′1, g
′
2 generate (Z/p)2 ×sJ3, then respective order 3 lifts of g′1, g

′
2 to g1, g2 ∈ G

automatically generate G. Princ. 3.6 now applies: For p 6= 3, an H-M cusp branch

gives F̃2,p ×
sJ3 as a limit group.

Now we turn to the case p = 2, and consider the other, not H-M rep., braid orbit

on Ni(A4,C±3) given in Prop. 6.12. [BF02, Cor. 5.7] gives this Loewy display for
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M0 = ker(G1(A4) → A4): 0 → U3 → U3 ⊕ 111 with U3 the 2-dimensional irreducible

for Z/2[A4]. In the augmented Loewy display, there is an arrow from the leftmost U3

to each summand of U3 ⊕ 111.

Let ggg be a representative of the orbit Ni−0 obstructed by Â4 → A4. The completion

at p = 2 of the quotient F2/(F2, F2) ×
sZ/3 is L2,2 ×sZ/3, a 2-Frattini cover of A4.

Notice that 111A4 is not a subquotient in this group. Therefore, Cor. 4.20 implies the

map Mggg → A4 extends to Mggg → L2,2 ×sZ/3. Indeed, it is a Nielsen limit group

through the braid orbit of ggg.

Example B.2(The (A5,C34 , p = 2) MT). — We continue Ex. 4.21. Let O2 be the

non-H-M braid orbit of Ni(G1(A5),C34). [BF02, Prop. 9.14] shows G1(A5) embeds

in AN for several values of N (40, 60, 80, 120) with an additional property: With

SpinN ×AN
G1(A5)

def
= Spin′N → G1(A5),

we have sSpin′
N

(O2) = −1.

Let R′k → Gk be the k−1st antecedent to Spin′N → G1(A5) (§4.2.2). As noted in

Ex. 4.13, the hypotheses of Thm. 4.12 hold for this example and each level k ≥ 1 of

the MT has an H-M component with at least two distinct limit groups.

Example B.3(Ni(G1(A4),C±32) braid orbits) . — Again p = 2. Similar to Ex. B.2,

and again using Ex. 4.13, each level k ≥ 2 has two H-M components, and each such

component has at least four distinct limit groups.

Problem B.4. — Let H′k be one of the H-M components in Ex. B.3. Is the number of

limit groups through H′k bounded with k?

B.2. Complex multiplication for the Z/3 case. — Use the notation above.

If p 6= 2, 3, α on (Z/p)2 has eigenvalues defined over Z/p precisely when −3 is a

square mod p. From quadratic reciprocity, these are the p ≡ 1 mod 3. Exactly

then, F̃2,p×
sJ3 has quotients of the form Z/p×sJ3 = G∗. Corresponding to that, the

universal p-Frattini cover Zp ×
sJ3 of G∗ is a quotient of Z2

p ×
sJ3.

Problem B.5. — When p ≡ 1 mod 3, does a Zp×
sJ3 quotient of F̃2,p×

sJ3 correspond

to “complex multiplication case” for special values j′ ∈ P1
j (as in the J2 case in

Rem. A.2)? For all j′ ∈ P1
j over a number field, does this give a full analog of Serre’s

OIT in the J3 case?

The nontrivial F-quotient when p ≡ 1 mod 3 is like that for modular curves, a

MT case where M ′k = ker(Gk+1(Z/p ×s J3) → Gk(Z/p ×s J3)) has rank 1 (as in

Prop. 2.4). What we know of Mk = ker(Gk+1((Z/p)
2 ×sJ3) → Gk((Z/p)

2 ×sJ3)) (as

a Gk module, to which the conclusion of Prop. 2.4 applies) is from Semmen’s thesis

[Sem]. Such information is significant in analyzing (6.3b).
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Appendix C

Related Luminy talks and typos from [BF02]

Other Luminy talks contain material whose perusal simplifies our explaining the

use of the Hurwitz monodromy group and the background for this paper §C.1. Our

approach to explaining progress on MTs is to use [BF02] as a reference book in trans-

lating between geometric and arithmetic statements until the completion of [Fri07].

Our web site version of the former has typos corrected as they appear.

C.1. Conference talks that explain significant background points. — Ex-

positional elements of the following papers support their use in MTs.

– Matthieu Romagny and Stefan Wewers introduced Nielsen classes and mate-

rial on Hurwitz spaces.

– Kay Magaard introduced braids acting (through Hurwitz monodromy Hr;

§2.4.1) on Nielsen classes, necessary for computations.

– Pierre Dèbes defined a (rank 0) Modular Tower (MT), comparing that with

modular curves.

– The (weak; rank 0) Main Conjecture is that there are no rational points

at suitably high tower levels. Pierre’s talk reduced this conjecture, for four

branch point towers, to showing the genus rises with the levels.

– Darren Semmen presented the profinite Frattini category. This showed how

Schur multipliers control properties of the Modular Tower levels.

C.2. Typos from the printed version of [BF02]

– p. 55, line 4 of 2nd paragraph: to the near H-M and H-M [not H -M] p.

87, line 4. It also explains H-M [not H -M] and near H-M p. 87, line 8.

complements of H-M and near H-M [not H -M] p. 89, after (8.6): H-M or

near H-M [not H -M] rep. is p. 180, 3rd line of 2nd par.: [not H -M]

– p. 92: It said: “The cusp pairing for r = 4 should extend to the case r ≥ 5,

though we don’t yet know how.”

We knew how to do that by the time the paper was complete, though we

forgot to delete this line. It now says: “The cusp pairing for r = 4 extends

to the case r ≥ 5 (§2.10.2).”

– p. 93: 1st par. §1.4.7 (end): Change Merel-Mazur to Mazur-Merel.

– p. 94: (and image of g−1
1 g2 in A5 of order 5)

– p. 103–104. Use of Q′′ in Def. 2.12 on p. 103 precedes its definition on p. 104.

– Bottom of p. 107: |Niink | = (pk+1 + pk)ϕ(pk)/2 should be

|Niink | = (pk+1 + pk)ϕ(pk+1)/2.

– Statement of Prop. 2.17. [States the condition o(g1, g2) is odd, after it uses

that condition.] It should say this. Let g1g2 = g3, and g2g1 = g′3. Let
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o(g1, g2) = o (resp. o′(g1, g2) = o′) be the length of the orbit of γ2 (resp. γ)

on (g1, g2). If g1 = g2, then o = o′ = 1.

Proposition 2.17 Assume g1 6= g2. The orbit of γ2 containing (g1, g2) is

(gj3g1g
−j
3 , gj3g2g

−j
3 ), j = 0, . . . , ord(g3)−1. So,

o = ord(g3)/|〈g3〉 ∩ Z(g1, g2)|
def
= o(g1, g2).

Then, o′ = 2 ·o, unless o is odd, and with x = (g3)
(o−1)/2 and y = (g′3)

(o−1)/2

(so g1y = xg1 and yg2 = g2x), yg2 has order 2. Then, o′ = o.

– p. 129: Title of Section 4 should be: [Moduli] and reduced Modular Towers

(change “Modular” to “Moduli”).

– p. 140: Reference to [Fr01] changed to [Fr02]: and a more precise quote:

[Fr02, Prop. 2.8]: M. Fried, Moduli of relatively nilpotent extensions, Insti-

tute of Mathematical Science Analysis 1267, June 2002, Communications in

Arithmetic Fundamental Groups, 70–94.

– p. 160, line 22: as (u, v) = (∓(ggg),wd(bg)) should be, as

(u, v) = (∓(ggg),wd(ggg)).

– p. 172: 1st par. of Prop. 8.12, change“(and g−1
1 g2 of order 5)” to “(and image

of g−1
1 g2 in A5 of order 5).”

– p. 180: 1st line of 2nd paragraph of §9: Orbits of 〈γ1, q2〉 should be [Orbits

of 〈γ1, γ∞〉], to emphasize here we view q2 as in M̄4.

– Bottom p. 184: Gk+1 [acts] trivially on . . .

– p. 188: Def. 9.11: T Ĥ should be T Ĝ.

– Ex. 9.19: The 3rd sentence should be: For this case, tr(TH′(m)) = 4 =

trTH′(m′) and tr(TH′ (mm′)) = 8: m,m′ ∈ C18 and mm′ ∈ C16.
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Congrès, 2006.
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