
Séminaires & Congrès

13, 2006, p. 343–366

THE GROUP THEORY BEHIND MODULAR TOWERS

by

Darren Semmen

Abstract. — Geometric considerations identify what properties we desire of the canon-
ical sequence of finite groups that are used to define modular towers. For instance, we
need the groups to have trivial center for the Hurwitz spaces in the modular tower to
be fine moduli spaces. The Frattini series, constructed inductively, provides our se-

quence: each group is the domain of a canonical epimorphism, which has elementary
abelian p-group kernel, having the previous group as its range. Besides satisfying
the desired properties, this choice is readily analyzable with modular representation
theory.

Each epimorphism between two groups induces (covariantly) a morphism between
the corresponding Hurwitz spaces. Factoring the group epimorphism into interme-
diate irreducible epimorphisms simplifies determining how the Hurwitz-space map
ramifies and when connected components have empty preimage. Only intermediate
epimorphisms that have central kernel of order p matter for this. The most impor-
tant such epimorphisms are those through which the universal central p-Frattini cover
factors; the elementary abelian p-Schur multiplier classifies these.

This paper, the second of three in this volume on the topic of modular towers,
reviews for arithmetic-geometers the relevant group theory, culminating with the
current knowledge of the p-Schur multipliers of our sequence of groups.
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344 D. SEMMEN

Résumé(Théorie des groupes pour les tours modulaires). —Des considérations géomé-
triques permettent d’identifier quelles propriétés nous souhaitons pour la suite cano-
nique de groupes finis qui sont utilisés pour définir les tours modulaires. Par exemple,
les groupes doivent être de centre trivial pour que les espaces de Hurwitz constituant
la tour modulaire soient des espaces de modules fins. Notre suite est donnée par la
série de Frattini, qui est définie inductivement : chaque groupe est le domaine d’un
épimorphisme canonique, lequel a comme noyau un p-groupe abélien élémentaire, et
le groupe précédent comme image. En plus de satisfaire les propriétés désirées, ce
choix s’interprète naturellement en termes de théorie des représentations modulaires.

Chaque épimorphisme entre deux groupes induit (de manière covariante) un mor-
phisme entre les espaces de Hurwitz correspondants. La factorisation de l’épimor-
phisme de groupes en épimorphismes irréductibles intermédiaires permet de déter-
miner plus simplement comment l’application entre espaces de Hurwitz se ramifie
et quand les composantes connexes ont des images inverses vides. Pour cela, seuls
comptent les épimorphismes intermédiaires qui ont un noyau central d’ordre p. Les
plus importants de ces épimorphismes sont ceux à travers lesquels le p-revêtement
universel de Frattini se factorise ; ils sont classifiés par le p-groupe élémentaire abélien
des multiplicateurs de Schur.

Cet article, le deuxième de trois sur les tours modulaires dans ce volume, revient,
à l’intention des arithméticiens-géomètres, sur la théorie des groupes nécessaire à

cette théorie, pour aboutir à l’état actuel des connaissances sur les p-groupes de
multiplicateurs de Schur de notre suite de groupes.
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1. Introduction

This survey broadly divides into two parts. The first part (§2 and §3) recaps Dèbes’

presentation [Dèb] of the universal p-Frattini cover and of modular towers. In partic-

ular, §2 illustrates difficulties arising from the use of Zorn’s lemma in the “top-down”

construction of the universal p-Frattini cover, while §3 concentrates on the conse-

quences which the properties of the finite groups Gn have on the modular towers they
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define. The second part constructs the groups Gn and derives their properties from

the “bottom-up”, using modular representation theory and, especially, the categorical

equivalence of Gruenberg and Roggenkamp [Gru76, §10.5]. The appendix displays

the functors for this categorical equivalence, since it doesn’t seem to be well-known.

Despite relatively few explicit citations herein, many of the results surveyed have

been comprehensively catalogued (and produced) by Fried in his work on modular

towers. His series of papers on the subject are a primary source: [Fri95], [FK97],

[Fri02], [BF02], [Fri], and [FS]. I have tried to introduce required results from mod-

ular representation theory steadily but gently; for a general reference, I recommend

Benson’s text [Ben98a].

Before proceeding, recall some elementary categorical definitions.

Definition 1.1. — In any category, for any objects X and Y , a morphism φ ∈

Hom(X,Y ) is epic iff, for all objects Z and for all morphisms ψ1, ψ2 ∈ Hom(Y, Z),

if ψ1 ◦ φ = ψ2 ◦ φ then ψ1 = ψ2.

This purely categorical definition is synonymous with “surjective” in the categories

of abstract groups, profinite groups, and modules.

Definition 1.2. — An object P of a category C is projective iff, for any objects X

and Y of C, any morphism ψ ∈ Hom(P, Y ), and any epic morphism φ ∈ Hom(X,Y ),

there exists a morphism π ∈ Hom(P,X) such that φ ◦ π = ψ, as illustrated in the

following commutative diagram:

P
∀ψ
−→ Yy∃π ‖

X
∀φ
−� Y

An object F of C is Frattini iff every morphism to F is epic, i.e., for any object X

of C and any morphism φ ∈ Hom(X,F ), φ is epic.

Given an object X of a category C, a cover of X is defined to be an epic mor-

phism in Hom (Y,X) for some object Y . The collection of covers of X comprise

the class of objects of a category whose morphisms are as follows — given two cov-

ers, φ1 ∈ Hom(Y,X) and φ2 ∈ Hom(Z,X), Hom (φ1, φ2) is defined to be the set

of morphisms ψ in Hom(Y, Z) such that φ2 ◦ ψ = φ1. We also sometimes consider

subcategories where we restrict the covers under consideration, but in these cases the

set of morphisms between two objects remains the same as in the full category of

covers, i.e., these subcategories are full in the technical sense. In the categories of

covers we will consider, epic morphisms will always turn out to be surjective. Hence,

equivalences between these categories pass along surjectivity of morphisms.

Conventions. The number p is always a positive prime rational integer, G is always

a finite group, and k is always a field with characteristic p. The cyclic group of order
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n is Cn, the dihedral group of order 2n is Dn, the alternating group on n letters is

An, and the symmetric group on n letters is Sn. The conjugate gag−1 of one element

a of G by another element g is denoted by ga. The commutator [g, h] of two elements

g and h of G is g−1h−1gh. All modules are finitely generated left-modules. The ring

of p-adic integers is denoted by Zp, and the field with q elements by Fq.

2. The universal p-Frattini cover

Fix a finite group G and consider the category of covers of G within the category

of profinite groups; call this category of covers C(G). A projective Frattini object in

this category is called the universal Frattini cover of G, as is its domain, which

is given the notation G̃. The first construction of this, due to Cossey, Kegel, and

Kovács [CKK80, Statement 2.4], used Zorn’s lemma: projective profinite groups are

precisely those isomorphic to closed subgroups of free profinite groups [FJ05, Propo-

sition 22.4.7], so take a minimal closed subgroup mapping onto G in any epimorphism

onto G with domain a free profinite group. The kernel of the universal Frattini cover

is (pro-)nilpotent by the Frattini Argument from which its name derives. Hence, it

is the product of its p-Sylows; being closed subgroups of a projective profinite group,

they will have to be projective as well, and projective pro-p groups must be free as

pro-p groups [FJ05, Proposition 22.7.6].

Now consider pG̃, the quotient of G̃ by the p′-Hall subgroup of the kernel of G̃ � G,

i.e., the product of all of the s-Sylows of the kernel, where s denotes a rational prime

distinct from p. This quotient profinite group is called the universal p-Frattini

cover ofG, as is the natural map toG which it inherits. This map is also characterized

by being a projective Frattini object in the full subcategory Cp∞(G) of C(G) whose

objects are precisely those objects of C(G) with kernel a pro-p group. The kernel of

the universal p-Frattini cover is a free pro-p group called ker0.

The easiest example is when G is a p-group; then, pG̃ is a free pro-p group with the

same minimal number of (topological) generators as G. As a consequence of Schur-

Zassenhaus, if G merely has a normal p-Sylow P , then G is a semi-direct product

P>/H , where H ' G/P ; we say G is p-split. When G is p-split, pG̃ ' F̂n(p)>/H ,

where n is the minimal number of generators of the p-Sylow P of G and F̂n(p) is the

pro-p completion of the free group on n generators. The rank (minimal number of

topological generators) of ker0 is 1 + (n− 1)|P |, by the Schreier formula.

Example 2.1. — The alternating group on four elements is isomorphic to V4>/C3,

where a given generator g of C3 acts on the Klein four-group V4 by cyclically permut-

ing the three non-trivial elements. Two (topological) generators a and b of F̂2(2) may

be chosen so that conjugation by g on F̂2(2) (in 2Ã4 ' F̂2(2)>/C3) is given by ga = b

and gb = b−1a−1. Clearly, a and b generate a discrete, dense, free subgroup F2 of
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F̂2(2) which is stabilized by C3. We get the following commutative diagram of exact

sequences:

1 −→ F2 −→ F2>/C3 −→ C3 −→ 1y
y ‖

1 −→ F̂2(2) −→ 2Ã4 −→ C3 −→ 1

By the Schreier formula, ker0 has rank 5 and its intersection with F2 is a free group

F5 of rank 5, normal inside of F2. There is another commutative diagram of exact

sequences:

1 −→ F5 −→ F2>/C3 −→ A4 −→ 1y
y ‖

1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1

where the vertical maps are dense group monomorphisms.

In general, the approach we’ve been following so far fails to provide detailed in-

formation about the universal p-Frattini cover, the preceding example being a rare

counterexample describable by a discrete analogue. Even p-split groups can often not

be described this way. One reason to expect this failure is the non-constructiveness of

using Zorn’s lemma to create the universal cover. Consider two examples illustrating

the limitations.

Example 2.2. — Our first example comes from Holt and Plesken [HP89]. Embedding

A4 into A5 leads to an embedding of 2Ã4 into 2Ã5 and the following commutative

diagram of exact sequences:

1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1y
y

y
1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The leftmost vertical map is an isomorphism. However, there is NO group Γ which

can fit into a commutative diagram of exact sequences of the following form, where

the vertical maps are dense monomorphisms:

1 −→ F5 −→ Γ −→ A5 −→ 1y
y ‖

1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The proof examines the character of the 2-adic Frattini lattice (cf. §7) of SL2(F5) and

is beyond the scope of these limited notes.

Example 2.3. — A result of Dyer and Scott [DS75] says that, for any automorphism

σ of prime order s acting on a discrete free group F , there is a basis X of F such that

one of the following holds for every x in X :

i) σ(x) = x
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ii) x belongs to a subset of X containing exactly s elements which are cyclically

permuted by σ

iii) x belongs to a subset {x1, . . . , xs−1} ofX such that σ(xj) = xj+1 when j < s−1,

while σ(xs−1) = x−1
s−1 · · ·x

−1
1 .

As a corollary, the induced action of σ on the free abelian group (and hence Z〈σ〉-

module) F/[F, F ] would force the latter to be a direct sum of copies of the trivial

module Z, the group ring Z〈σ〉, and the augmentation ideal of the group ring.

Now let G = F8>/F
∗
8, where F8 denotes the additive group of the field, F∗8 denotes

the multiplicative group, and the action of the latter on the former is multiplication.

Then, G ' (C2×C2×C2)>/C7, where a generator g of C7 cyclically permutes the non-

trivial elements of the 2-Sylow of G. The universal 2-Frattini cover 2G̃ is isomorphic

to F̂3(2)>/C7, but there is no automorphism of order 7 of the discrete free group F3.

Furthermore, ker0 will be a free pro-2 group of rank 17. Recall that, for a com-

mutative ring R and a group Γ, an RΓ-lattice is an RΓ-module that is free as an

R-module. Conjugation by a lift of g in 2G̃ produces a natural Z2C7-lattice structure

on ker0 /[ker0, ker0], whose fixed points under the action of C7 form a sublattice of

rank 2. Suppose there was a group Γ that fit into a commutative diagram of exact

sequences of the following form, where the vertical maps are dense monomorphisms:

1 −→ F17 −→ Γ −→ G −→ 1y
y ‖

1 −→ ker0 −→ 2G̃ −→ G −→ 1

Then F17/[F17, F17] would be a ZC7-lattice with a dense monomorphism into

ker0 /[ker0, ker0]; the fixed points of the action of C7 on F17/[F17, F17] would thus

form a sublattice of rank 2. However, the result of Dyer-Scott would force the fixed

point sublattice to have rank at least 5, a contradiction.

3. Modular towers

A modular tower is a canonical sequence of Hurwitz spaces H (Gn,C)
in

attached

to any choice of finite group G and r-tuple of p′-conjugacy classes of G, i.e., conjugacy

classes whose elements have order prime to p; the groups Gn are certain canonical

quotients of pG̃.

For any group G and r-tuple C = (C′1, . . . , C
′
r) of conjugacy classes of G, the inner

Nielsen class Ni (G,C)in is defined to be the set of equivalence classes of r-tuples

(g1, . . . , gr) of G satisfying:

i) {g1, . . . , gr} generates G,

ii) g1 · · · gr = 1, and

iii) there exists σ ∈ Sr such that, for all i, g(i)σ ∈ C′i;
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two r-tuples (g1, . . . , gr) and (g′1, . . . , g
′
r) are equivalent iff there exists h ∈ G such that

(hg1, . . . ,
hgr) = (g′1, . . . , g

′
r). The space Pr(C) \Dr parametrizes subsets of P1(C) of

cardinality r. The Hurwitz monodromy group Hr := π1(P
r(C) \Dr) has generators

q1, . . . , qr−1 with a right action on Ni (G,C)in:

(g1, . . . , gr)qi = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr).

This permutation representation of Hr produces an unramified cover H (G,C)
in

�

Pr(C) \Dr with fibre Ni (G,C)
in

, whose domain is called a Hurwitz space; connected

components of the Hurwitz space correspond one-to-one to orbits of the action of Hr

on the inner Nielsen class. When G has trivial center (i.e., no non-trivial element of

G commutes with all elements of G), this is a fine moduli space for equivalence classes

of Galois covers X � P1(C) together with an identification of the monodromy group

with G such that the ramification data is described by an element of Ni (G,C)
in

—

the equivalence of covers here must be G-equivariant.

Now to the definition of the groups Gn. The Frattini subgroup Φ(P ) of a pro-p

group P is equal to P p[P, P ], the closure of the subgroup generated by the p-th powers

and commutators of elements of P . Iteratively defining Φn+1(P ) := Φ(Φn(P )) yields

the Frattini series, a descending series of closed subgroups of P . The intersection

of the members of the Frattini series is trivial since this holds true in any finite p-

group. Define iteratively kern+1 := Φ(kern), beginning with the kernel ker0 of the

map from pG̃ down to G, and define Gn to be pG̃/ kern. Each canonical epimorphism

ϕn : Gn+1 � Gn is a projective Frattini object in the full subcategory CFpG(G) of

C(G) whose objects have elementary abelian p-group kernel.

Whenever H2 � H1 is a group epimorphism with p-group kernel, every p′-

conjugacy class of H1 has a unique lift to a p′-conjugacy class of H2. Hence (cf. [Dèb,

Lifting Lemma 1.1]), if C is an r-tuple of p′-conjugacy classes, there is a canonical

modular tower

. . . −→ H (Gn+1,C)
in ψn
−→ H (Gn,C)

in
−→ . . .

where the map ψn between Hurwitz spaces is induced by applying the epimorphism

ϕn : Gn+1 � Gn coordinatewise to the inner Nielsen class Ni (Gn+1,C)
in

.

The property of Gn+1 � Gn having a p-group kernel allows for the definition of

a modular tower. Two other properties of this group epimorphism have convenient

consequences for the modular tower. First, if G is p-perfect (i.e., has no non-trivial

p-group quotient) and has trivial center then, for all natural numbers n, Gn is also

p-perfect and has trivial center (see Proposition 4.8 below); in this case, all of the

Hurwitz spaces of the modular tower will be fine moduli spaces.

Second, since the epimorphism is Frattini, only the product-one condition (part (ii)

in the definition of the inner Nielsen class) can cause obstruction: a connected compo-

nent O of H (Gn,C)in is called obstructed if its preimage under ψn is empty. Namely,

let (g1, . . . , gr) be a representative of an element of the Hr-orbit of Ni (Gn,C)in cor-

responding to O and let (g′1, . . . , g
′
r) be an element of Grn+1 such that, for all i,
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ϕn(g
′
i) = gi and g′i has order prime to p. Then, the tuple (g′1, . . . , g

′
r) will already sat-

isfy conditions (i) and (iii) in the definition of the inner Nielsen class Ni (Gn+1,C)
in

.

The lifting invariant νn+1(O) (cf [Dèb, §1.4]) encapsulates this idea (O is obstructed

iff 1 6∈ νn+1(O)) and also provides a means to distinguish components.

Fried and Kopeliovich [FK97, Obstruction Lemma 3.2] reduced the determina-

tion of obstruction to a sequence of smaller steps. Fix a Gn-composition series of

kern / kern+1. For any two adjacent entries N2 ⊂ N1 of the series, there is a canonical

cover

Γ2 := Gn+1/N2 � Γ1 := Gn+1/N1

whose kernel will be a simple FpΓ1-module (in fact, a simple FpG-module). The map

ψn factors into a sequence of irreducible maps

H (Gn+1,C)
in
→ · · · → H (Γ2,C)

in
→ H (Γ1,C)

in
→ · · · → H (Gn,C)

in
.

Note that even if all of the groups Gn have trivial center, many of the intermediate

groups will not (see Fact 6.3 below).

Fact 3.1([FK97]). — If the kernel of Γ2 � Γ1 is in the center of Γ2, then

H (Γ2,C)
in
→ H (Γ1,C)

in
is injective. Otherwise, it is surjective.

Idea of proof. — Use the invariance of the lifting invariant under powers of q1 · · · qr ∈

Hr and the fact that, for any set of generators {g1, . . . , gr} of Γ1 and any simple kΓ1-

module S having non-trivial Γ1-action, S equals the sum of the vector subspaces

(gi − 1)S.

Thus, only intermediate epimorphisms Γ2 � Γ1 with central kernel can produce

obstruction. These intermediate epimorphisms with central kernel can also influence

genus computations through the ramification of the map that ψn induces between

compactified Hurwitz spaces (cf. [BF02, §9.7]). These observations motivated the

analysis leading to Fact 6.3. Unfortunately, the simple subquotients lying deep in a

composition series of kern / kern+1 are inaccessible at the moment; fortunately, Weigel

has recently observed that the only subquotients that matter for obstruction are those

classified by the elementary abelian p-Schur multiplier, i.e., those that can occur at

the top of a composition series.

Specifically, Weigel has shown (cf [Wei05, Theorem A]) that there is, independent

of n, an orientable p-Poincaré duality group Γ of dimension 2 such that the elements

of Ni (Gn,C)in correspond to conjugacy classes of epimorphisms from Γ to Gn. The

obstruction to lifting an element of Ni (Gn,C)in to Ni (Gn+1,C)in thus lies in the

elementary abelian p-Schur multiplier of Gn.
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4. The p-Frattini module

Modular representation theory is the right context to produce the canonical se-

quence of finite groups Gn whose projective limit is the universal p-Frattini cover, as

this approach is entirely constructive.

Let R be a commutative ring with 1. Every group ring RG has a rank-one trivial

simple module, a copy of R on which every element of G acts as the identity; we

denote it by 111RG, omitting the subscript when the context is obvious. The kernel of

the canonical RG-module epimorphism from RG to 111RG, sending every element of

G to 1, is called the augmentation ideal and is denoted by ωRG. We also omit the

subscript on this object when the context is obvious.

For any RG-module M , let CRG(M) be the category of covers of M (in the category

of RG-modules). Let CRG(G) represent the category of covers Γ � G of G (in

the category of groups) whose kernels are abelian groups with a specified R-module

structure that commutes with conjugation (by elements of Γ); note that these kernels

are naturally RG-modules where the action of an element g ∈ G is conjugation by

any element of Γ in the preimage of {g}. The morphisms in this category are those

morphisms of the covers that restrict to RG-module homomorphisms on the kernels.

Fact 4.1(Gruenberg-Roggenkamp). — There is an equivalence of categories between

CRG(G) and CRG(ωRG) under which corresponding objects have isomorphic kernels.

Note: When R is Z or Fp, the group structure of the kernel determines its R-module

structure. If R is Ẑ (or Zp) and the kernel is a finitely (topologically) generated

R-module, the domain of the cover is naturally a profinite group; conversely, if the

domain of the cover is given a profinite group structure, the kernel will inherit a

canonical Ẑ-module structure. Finally, note that the finite-index subgroups of any

finitely (topologically) generated profinite group are closed (cf Nikolov-Segal [NS03]),

so when R is Ẑ and the kernel is a finitely (topologically) generated R-module, the

group structure of the domain will determine the topology. Of course, this assumes

that G is finite, as was our assumption; the Gruenberg-Roggenkamp equivalence holds

without this assumption, but these last comments obviously don’t.

Remark 4.2. — Forming the categories CRG(G) and CRG(ωRG) is functorial in G. For

any homomorphism ϕ : H → G, there is a covariant functor resϕ from CRG(G) to

CRH(H) given by taking the fibre product with ϕ. There is a covariant functor resϕ
from CRG(ωRG) to CRH(ωRH) given by taking the fibre product with the natural

RH-module homomorphism ωRH → ωRG. These two functors commute with the

Gruenberg-Roggenkamp categorical equivalence.

For every finitely generated kG-module M , there exists a projective Frattini object

in CkG(M). The domain of such an object is a projective kG-module denoted by
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PkG(M); the kernel of a projective Frattini object in CkG(M) is denoted by ΩkGM .

The process of assigning such a kernel to a module is called the Heller operator

(denoted by ΩkG, of course), and iterations of it are defined inductively(1): Ωn+1
kG M :=

ΩkG(ΩnkGM).

By the Gruenberg-Roggenkamp categorical equivalence, there is a projective Frat-

tini object in CFpG(G); the domain of this object is denoted by 1
pG̃ and is called

the universal elementary abelian p-Frattini cover of G. The sequence of finite

groups used in the definition of a modular tower can be defined inductively from this:
n+1
p G̃ := 1

p

(
ñ
p G̃

)
.

Theorem 4.3. — For every natural number n, Gn ' n
p G̃, and so pG̃ ' lim

←−

n
p G̃.

Proof. — The second isomorphism follows from the first because pG̃ ' lim
←−

Gn. (By

convention, 0
pG̃ = G.) Note that if H � G is Frattini with p-group kernel, what we

call a p-Frattini cover, then pH̃ ' pG̃. The first isomorphism will thus be proven by

induction once it is shown that G1 ' 1
pG̃, but this is true because both groups are the

domain of a projective Frattini object in CFpG(G).

One can specify the isomorphism class of the kernel (the p-Frattini module)

of the universal elementary abelian p-Frattini cover of G precisely in terms of the

modular representation theory of G:

Theorem 4.4([Gas54]). — The p-Frattini module of G is isomorphic to Ω2
FpG

111.

Proof. — Since projective kG-modules are precisely those isomorphic to a direct sum-

mand of a free kG-module, there is a projective FpG-module N such that FpG '

N ⊕ PFpG(111) and hence ωFpG ' N ⊕ ΩFpG111. Thus, PFpG(ωFpG) ' N ⊕ PFpG(ΩFpG111)

and the result follows from the equivalence of Gruenberg and Roggenkamp.

Remark 4.5. — A minor corollary of the theorem is that the p-Frattini module has

dimension congruent to 1 modulo the order of the p-Sylow P of G, since |P | must

divide the dimension of any projective kG-module (cf. [Ben98a, §3.14]).

Projective kG-modules are injective (cf. [Ben98a, §1.6]) so, by dimension-shifting,

H2(G,Ω2
FpG

111) ' Ext2
FpG(111,Ω2

FpG
111)

' Ext1
FpG(111,Ω1

FpG
111)

' HomFpG(111,111)

' Fp

and there is a unique group (up to isomorphism) providing a non-split extension of

G by its p-Frattini module. This must be 1
pG̃.

(1)Note that some authors use the subscript to denote iterations of the Heller operator.
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Recall the concepts of restriction and induction. Fix a subgroup H of G. The

restriction M↓kH of a kG-module M to kH simply means: regard M as a kH-module

via the canonical inclusion of kH in kG. Given a kH-module M , the induced kG-

module M↑kG is the tensor product kG⊗kHM . Since projective modules are exactly

those isomorphic to direct summands of free modules, over a group ring both the

restriction and induction of a projective module are projective.

It is easy to determine the number of simple FpG-modules. The Prüfer group Ẑ has

a natural action on the set of elements of G that have order prime to p: 1 sends each

element to its p-th power. The monomorphism of the absolute Galois group Gk∩Fp

of k ∩ Fp into the absolute Galois group of Fp, followed by the identification of the

latter group with Ẑ that sends the absolute Frobenius to 1, provides a natural action

of Gk∩Fp
on the set of elements of G that have order prime to p — and hence on the

set of p′-conjugacy classes of G. The number of Gk∩Fp
-orbits in the latter set equals

the number of simple kG-modules (cf. [Ben98a, §5.3]). Notice the analogy with the

Branch Cycle Argument 1.5 in Dèbes’ article [Dèb].

Example 4.6. — For odd primes p, the modular curve Y1(p
n+1) is isomorphic over Q

to the reduced Hurwitz space associated to Dpn+1 with r = 4 and each conjugacy

class the set of involutions (cf. [BF02, §2.8.2]). Let’s see that Dpn+1 is a universal

elementary abelian p-Frattini cover of Dpn when n ≥ 1.

There are two simple FpDpn -modules: the trivial module 111 and the sign module

Sgnp, which consists of a copy of Fp with the involutions of Dpn acting as mul-

tiplication by −1 and the other elements acting trivially. Let H be a 2-Sylow of

Dpn . By the Nakayama relations (aka Frobenius reciprocity, cf [Ben98a, Proposi-

tion 3.3.1]), there is an epimorphism from S↓FpH↑
FpDpn to S. Since any FpH-module

is projective, S ↓FpH↑
FpDpn is isomorphic to PFpDpn (S), because the dimension of

S↓FpH↑
FpDpn equals the order of a p-Sylow of Dpn . It is straightforward to calculate

that Ext1
FpDpn (111,111) is zero and that Ext1

FpDpn (111, Sgnp) has dimension one, so that

PFpDpn (Sgnp) ' PFpDpn (ΩFpDpn 111). Conclude from counting dimensions that the p-

Frattini module forDpn is one-dimensional (in fact, it is Sgnp); the dihedral groups are

a model for the very restricted class of groups for which this happens (see Fact 6.1).

Now note that the natural map Dpn+1 � Dpn is Frattini and, since its kernel is

one-dimensional, must be a universal elementary abelian p-Frattini cover.

Proposition 4.7. — Let ϕ : H � G be a p-Frattini cover. Then, H is p-perfect iff G

is p-perfect.

Proof. — It is clear that H is not p-perfect if G is not. So, suppose that H has

a normal subgroup N such that H/N is a non-trivial p-group. Since ϕ is Frattini,

ϕ(N) 6= G and so G/ϕ(N) is a non-trivial p-group.
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At this point, we can prove the previously referenced property that ensures the

Hurwitz spaces in a modular tower are fine moduli spaces.

Proposition 4.8. — If G is p-perfect and has trivial center then, for all natural numbers

n, np G̃ has trivial center.

Proof. — Using induction, it suffices to prove this is true for n = 1. A finite group G

is p-perfect iff H1(G,111FpG) = 0. Since H1(G,111FpG) ' Ext1
FpG(111,111), PFpG(ΩFpG111) will

not have a quotient isomorphic to 111. This implies that the p-Frattini module of G

has no non-zero element fixed by every element of G, since every simple submodule

of a projective FpG-module is isomorphic to a quotient of the projective module

(cf. [Ben98a, Theorem 1.6.3]). As G had trivial center, we conclude that 1
pG̃ does

also.

Remark 4.9. — Using Facts 6.1 and 6.2, it is straightforward to show that, for any

p-Frattini cover H � G, 1
pH̃ has trivial center if G is p-perfect and has trivial center.

In the sequel, to remove the notational heaviness, np G̃ will be denoted by Gn and

Ω2
Fp

n
p G̃

111 by Mn.

5. Restriction to the normalizer of a p-Sylow

There are explicit methods for computing the p-Frattini module of a p-split group

(i.e., a group with normal p-Sylow), e.g. through the use of an expansion of Jennings’

theorem [Sem05]. I omit these here for reasons of brevity, but will show a relationship

between the p-Frattini module of the normalizer of a p-Sylow and that of the whole

group. We will also see more intricate examples of p-Frattini modules.

Lemma 5.1. — Let H be a subgroup of G. The pullback of H in the cover 1
pG̃ � G

is a projective object in CFpH(H). There is a projective FpH-module N such that

M0↓FpH' N ⊕ Ω2
FpH

111.

Proof. — The pullback of H in the group cover corresponds under the Gruenberg-

Roggenkamp equivalence to the pullback of ωFpH in the cover PFpG(ωFpG)
ϕ
� ωFpG

(cf. Remark 4.2). There is a free FpH-module N ′ such that ωFpG ↓FpH' N ′ ⊕

ωFpH . Since N ′ is projective, it splits in the cover ϕ (regarded as an FpH-module

homomorphism), and so PFpG(ωFpG)↓FpH is a direct sum of N ′ and some projective

cover of ωFpH : this latter projective cover corresponds to the pullback of H . The final

statement follows from the decomposition of this projective cover into the direct sum

of a projective module N and PFpH(ωFpH).

Remember that a module is indecomposable iff it has no non-trivial direct sum

decomposition. It is straightforward to see that a kG-module M is indecomposable
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and non-projective iff ΩkGM is. Hence, the p-Frattini module of G is indecomposable

and non-projective when p divides the order of G.

Together, the next lemma and the fact following it show a dichotomy between level

0 and the higher levels. The notation NG(H) denotes the subgroup of elements of G

that normalize a given subgroup H of G.

Lemma 5.2. — Let P be a p-Sylow of G. Then, M0 is isomorphic to a direct summand

of
(
Ω2

FpNG(P )111
)
↑FpG.

Proof. — Every FpG-module M is a direct summand of M↓FpNG(P )↑
FpG by mapping

m ∈M to the element

1

(G : NG(P ))

∑

gNG(P )⊆G

g ⊗ g−1m

of FpG ⊗FpNG(P ) M ; the number (G : NG(P )) is the index of NG(P ) in G, i.e.,

|G|/|NG(P )|. Now, by Lemma 5.1, M0↓FpNG(P )↑
FpG is isomorphic to a direct sum of(

Ω2
FpNG(P )111

)
↑FpG and some projective FpG-module. Since M0 is indecomposable and

non-projective, it must be a direct summand of
(
Ω2

FpNG(P )111
)
↑FpG.

Those versed in Green’s correspondence will note that it commutes with the Heller

operator, and recognize the previous lemma as a special case.

Fact 5.3([Sem]). — Let n ≥ 1. Regard Mn−1 as a subgroup of Gn. Let H be any

subgroup of Gn containing Mn−1. Then Mn ↓FpH is isomorphic to the p-Frattini

module of H. In particular, this holds when H is the normalizer of a p-Sylow of Gn.

The next three examples considerA5 for the three rational primes dividing its order.

There are systematic ways of computing its p-Frattini module, using its isomorphisms

with SL2(F4) and PSL2(F5) or, perhaps, using the theory of Specht modules; for ex-

ample, Weigel [Wei, §3] has computed the isomorphism class of the `-Frattini module

of PSL2(Fq) except when q is divisible by, but not equal to, ` — in the latter case, he

has still determined the dimension of the module. Here I will keep the computation

and notation elementary (and hence ad hoc).

Recall that, for every finite group G with a split BN-pair of characteristic p (and

in particular for a Chevalley group over a finite field of characteristic p), there is

a projective simple kG-module called the Steinberg module. When G is PSL2(Fq)

or SL2(Fq), this is the quotient of a permutation module by the one-dimensional

submodule of elements fixed by G, the G-set defining the permutation module being

the projective line P1(Fq) with the natural action of G.

Example 5.4. — Let p = 5. There are three isomorphism classes of simple F5A5-

modules: 111, the Steinberg module St5 (via the isomorphism of A5 with PSL2(F5)),

and a three-dimensional module W (the adjoint representation of PSL2(F5)). The
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latter is a subquotient of a permutation module: the A5-set defining 111F5A4
↑F5A5 is

{1, 2, 3, 4, 5}with the usual action of A5. There is a homomorphism ϕ from 111F5A4
↑F5A5

to 111 given by taking an element of the former module to the sum of its coefficients

(with respect to the permutation basis just described); the simple module W is the

quotient of ker(ϕ) by the one-dimensional submodule of elements fixed by A5.

The normalizer of the 5-Sylow of A5 is isomorphic to D5 and its 5-Frattini module

is the sign module Sgn5 of Example 4.6. The induced module Sgn5 ↑
F5A5 is six-

dimensional, so, by Remark 4.5, M0 can be either one-dimensional (and hence 111)

or the entire induced module; the former can’t happen because M0↓F5D5
⊇ Sgn5, by

Lemma 5.1. (Fact 6.1 also shows that M0 cannot be one-dimensional in this case.)

A simple use of the Nakayama relations shows that M0 has neither a submodule nor

a quotient isomorphic to 111. Therefore, M0 has one simple submodule, a copy of W ,

and its quotient by this submodule is also isomorphic to W .

Example 5.5. — Let p = 3. There are three isomorphism classes of simple F3A5-

modules: 111, a four-dimensional module S, and a six-dimensional module T . The

normalizer of the 5-Sylow of A5 is isomorphic to D5 and T is isomorphic to N↑F3A5 ,

where N is a one-dimensional F3D5-module on which the involutions of D5 act as

multiplication by −1 and the other elements of D5 act trivially. The A5-set defining

the permutation module 111F3A4
↑F3A5 is {1, 2, 3, 4, 5} with the usual action of A5 —

S is isomorphic to the quotient of this module by the one-dimensional submodule of

elements fixed by A5.

The normalizer of the 3-Sylow of A5 is isomorphic to D3 and its 3-Frattini module

is the sign module Sgn3 of Example 4.6. The induced module Sgn3 ↑
F3A5 is ten-

dimensional and is isomorphic to S⊕T , as can be seen using the Nakayama relations

together with Mackey decomposition (cf. [Ben98a, Theorem 3.3.4]). Since T is pro-

jective, M0 must be isomorphic to S.

Example 5.6. — Let p = 2. There are three isomorphism classes of simple F2A5-

modules: 111, a four-dimensional simple module U , and the Steinberg module St4 (via

the isomorphism ofA5 with SL2(F4)). The simple module U is just the natural module

for SL2(F4), a copy of F2
4, but regarded as a vector space over F2.

The methods presented in this paper are insufficient to derive the 2-Frattini module

of A5 but can still describe it. The normalizer of the 2-Sylow of A5 is isomorphic to

A4, a 2-split group. As noted in Example 2.1, the kernel of the universal 2-Frattini

cover of A4 will have rank 5, and so the 2-Frattini module will have dimension 5. The

2-Frattini module M0 for A5 also has dimension 5 and so M0↓F2A4
' Ω2

F2A4
111; on the

other hand, inducing Ω2
F2A4

111 up to A5 produces a module with dimension 25. The 2-

Frattini module M0 can also be (spuriously) described as a quotient of a permutation

module by 111: the A5-set defining the permutation module 111F2D5
↑F2A5 is the set of

5-Sylows of A5 acted on by conjugation — M0 is isomorphic to the quotient of this

module by the one-dimensional submodule of elements fixed by A5. It turns out that
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M0 has one simple submodule, a copy of U , and its quotient by this submodule is

isomorphic to 111. See [Fri95, §II.E] for the details of the derivation of this Frattini

module.

Finally, it should be noted that a cocycle in H2(G,M0) defining the universal

elementary abelian p-Frattini cover can be computed using the Eckmann-Shapiro

lemma ([Ben98a, Corollary 2.8.4]):

Fp ' H2(NG(P ),Ω2
FpNG(P )111)

'
−→ H2(G,

(
Ω2

FpNG(P )111
)
↑FpG)

via the exterior trace map. The latter cohomology group is isomorphic to H2(G,M0),

since
(
Ω2

FpNG(P )111
)
↑FpG is isomorphic to the direct sum of M0 and some projective

FpG-module. Thus, some cocycle in the image (under the exterior trace map) of a

generator of H2(NG(P ),Ω2
FpNG(P )111) will take values in M0. When the restriction of

M0 to the normalizer of a p-Sylow is isomorphic to the p-Frattini module of this nor-

malizer (as in Example 5.6), and in particular for computing cocycles in H2(Gn,Mn)

when n ≥ 1, the computation can be done directly with the transfer map instead.

6. Asymptotics of the p-Frattini modules Mn

The first recursive formula was hinted at in Fact 5.3. If Mn is regarded as a p-

group, then its universal p-Frattini cover is a free pro-p group of rank equal to the

dimension of Mn. The Schreier formula takes the form:

dimFp
(Mn+1) = 1 + |Mn|

[
dimFp

(Mn) − 1
]
.

Since |Mn| is equal to p raised to the power of the dimension of Mn, this forces the

dimension of Mn to rise very rapidly with n via recursive exponentiation, provided

dimFp
(M0) > 1; but if dimFp

(M0) is 0 or 1 then dimFp
(Mn) is the same for all natural

numbers n. Of course, dimFp
(M0) = 0 iff p does not divide the order of G, while

Griess and Schmid ([GS78, Theorem 3]) determined precisely the rare circumstance

when dimFp
(M0) = 1. For the maximal normal p′-subgroup (i.e., having order prime

to p) of G, group theorists use the notation Op′(G).

Fact 6.1([GS78]). — The p-Sylow of G/Op′(G) is non-trivial, cyclic, and normal iff

dimFp
(M0) = 1.

The dihedral groups (Example 4.6) provide the natural example of Fact 6.1.

The group Gn does not necessarily act faithfully on the module Mn; Griess and

Schmid also determined the kernel of this action, the set CenGn
(Mn) of elements of

Gn that centralize Mn. Let φ : G � G/Op′(G) denote the natural quotient and let

H be the maximal normal p-subgroup of G/Op′(G); the subgroup Op′p(G) of G is

defined to be φ−1(H).
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Fact 6.2([GS78]). — CenGn
(Mn) =

{
Op′p(Gn) if dimFp

(Mn) = 1

Op′(Gn) if dimFp
(Mn) 6= 1

In some sense, we can reduce to the case where Op′(G) = 1. Let H = G/Op′(G).

Then Gn is isomorphic to the fibre product over H of np H̃ and G; the cover Gn � G

induces an isomorphism Op′ (Gn) ' Op′(G) for all n.

The final result here is an asymptotic result on the composition series. Every

normal p-subgroup of a finite group Γ acts trivially on every simple kΓ-module; hence,

the simple kGn-modules are naturally simple kG-modules. The number of times a

simple module S appears as a subquotient in a given composition series of a kGn-

module M is an invariant of M denoted by #S(M); the density %S(M) of S in M is

defined to be #S(M)/dimk (M).

Fact 6.3([Sem]). — If dimFp
(M0) > 1 then, for any simple FpG-module S,

lim
n→∞

%S(Mn) = %S(FpG/Op′(G)). In particular, for large enough n, every sim-

ple FpG/Op′(G)-module is a composition factor of Mn.

The proof of Fact 6.3 provides precise recursive formulae for #S(Mn).

7. The p-Schur multiplier

Recall that an element g of a group Γ is central iff g commutes with all elements

of Γ. Every finite group G has a universal central p-Frattini cover, i.e., a projective

Frattini object in the full subcategory of CZpG(G) consisting of objects whose kernels

are central. A finite group G is p-perfect iff its universal central p-Frattini cover is

finite (cf. [Sem]); in this case, the kernel of the universal central p-Frattini cover is

what we call the p-Schur multiplier.

Even when G is not p-perfect, it will possess a finite universal elementary abelian

central p-Frattini cover, which can be obtained from a quotient of a universal elemen-

tary abelian p-Frattini cover of G. Analogously, the kernel is called the elementary

abelian p-Schur multiplier and is computed by modular representation theory to be

H2(G,111FpG). Use dimension shifting or inspection of the p-Frattini module to see that

H2(G,111FpG) is isomorphic to (Ω2
FpG

111)/(ωFpGΩ2
FpG

111).

Whenever N is a normal subgroup of a group G and M is an RG-module (R being

a commutative ring), the action ofG onN by conjugation induces an R(G/N)-module

structure on Hn(N,M ↓RN) (cf. [Bro94, III.8.2]). The maximal quotient on which

G/N acts trivially is denoted by Hn(N,M↓RN )G/N .

Proposition 7.1. — For every natural number n,

H2(Gn+1,111FpGn+1
) ' H2(Mn,111FpMn

)Gn
.
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Proof. — This reflects Fact 5.3, i.e., that
(
Ω2

FpGn+1
111
)
↓FpMn

' Ω2
FpMn

111. The action

of Gn on (Ω2
FpMn

111)/(ωFpMn
Ω2

FpMn
111) is induced from the action of Gn+1 on Ω2

FpGn+1
111

and, hence,

H2(Mn,111FpMn
)Gn

' (Ω2
FpGn+1

111)/(ωFpGn+1
Ω2

FpGn+1
111)

' H2(Gn+1,111FpGn+1
).

Therefore, computing the elementary abelian p-Schur multiplier of Gn+1 re-

duces to computing the FpGn-module structure of H2(Mn,111FpMn
); note that

H2(Mn,111FpMn
)↓FpMn

is the head (i.e., maximal semi-simple quotient) of Mn+1↓FpMn

and so some quotient of H2(Mn,111FpMn
) is the head of Mn+1. Every group ring kΓ

has a Hopf algebra structure, which provides a canonical way to extend the action

of kΓ to the tensor product (over k) of two kΓ-modules: let the group elements act

diagonally and then extend linearly; this also provides an action of kΓ on the exterior

product. The universal coefficient theorem (a special case of Künneth’s formula)

yields the following exact sequence of FpGn-modules:

(1) 0 −→ ∧2Mn −→ H2(Mn,111FpMn
) −→Mn −→ 0.

For example, see the discussion preceding Theorem V.6.6 of Brown’s text [Bro94].

This exact sequence can also be derived using Jennings’ theorem, and an elementary

presentation of this sequence will come after Fact 7.3.

The quotient module isomorphic to Mn is best described as the “antecedent”

quotient of Mn+1 coming from multiplication by p in the p-adic Frattini lattice

Ω2
ZpGn

111ZpGn
. The finite group Gn possesses a universal abelian p-Frattini cover,

i.e., a projective Frattini object ~Gn � Gn in CZpGn
(Gn). The kernel of this cover

is a ZpGn-lattice (i.e., a ZpGn-module that is a free Zp-module) which I shall denote

by Ln. Notice that Mn ' Ln/pLn ' pLn/p
2Ln as FpGn-modules. Consider the

following commutative diagram of exact sequences:

0 −→ pLn/p
2Ln −→ ~Gn/p

2Ln −→ Gn+1 −→ 0

↑ ↑ ||

0 −→ Mn+1 −→ Gn+2 −→ Gn+1 −→ 0

The up-arrows come from the defining property of the bottom row and must be group

epimorphisms because the surjection in the top row is a Frattini cover. The com-

mutative diagram forces the epimorphism Mn+1 � pLn/p
2Ln to be one of FpGn+1-

modules; since the subgroupMn ofGn+1 acts trivially on pLn/p
2Ln, this epimorphism

factors through H2(Mn,111FpMn
).

For a finite group G, the dual H2(G,111FpG)̂ is naturally isomorphic to H2(G,111FpG),

which parametrizes equivalence classes of simple central p-extensions of G, group

extensions of G having central kernel of order p:

0 −→ 111FpG −→ S −→ G −→ 1;
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two such extensions are equivalent if there is a group isomorphism between the mid-

dle terms that induces the identity maps between the other terms of the exten-

sions. A simple central p-extension of Gn+1 is called antecedent if the element of

H2(Mn,111FpMn
)̂ defining the extension factors through the antecedent quotient (as a

map on H2(Mn,111FpMn
)). Note that H1(Mn,111FpMn

) and the dual Mn̂ are isomorphic

as FpGn-modules; the linear map H1(Mn,111FpMn
) → H2(Mn,111FpMn

) whose image

consists of the antecedent elements is known as the Bockstein (cf. [Ben98b, §4.3]).

Proposition 7.2. — A simple central p-extension ϕ : H � Gn+1 is antecedent iff

ϕ−1(Mn) is abelian.

Proof. — If ϕ−1(Mn) is abelian, the universal abelian p-Frattini cover of Gn factors

through the composition of ϕ and the canonical map from Gn+1 to Gn. Conversely, if

the extension is antecedent, ϕ−1(Mn) will be isomorphic to a quotient of Ln/p
2Ln.

Hence, Fried also calls antecedent simple central p-extensions abelian.

There is a natural correspondence between the simple central p-extensions of Gn
and the antecedent simple central p-extensions of Gn+1: both are defined by an

element of HomFpGn
(Mn,111FpGn

). We can phrase this correspondence as: each abelian

simple central p-extension of Gn+1 is antecedent to a unique simple central p-extension

of Gn.

The height of a simple central p-extension S � G of G is the supremum of the

positive rational integers n for which there exists a central p-Frattini cover of G that

both factors through S � G and has cyclic kernel of order pn. Constructing the

antecedent simple central p-extensions via the p-adic Frattini lattice easily yields:

Fact 7.3([FS]). — The height of a non-split abelian simple central p-extension of Gn+1

equals the height of the simple central p-extension of Gn to which it is antecedent.

Let us return to the exact sequence (1) that follows Proposition 7.1. Consider the

universal elementary abelian central p-Frattini cover of Mn:

0 −→ H2(Mn,111FpMn
) −→ 1

pM̂n
ϕ

−→Mn −→ 1

where we regard the group operation in Mn and 1
pM̂n as multiplicative. There is a

natural homomorphism from Gn+1 to the automorphism group of 1
pM̂n, where the

action of Gn+1 comes from conjugation via the following commutative diagram:

1
pM̂n −� Mn

↓ ↓

Gn+2/(ωFpMn
Mn+1) −� Gn+1.

The induced actions of Gn on Mn and H2(Mn,111FpMn
) are the usual ones.

Fix a subset {x1, . . . , xN} of 1
pM̂n that maps bijectively via ϕ to a basis (over

Fp) of Mn. The set of elements of the form either xpi or [xi, xj ] (for i < j) is a

basis of H2(Mn,111FpMn
). Since they are central, the set of elements of the form [xi, xj ]
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generates the entire commutator subgroup of 1
pM̂n; the action ofGn makes it naturally

isomorphic to ∧2Mn as an FpGn-module.

The exact sequence (1) splits when p is odd. Let x and y be arbitrary elements of
1
pM̂n; then xpyp = (xy)p[x, y]p(p−1)/2. Hence, when p is odd, the p-th powers form a

characteristic subgroup of 1
pM̂n and the action of Gn makes this subgroup naturally

isomorphic to Mn. In terms of the universal coefficient theorem, this occurs because

a canonical vector space splitting exists when p is odd; in the context of Jennings’

theorem, it is because the p-th powers reside in a lower socle layer of Ω2
FpMn

111 than

do the commutators. In even characteristic, the squares generate 1
2M̂n; this is just

the well-known fact that a group is abelian if all of its non-trivial elements have

order 2. The formula x2y2 = (xy)2[x, y] then allows computation of the F2Gn-module

H2(Mn,111F2Mn
).

This dichotomy between p being even or odd mirrors the dichotomy in the cohomol-

ogy rings H∗(Mn,111FpMn
) (which are graded-commutative rings using the cup product

for multiplication). When p is odd, the homogeneous part of degree two separates into

a direct sum of two pieces, one being the set of cup products of degree-one elements

and the other the image of the Bockstein map.

When p is even, the cup products of degree-one elements yield the entire homo-

geneous part of degree two, as the Bockstein of a degree-one element is just the cup

product of that element with itself when p = 2. In fact, the homogeneous part of

degree one is isomorphic to Mn̂ and generates the cohomology ring, which is a poly-

nomial ring over F2 with generating degree-one indeterminates given by a basis of

Mn .̂ Since Gn acts as algebra automorphisms of the cohomology ring, there is an

F2Gn-module epimorphism Mn̂⊗Mn̂
·∪·
−� H2(Mn,111F2Mn

) given by the cup prod-

uct. Dualizing shows that H2(Mn,111F2Mn
) is isomorphic to the kernel of the canonical

epimorphism Mn ⊗Mn � ∧2Mn.

The following examples end this article by illustrating the behavior with n of the

elementary abelian p-Schur multiplier of n
p Ã5. This may suggest the behavior in

the general case, but the ad hoc nature of these arguments prevents straightforward

extrapolation.

Example 7.4. — Let us begin with p = 3, the case where the structure of M0 (and

hence H2(M0,111FpM0
)) is simplest. Refer to Example 5.5 for notation, where it was

seen that M0 is isomorphic to the simple F3A5-module S ' 111F3A4
↑F3A5 /111. There is

a basis of M0 that A4 permutes in the natural fashion. Then, ∧2M0↓F3〈(123)〉 is a free

module; since 〈(123)〉 is a 3-Sylow of A5, ∧
2M0 must be a projective F3A5-module. By

inspection, (12)(34) doesn’t fix any non-zero vector in the two-dimensional subspace

fixed by (123). Thus, ∧2M0 cannot be PF3A5
(111). It also cannot be PF3A5

(S) because

the latter is nine-dimensional. Therefore, ∧2M0 ' T and H2(M0,111F3M0
) ' S ⊕ T .

Hence, the 3-Schur multiplier is zero for 1
3Ã5.
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By the Schreier formula, the dimension of M1 is 244; the isomorphism class of

M1 lies outside of comfortable hand-calculation. Since S ⊕ T is a quotient of M1,

(S ⊕ T ) ⊕ ∧2(S ⊕ T ) will be a quotient of H2(M1,111F3M1
) and, hence, of M2. The

exterior product ∧2(S⊕T ) decomposes into a direct sum of S⊗T , ∧2S, and ∧2T . Since

T is projective, so is S ⊗ T (cf. [Ben98a, Proposition 3.1.5]), and Brauer character

calculations (cf. [Ben98a, §5.3]) show it to be isomorphic to T ⊕ PF3A5
(S)2. We

already know that ∧2S ' T . It is easy to find a basis of T that is permuted freely

by a 3-Sylow of A5; the induced basis on ∧2T is thus also permuted freely, and so

∧2T is projective. Another Brauer character calculation shows ∧2T ' T ⊕ PF3A5
(S).

Therefore, M2 has a quotient isomorphic to S⊕T 4 ⊕PF3A5
(S)3. Since this is a small

part of M1 ⊕ ∧2M1, it is possible that 2
3Ã5 has non-zero 3-Schur multiplier.

But now we know that M3 has a quotient isomorphic to the direct sum of three

copies of PF3A5
(S) ⊗ PF3A5

(S). Yet another Brauer character calculation will show

that PF3A5
(S) ⊗ PF3A5

(S) ' T 4 ⊕ PF3A5
(S)5 ⊕ PF3A5

(111)2. So, the elementary abelian

3-Schur multiplier of 3
3Ã5 has dimension at least six.

A similar procedure will show that the elementary abelian p-Schur multiplier of np Ã5

will have dimension at least two when n > 2, for all rational primes p dividing the

order of A5. In each case, a direct calculation of ∧2M0 will show it to have a projective

summand P. In even characteristic, the exact sequence (1) may not split, but P will

still float to the top of the second-homology. Hence, for each p, H2(M0,111FpM0
) will

have a quotient isomorphic to M0 ⊕P. As in the case of p = 3, take the direct sum of

this module with its exterior product, and iterate this procedure until multiple copies

of P(111) appear.

For any group G, if the dimension of the elementary abelian p-Schur multiplier of

Gn is m > 1 then the dimension of the elementary abelian p-Schur multiplier of Gn+1

is at least m(m + 1)/2. This is a corollary of exact sequence (1) when p is odd, and

of the the exact sequence

0 → H2(Mn,111F2Mn
) →Mn ⊗Mn → ∧2Mn → 0

when p is even: if M ′ is a quotient of Mn on which Gn acts trivially, then

H2(Mn,111FpMn
) will have a quotient isomorphic to M ′ ⊕ ∧2M ′. Therefore, the

dimensions of the elementary abelian p-Schur multipliers of np Ã5 have no bound.

Example 7.5. — The composition series of a p-Frattini module may be loaded with

trivial simple modules, but the p-Frattini module may still have no non-trivial quotient

with trivial group action. Consider p = 5; refer to Example 5.4 for notation. The

5-Frattini module M0 of A5 is isomorphic to Sgn5 ↑
F5A5 , a module which strongly

resembles the simple F3A5-module T . (They are both reductions of the same ZA5-

lattice.) It is easy to find a basis ofM0 that consists of one vector fixed by the action of

a 5-Sylow and another five vectors that are cyclically permuted by the same 5-Sylow.

Since the induced basis of ∧2M0 is acted on freely by the 5-Sylow, ∧2M0 is projective
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and a Brauer character calculation shows it to be isomorphic to PF5A5
(W ) ⊕ St5.

Therefore, the head of M1 is isomorphic to W 2 ⊕ St5. However, the Schreier formula

shows that the dimension of M1 is 78126, while the recursive formulas for #S(Mn)

(alluded to after Fact 6.3) show that any composition series of M1 contains exactly

6476 simple factors isomorphic to 111F5A5
.

For any finite group G, the modules Mn all have isomorphic socle (i.e., maximal

semi-simple submodule) since H1(H,S) ' H1(G,S) for any simple FpH-module S

and any p-Frattini cover H � G (cf. [Sem]); in the case of G = A5 and p = 5, the

socle is W . Above, we calculated the head of M1 to have dimension 11. Furthermore,

using Jennings’ theorem on M1↓FpM0
, it is easy to see that M1 has at most 75 radical

layers, so at least one of these layers must have dimension greater than 1070. The

shape of M1 is thus like a spindle, with a fat middle, but pointy at each end. This

is not so unusual, since projective indecomposable modules will also have this shape,

but it suggests that we cannot expect the heads of the Mn to grow quickly.

Example 7.6. — Finally, p = 2, n = 0, and G = A5 together provide an example of

the exact sequence (1) being non-split. This sequence would split if and only if it

split on restriction to a 2-Sylow V4 of A5. The 2-Frattini module of V4 is isomorphic

to M0↓F2V4
, so this example is in fact minimal for showing non-splitness. There is a

basis {x1, . . . , x5} of M0 such that two generators a and b of V4 act as follows:

a





x1 7→ x1

x2 7→ x2

x3 7→ x4

x4 7→ x3

x5 7→
∑5
i=1 xi

b





x1 7→ x2

x2 7→ x1

x3 7→ x4

x4 7→ x3

x5 7→ x5

Inside H2(M0,111F2M0
), use xi again to denote the square of a pullback of xi in the

universal elementary abelian central 2-Frattini cover of M0; use xj ∧xk to denote the

commutator of pullbacks of xj and xk. The actions of a and b are then given by:

a





x1 7→ x1

x2 7→ x2

x3 7→ x4

x4 7→ x3

x5 7→
∑5
i=1 xi +

∑
1≤j<k≤5 xj ∧ xk

b





x1 7→ x2

x2 7→ x1

x3 7→ x4

x4 7→ x3

x5 7→ x5

where both a and b fix
∑

1≤j<k≤5 xj ∧ xk. Hence, the cocycle in Ext1
F2V4

(M0↓F2V4
,

(∧2M0)↓F2V4
) takes its values in a copy of 111. The six-dimensional F2V4-module extend-

ing M0↓F2V4
by this copy of 111 will be isomorphic to 111F2〈a〉↑

F2A4↓F2V4
, where A4 is the

normalizer of V4. (This isomorphism is seen through some elementary manipulation

of the matrices for a and b defining the action of V4 on this six-dimensional module.)

Since 111F2〈a〉↑
F2A4↓F2V4

is isomorphic to a direct sum of three indecomposable F2V4-

modules of dimension two, while M0↓F2V4
is indecomposable, the cocycle must not be
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a coboundary. Using the transfer map to compute the cocycle in Ext1
F2A5

(M0,∧
2M0)

shows that the values of the cocycle lie in a copy of 111F2A5
.

Appendix A

The Gruenberg-Roggenkamp equivalence

Define the functor Φ : CRG(G) → CRG(ωRG) as follows. Let f : H � G be an object

of CRG(G) with kernel K. The action of H on the module ωZH;K := ωZH/(ωZKωZH)

has kernel K, so the natural epimorphism ωZH;K � ωZG induced by f is one of ZG-

modules. The kernel is naturally isomorphic to K↓ZG via the map sending k ∈ K to

k − 1 := (k − 1) + ωZKωZH :

(k1 − 1) + (k2 − 1) = (k1k2 − 1)

and

g · (k − 1) = (gk − 1)

for all g ∈ G and k, k1, k2 ∈ K. Since ωZG↓Z is free, the sequences are exact in the

following pushout diagram (induced by the multiplication map RG⊗ZG(K↓ZG) → K):

0 −→ RG⊗ZG (K↓ZG) −→ RG⊗ZG (ωZH;K) −→ ωRG −→ 0

↓ ↓ ||

0 −→ K −→ (RG⊗ZG (ωZH;K)) /I
Φ(f)
−→ ωRG −→ 0

;

I is the submodule generated by elements of the form
[
r ⊗ (k − 1)

]
−

[
1 ⊗ (rk − 1)

]
,

where r ∈ R and k ∈ K. Given a morphism ϕ ∈ Hom(f1, f2) between objects

f1 : H1 � G and f2 : H2 � G, Φ(ϕ) is induced by the natural action of ϕ that sends

an element of ωZH1
to one of ωZH2

.

The functor Ψ : CRG(ωRG) → CRG(G) is even easier to construct. Let s : M � ωRG
be an object in CRG(ωRG). There is a group monomorphism θ from G to the semi-

direct product ωRG>/G that sends g ∈ G to (g − 1, g). Using this, Ψ(s) comes from

the fiber product (i.e., pullback) in the following commutative diagram:

(s, 1)−1(θ(G))
Ψ(s)
−� G

↓ ↓ θ

M>/G
(s,1)
−� ωRG>/G

where (s, 1)(m, g) := (s(m), g) for all (m, g) ∈ M>/G. Given a morphism ψ ∈

Hom(s1, s2) between objects s1 : M1 � ωRG and s2 : M2 � ωRG, Ψ(ψ) is the

restriction to (s1, 1)−1(θ(G)) of the map (ψ, 1) : M1>/G→M2>/G.
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