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INTEGRAL p-ADIC DIFFERENTIAL MODULES

by

B. H. Matzat

Abstract. — An integral (or bounded) local D-module is a differential module over
a local D-ring R having congruence solution bases over R. In case R is equipped
with an iterative derivation, such a D-module is an iterative differential module (ID-
module) over R. In this paper we solve the connected inverse Galois problem for
integral D-modules over fields of analytic elements K{t}. In case the residue field
of K is algebraically closed, we are able to additionally solve the non-connected
inverse Galois problem. Further we study the behaviour of ID-modules by reduction
of constants.

Résumé(Modules différentiels p-adiques bornés). — Un D-module local borné est un
module différentiel sur un anneau local différentiel R qui possède des bases sur R

pour les solutions de congruence. Si R est muni d’une dérivation itérative, un tel
D-module en plus est un module différentiel itératif (ID-module) sur R. Dans ce
texte nous présentons une solution du problème inverse de Galois connexe pour les
D-modules bornés sur des corps d’éléments analytiques K{t}. Dans le cas où le corps
résiduel de K est algébriquement clos nous donnons en plus une solution du problème
inverse pour les groupes linéaires non connexes. Finalement nous étudions la relation
entre les ID-modules locaux et leurs réductions.

0. Introduction

Integral (or bounded) p-adic differential modules are D-modules over a p-adic D-
ring having congruence solution bases over the base ring. By [Chr83], Theorem 4.8.7,
these are solvable in the ring of analytic functions over the open generic disc. Our
interest in this special class of p-adic D-modules comes from the fact that they ap-
pear as lifts of (iterative) D-modules in characteristic p (see [MvdP03b], [Mat01]).
This property sometimes allows to solve problems using techniques developed for the
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characteristic p theory. Further, this class also contains the category of integral Frobe-
nius modules over a p-adic differential ring (category of integral DF-modules) studied
in [Mat03].

In §1, from every integral p-adic D-module we derive a projective system of congru-
ence solution modules and obtain an equivalence of categories between the category
DModO of integral D-modules over a p-adic D-ring O and the corresponding cate-
gory of projective systems DProjO. As in positive characteristic, the related system
of base change matrices (Dl)l∈N determines the derivation. The formula is given
in Theorem 1.7.

In the next §2, the differential Galois group of an integral p-adic D-module is
studied. It is a reduced linear algebraic group over the field of constants K and hence
a p-adic analytic group. If the matrices Dl belong to a connected group, this group
is an upper bound for the differential Galois group, as in the characteristic p case.

In Theorem 3.4 and Theorem 3.6, the inverse problem of differential Galois theory is
solved for split connected groups over the field of analytic elements K{t} and its finite
extensions. At least over K{t} this implies an analogue of the Abhyankar conjecture
as stated in Corollary 3.5, which again coincides with the characteristic p case.

In §4 embedding problems with connected kernel and finite cokernel are solved
over K{t} via equivariant realization of (not necessarily split) connected groups. The
proof combines techniques from the solution of the inverse problem over rational
function fields with algebraically closed field of constants in characteristic zero by J.
Hartmann [Har02] and in positive characteristic [Mat01]. In case the residue field
of K is algebraically closed this leads to the solution of the general inverse problem
over K{t} (for non-connected groups), see Theorem 4.6. This result can be seen as
a differential analogue of Harbater’s solution of the finite inverse problem over p-adic
function fields [Har87].

In the last §5, we study reduction of constants. The main result (Theorem 5.4)
is that the reduced module of an integral p-adic D-module is an iterative D-module
(ID-module) in characteristic p with a related differential Galois group. This answers
Conjecture 8.5 in [MvdP03b] by the affirmative.

Acknowledgements. I would like to thank G. Christol, D. Harbater, J. Hartmann,
M. Jarden and A. Röscheisen for helpful discussions on topics of the paper.

1. Integral Local Differential Modules

1.1. Local Differential Rings. — Let F be a field with a nonarchimedean val-
uation | · |, valuation ring OF , valuation ideal PF and residue field F := OF /PF .
Assume F has a nontrivial continuous derivation

(1.1) ∂F : F −→ F with ∂F (OF ) ⊆ OF , ∂F (PF ) ⊆ PF

and field of constantsK = KF with PK := PF ∩K 6= (0). Then OF with ∂F restricted
to OF is called a local differential ring. By definition ∂F induces a derivation on F .
Note that in case the value groups |F×| and |K×| coincide, the assumption ∂F (OF ) ⊆
OF in (1.1) already implies ∂F (PF ) ⊆ PF . Now we fix an element 0 6= r ∈ PK , for
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INTEGRAL p-ADIC DIFFERENTIAL MODULES 265

example a prime element of PK in the case of a discrete valuation. With respect to r
we define congruence constant rings

(1.2) Ol := {a ∈ OF |∂F (a) ∈ rlOF } for l ∈ N.

Obviously the intersection of all these rings is the valuation ring OK of K with respect
to the restricted valuation, i.e.,

(1.3) OK =
⋂

l∈N

Ol.

To explain a standard example, let K be a complete p-adic field, i.e., a complete
subfield of the p-adic universe Cp. The field K(t) of rational functions over K with
the Gauß valuation (extending the maximum norm on K[t]) and with the derivation

∂t := d
dt is a nonarchimedean differential field. Its completion F = K{t} := K̂(t)

with respect to the Gauß valuation with the continuously extended derivation ∂̂t is
a complete nonarchimedean differential field, sometimes called the field of analytic
elements over K (compare [Chr83], Def. 21.3). By definition the valuation ring OF

is a local differential ring. It contains the Tate algebra

(1.4) K〈t〉 :=
{

∑

i∈N

ait
i|ai ∈ K, lim

i→∞
|ai| = 0

}

which coincides with the ring of analytic functions on the closed unit disc. The residue
field F of OF is the field of rational functions over the residue field K := OK/PK of
K, i.e.,

(1.5) F := OF /PF = (OK/PK)(t) = K(t).

In the case r = p we obtain

(1.6) Fl = Ol/(Ol ∩ PF ) = K(tp
l

)

for the residue fields of the higher congruence constant rings Ol of OF .
Now let L/F be a finite extension of F = K{t}. Then the valuation of OF extends

uniquely to a valuation of OL and the derivation ∂t has a unique extension ∂L to L.
If we assume

(1.7) ∂L(OL) ⊆ OL and ∂L(PL) ⊆ PL,

OL becomes a local D-ring. Such a ring will be called a p-adic differential ring in the
following, and OL/OF is an extension of p-adic D-rings. Unfortunately the assumption
(1.7) is not vacuous, as the example L = F (s), sp = t shows. Here s belongs to OL,
but ∂L(s) = s

pt 6∈ OL. The following proposition gives a sufficient condition for (1.7).

Proposition 1.1. — Let (OF , ∂F ) be a local D-ring in a discretely valued D-field F , let
L/F be a finite field extension and OL/OF an extension of valuation rings. Assume
that the corresponding extension of residue fields L/F is separable and the different
DL/F of L/F is trivial. Then OL is a local D-ring extending OF .
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266 B. H. MATZAT

Proof. — By the assumptions above there exists an element y ∈ OL with OL = OF [y]

([Ser62], § 6, Prop. 12). Let f(X) =
n
∑

i=0

aiX
i ∈ OF [X ] be the minimal polynomial

of y. Then the derivative of y is given by

(1.8) ∂L(y) = −
∂F (f)(y)

∂X(f)(y)
,

with the partial derivations ∂F and ∂X , respectively. Because of DL/F = ∂X(f)(y)OL

([Ser62], § 6, Cor. 2), our assumptions give ∂X(f)(y) ∈ O×
L . But this entails

∂L(OL) ⊆ OL and in the case y ∈ O×
L additionally ∂L(PL) ⊆ PL. In the case

y ∈ PL we have a0 ∈ PF . But this implies ∂F (a0) ∈ PF , thus ∂F (f)(y) ∈ PL and
∂L(y) ∈ PL showing ∂L(PL) ⊆ PL.

In the following an extension L/F of valued D-fields is called an integral extension
if OL/OF is an extension of local D-rings.

1.2. Local Differential Modules. — Now let (OF , ∂F ) be a local D-ring as defined
above. Then a free OF -module M of finite rankm together with a map ∂M : M →M ,
which is additive and has the defining property

(1.9) ∂M (ax) = ∂F (a)x+ a∂M (x) for a ∈ F, x ∈M

is called a local differential module (local D-module) over OF . The pair (M,∂M )
is called an integral local D-module here (instead of bounded local D-module as in
[Mat01], [vdP01]) if for every l ∈ N there exists an OF -basis Bl = {bl1, . . . , blm}
such that ∂M (Bl) ⊆ rlM . Then the submodules

(1.10) Ml :=

m
⊕

i=1

Olbli ⊆M

are congruence solution modules of M (with respect to r). Obviously these are char-
acterized by the property

(1.11) Ml = {x ∈M |∂M (x) ∈ rlM}.

At first glance the defining property of an integral local D-module looks very strong.
However, it generalizes the notion of an integral p-adic differential module with Frobe-
nius structure (DF-module) as studied in [Mat03]. There, (F, ∂F , φ

F
q ) is a complete

p-adic field with derivation ∂F and Frobenius endomorphism φF
q which are related by

the formula

(1.12) ∂F ◦ φF
q = zFφ

F
q ◦ ∂F with zF =

∂F (φF
q (t))

φF
q (∂F (t))

∈ PF

for some nonconstant t ∈ F ([Mat03], § 7.1 or [Col03], § 0.2). Assume (OF , ∂F )
is a local D-ring for r ∈ PK with |r| = |zF |. Let (MF ,Φ

F
q ) be an integral (or étale)

Frobenius module over F with associated derivation ∂M (as introduced in [Mat03],
§ 7.3). Then a Frobenius lattice M inside MF (compare [Mat03], § 6.3) together
with ∂M restricted to M defines an integral local D-module over OF (with Frobenius
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INTEGRAL p-ADIC DIFFERENTIAL MODULES 267

structure). Moreover, the image Φl
q(M) of the l-th power of the Frobenius endomor-

phism Φq = ΦF
q on M is contained in the congruence solution module Ml, and the

derivation ∂M on M is uniquely determined by this property ([Mat03], Thm. 7.2).

Now let (M,∂M ) and (N, ∂N ) be two integral local D-modules over a local D-ring
(OF , ∂F ). Then an OF -linear map θ : M → N is called a D-homomorphism if and
only if θ ◦ ∂M = ∂N ◦ θ. The integral local D-modules over O = OF together with the
D-homomorphisms form a category which will be denoted by DModO in the sequel.

Proposition 1.2. — Let (OF , ∂F ) be a local D-ring. Then the category DModO of
integral local D-modules over O = OF is a tensor category over the ring OK of
differential constants in O.

Proof. — Obviously DModO is an abelian category of O-modules. For (M,∂M ),
(N, ∂N ) ∈ DModO, the tensor product in DModO is given by M ⊗N := M ⊗O N .
It becomes a local D-module over O via

(1.13) ∂M⊗N (x⊗ y) := ∂M (x) ⊗ y + x⊗ ∂N (y).

This module is integral because

(1.14) Ml ⊗Nl ⊆ (M ⊗N)l.

Further the dual module M∗ := HomO(M,O) is a D-module with

(1.15) (∂M∗(f))(x) := ∂F (f(x)) − f(∂M (x)) for f ∈M∗, x ∈M.

The evaluation ε : M⊗M∗ → 1DModO
= O sends x⊗f to f(x), and the coevaluation

δ : O →M∗⊗M is defined by the map 1 7→
m
∑

i=1

b∗i ⊗bi, where B = {b1, . . . , bm} denotes

a basis of M and B∗ = {b∗1, . . . , b
∗
m} the corresponding dual basis of M∗. (Note that

the definition of δ does not depend on the basis chosen.) By immediate calculations it
follows (compare, for example, [Mat01], Ch. 2.1) that ε and δ are D-homomorphisms
with

(1.16) (ε⊗ idM ) ◦ (idM ⊗δ) = idM and (idM∗ ⊗ε) ◦ (δ ⊗ idM∗) = idM∗ .

Thus by definition DModO is a tensor category defined over OK because of

(1.17) EndDModO
(1DModO

) = EndDModO
(O) = OK .

1.3. The Projective System of Congruence Solution Modules. — In anal-
ogy to the differential modules in positive characteristic with respect to an iterative
derivation, the so-called ID-modules (see [MvdP03b] or [Mat01]), to any integral
local D-module we can associate a projective system of congruence solution modules.

Proposition 1.3. — Let (O, ∂) be a local D-ring and (M,∂M ), (N, ∂N ) ∈ DModO with
congruence solution modules Ml or Nl over Ol, respectively.

(a) Let ϕl : Ml+1 → Ml be the Ol+1-linear embedding. Then (Ml, ϕl)l∈N forms a
projective system.

(b) In (a) any ϕl can be extended to an O-isomorphism

(1.18) ϕ̃l : M = O ⊗Ol+1
Ml+1 −→ O ⊗Ol

Ml = M.
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268 B. H. MATZAT

(c) Let θ : M → N be a morphism in DModO and let (Nl, ψl)l∈N be the projective
system associated to N . Then the restrictions θl : Ml → Nl are Ol-linear D-
homomorphisms with the property

(1.19) θl ◦ ϕl = ψl ◦ θl+1.

Proof. — The assertions (a) and (b) immediately follow from the fact that by defini-
tion ϕl maps an O-basis Bl+1 of M (inside Ml+1) to an O-basis Bl of M (inside Ml).
Assertion (c) finally is a consequence of θ ◦ ∂M = ∂N ◦ θ.

Obviously the projective systems of congruence solution modules (Ml, ϕl)l∈N to-
gether with the systems Θ = (θl)l∈N of Ol-linear D-homomorphisms θl form a (tensor)
category. In the following, the category of all projective systems M = (Ml, ϕl)l∈N

of Ol-modules Ml with (1.18) and systems Θ = (θl)l∈N of Ol-linear homomorphisms
with (1.19) is denoted by DProjO. We want to show that in case O is complete, any
M ∈ DProjO is isomorphic in DProjO to a system of congruence solution modules
of some M ∈ DModO. This can be expressed in the following way:

Theorem 1.4. — Let (O, ∂) be a complete local D-ring. Then the category DProjO is
equivalent to the category DModO as a tensor category over OK .

Proof. — By Proposition 1.3 any (M,∂M ) ∈ DModO defines an object M =
(Ml, ϕl)l∈N ∈ DProjO and any morphism θ in DModO leads to a morphism
Θ = (θl)l∈N in DProjO.

Now let N = (Nl, ψl)l∈N be an object in DProjO with dimO(N0) = m. We want to
show that there exists a unique derivation ∂M on M := N0 with congruence solution
modules Ml := ψ0 ◦ · · · ◦ ψl−1(Nl). Obviously the modules Ml are Ol-submodules of
M containing an O-basis Bl = {bl1, . . . , blm} of M by property (1.18). Defining base
change matrices Dl ∈ GLm(Ol) by Bl+1 = BlDl we obtain Bl = BD0 · · ·Dl−1 with
B = B0. Now let y = (y1, . . . , ym)tr be the coordinate vector of x ∈ M with respect

to the basis B, i.e., x =
m
∑

j=1

bjyj = By . Then in view of ∂M (Bl) ⊆ rlM we define

(1.20) δl(x) := Bl∂F (y l) := BD0 · · ·Dl−1∂F (D−1
l−1 · · ·D

−1
0 y) ∈M.

Because of ∂F (D−1
l ) ∈ rlOm×m

l , the coefficients of δl(x) converge in O, hence

(1.21) ∂M (x) := lim
l→∞

(δl(x)) ∈M

is well defined. It is easy to verify that ∂M is additive with ∂M (ax) = ∂F (a)x +
a∂M (x) for F = Quot(O), i.e., ∂M is a derivation of M . Further from ∂M (x) ≡
δl(x) (mod rlM) it follows that ∂M (Bl) ⊆ rlM . Hence the Ol-modules Ml are the
congruence solution modules of (M,∂M ). Moreover, ∂M is uniquely determined by
this property because of

(1.22) ∂M (x) = ∂M (Bly l) = ∂M (Bl)y l + δl(x).

In the following the system of base change matrices (Dl)l∈N from the proof of
Theorem 1.4 is referred to as a system of representing matrices of M or (Ml)l∈N,
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INTEGRAL p-ADIC DIFFERENTIAL MODULES 269

respectively. For later use we state the explicit congruence formula for ∂M found in
the proof as a corollary.

Corollary 1.5. — Let (O, ∂) be a complete local D-ring, (M,∂M ) ∈ DModO and let
(Dl)l∈N be a system of representing matrices of M . Then the ∂M -derivative of x =
By ∈M has the property

(1.23) ∂M (x) ≡ BD0 · · ·Dl−1∂F (D−1
l−1 · · ·D

−1
0 y) (mod rlM).

1.4. The Solution Space of an Integral Local D-Module. — As usual, the
solution space of (M,∂M ) ∈ DModO over O = OF is defined by

(1.24) SolO(M) := {x ∈M |∂M (x) = 0} =
⋂

l∈N

Ml.

Now let E/F be an integral extension of valued D-fields and Õ := OE its valuation

ring. Then MÕ := Õ ⊗O M is an integral local D-module over Õ. By abuse of
notation the solution space of MÕ is denoted by

(1.25) SolÕ(M) := SolÕ(MÕ) =
⋂

l∈N

(MÕ)l.

The module M is called trivial over Õ if SolÕ(M) contains an Õ-basis of MÕ.

Proposition 1.6. — Let (O, ∂) be a local D-ring and (M,∂M ) ∈ DModO. Then for

every extension Õ/O of local D-rings the solution space SolÕ(M) is a free Õ-module

over the ring KÕ of differential constants of Õ with

(1.26) dimK
Õ
(SolÕ(M)) ≤ dimÕ(MÕ) = dimO(M).

The proof is the standard one and follows from the fact that KÕ-linearly inde-

pendent solutions in SolÕ(M) remain linearly independent over Õ. Further, with the
same arguments as in [Mat03], Prop. 7.4, we obtain the following characterization of
solutions of M over extension rings of O:

Theorem 1.7. — Let (O, ∂) be a complete local D-ring and let (M,∂M ) ∈ DModO

with basis B and system of representing matrices (Dl)l∈N. Then for every extension

Õ/O of local D-rings the following statements are equivalent:

(a) x = By ∈ SolÕ(M),

(b) ∂Õ(y) ≡ Aly (mod rl+1) for l ∈ N with Al := ∂F (D0 · · ·Dl)(D0 · · ·Dl)
−1,

(c) ∂Õ(y) = Ay with A := lim
l→∞

(Al) ∈ Om×m.

In Theorem 1.7 the completeness of O is only needed for the existence of A ∈ Om×m

in (c).

Now let MF := F ⊗O M be the extended D-module over the quotient field F of
O = OF . Then from the general theory of Picard–Vessiot extensions we know that
there exists a Picard–Vessiot ring R̃ and a Picard–Vessiot field Ẽ := Quot(R̃) after

a finite extension of constants F̃ /F (see [Mat03], Prop. 8.1). Thus in the following,
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270 B. H. MATZAT

among other things we have to deal with the question under which conditions a PV-
extension E/F of M exists (without introducing new constants) and which linear
groups are realizable by integral D-modules as differential Galois groups, for example,
over the field of analytic elements F = K{t}.

2. The Galois Group of a p-adic D-Module

2.1. Solution Fields. — Let (OF , ∂F ) be a p-adic D-ring as introduced in Sec-
tion 1.1 and let (M,∂M ) be an integral D-module over OF with system of represent-
ing matrices (Dl)l∈N. Then by Theorem 1.7 the solutions of M in a D-ring extension
OE ≥ OF are solutions of a linear differential equation

(2.1) ∂E(y) = Ay , where A ∈ Om×m
F

and A can be computed from the matrices Dl. Hence U := OF [GLn] =
OF [xij , det(xij)

−1]mi,j=1 becomes a D-ring by defining

(2.2) ∂U (X) := A ·X for X = (xij)
m
i,j=1.

The quotient ring RM of U by a maximal differential ideal P�U with P ∩OF = (0)
is a simple D-ring called a Picard–Vessiot ring of M over OF . As in the case of fields,
RM is an integral domain and its quotient field EM is called a Picard–Vessiot field of
M . Unfortunately, in case the field of constantsK of F is not algebraically closed, RM

and EM may contain new constants and moreover may be not uniquely determined
by M .

Now let M∗
F be the field of meromorphic functions on the generic disc with coeffi-

cients in F . This is defined as the quotient field of the ring of analytic functions on
the generic disc

(2.3) D∗
F := {u ∈ F{z}| |u− t| < 1}

where z is transcendental over F and t ∈ F with ∂F (t) = 1. Then the Taylor map

(2.4) τF : F −→ M∗
F , f 7→

∑

k∈N

1

k!
∂F (f)(z − t)k

identifies the valued D-field (F, ∂F ) with the subfield (F ∗, ∂F∗) = (τF (F ), ∂̂z) of M∗
F

where the D-structure is translated by

(2.5) τF (∂F (f)) = ∂̂z(τF (f))

(compare [Chr83], Prop. 2.5.1). Now [Chr83], Thm. 4.8.7, or [MvdP03b], Thm. 6.3,
respectively, immediately give

Theorem 2.1. — Let (OF , ∂F ) be a p-adic D-ring and (M,∂M ) an integral D-module
over OF . Assume there exists an element t ∈ OF with ∂F (t) = 1. Then (M,∂M )
possesses a Picard–Vessiot field inside the field M∗

F of meromorphic functions on the
generic disc (by identifying F with F ∗).
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Unfortunately the field M∗
F contains many new constants. In order to obtain a

Picard–Vessiot field of (M,∂M ) over F without new constants, we have to specialize
the result above, for example to an ordinary disc. An open disc DK(c) = {a ∈
K| |a− c| < 1} is called an ordinary disc with center c for (M,∂M ) if M has a basis
B such that ∂M defines a matrix A ∈ Fm×m with entries aij belonging to the subring
Fc ≤ F of analytic functions on DK(c) (compare [Chr83], 2.2.1). Now [Chr83],
Prop. 5.1.7, shows

Corollary 2.2. — Assume in addition that the open disc DK(c) with center c is or-
dinary for (M,∂M ). Then the integral p-adic D-module has a Picard–Vessiot field
inside the field MK(c) of meromorphic functions on DK(c).

By Theorem 1.7, in the case (F, ∂F ) = (K{t}, ∂̂t) the assumption in Corollary 2.2

is satisfied with c = 0 if the representing matrices Dl belong to GLm(K〈tp
l

〉) where

K〈tp
l

〉 is the Tate algebra introduced in (1.4).

2.2. Differential Automorphisms. — As above, (M,∂M ) is an integral D-module
over a p-adic D-ring (OF , ∂F ) with quotient field F . After a finite extension of con-

stants F̃ /F , there exists a Picard–Vessiot extension Ẽ/F̃ (without new constants).

Let us assume for the moment that F = F̃ , i.e., the existence of a Picard–Vessiot
extension E/F for M . If in addition we normalize the fundamental solution matrix
Y ∈ GLm(E) to have initial value Y (c) ∈ GLm(OK) for some c ∈ OK , the field
E and the Picard-Vessiot ring R = RM inside E are uniquely determined up to
D-isomorphisms over F or OF , respectively. Then the group of D-automorphisms

(2.6) AutD(M) := AutD(RM/OF )

is called the differential automorphism group over OF of M (or RM , respectively).
In the following K̄ denotes an algebraic closure of the field K of constants of F and
F̄ := K̄ ⊗K F the corresponding extension by constants.

Proposition 2.3. — Let (M,∂M ) be an integral D-module over a p-adic D-ring
(OF , ∂F ) of rank m and RM/OF a Picard–Vessiot ring of M over OF and let
MF := F ⊗OF

M .

(a) There exists a reduced linear algebraic group G ≤ GLm(K) defined over K such
that

(2.7) AutD(MF ) ∼= G(K) and AutD(M) ∼= G(OK).

(b) In case G is connected we further have R
AutD(M)
M = OF .

Proof. — Since the field K̄ of constants of F̄ is algebraically closed, general Picard–
Vessiot theory shows the existence of a Picard–Vessiot extension Ē/F̄ for MF̄ :=
F̄⊗FMF and a linear algebraic group G defined over K̄ such that AutD(Ē/F̄ ) ∼= G(K̄).
The Picard–Vessiot ring R̄ inside Ē is D-isomorphic to F̄ [GLM ]/P̄ , where P̄ denotes
a maximal D-ideal P̄ / F̄ [GLn]. Since by assumption the ring R̄ and thus the D-ideal
P̄ are defined over K, the same holds for the defining equations of G because of

(2.8) G(K̄) = {C ∈ GLm(K̄)|q(X · C) ∈ P for q(X) ∈ P}

with X = (xij)
m
i,j=1. This shows (a).
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In case G is connected, the group G(K) is Zariski–dense in G(K̄) by [PR94],
Thm. 2.2 and [Spr98], Cor. 13.3.10, respectively. Moreover, its p-adic open subgroup
of integral points G(OK) := G(K) ∩ GLm(OK) which coincides with AutD(M) is
Zariski–dense in G(K) by [PR94], Lemma 3.2. Hence the subring of RM of AutD(M)-
invariant elements equals RM ∩ F = OF .

In case R
AutD(M)
M = OF , the group AutD(M) is called the differential Galois group

of M or RM , respectively, and is denoted by GalD(M) or GalD(RM/OF ), respectively.
From the proof we obtain in addition:

Corollary 2.4. — If in Proposition 2.3 the field K is a finite extension of Qp, then the
differential automorphism group AutD(MF ) is a locally compact p-adic analytic group
and AutD(M) is a Zariski–dense compact subgroup of AutD(MF ).

Unfortunately the connectedness assumption on G in Proposition 2.3 (b) can not be
omitted, as the following example shows. Let E/F be the finite extension E = F (x)

defined by xn = t over (F, ∂F ) = (K{t}, ∂̂t). Then E is a Picard–Vessiot field over F
for the 1-dimensional D-module M = Fx with ∂M (x) = 1

ntx. Obviously M is integral
if p does not divide n. But the subfield of E of AutD(MF )-invariant elements only
equals F if K contains a primitive n-th root of unity.

2.3. An Upper Bound. — As in positive characteristic ([MvdP03b], Prop. 5.3 or
[Mat01], Thm. 5.1) a system of representing matrices of an integral D-module gives
an upper bound on the D-Galois group. However, before proving the corresponding
theorem, we state the following useful triviality criterion:

Proposition 2.5. — Let (M,∂M ) be an integral D-module over a p-adic D-ring
(OF , ∂F ). Assume M has a system of representing matrices (Dl)l∈N converging to
the identity matrix. Then M is a trivial D-module, i.e., F contains a full system of
solutions.

Proof. — Under the assumptions above the matrices Yl :=
l

∏

k=0

Dl converge to a ma-

trix Y ∈ Fm×m, which by Theorem 1.7 is a fundamental solution matrix of M .

Theorem 2.6. — Let (M,∂M ) be an integral p-adic D-module over a p-adic D-ring
(OF , ∂F ) and let G be a reduced connected linear group defined over the field of con-
stants K of F = Quot(OF ). Assume that there exist bases of the congruence solution
modules Ml over Ol such that the corresponding representing matrices Dl of M belong
to the groups G(Ol) of Ol-rational points of G, then

(2.9) GalD(MF ) ≤ G(K) and GalD(M) ≤ G(OK).

Proof. — The matricesAl = ∂F (D0 · · ·Dl)(D0 · · ·Dl)
−1 in Theorem 1.7 belong to the

Lie algebra LieF (G) of G over F since they are images of the logarithmic derivative

(2.10) λ : G(F ) −→ LieF (G), D 7→ ∂F (D)D−1.

Then from the validity of the congruences

(2.11) Al ≡ Al−1 (mod rlOF )
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and the completeness of LieF (G) we conclude that A = lim
l→∞

(Al) ∈ LieF (G). But

this implies GalD(MF ) ≤ G(K) according to [vdPS03], Prop. 1.31, and therefore
GalD(M) ≤ G(OK).

An easy example is given by F = Qp{t} and the 1-dimensional OF -module M =

OF b with Dl = (talp
l

) and al ∈ {0, . . . , p− 1}. Then

(2.12) A =
(α

t

)

with α =
∑

l∈N

alp
l ∈ Zp.

A solution y ∈ MQp
of ∂(y) = Ay is given by

(2.13) y = tα where tα = lim
l→∞

( l
∏

j=0

tajpj

)

.

Obviously GalD(M) ≤ Gm(Zp) = Z×
p and equality holds if and only if α 6∈ Q.

In the following an integral p-adic D-module (M,∂M ) over OF or its extension
MF over F with GalD(M) = G(OK) or GalD(MF ) = G(K), respectively, is called
an effective D-module if, with respect to a suitable basis, ∂M is given by a matrix
A ∈ LieF (G). Obviously only a D-module with connected D-Galois group can be
effective.

2.4. Effective D-Modules. — The following well known criterion gives a sufficient
condition for a D-module over a field F to be effective.

Theorem 2.7. — Let F be a D-field with field of constants K and M ∈ DModF with
connected D-Galois group GalD(M) = G(K). Assume H1(GF ,G(F sep)) = 0, then M
is effective.

A proof can be found in [vdPS03], Prop. 1.31 in the case of an algebraically closed
field of constants and in [Kol76], Ch. VI 9, Cor. 1, in the general case. In order to
apply this theorem to p-adic D-fields F we recall the following fact which immediately
follows from [Ser97], II § 4.3, Prop. 12:

Proposition 2.8. — Let K be a complete p-adic field with respect to a discrete valuation
and let F be a finite extension of the field of analytic elements K{t}.

(a) For the cohomological dimension cd(F ) we have cd(F ) ≤ 3.
(b) In case the residue field of K is algebraically closed, we obtain cd(F ) ≤ 2.

Thus by a theorem of Bayer and Parimala ([BP99] or [Ser97], III § 3.1, respec-
tively) concerning the cohomological triviality of linear groups over fields F with
cd(F ) ≤ 2, we finally obtain

Corollary 2.9. — Let K be a complete p-adic field with respect to a discrete valuation
and with algebraically closed residue field. Let G be a simply connected semisimple
linear algebraic group over K of classical type (possibly except the triality group D4).
Then any M ∈ DModF over a finite extension F/K{t} with GalD(M) = G(K) is
effective.
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Under the assumptions of Corollary 2.9 the Bayer–Parimala theorem shows
H1(GF ,G(F sep)) = 0 such that Theorem 2.7 applies.

3. The Connected Inverse Problem

3.1. A Criterion for Effective D-Modules. — The following existence theorem
for effective PV-extensions over the field of analytic elements (K{t}, ∂t) is a variant
obtained by p-adic approximation of the corresponding theorem for iterative PV-
extensions in positive characteristic presented in [Mat01], Thm. 7.14.

Theorem 3.1. — Let (F, ∂F ) = (K{t}, ∂t) be the field of analytic elements over a
complete p-adic field K with discrete valuation, O = OF its valuation ring and P =

PF = rOF the valuation ideal. Let A be either Ga or Gm, set Sl = OK [tp
l

] or

Sl = OK [tp
l

, t−pl

], respectively, and let G ≤ GLm(K) be a reduced connected linear
algebraic group defined over OK . Suppose M ∈ DModO is an integral local D-module
whose system of representing matrices Dl ∈ G(Ol) satisfies the following properties:

(1) For all l ∈ N there exists a γl ∈ MorK(A,G) such that

Dl = γl(t
pl

) ∈ G(Sl) and γl(1) = 1G(K).

(2) For all n ∈ N the set {γl(A(K))|l ≥ n} generates G(K) as an algebraic group
over K.

(3) There exists a number d ∈ N such that the (divisor) degree of γl in F is bounded
by d · pl for all l ∈ N.

(4) If l0 < l1 < . . . is the sequence of natural numbers li for which γli 6= 1, then
lim

i→∞
(li+1 − li) = ∞.

Then M is an effective D-module with GalD(M) = G(OK).

Proof. — In order to simplify the notation we first assume r = p, i.e., K/Qp is
unramified.

We start with introducing some notation. Let MF := F ⊗O M ∈ DModF be the
D-module over F generated by M with dimF (M) = m. Let UK := K[GLm] and
QK � UK be the defining radical ideal of GK . The extended ideal QF := QKUF �

UF := F [GLm] is a D-ideal according to [vdPS03], proof of Prop. 1.31. Therefore

R̃ := F [G] = UF /QF is a D-ring, and it is an integral domain since GK is connected.

Set Ẽ := Quot(R̃) and denote by K̃ its field of constants. Let PF �UF be a maximal
D-ideal containingQF , so that R := UF /PF is a PV-ring with PV-field E := Quot(R),

and let κ : R̃→ R denote the canonical epimorphism. The D-module M̃ := Ẽ ⊗F M
contains a fundamental solution system and thus is trivial. Hence the solution space
Ṽ := SolẼ(M̃) is an m-dimensional K̃-vector space and a G(K)-module by definition.

First we show that any one-dimensional D-submodule N ∈ DModO of M or
NF := F ⊗O N ≤ MF , respectively, defines a G(K)-stable line W̃ ≤ Ṽ . Write

M =
m
⊕

i=1

biO with basis B = {b1, . . . , bm}. Then Bl = BD0 · · ·Dl−1 is a basis of the
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congruence solution module Ml with respect to pl. The corresponding congruence
solution module Nl = NF ∩Ml has a generator Blh l with the basis Bl written as a
row and h l ∈ Om

l . Let

(3.1) h l =
∑

k∈N

h
(k)
l pk

be the p-adic expansion of h l with respect to a given system of residues R of O modulo

P (including 0). Without loss of generality we may assume that h
(0)
l ∈ OK [t]m and

that the coordinates of h
(0)
l modulo p are relatively prime. Then the h l are unique

up to a factor belonging to O×
K .

By assumption (1) all representing matrices Dl belong to G(OK [tp
l

, t−pl

]). They
satisfy Bl+1h l+1 = BlDlh l+1 ∈ Nl, so there exist elements ul ∈ O×

l such that

Dlh l+1 = ulh l. By construction the coefficients of h
(0)
l+1 and h

(0)
l are polynomials

relatively prime modulo p, so in fact ul is a unit in OK [tp
l

, t−pl

]. Without loss of

generality we may therefore assume ul = talp
l

where al ∈ Z is bounded by property

(3). (Observe that in the case Dl ∈ G(OK [tp
l

]), the factor ul is a unit in OK [tp
l

] and
hence al = 0). Then

(3.2) h l ≡ h
(0)
l ≡ tãlD−1

l−1 · · ·D
−1
0 h

(0)
0 (mod p) with ãl :=

l−1
∑

j=0

ajp
j .

From h l ∈ Ol we obtain by induction h
(0)
l ∈ OK [tp

l

] modulo p. The degree of h
(0)
l

is bounded by the maximum degree of the polynomial coefficients of h
(0)
0 , the ali , and

the degrees deg(D−1
li

) ≤ plid∗ for li < l, where d∗ only depends on d. Thus, for l

large enough, we get a contradiction in case h
(0)
l has a nonconstant coefficient. Hence

there exists an i1 ∈ N such that

(3.3) h l ≡ h
(0)
l ≡ h

(0)
l (0) ≡ h l(0) ∈ Om

K (mod p) for l ≥ li1 .

Specializing the congruences h l+1 ≡ ulD
−1
l h l (mod p) at t = 1 by (1) we obtain

further

(3.4) h l+1(0) ≡ h
(0)
l+1(0) ≡ h

(0)
l (0) ≡ h l(0) (mod p) for l ≥ li1

and thus

(3.5) h l ≡ h li1
(0) (mod p) for l ≥ li1 .

Now we proceed by induction. Assume there exists an ik ∈ N such that

(3.6) h l ≡ h lik
(0) (mod pk) for l ≥ lik

.

Then we find an h̃
(k)

l ∈ OK(t)m with

(3.7) h l ≡ h lik
(0) + pkh̃

(k)

l (mod pk+1).
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As in the first step we obtain by induction h̃
(k)

l ∈ OK(tp
l−k

)m modulo p which for l
large enough, for l ≥ lik+1

, say, leads to

(3.8) h l ≡ h lik
(0) + pkh̃

(k)

l (0) ≡ h l(0) ∈ Om
K (mod pk+1).

By specializing at t = 1 as above this proves the next induction step

(3.9) h l ≡ h lik+1
(0) (mod pk+1) for l ≥ lik+1

.

Thus the limit

(3.10) h := lim
k→∞

(h lik
(0)) = lim

l→∞
(h l(0)) ∈ Om

K

is well defined and has the property

(3.11) Dlh ≡ talp
l

h (mod pk) for l ≥ lik
.

Now by specializing the last congruence at t = c for c ∈ K̄, property (2) shows that
h is an eigenvector for G(K).

Since the integers al ∈ Z are bounded, α :=
∑

l∈N

alp
l is a p-adic integer and

(3.12) y := tα =
∏

l∈N

talp
l

describes a solution of N in E and Ẽ, respectively (compare to the example in Sec-

tion 2.3). Hence w̃ := yB0h is an element of Ṽ , which can easily be verified, and

(3.13) ∂(w̃) ≡ B0(∂(y) −Aly)h ≡ 0 (mod pl+1) for l ∈ N,

using Al = ∂F (D0 · · ·Dl)(D0 · · ·Dl)
−1 from Theorem 1.7. The vector space W̃ := K̃w̃

spanned by w̃ is a one-dimensional subspace of Ṽ . It is GalD(Ẽ/F )-stable with

GalD(Ẽ/F ) ≤ G(K̃) and G(K)-stable (under the action on y and h , respectively), and
both actions coincide when restricted to GalD(E/F ). (Note that GalD(E/F ) ≤ G(K)
by Theorem 2.6).

Next we show that any GalD(E/F )-stable line W̃ ≤ Ṽ is in fact G(K)-stable. Using
the characterization of GalD(E/F ) in the proof of [vdPS03], Thm. 1.27, we see that

QF is a GalD(E/F )-stable ideal, and so the canonical map κ : R̃ → R is GalD(E/F )-

equivariant. The image W of W̃ under this map is then GalD(E/F )-stable in V .
Hence W defines a one-dimensional D-submodule N of M , and by the considerations
above, this yields the G(K)-stable line W̃ ≤ Ṽ .

Finally we need to show that E/F is an effective extension with Galois group G(K).
By Chevalley’s theorem ([Spr98], Thm. 5.5.3), there exists a faithful representation
% : G → GL(V ) over K and a line W ≤ V such that GalD(E/F ) is exactly the

stabilizer of W in G(K). The matrices D%
l = D(% ◦ γl) := %(γl(t

pl

)) ∈ (%(G))(Sl)
define a D-module M% with system of representing matrices (D%

l )l∈N, which again
satisfies conditions (1) to (4) (possibly with a different degree bound). The vector
space W % ≤ SolE(M%) associated to W by the considerations above is GalD(E/F )-
stable, and by the above, it is also G(K)-stable. Consequently, GalD(E/F ) = G(K).
This ends the proof in the case r = p.
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The general case follows from the special case r = p by substituting Ol by Ole

where |p| = |re|.

In the special case of the 1-dimensional D-module M at the end of Section 2.3, con-
dition (4) of Theorem 3.1 forces α to be a (p-adic) Liouvillean transcendental number.
In particular, the solution y = tα is not algebraic over F and hence GalD(M) = Z×

p .

In the next corollary F1 ≤ F denotes the subring of analytic functions on DK(1)
and MK(1) the field of meromorphic functions on DK(1) (which contains Quot(F1),
see [Chr83], 2.4.11).

Corollary 3.2. — Under the assumptions of Theorem 3.1

(3.14) Y :=
∏

l∈N

Dl ∈ MK(1)n×n

is a fundamental solution matrix for (M,∂M ) over F .

Proof. — By the assumptions of Theorem 3.1 the representing matrix Dl(t) is an

element of G(OK [tp
l

, t−pl

]) with Dl(1) = 1G(K). This implies Dl(1 + q) − 1G(K) ∈

Pm×m
F for q ∈ PK . Hence Dl(t), Dl(t

−1) and ∂F (Dl(t)) belong to Fm×m
1 . Thus

the same holds for Al = ∂F (D0 · · ·Dl)(D0 · · ·Dl)
−1 and A = lim

l→∞
(Al), since F1

is complete. Now the result follows from Corollary 2.2 (or [Chr83], Prop. 5.1.7,
respectively).

3.2. Realization of Split Connected Groups. — In the following a connected
linear group G over a perfect field K is called K-split if its maximalK-tori areK-split,
i.e., are products of multiplicative groups over K. In order to apply Theorem 2.1 we
need the following result:

Proposition 3.3. — Let G be a reduced connected linear group over a complete p-adic
field K which is K-split and defined over OK .

(a) G is generated as an algebraic group by finitely many maximal K-split tori and
finitely many K-split unipotent groups.

(b) Each torus T is generated as an algebraic group by an element T (t) ∈
T (OK [t, t−1]) with T (1) = 1T , i.e.,

(3.15) T (K) = 〈T (c)|c ∈ K〉alg.

(c) Each unipotent group U is generated as an algebraic group by an element U(T ) ∈
U(OK [t]) with U(1) = 1U , i.e.,

(3.16) U(K) = 〈U(c)|c ∈ K〉alg.

Proof. — By [Spr98], Thm. 13.3.6, G is generated by Cartan subgroups C = T × U
belonging to the maximal K-tori T of G. Since K is perfect, the unipotent part U
of C is K-split, too (by [Spr98], Thm. 14.3.8). Finally, the finiteness of the number
of necessary tori and unipotent subgroups follows from the finiteness of dim(G). This
proves (a).
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Since T and U are K-split, the proof of (b) and (c) can now be copied from
the proof of [MvdP03b], Thm. 7.3 and Lemma 7.5, respectively (using [Spr98],
Cor. 14.3.9).

Theorem 3.4. — Let (F, ∂F ) = (K{t}, ∂t) be the field of analytic elements over a
complete p-adic field K with discrete valuation and G a K-split reduced connected
linear group over K which is defined over OK . Then G(OK) can effectively be realized
as differential Galois group of an integral local D-module M ∈ DModOF

:

(3.17) GalD(M) = G(OK).

Proof. — We want to apply Theorem 3.1. By Proposition 3.3, G is generated by
finitely many K-split tori and finitely many K-split unipotent groups. For each torus

T and each unipotent group U we findDl = T (tp
l

) ∈ G(OK [tp
l

, t−pl

]) orDl = U(tp
l

) ∈

G(OK [tp
l

]), respectively, with the properties (1) and (3) of Theorem 3.1 according to
Proposition 3.3, (b) and (c). Combining these Dl with large gaps as assumed in
Theorem 3.1(4), we can still fulfill property (2) of the theorem. Now Theorem 3.1
gives the result.

Corollary 3.5

(a) In case the group G in Theorem 3.4 is generated by unipotent subgroups, G(OK)
can be realized with at most one singular point in ∞.

(b) In the general case, G(OK) can be realized with singular points at most in {0,∞}.

Proof. — For (a) note that for the proof of Theorem 3.4 we only need Dl ∈ G(O[tp
l

]).

In the general case it is sufficient to choose Dl ∈ G(O[tp
l

, t−pl

]), so that the singular
locus is contained in {0,∞}.

The last corollary proves a p-adic variant of the differential Abhyankar conjecture
for connected groups over the affine line which is similar to the characteristic p case
(compare [MvdP03b], Thm. 7.3). However, it is in contrast to the archimedean case
where by a theorem of Ramis over the affine line at most groups generated by tori
can be realized without singular points (see [vdPS03], Thm. 11.21).

3.3. Connected Groups over Curves. — The result of Theorem 3.4 implies
the solution of the connected inverse problem over finite extensions F/K{t} in the
following form.

Theorem 3.6. — Let F/K{t} be a finite extension of D-fields with KF = K and G a
K-split reduced connected linear algebraic group over K. Then G(K) can be realized
as D-Galois group of a Picard–Vessiot extension E/F .

Proof. — Any n-dimensional representation of G over K defines an OK-form of G
by G(OK) = G(K) ∩ GLn(OK) (compare [PR94], Ch. 3.3), where G(OK) is Zariski–
dense in G(K) by Proposition 2.3(b). Now Theorem 3.4 proves the existence of an
integral local D-module M ∈ DModO over O = OK{t} with GalD(M) = G(OK).
Then MK{t} := K{t} ⊗O M has D-Galois group G(K) and its solution space gener-
ates a Picard–Vessiot extension E/K{t} with GalD(E/K{t}| = G(K) (without new
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constants by Corollary 3.2). By tensoring with F we finally obtain a PV-extension
with

(3.18) GalD(F ⊗K{t} E/F ) ∼= G(K).

4. Embedding Problems with Finite Cokernel

4.1. Split Embedding Problems with Finite Cokernel. — Unfortunately, up
to now in general it is not known if every finite group appears as Galois group of a
PV-extension over F (generated by an integral local D-module). Only in case the
residue field of F is algebraically closed, we have a positive answer yet. This special
case will be discussed in Section 4.4. First we try to solve differential embedding
problems with connected kernel and finite cokernel. Before treating the general case
we study the case of split embedding problems. This is the case when the D-Galois
group G is a semidirect product G = G0 oH of the connected component G0 of G and
a finite group H .

Proposition 4.1. — Let G = G0 o H be a linear algebraic group defined over a p-adic
field K with regular homomorphic section

(4.1) χ : H −→ G(K), η 7→ Cη.

Let further (OF , ∂F ) be a p-adic D-ring with ring of constants OK and let L/F be
an integral finite Picard–Vessiot extension with D-Galois group H. Suppose M ∈
DModOL

defines a PV-extension E/L with D-Galois group G0(K) (and no new con-
stants). Assume M has a system of representing matrices Dl ∈ G0(OL) which satisfy
the equivariance condition

(4.2) η(Dl) = C−1
η DlCη for all l ∈ N, η ∈ H.

Then E/F is a PV-extension with D-Galois group G(K).

Proof. — We fix a representation of G as a closed subgroup of GLm(K). By Hilbert’s
Theorem 90 ([Ser97], III.1, Lemma 1) there exists an element Z ∈ GLm(L) with

(4.3) η(Z) = Z · Cη for all η ∈ H ;

in particular, Z is a fundamental solution matrix for the PV-extension L/F . Since the
representing matrices Dl of M or ML := L ⊗OL

M , respectively, belong to G0(OL),
ML is an effective D-module with D-Galois group G0(K) by Theorem 2.6. Further,
by [vdPS03], Prop. 1.31(2) there exists a fundamental solution matrix Y ∈ G0(E) of
M or ML, respectively, with ∂E(Y ) = A · Y for some A ∈ Om×m

L and

(4.4) ε(Y ) = Y · Cε for all ε ∈ GalD(E/L),

where Cε denotes the matrix of ε in G0(K).
Now let (U, ∂U ) be the differential ring U = L[GLm] = L[xij , det(xij)

−1]mi,j=1

with derivation ∂U (X) = A · X for X = (xij)
m
i,j=1. Since Y ∈ G0(E), the Picard–

Vessiot ring R of ML has the simple form R = L[G0] = L ⊗K K[G0]. First we lift
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η ∈ GalD(L/F ) to an automorphism η̃ = η̃R of R and E by setting

η̃(f) := η(f) for f ∈ L and

η̃(g(D)) := g(C−1
η DCη) for g ∈ K[G0]

(4.5)

and then similarly further to an automorphism η̃U of U = L ⊗K K[GLm]. Using
Theorem 1.7 and the equivariance, we obtain

η(A) = lim
l→∞

(η(Al)) = lim
l→∞

((η ◦ ∂)(D0 · · ·Dl)η(D0 · · ·Dl)
−1)

= lim
l→∞

(∂L(C−1
η D0 · · ·DlCη)C−1

η (D0 · · ·Dl)
−1Cη)

= lim
l→∞

(C−1
η AlCη) = C−1

η ACη

(4.6)

which leads to

(η̃U ◦ ∂U )(X) = η̃U (AX) = η(A)C−1
η XCη = C−1

η AXCη

= C−1
η ∂U (X)Cη = ∂U (C−1

η XCη) = (∂U ◦ η̃U )(X).
(4.7)

Hence η̃U is a differential automorphism of U/K and in fact of U/F . Let κ : U →
R,X 7→ Y denote the canonical epimorphism. Then κ is a D-homomorphism which
by construction commutes with η̃, i.e., we obtain

(4.8) ∂R ◦ κ = κ ◦ ∂U and η̃R ◦ κ = κ ◦ η̃U .

Thus η̃ : R → R is a D-automorphism of R/F by

(4.9) η̃ ◦ ∂R ◦ κ = κ ◦ η̃U ◦ ∂U = κ ◦ ∂U ◦ η̃U = ∂R ◦ η̃ ◦ κ

with η̃|L = η and

(4.10) η̃(Y ) = κ(η̃U (X)) = κ(C−1
η XCη) = C−1

η Y Cη.

Next we define Ỹ := ZY . Then F (Ỹ ) is a subfield of E and we obtain

(4.11) ∂E(Ỹ ) = ∂E(ZY ) = (∂L(Z)Z−1 + ZAZ−1)Ỹ := ÃỸ

with Ã ∈ Lm×m. Because of

(4.12) η(Ã) = ∂L(ZCη)C−1
η Z−1 + ZCηη(A)C−1

η Z−1 = Ã for all η ∈ H,

Ã has entries in F , which implies that F (Ỹ )/F is a differential field extension. Further
for all γ = (ε, η) ∈ G0 oH we find

(4.13) γ(Ỹ ) = εη̃(ZY ) = ε(ZCη · C−1
η Y Cη) = Zε(Y )Cη = ZY CεCη = Ỹ Cγ .

Thus Ỹ does not belong to a proper differential subfield of E containing F , i.e.,
F (Ỹ ) = E. Hence E/F is a PV-extension with Galois group GalD(E/F ) = G0(K) o
H = G(K). The latter can be verified explicitly by

(ε1, η1)(ε2, η2)(Ỹ ) = (ε1, η1)(Ỹ Cε2
Cη2

) = Ỹ Cε1
Cη1

Cε2
Cη2

(4.14)

= Ỹ Cε1
Cε2

C
Cε2
η1 Cη2

= Ỹ C(ε1,η1)·(ε2,η2).
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Corollary 4.2. — If the field L in Proposition 4.1 in addition is the solution field
of an integral local D-module over OF , then the differential module (M̃, ∂M̃ ) with

the representing matrix Ã ∈ Om×m
F of ∂M̃ again is an integral local D-module, i.e.,

M̃ ∈ DModOF
.

Proof. — Let (Cl)l∈N denote a system of representing matrices of the integral local
D-module over OF generating L/F with fundamental solution matrix Z ∈ GLm(OL).
Then with Z0 := Z we obtain Zl+1 := C−1

l Zl ∈ GLm(OL,l+1). Hence by the equivari-

ance condition the matrices D̃l := ZlDlZ
−1
l+1 belong to GLm(OF,l). Now we want

to show that (D̃l)l∈N is a system of representing matrices of M̃ . For this pur-

pose let B̃ be a basis of M̃ with ∂M̃ (B̃Ỹ ) = 0. Using B̃k := B̃D̃0 · · · D̃k−1 and

Ỹk := ZkYk = D̃−1
k−1 · · · D̃

−1
0 Ỹ we obtain

(4.15) 0 = ∂M (B̃Ỹ ) = ∂M (B̃lỸl) = (∂M (B̃l) + B̃lÃ
(l))Ỹl

with

(4.16) Ã(l) = lim
k→∞

(∂F (D̃l · · · D̃k)(D̃l · · · D̃k)−1) ∈ rlOm×m
F .

But this implies ∂M̃ (B̃l) ≡ 0 (mod rlM̃).

By Proposition 4.1, in order to solve a split differential embedding problem over
F with connected kernel G0(K) and finite cokernel H = GalD(L/F ), it is enough
to construct a module M ∈ DModOL

with GalD(M) = G0(K) and representing
matrices Dl satisfying the equivariance condition. The latter can be translated into
a simpler form. For this purpose we define a new Galois action of η ∈ GalD(L/F ) on
G0(L) via

(4.17) η ∗D := Cηη(D)C−1
η = χ(η)η(D)χ(η)−1.

Then Dl ∈ G0(L) is equivariant if and only if η ∗D = D for all η ∈ H . This means
that Dl is an F -point of the inner L-form G0

χ of G0 over F defined by the composed
homomorphism of Proposition 4.1.

(4.18) χ : H −→ G(K) −→ Aut(G(K)), η 7→ χ(η) 7→ Int(χ(η))

(compare [Spr98], 12.3.7).

4.2. Equivariant Realization of Connected Groups. — In this section, L is
an integral finite Galois extension over the D-field F = K{t} of analytic elements
with ∂F = ∂t and GalD(L/F ) = Gal(L/F ) =: H . Obviously, ∂F uniquely extends to
L. We suppose that L is equipped with a Frobenius endomorphism φL

q extending the

Frobenius endomorphism φF
q of F where φF

q |
K

is a lift of the Frobenius automorphism

of K = OK/PK and φF
q (t) = tq. Moreover, we assume that ∂L and φL

q are related by

formula (1.12), i.e., (L, ∂L, φ
L
q )/(F, ∂F , φ

F
q ) is a finite Galois extension of DF-fields in

the sense of [Mat03], Ch. 7. By Krasner’s Lemma, L/F is generated by the roots of
a polynomial f(X) ∈ K(t)[X ]. Thus L/F is defined over F0 := K(t), i.e., there exists
a finite extension L0/F0 (not necessarily Galois) with L ∼= L0 ⊗F0

F . The Frobenius
endomorphism φL

q restricted to L0 maps L0 onto a subfield L1 of L with K(tq) ≤ L1.
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Proposition 4.3. — Let (L, ∂L, φ
L
q ) be an integral finite DF-Galois extension of the

DF-field (F, ∂F , φ
F
q ) of analytic elements F = K{t} over K with φF

q (t) = tq and
Galois group H := Gal(L/F ). By the above L/F is defined as a Galois extension over

F0 = K(t) via L0 = K(s, t). Denote by Cl an affine model of φl
q(L0)/K(tq

l

), where we

assume without loss of generality that o = (0, 0) is a regular point. Let G = G0 oH be
a reduced linear algebraic group over K with regular homomorphic section χ : H → G
and let G0

χ be the corresponding L-form of G0 over F with G0
χ(F ) ≤ G0(L).

Suppose M ∈ DModOL
is an integral local D-module over OL with system of

representing matrices Dl ∈ G0(OL) satisfying the following conditions:

(1) For all l ∈ N there exists a rational map γl : Cl → G0
χ such that Dl =

γl(φ
l
q(s), t

ql

) ∈ G0
χ(OK(tq

l

)) and γl(o) = 1G(K).

(2) For all n ∈ N the algebraic group over L generated by {γl(Cl(K̄))|l ≥ n} contains
G0(K).

(3) There exists a number d ∈ N such that deg(γl) ≤ dql for all l ∈ N, where deg
denotes the maximum divisor degree of the matrix entries of Dl with respect to
L0 (or K(t), respectively).

(4) If l0 < l1 < . . . is the sequence of natural numbers li for which γli 6= 1, then
lim

i→∞
(li+1 − li) = ∞.

Then M is an effective H-equivariant D-module over OL with

(4.19) GalD(M) ∼= G0(OK)

and the corresponding PV-extension E/L defines a PV-extension over F with

(4.20) GalD(E/F ) ∼= G(K).

Proof. — As in the proof of Theorem 3.1, we assume for simplicity r = p = q. We
start with fixing some notation. Let ML := L ⊗O M ∈ DModL be the D-module
generated by M over L with m := dimL(M). Let UK := K[GLm] and QK � UK be
the defining ideal of G0

K . Then the extended ideal QL := QKUL � UL := L[GLm] is

a D-ideal (compare Thm. 3.1). Therefore R̃ := L[G0] = UL/QL is a D-ring and in

addition an integral domain. Set Ẽ := Quot(R̃) and let K̃ denote its field of constants.
Let PL � UL be a maximal D-ideal containing QL, then R := UL/PL is a PV-ring

with PV-field E := Quot(R), and let κ : R̃ → R denote the canonical epimorphism.

Obviously, the D-module M̃ := Ẽ ⊗L M contains a fundamental solution system and
thus is trivial. Hence the solution space Ṽ := SolẼ(M̃) is an m-dimensional K̃-vector
space and a G0(K)-module by definition.

Again, we first have to show that any one-dimensional D-submodule N ∈ DModO

of M (or NL := L ⊗O N , respectively) defines a G0(K)-stable line W̃ < Ṽ . For

this purpose let B := {b1, . . . , bm} be a basis of M , i.e., M =
m
⊕

i=1

biO. Then Bl :=

BD0 · · ·Dl−1 is a basis of the congruence submodule Ml or its submodule Mφ
l :=

m
⊕

i=1

biOl, respectively, where Ol = OLl
with Ll = φl

q(L0). Analogously, we define the
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one-dimensional Ol-submodule Nφ
l = Nl ∩M

φ
l . Then

(4.21) Nφ
l = BlhlOl =

m
∑

i=1

bl,ihl,iOl for suitable hl ∈ Om
l

(and Bl = {bl,1, . . . , bl,m}), where for every l at least one of the coefficients hl,i belongs

to O×
l . It follows from condition (1) that Mφ

l+1 ≤ Mφ
l and Nφ

l+1 ≤ Nφ
l . Thus there

exists an element ul ∈ O×
l such that

(4.22) Bl+1hl+1 = Blhlul = Bl+1D
−1
l hlul.

Together with (4.21) this identity implies that if any non-zero component of an Ol-
multiple of D−1

l hl is in Ol+1, then so must be all others.
We want to show that we may assume hl,k = 1 for some fixed k and all l ∈ N.

By construction there exists an index k for which h0,k ∈ O×
0 , so by rescaling we may

assume that h0,k = 1. Suppose that hj,k = 1 for j ≤ l. Then for the k-th component

of D−1
l hl we find (D−1

l (o)hl(o))k = hl,k(o) = 1. This implies that we may choose

(4.23) ul := (D−1
l hl)

−1
k ∈ O×

l

since ul(o) = 1 and (D−1
l hlul)k = 1 ∈ Ol+1. By the remark above, all components of

the last vector have to belong to Ol+1. This allows us to replace hl+1 by

(4.24) hl+1 := D−1
l hlul ∈ Om

l+1

with hl+1,k = 1 by construction.
Obviously the degree of (the components of) h0 is bounded. The recursion formula

(4.24) together with (4.23) then yield bounds on the degree for all hl, namely
(4.25)

deg(hl+1) ≤ deg(ul) + deg(D−1
l ) + deg(hl) ≤

{

2(deg(D−1
l ) + deg(hl)) for γl 6= 1

deg(hl) for γl = 1.

This implies

(4.26) deg(hl) ≤ 2i deg(h0) +

i−1
∑

j=0

2i−j deg(D−1
lj

) for li ≤ l < li+1.

Using condition (3) and Cramer’s rule, we see that the degree of D−1
j is bounded

by dpjP (m) for some polynomial P (m) not depending on j. On the other hand, the
degree of any element in Ol is a multiple of pl. So we can use condition (3) to conclude
that there exists an n ∈ N such that hl has constant coefficients for all l ≥ n (compare
to the proof of Theorem 3.1). This implies

(4.27) hl = hl(o) = h0(o) for l ≥ n.

Thus for h := h0(o) we obtain Dlh = ulh, i.e., h is an eigenvector for Dl for all l ≥ n.
From ul ∈ Ol and ul(o) = 1 we derive

(4.28) y :=
∏

l≥0

ul ∈ MK(0).
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For w̃ := B0hy we obtain the congruences

(4.29) ∂(w̃) ≡ B0(∂(y) −Aly)h ≡ 0 (mod pl+1) for l ∈ N

by using the formula for Al given in Theorem 1.7. Thus w̃ is an element of Ṽ . The
vector space W̃ := K̃w̃ spanned by w̃ is a one-dimensional subspace of Ṽ which is
GalD(Ẽ/L)- and G0(K)-stable (under the action on y or h, respectively,) and both
actions coincide when restricted to GalD(E/F ).

Next one has to show that any GalD(E/L)-stable line W̃ ≤ Ṽ is G0(K)-stable.
This can be proved using the same arguments as in the proof of Theorem 3.1 as well
as the fact that M is effective, showing (4.19). By condition (1), the H-equivariance
of M follows from Proposition 4.1, which then immediately implies (4.20).

Proposition 4.3 leads to the following existence theorem for split extensions.

Theorem 4.4. — Let (L, ∂L, φ
L
q ) be an integral finite DF-Galois extension of the DF-

field (F, ∂F , φ
F
q ) of analytic elements F = K{t} with ∂F = ∂t, φ

F
q (t) = tq and Galois

group H. Let G0 be a reduced connected linear algebraic group defined over OK and
let G = G0 o H be a split extension of linear algebraic groups. Then there exists an
effective and H-equivariant PV-extension E/L such that

(4.30) GalD(E/L) ∼= G0(K) and GalD(E/F ) ∼= G(K).

Proof. — To prove Theorem 4.4 it is enough to show the existence of a D-module
M ∈ DModOL

whose system of representing matrices satisfies conditions (1) – (4)
of Proposition 4.3.

The algebraic F -group G0
χ is generated as an algebraic group by its Cartan sub-

groups, so by finitely many F -tori and finitely many unipotent groups ([Spr98],
Thm. 13.3.6). By [Spr98], Thm. 14.3.8, the unipotent groups are F -split. In the
special case U = Ga we can certainly find morphisms γl : Cl → U ≤ G0

l satisfy-
ing property (1) of Proposition 4.3. The general case of unipotent groups follows
by solving central embedding problems with kernel Ga (using [Spr98], Cor. 14.3.9,
compare [MvdP03b], Lemma 7.5 or [Mat01], Lemma 7.11, respectively). In the
case of a torus T by a theorem of Tits ([Tit68], Ch. III, Prop. 1.6.4) there exists
a T (s, t) ∈ T (K(t)) generating a dense subgroup of T (K(t)). By the proof of that
theorem we may assume T ∈ T (OK(t)) and T (o) = 1. Then the corresponding mor-
phism γ0 : C0 → T as well as its Frobenius images γl again satisfy condition (1) of
Proposition 4.3.

Since G0
χ is generated by finitely many tori and finitely many unipotent subgroups

and since one morphism for each of these groups suffices to generate G0
χ as an algebraic

group, we can splice the corresponding matrices Dl together into a sequence such that
conditions (2), (3), and (4) are also satisfied.

4.3. Non-Split Extensions. — For the realization of non-split group extensions
with finite cokernel as D-Galois groups we use the following theorem of Borel and
Serre:

SÉMINAIRES & CONGRÈS 13
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Proposition 4.5. — Let K be a perfect field and G a linear algebraic group over K.
Then there exists a finite subgroup H ≤ G defined over K with G = G0 · H. Moreover
H(K) = H(K̄) if K contains enough roots of unity.

Proof. — The proof of the first part is given in [BS64], Lemma 5.11 with footnote.
The equality H(K) = H(K̄), where K̄ denotes an algebraic closure of K, immediately
follows from the representation theory of finite groups.

This proposition leads to the following generalization of Theorem 4.4.

Theorem 4.6. — Let K be a complete p-adic field and G a reduced linear algebraic
group over K defined over OK . Suppose G0 has a finite supplement H in G such that
H(K) = H(K̄) can be realized as a DF-Galois group of an integral extension over
the DF-field F = K{t} of analytic elements over K. Then G(K) can be realized as
D-Galois group over F .

Proof. — Let G̃ be the split extension of the linear algebraic groups G0 and H with
the action of H on G0 given by the supplement. Then by Theorem 4.4 there exists a
PV-extension Ẽ/F with GalD(Ẽ/F ) ∼= G̃(K). The group G is a linear quotient group

of G̃, so there exists a PV-extension E/F inside Ẽ/F with GalD(E/F ) ∼= G(K).

An easy application is the following: Let K be a p-adic field containing the n-th
roots of unity, let F be the field of analytic elements over K and let L/F be a cyclic
extension given by the equation sn = t. Assume p does not divide n, then OL/OF is
an extension of p-adic D-rings. Hence every linear algebraic group G over K with a
cyclic supplement H = H(K) of G0 of order dividing n can be realized as the D-Galois
group of an integral D-module M over F , i.e.,

(4.31) GalD(M) ∼= G(OK) and GalD(MF ) ∼= G(K).

4.4. The Non-Connected Inverse Problem. — Now we assume that the field
of differential constants K of the field of analytic elements F = K{t} contains the
Witt ring W(F̄p), i.e., K contains Ep := Quot(W(F̄p)). Then the residue field F of F
equals F̄p(t). This entails a positive solution of the finite inverse problem over F .

Proposition 4.7. — Let F = K{t} be the field of analytic elements over a complete
p-adic field K with K ≥ Ep. Then every finite group H can be realized as D-Galois
group of an integral DF-extension L/F .

Proof. — Let F ur/F be the maximal unramified algebraic extension of F . Then the
derivation ∂F = ∂t as well as the Frobenius endomorphism φF

q extend uniquely to
F ur and the D-Galois group GalD(F ur/F ) coincides with Gal(F ur/F ). By profinite
Galois theory, Gal(F ur/F ) is isomorphic to the Galois group of the separable closure
F sep/F of the residue field F (see [Nag91], Thm. 6.3.2). Now a theorem of Harbater
[Har95] and Pop [Pop95] (compare [MM99], Thm. V.2.10) shows that the profinite
group Gal(F sep/F) is free of countable rank. In particular, every finite group H
can be realized as the Galois group of a Galois extension L/F and as the DF-Galois
group of a p-adically unramified DF-Galois extension L/F . By the last property and
Proposition 1.1 the extension L/F is integral and does not contain new constants.
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Combining the result above with Proposition 4.5 and Theorem 4.6 we obtain the
solution of the general inverse problem over F :

Theorem 4.8. — Let F = K{t} be the field of analytic elements over a complete p-adic
field K containing Ep and let G be a reduced linear algebraic group defined over OK .
Then G(K) can be realized as D-Galois group over F .

5. Reduction of Constants

5.1. Iterative D-Modules. — A local D-ring (OF , ∂F ) is called a local iterative
D-ring or a local ID-ring for short if

(5.1)
1

k!
∂k

F (OF ) ⊆ OF and
1

k!
∂k

F (PF ) ⊆ PF for k ∈ N.

Here again the second condition follows from the first in case the value group |F×| of
F coincides with the value group |K×| of its field of constants. The family of higher

derivations ∂
(k)
F := 1

k!∂
k
F : OF → OF defines an iterative derivation ∂∗F := (∂

(k)
F )k∈N

on OF as introduced by H. Hasse and F. K. Schmidt [HS37] (compare [MvdP03b],
§ 2.1 or [vdPS03], Ch. 13.3).

Now let (M,∂M ) be an integral local D-module over O := OF , i.e., M ∈ DModO.
Then (M,∂M ) is called a local iterative D-module or a local ID-module if in addition

(5.2)
1

k!
∂k

M (M) ⊆M for k ∈ N.

Then the family of maps ∂∗M := (∂
(k)
M )k∈N, where ∂

(k)
M := 1

k!∂
k
M , is the iterative

derivation on M induced by ∂M (compare [MvdP03b], § 2.2 or [vdPS03], loc.
cit.). Obviously, the local ID-modules over O with D-homomorphisms form a tensor
category denoted by IDModO.

Proposition 5.1. — Let (OF , ∂F ) be a local ID-ring and (M,∂M ) a local D-module over
O := OF . Then (M,∂M ) is integral if and only if it is an ID-module. More precisely,
the tensor categories DModO and IDModO are equivalent.

The proof immediately follows from [MvdP03b], Prop. 8.1.

The ID-structure of M gives rise to a second projective system: For this purpose
we define

(5.3) O(0) := O, O(l+1) := {a ∈ O(l)|∂
(pl)
F (a) ∈ PF }

and, respectively,

(5.4) M(0) := M, M(l+1) := {x ∈M(l)|∂
(pl)
M (x) ∈ PFM}.

Then in analogy to Proposition 1.3 the submodules M(l) together with the O(l+1)-
linear embeddings ϕ(l) : M(l+1) → M(l) form a projective system (M(l), ϕ(l))l∈N of
O(l)-modules. The category of all those projective systems with the properties (1.18)
and (1.19) for M(l), ϕ(l) instead of Ml, ϕl will be denoted by IDProjO.
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Corollary 5.2. — Let (OF , ∂F ) be a local ID-ring, (M,∂M ) ∈ DModO and let
(Ml, ϕl)l∈N, (M(l), ϕ(l))l∈N be the induced projective systems in DProjO or IDProj,
respectively.

(a) For all l ∈ N there exists a k(l) ∈ N such that

O(l) ≥ Ok and M(l) ≥Mk for all k ≥ k(l).

(b) Then with a basis Bk = {bk1, . . . , bkm} of Mk

(5.5) M(l) = O(l) ⊗Ok
Mk =

m
⊕

i=1

O(l)bk,i.

Proof. — By the definition of a local integral D-module there exists an OF -basis

Bk = {bk1, . . . , bkm} ofM for all k ∈ N with ∂M (bk,i) ∈ rkM and thus ∂pj

M (bk,i) ∈ rkM
for all j ∈ N. This implies

(5.6) ∂
(pj)
M (bk,i) =

1

(pj)!
∂pj

M (bk,i) ∈ PFM for all j < l ∈ N

in case k is large enough, say, k ≥ k(l). This proves (a) and also (b), since x =
n
∑

i=1

aibk,i ∈M belongs to M(l) if and only if ai ∈ O(l) for i = 1, . . . ,m.

If we let (Dl)l∈N denote a system of representing matrices of (M,∂M ) (with respect
to basesBl ofMl), we obtain a system of representing matrices of the second projective
system (M(l), ϕ(l))l∈N for example by

(5.7) D(l) := Dk(l−1) · · ·Dk(l)−1 ∈ GLm(Ok(l−1)) for l ∈ N

(with respect to the bases Bk(l)) and k(−1) = 0. Moreover, with the base change
matrices (D(l))l∈N from (M(l), ϕ(l))l∈N we can recover the derivation ∂M which is
characterized by the projective system (Ml, ϕl)l∈N according to Theorem 1.4.

5.2. Residue Modules. — The iterative derivation ∂∗F of a local ID-ring OF = O
induces an iterative derivation ∂∗F on the residue field F := OF/PF by

(5.8) ∂
(k)
F (a+ PF ) := ∂

(k)
F (a) + PF for a ∈ OF and k ∈ N.

Analogously any M ∈ DModO = IDModO with O-basis B = {b1, . . . , bm} reduces
to an F -vector space

(5.9) M̃ := M/PFM =

m
⊕

i=1

F b̃i

with basis B̃ = {b̃1, . . . , b̃m} equipped with an iterative derivation ∂∗
M̃

defined by

(5.10) ∂
(k)

M̃
(x + PFM) := ∂

(k)
M (x) + PFM for x ∈M and k ∈ N,

i.e., (M̃, ∂∗
M̃

) is an ID-module over F in the sense of [MvdP03b], Ch. 2.2 (compare

[vdPS03],Ch. 13.3). The next proposition shows that the induced projective systems
are compatible with the reduction process.
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Proposition 5.3. — Let (O, ∂∗) be a local ID-ring with residue field F and (M,∂∗M ) ∈
IDModO with associated projective system (M(l), ϕ(l))l∈N ∈ IDProjO. Then the pro-

jective system of the reduced ID-module (M̃, ∂∗
M̃

) ∈ IDModF is given by (M̃l, ϕ̃l)l∈N

where

(5.11) M̃l := M(l)/(M(l) ∩ PFM)

and ϕ̃l is induced from ϕ(l).

Proof. — Let (for each l) B(l) be an arbitrary O(l)-basis of M(l) andD(l) ∈ GLm(O(l))
with B(l) = B(l−1)D(l−1). For x ∈ M there exists y (0) = (y1, . . . , ym) ∈ Om with

x = B(0)y (0) and thus x = B(l)y (l) with y (l) := D−1
(l−1) · · ·D

−1
(0)y (0). Then obviously

for all k < pl we obtain

∂
(k)
M (x) = ∂

(k)
M (B(l)y (l)) =

∑

i+j=k

∂
(i)
M (B(l))∂

(j)
F (y (l))

≡ Bl∂
(k)
F (y (l)) = B0D(0) · · ·D(l−1)∂

(k)
F (D−1

(l−1) · · ·D
−1
(0)y (0)) (mod PFM).

(5.12)

Substituting B(0) by the reduced basis B̃ andD(l) by the reduced base change matrices

D̃l the above equation yields the formula for the iterative derivation of an ID-module
over F induced from its projective system (see [Mat01], Prop. 2.10 or [MvdP03a],
Ch. 5.5, respectively).

If we use the bases Bk(l) for M(l), the reduced base change matrices D̃l of

(M̃l, ϕ̃l)l∈N are obtained from the representing matrices Dl of (Ml, ϕl)l∈N by

(5.13) D̃l = Dk(l−1) · · ·Dk(l)−1 (mod PFO
m×m
(l) ).

5.3. Behaviour of the Galois Group. — As before, let (OF , ∂
∗
F ) be a p-adic

ID-ring with quotient field F and (M,∂M ) ∈ DModO for O = OF . As in Section 2.2
we assume the quotient field EM of a Picard–Vessiot ring RM of M over OF does not
contain new constants. Then by Proposition 2.3 there exists a reduced linear algebraic
group G over the field of constants K of F with AutD(M) ∼= G(OK). Further, at least

in the case when G is connected, we know R
AutD(M)
M = OF . This fact will be assumed

in the next theorem. Since the group of K-rational points G(K) over a finite field K is
not Zariski dense in G(K̄), we suppose in addition K ≥ F̄p orK ≥ Ep := Quot(W(F̄p)),
respectively.

Theorem 5.4. — Let (M,∂M ) be an integral p-adic D-module over a discretely valued
p-adic ID-ring (OF , ∂

∗
F ) with field of constants K ≥ Ep. Assume there exists a Picard–

Vessiot ring RM of M over F without new constants and with R
GalD(M)
M = OF . Then

the residue module (M̃, ∂̃∗M ) of M is an ID-module over the residue field F := OF /PF

whose ID-Galois group is bounded by

(5.14) GalID(M̃) ≤ GalD(M)/GalD(M)1

where GalD(M)1 denotes the principal congruence subgroup of the p-adic analytic
group GalD(M).
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Proof. — For the proof we follow the construction of a Picard–Vessiot ring RM

of M over OF (compare [Mat03], Thm. 10.2). Let (Ml, ϕl)l∈N ∈ DProjO
and (M(l), ϕ(l))l∈N ∈ IDProjO be the respective projective systems associated
to (M,∂M ) with systems of representing matrices (Dl)l∈N and (D(l))l∈N, where
D(l) = Dk(l−1) · · ·Dk(l)−1 according to Corollary 5.2. Then the derivative ∂M of M
with respect to the basis B = B0 = {b1, . . . , bm} of M is given by

(5.15) ∂M (B) = −B ·A

with the matrix A ∈ Om×m
F constructed in Theorem 1.7. Analogously, the higher

derivations on M are given by

(5.16) ∂
(k)
M (B) =

1

k!
∂k

M (B) = −B ·A(k)

with

(5.17) A(k) = lim
l→∞

(∂
(k)
F (D0 · · ·Dl)(D0 · · ·Dl)

−1) ∈ Om×m
F .

The ring U := OF [GLm] = OF [xij , det(xij)
−1]mi,j=1 becomes an ID-ring via

(5.18) ∂
(k)
U (X) = A(k)X for X = (xij)

m
i,j=1.

Now let P �U be a maximal differential ideal with P ∩OF = (0), which is an ID-ideal
by (5.17). Then the OF -algebra RM := U/P is an “integral PV-ring” with quotient
field E := EM (up to differential isomorphism) and there exists a fundamental solution
matrix Y = (yij)

m
i,j=1 ∈ GLm(RM ) with ∂E(Y ) = A · Y . By assumption E and RM

do not contain new constants and GalD(M) := AutD(RM/OF ) has the property

R
GalD(M)
M = OF . A matrix representation of GalD(M) on the solution space is given

by

(5.19) Γ : GalD(M) −→ GLm(OK), γ 7→ Cγ

where γ(Y ) = Y Cγ .

Now let Ũ := F ⊗O U = F [x̃ij , det(x̃ij)
−1]mi,j=1 and let R̃M := F ⊗O RM be the

residue ring of RM over F , i.e., R̃M = F [ỹij , det(ỹij)
−1]mi,j=1 with ỹij = 1⊗yij ∈ R̃M .

Then the residue matrices D̃l of D(l) ∈ GLm(OF ) define an iterative derivation ∂∗
R̃M

on R̃M by

(5.20) ∂
(k)

R̃M
(Ỹ ) := ∂

(k)
F (D̃0 · · · D̃l)(D̃0 · · · D̃l)

−1Ỹ for k < pl

where Ỹ = (ỹi,j)
m
i,j=1, i.e., R̃M is an ID-ring. Hence R̃M can be obtained as a quotient

of Ũ by an ID-ideal P̃ :

(5.21) R̃M = Ũ/P̃ .

The group of iterative differential automorphisms AutID(R̃M/F) is a linear alge-
braic group over F̄p = OK/PK since

(5.22) AutID(R̃M/F) = {C̃ ∈ GLm(F̄p)|p̃(XC̃) = 0 for all p̃ ∈ P̃}.
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Because of γ̃(Y ) = Ỹ Cγ = Ỹ C̃γ for γ ∈ GalD(M), the restriction map

(5.23)
∼

: GalD(M) −→ AutID(R̃M/F), Cγ 7→ C̃γ

is a group homomorphism with kernel GalD(M)1 whose image is denoted by G̃. By

construction we obtain R̃G̃
M = F . Thus G̃ is Zariski dense in AutID(R̃M/F) and the

restriction map is surjective. This proves

(5.24) AutID(R̃M/F) = G̃ ∼= GalD(M)/GalD(M)1.

Now let Q̃ � Ũ be a maximal ID-ideal containing P̃ . Then RM̃ := Ũ/Q̃ is an

iterative Picard-Vessiot ring for M̃ with

GalID(M̃) = GalID(RM̃/F) ∼= {γ̃ ∈ GLm(F̄p)|γ̃(Q̃) ⊆ Q̃}

≤ {γ̃ ∈ GLm(F̄p)|γ̃(P̃ ) ⊆ P̃} ∼= AutID(R̃M/F)

∼= GalD(M)/GalD(M)1,

(5.25)

since every ID-ideal P̃ � Ũ is left invariant by GalID(M̃) (by the correspondence of

ID-ideals and GalID-stable ideals in Ũ , compare [vdPS03], proof of Thm. 1.28).

The question remains under which conditions equality holds in (5.14) (compare
[MvdP03b], Conjecture 8.5).

5.4. Example SL2. — As an example, let K be Ep = Quot(W(F̄p)) and let F =
K{t} be the field of analytic elements overK. Let further (M,∂M ) be a 2-dimensional
OF -module with associated projective system (Ml, ϕl)l∈N and system of representing
matrices

(5.26) Dl =

(

1 alt
pl

0 1

)

or Dl =

(

1 0

alt
pl

1

)

with al ∈ OK = W(F̄p). For the sequence of natural numbers l0 < l1 < . . . with
ali 6= 0 we assume lim

i→∞
(li+1 − li) = ∞. We further assume that there exist infinitely

many l with Dl 6= I which are upper triangular and infinitely many Dl 6= I which are
lower triangular. Then from Theorem 3.1 it follows that

(5.27) GalD(M) = SL2(OK) = SL2(W(F̄p)).

Now let (M̃, ∂∗
M̃

) be the reduced ID-module over F = F̄p(t) with system of rep-

resenting matrices D̃l := D̃(l) where D(l) = Dl. In case all ali 6= 0 are units in OK ,
i.e., ãli 6= 0, the properties above for (Dl)l∈N entail the corresponding properties for

(D̃l)l∈N. Hence we obtain, by [MvdP03b], Lemma 7.4,

(5.28) GalID(M̃) = SL2(F̄p),

i.e., in Theorem 5.4 we have equality by

(5.29) GalID(M̃) = SL2(F̄p) ∼= SL2(W(F̄p))/ SL2(W(F̄p))1 = GalD(M)/GalD(M)1.
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