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Abstract. — Ordinary differential equations have an arithmetic analogue in which

functions are replaced by integer numbers and the derivative operator is replaced by

a Fermat quotient operator. This paper reviews the basics of this theory and explains

some of the applications to the invariant theory of correspondences.

Résumé(Correspondances, quotients de Fermat et uniformisation). — Les équations dif-

férentielles ordinaires possèdent un analogue arithmétique où les fonctions et leurs

dérivées sont remplacées par des nombres entiers et leurs quotients de Fermat. Cet

article présente les principes de cette théorie et quelques applications à la théorie des

invariants pour les correspondances.

This paper represents a brief overview of some of the author’s work on arithmetic

differential algebra and its applications to the invariant theory of correspondences.

Arithmetic differential algebra is an arithmetic analogue of the Ritt-Kolchin differ-

ential algebra [Rit50], [Kol73] in which derivations are replaced by Fermat quotient

operators. The main foundational results and first applications of arithmetic differ-

ential algebra are contained in [Bui95], [Bui96], [Bui00]. A further study of these

matters is contained in [Bar03], [Bui03], [Bui04], [Bui02]. A program outlining ap-

plications to the invariant theory of correspondences was sketched in the last 2 pages

of [Bui02]. The present paper reports on recent progress along this program. For a

detailed exposition of the results announced here we refer to the research monograph

[Bui05].

The paper closely follows the talk presented at the Luminy conference. The author

would like to thank the organizers of the conference for their support and encourage-
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80 A. BUIUM

1. Motivation

Let X and X̃ be two complex algebraic curves and σ = (σ1, σ2) a pair of dominant

maps:

(1) X
σ1←− X̃

σ2−→ X.

Assume X is irreducible. Denote by C(X) the field of rational functions on X and

by

(2) C(X)σ := {f ∈ C(X) | f ◦ σ1 = f ◦ σ2}

the field of invariants of the correspondence σ. It is a fact that, “most of the times”,

there are “no non-constant invariants”:

(3) C(X)σ = C.

There are, of course, exceptions to this: the whole of the classical Galois theory of

curves is an exception. Here, when we say Galois theory, we mean the case when

σ2 : X̃ := X × G → X is a finite group action and σ1 is the first projection; in this

case, of course, we have

C(X)σ = C(X)G 6= C.

In this paper we would like to view Galois theory as an exceptional (and “well un-

derstood”) situation. On the contrary, the fact that the equality (3) holds “most of

the times” will be viewed as a basic pathology in algebraic geometry that we would

like to address. Indeed equality (3) says in particular that the “categorical quotient”

X/σ in the category of algebraic varieties reduces to a point and, hence, the quotient

map X → X/σ cannot be viewed, in any reasonable sense, as a Galois cover. Our

aim in this paper is to show how one can construct a “larger geometry” (referred to

as δ−geometry) in which X/σ ceases, in many interesting situations, to reduce to a

point; in this new geometry the quotient map X → X/σ will sometimes “looks like”

a Galois cover.

Our theory will be p−adic (rather than over the complex numbers C). The ba-

sic ring of our theory will be R = Ẑurp , the completion of the maximum unramified

extension of the p−adic integers; recall that this is the unique complete discrete valu-

ation ring with maximal ideal generated by p and residue field equal to the algebraic

closure Fap of the prime field Fp. The ring R has a unique automorphism φ lifting

the Frobenius on R/pR. We can therefore consider the Fermat quotient operator

δ : R→ R,

(4) δx =
φ(x) − xp

p
.

We will view δ as an arithmetic analogue of a derivation; our δ−geometry will then

be an arithmetic analogue of the Ritt-Kolchin differential algebraic geometry [Rit50],

[Kol73], [Bui94].
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CORRESPONDENCES 81

2. Toy examples

To explain what we have in mind we begin by looking at an easy example. Assume,

in what follows, that X = X̃ = A1 is the affine line over R. We assume σ1 = id and

σ2(x) = x2. Define the map ψ : R→ R,

(5) ψ(x) =

∞
∑

i=1

(−1)i+1 p
i−1

i

(

δx

xp

)i

,

and consider the (partially defined) map f : R→ R,

(6) f(x) =
φ ◦ ψ

ψ
(x) = ψp−1(x) + p

δψ

ψ
(x);

note that f is not defined precisely at the roots of 1. It is trivial to check that

ψ(x2) = 2 · ψ(x)

and, hence,

f(x2) = f(x),

so f is an invariant for σ. Note that one can write

(7) f(x) =
F (x, δx, δ2x, x−1)

G(x, δx, x−1)
,

with F,G restricted power series in 4 respectively 3 variables. This example shows

that, although no invariants for σ exist in algebraic geometry, invariants as in Equa-

tion 7 (which we shall refer to as δ−invariants) may very well exist; this suggests to

“adjoin” δ to usual algebraic geometry and this is exactly what we shall soon do.

Before proceeding to the general case, let us explore the above example in further

detail. Once we discovered the invariant η0 := φ◦ψ
ψ

it is easy to come up with more

invariants namely ηi := δi ◦ η0. Set η̄i := ηi mod p. Moreover set x′ = δx, x′′ = δ2x,

e.t.c. One can prove that the field extension

(8) Fap(x, η̄0, η̄1, η̄2, ...) ⊂ Fap(x, x
′, x′′, x′′′, ...)

is Galois with Galois group Z×
p . The left hand side of the above extension (8) can be

viewed as the compositum of Fap(x) (the “field of rational functions on X = A1 mod p

in the old algebraic geometry”) and the field Fap(η̄0, η̄1, η̄2, ...) (which should be viewed

as the “field of rational functions mod p on X/σ in the new geometry). The right

hand side of the extension (8) can be viewed as the “field of rational functions mod p

on X in the new geometry”. As we will see the above picture can be generalized.

Let us further postpone our discussion of the general case by looking at yet another

example. Assume in what follows that X = X̃ = A1 over R and σ1 = id, σ2(x) =

x2−2 (the Chebyshev quadratic polynomial). Again one can show that“δ−invariants”
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82 A. BUIUM

exist, more precisely there exist restricted power series F,G in 4 and 3 variables

respectively such that

(9) f(x) =
F (x, δx, δ2x, (x2 − 4)−1)

G(x, δx, (x2 − 4)−1)

satisfies

f(x2 − 2) = f(x).

Also there is Galois computation similar to that in the previous example.

A natural question is whether the existence of “δ−invariants” in the above 2 ex-

amples generalizes to the situation when X = X̃ = A1, σ1 = id, σ2(x) = x2 + c,

c ∈ Z. The answer to this question is NO! (Cf. [BZ05] for a precise statement and

for related conjectures.)

The next natural question is: what do x 7→ x2 and x 7→ x2 − 2 have in common

that does not hold for a general quadratic map x 7→ x2 + c? One possible answer is

that the maps corresponding to c = 0 and c = −2 possess, over the complex numbers,

analytic uniformizations in the sense that one has commutative diagrams

C
2z
→ C

π1 ↓ ↓ π1

C× z2

→ C×

,

C
2z
→ C

π2 ↓ ↓ π2

C
z2−2
→ C,

where π1(z) = e2πiz and π2(z) = e2πiz + e−2πiz respectively.

So the next question one is tempted to ask is: are there other correspondences ad-

mitting similar “analytic uniformizations”? The answer to this question is: PLENTY!

And they can be all classified.

The final question one would then ask would be: Do “δ−invariants” exist for such

“uniformizable” correspondences? Again the answer to the above question tends to

be YES and the aim of this paper is to explain the theory that provides this answer.

3. Outline of the theory

To explain our main ideas it is convenient to start with an arbitrary category C;

what we have in mind is a category of spaces in some geometry. By a correspondence

we will understand a pair X = (X,σ) where X is an object in C and σ is a pair of

morphisms in C as in Equation (1). A categorical quotient for X will mean a pair

(Y, π) where π : X → Y is a morphism in C such that π ◦ σ1 = π ◦ σ2 and with the

property that for any other pair (Y ′, π′) with π′ : X → Y ′, π′ ◦ σ1 = π′ ◦ σ2 there

exists a unique ε : Y → Y ′ such that ε ◦ π = π′. We write Y = X/σ. (Categorical

quotients are sometimes called co-equalizers.) We will also give, in each concrete

example, a class of objects of C which we call trivial. For instance, if C is the category

of algebraic varieties, the trivial objects will be declared to be the points. If X is a

correspondence between curves, possessing an infinite orbit (i.e., a sequence of distinct
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points Q1, Q2, ... ∈ X̃ such that σ2(Qi) = σ1(Qi+1) for i ≥ 1), then clearly X/σ is

trivial. To remedy this situation we will proceed as follows.

1) For each p we will“adjoin”the Fermat quotient operator δ = δp to usual algebraic

geometry; this will lead us to consider a category Cδ that underlies what we shall refer

to as “δ−geometry”.

2) For any correspondence XO in the category of smooth curves over the ring of

S−integers O of a number field we will consider the correspondences X℘ and XC

deduced by base change via O ⊂ Ô℘ = Ẑurp and O ⊂ C, where ℘ runs through

the set of unramified places outside S. To each X℘ = (X℘, σ℘) we will associate a

correspondence Xδ = (Xδ, σδ) in Cδ, where δ = δp.

3) We will formulate a conjecture (and state results along this conjecture) essen-

tially asserting that if XC has an infinite orbit then Xδ/σδ is non-trivial in Cδ for

almost all places ℘ if and only if XC admits an analytic uniformization (in a sense to

be explained below).

The rest of the paper is devoted to explaining the above 3 steps.

4. Uniformization

We begin by explaining the concept of analytic uniformization for correspondences

on complex algebraic curves. Let X = (X,σ) be a correspondence in the category of

complex algebraic curves. We assume X, X̃ are non-singular connected and σ1 and

σ2 are dominant. We say that X has an analytic uniformization if one can find a

diagram of Riemann surfaces

S
τ1←− S

τ2−→ S

π ↓ ↓ π̃ ↓ π

X ′ σ′

1←− X̃ ′ σ′

2−→ X ′

u ↑ ↑ ũ ↑ u

X
σ1←− X̃

σ2−→ X

with S a simply connected Riemann surface, τ1, τ2 automorphisms of S, π, π̃ Galois

covers of degree ≤ ∞, and u, ũ inclusions with X ′\X and X̃ ′\X̃ finite sets containing

the ramification locus of π and π̃ respectively. It is easy to “classify” all correspon-

dences which admit an analytic uniformization and possess an infinite orbit. The

details of the classification are tedious and will be skipped here; we content ourselves

with a few remarks. There are 3 cases: the spherical, flat and hyperbolic case accord-

ing as S is CP1, C, or H (the upper half plane) respectively. In the spherical case

everything boils down to the (well known) classification of finite groups of automor-

phisms of CP1. In the flat case the Galois groups of π and π̃ are crystallographic (i.e.,

contain a normal subgroup of finite index consisting of translations); the resulting list

of possible X’s is a variation on“Thurston’s list”of postcritically finite non-hyperbolic

dynamical systems; cf. [DH93]. (The baby examples in the previous section are in
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this category and so are the higher degree Chebyshev dynamical systems and the

so-called Lattès dynamical systems arising from elliptic curves [Mil99].) In the hy-

perbolic case a deep result of Margulis implies that the Galois groups of π and π̃ are

arithmetic lattices arising from quaternion algebras B over a totally real field F . So

X and X̃ are essentially modular curves (if F = Q, B = M2(Q)) or Shimura curves

(in all remaining cases).

5. δ−ringed sets

Our next step is to introduce the category Cδ which underlies “δ−geometry”. We

fix, in this section, a prime p and the ring R = Ẑurp . Recall that R carries a Fermat

quotient operator δ : R → R. A natural way to develop δ−geometry would be to

consider a category of “δ−ringed spaces” (i.e., ringed spaces equipped with a “Fermat

quotient type operator”); this would lead us, however, into a lot of general non-sense

that we would like to avoid. Instead we adopt a rather naive viewpoint (not involving

topology and sheaves). This viewpoint captures, nevertheless, all the features that we

think are relevant for our applications.

Here is the basic definition. A δ−ringed set Xδ is a set Xset together with the

following data:

1) A family (Xs)s∈S of subsets of Xset indexed by a monoid S = SX such that

Xst = Xs ∩Xt,

2) A family (Os)s∈S of subrings

Os ⊂ {maps Xs −→ R}

such that if f ∈ Os and t ∈ S then δ ◦ f ∈ Os and f|Xst
∈ Ost.

A morphism of δ−ringed sets σδ : Xδ → Yδ is a pair σδ = (σset, σ
]) where σset :

Xset → Yset is a map of sets and σ] : SY → SX is a morphism of monoids such that

σ−1
set(Ys) = Xσ](s) and such that if f ∈ Os then f ◦ σset ∈ Oσ](s). We call Cδ the

category of δ−ringed sets. An object Xδ in Cδ is called trivial if Os = R for all s.

Any correspondence in Cδ has a categorical quotient. So non-triviality (rather than

existence) will be the main issue as far as categorical quotients in Cδ are concerned.

Here are a few more important definitions.

A δ−ringed set Xδ will be called δ−localized if the following conditions hold:

1) If pf ∈ Os with f : Xs → R then f ∈ Os;

2) If P ∈ Xs, f ∈ Os, f(P ) 6∈ pR then there exists t such that P ∈ Xst and

f|Xst
∈ O×

st.

For a δ−localized Xδ one can define the δ−ring of rational functions,

R〈Xδ〉 := lim
→
Os;
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it is a discrete valuation ring with maximal ideal generated by p. We denote by

k〈Xδ〉 its residue field. We say that Xδ is δ−rational if there exists a family η = (ηi),

ηi ∈ R〈Xδ〉, such that the reductions mod p:

η, δη, δ2η, ... ∈ k〈Xδ〉

are algebraically independent over k := Fap and generate the field extension k ⊂ k〈Xδ〉.

This is of course a natural δ−analogue of the concept of rational variety in algebraic

geometry.

6. Attaching δ−ringed sets to schemes

Our next step is to show how to attach to a smooth scheme X over R = Ẑurp a

δ−ringed set. We recall a basic definition from [Bui95]. A δ−function of order ≤ r

f : X(R) → R is a function such that for any point in X(R) there exists a Zariski

open neighborhood U ⊂ X , a closed immersion u : U → Ad, and a restricted power

series

F ∈ R[T1, ..., T(r+1)d]̂

such that

f(P ) = F (u(P ), δ(u(P )), ..., δr(u(P ))), P ∈ U(R).

(Here the upper ˆ means p−adic completion.)

The rule that attaches to any Zariski open set V ⊂ X the ring

Or(V ) := {δ−functions V (R) −→ R of order ≤ r}

defines a sheaf Or on X for the Zariski topology. By a δ−line bundle on X we

understand a locally free sheaf L of Or−modules of rank 1. If W = Z[φ] is the

non-commutative subring of End(R) generated by φ then W acts on R× and hence

on Or(V )× for any V . Acting by elements w ∈ W on the cocycle defining a δ−line

bundle L one can define δ−line bundles Lw. Let W+ be the set of all
∑

aiφ
i ∈ W

with ai ≥ 0. Then one can form a W+−graded ring

R(X,L) =
⊕

w∈W+

H0(X,Lw).

Using this ring we can define a δ−ringed set Xδ as follows. The set Xset is, by

definition, the set X(R). The monoid S is defined by

S = {homogeneous elements of R(X,L)\pR(X,L) of degree 6= 0}.

For s ∈ S we let Xs be the set of all P ∈ X(R) such that s(P ) 6≡ 0 mod p. Finally

we let

Os = {
f

sw
| w ∈W+, deg(f) = deg(sw)} ⊂ {maps Xs −→ R}.

Of course Xδ depends on L; but everywhere, in what follows, we shall take L = K−1
X ,

the anticanonical bundle on X . If X = (X,σ) is a correspondence in the category
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of smooth schemes over R and if σ1, σ2 are étale then we obtain a correspondence

Xδ = (Xδ, σδ) in the category Cδ of δ−ringed sets.

7. Main conjectures

LetO ⊂ C be the ring of S−integers in a number field where S is a finite set of finite

places containing all the places which are ramified over Q. Assume that XO = (X,σ)

is a correspondence in the category CO of smooth curves over O. Assume σ1, σ2 are

étale. For any finite place ℘ 6∈ S let R℘ := Ôur℘ be the completion of the maximum

unramified extension of the local ring of O at ℘, let k℘ be the residue field of R℘, and

let pZ = ℘ ∩ Z. Denote by

(10) XC = (XC, σC), X℘ = (X℘, σ℘)

the correspondences over C and R℘ obtained by base change respectively. For each ℘

we view X℘ equipped with the anticanonical bundle and we consider the associated

correspondence

Xδ = (Xδ, σδ)

in the category of δ−ringed sets Cδ. Also recall that we defined in Section 5 the notion

of δ−rational δ−ringed set.

Conjecture 7.1. — Assume XC admits an analytic uniformization and possesses an

infinite orbit. Then Xδ/σδ is non-trivial and δ−rational for almost all places ℘.

In the converse direction we propose the following:

Conjecture 7.2. — Assume XC possesses an infinite orbit and assume that, for all

but finitely many places ℘, Xδ/σδ is non-trivial. Then XC is commensurable with a

correspondence that admits an analytic uniformization.

Commensurability in the above statement is the equivalence relation generated by

the obvious relation of “dominance” between correspondences.

Conjecture 7.1 should be complemented as follows. Note that the quotient map

Xδ → Xδ/σδ induces a field extension

k℘〈Xδ/σδ〉 ⊂ k℘〈Xδ〉.

If in addition X is affine we get an induced extension

k℘(X) · k℘〈Xδ/σδ〉 ⊂ k℘〈Xδ〉.

We expect that, under the assumptions of Conjecture 7.1, the latter extension is

always algebraic and its Galois theoretic properties can then be investigated.
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8. Main results

One can prove quite general results along Conjecture 7.1 in the following cases:

1) spherical case

2) flat case

3) hyperbolic case corresponding to quaternion algebras over Q.

So the case not covered (yet) by our theory is that of hyperbolic uniformizations

corresponding to quaternion algebras over totally real fields 6= Q.

Conjecture 7.2 is more mysterious. But there is a local analogue of this conjecture

along which we can prove quite general results. In the local analogue of Conjecture 7.2

correspondences are replaced by power series in R[[T ]], analytic uniformization is

replaced by “uniformization by automorphisms of formal groups”, and δ−invariants

are replaced by “invariant” series in R[[T ]][T ′, ..., T (r)]̂ , where T ′, ..., T (r) are “new

variables” which morally stand for “δT, ..., δrT ”. Describing the local analogue of

Conjecture 7.2 would lead us too far afield.

In what follows we shall give a sample of our main results on Conjecture 7.1.

8.1. Spherical case. — Let Γ ⊂ SL2(Z) be a finite subgroup and let τ ∈ SL2(Z).

Let O = Z[1/m] for some m. View SL2(Z) as acting on the projective line P1 =

Proj O[x0, x1] over O. Let F ∈ O[x0, x1] be a homogeneous Γ−invariant polynomial

such that all geometric points of P1 fixed by some member of Γ belong to the closed

scheme Z(F ) defined by F . Consider the schemes

Y := P1\Z(F ), X = Y/Γ, X̃ = Y ∩ τ−1(Y ),

Let π : P1 → P1/Γ be the canonical projection. and consider the correspondence

XO := (X, X̃, π, π ◦ τ)

in CO.

Theorem 8.1. — For all but finitely many primes p, Xδ/σδ is non-trivial. If in addi-

tion the group 〈Γ, τ〉 = SL2(Z) then, for infinitely many primes p,

1) Xδ/σδ is δ−rational;

2) kp〈Xδ〉 can be embedded into an algebraic Galois extension of kp〈Xδ/σδ〉 with

Galois group PSL2(Zp) or PGL2(Zp).

8.2. Flat case. — Let O ⊂ C be the ring of S−integers in a number field. Let

G be either the multiplicative group Gm or an elliptic curve over O, let N ∈ Z

be invertible in O with N 6∈ {1,−1}, let [N ] : G → G be the multiplication by

N endomorphism, and let ε ∈ {1,−1}. Then [N ] induces a morphism of schemes

σ : G/〈[ε]〉 → G/〈[ε]〉. Let X ⊂ G/〈[ε]〉 be an affine Zariski open set such that the

natural projection π : G→ G/〈[ε]〉 is étale aboveX , let X̃ = X∩σ−1(X) and consider

the étale irreducible correspondence in CO:

XO = (X, X̃, ι, σ),
where ι is the inclusion.
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Theorem 8.2. — For all but finitely many places ℘ the following hold:

1) Xδ/σδ is non-trivial and δ−rational;

2) The field extension k℘(X) · k℘〈Xδ/σδ〉 ⊂ k℘〈Xδ〉 is algebraic. If ε = 1 and

G = Gm the above extension is Galois, with Galois group Z×
p .

8.3. Hyperbolic case. — Fix an integer N ≥ 4 and a prime l not dividing N . Let

O = Z[1/Nl] and consider the Hecke correspondence in CO:

(11) XO := (X := Y1(N), X̃ := Y1(N, l), σ1, σ2)

where Y1(N) parameterizes elliptic curves with Γ1(N)−level structure, Y1(N, l) pa-

rameterizes isogenies of degree l between elliptic curves with Γ1(N)−level structure,

and σ1, σ2 are the natural projection maps.

Theorem 8.3. — For all but finitely many primes p, Xδ/σδ is non-trivial. Moreover,

for infinitely many primes p,

1) Xδ/σδ is δ−rational;

2) The field extension kp(X) · kp〈Xδ/σδ〉 ⊂ kp〈Xδ〉 can be embedded into a Galois

extension with pro-solvable Galois group.

9. Strategy of proofs

Here is a very rough description of the strategy behind this theory. First, following

[Bui95], one attaches to any smooth scheme X over R = Ẑurp a projective system of

formal schemes

... −→ Jr(X) −→ ... −→ J2(X) −→ J1(X) −→ J0(X) = X̂

called the p−jet spaces of X . They are arithmetic analogues of the usual jet spaces

in differential geometry and have the property that

Or(X) = O(Jr(X))

for all r. The latter equalities reduce the study of δ−geometry of Xδ to the study of

usual algebraic geometry of the projective system (Jr(X)). To prove our main results

we need to:

1) find methods to produce “δ−invariants” i.e., sections f ∈ H0(X,Lw) whose

pull-backs via σ1 and σ2 coincide (or coincide up to a constant in Z×
p );

2) prove that all “δ−invariants” arise by the above methods.

To produce δ−invariants is elementary in the spherical case. In the flat case one

needs to use the arithmetic analogue of the theory of the Manin map developed in

[Bui95] plus the compatibility between p−jets and étale Galois quotients [BZ05].

In the hyperbolic case one uses crystalline cohomology to construct an analogue of

modular forms called δ−modular forms which are“covariant”with respect to isogenies;

cf. [Bui00], [Bui03], [Bui04].
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To prove that all “δ−invariants” arise by the above methods one proceeds as in

classical invariant theory: one constructs certain (usual, non-arithmetic) differential

operators acting on δ−invariants and one sets up an “induction by degree” argument.

The differential operators playing a role in this approach can be viewed as arithmetic

analogues of operators acting on functions on jet spaces in classical mechanics. Cf.

[Bar03], [BZ05], [Bui03], [Bui04], [Bui05] for details.
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