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SPECIAL POLYNOMIALS ASSOCIATED WITH RATIONAL

AND ALGEBRAIC SOLUTIONS OF THE PAINLEVÉ

EQUATIONS

by

Peter A. Clarkson

Abstract. — Rational solutions of the second, third and fourth Painlevé equations
(PII–PIV) can be expressed in terms of logarithmic derivatives of special polyno-
mials that are defined through coupled second order, bilinear differential-difference
equations which are equivalent to the Toda equation.

In this paper the structure of the roots of these special polynomials, and the spe-
cial polynomials associated with algebraic solutions of the third and fifth Painlevé
equations, is studied and it is shown that these have an intriguing, highly symmet-
ric and regular structure. Further, using the Hamiltonian theory for PII–PIV, it is
shown that all these special polynomials, which are defined by differential-difference
equations, also satisfy fourth order, bilinear ordinary differential equations.

Résumé(Polynômes spéciaux associés aux solutions rationnelles ou algébriques des équations
de Painlevé)

On peut exprimer les solutions rationnelles des équations PII, PIII et PIV en
fonction des dérivées logarithmiques de polynômes spéciaux définis par des équations
différences-différentielles bilinéaires d’ordre deux couplées et équivalentes à l’équation
de Toda.

Dans cet article nous étudions la configuration des racines de ces polynômes spé-
ciaux et des polynômes spéciaux associés aux solutions algébriques des équations de
Painlevé PIII et PV. Nous mettons en évidence une structure étonnante, fortement
symétrique et régulière. En outre, appliquant la théorie hamiltonienne à PII, PIII

et PIV, nous montrons que tous ces polynômes spéciaux, définis par des équations
différences-différentielles, satisfont aussi à des équations différentielles ordinaires bi-

linéaires d’ordre 4.
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22 P.A. CLARKSON

1. Introduction

In this paper our interest is in rational solutions of the second, third and fourth

Painlevé equations (PII–PIV)

w′′ = 2w3 + zw + α,(1.1)

w′′ =
(w′)2

w
− w′

z
+

αw2 + β

z
+ γw3 +

δ

w
,(1.2)

w′′ =
(w′)

2

2w
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
,(1.3)

where ′ ≡ d/dz and α, β, γ and δ are arbitrary constants and algebraic solutions of

PIII and the fifth Painlevé equation (PV)

(1.4) w′′ =

(
1

2w
+

1

w − 1

)
(w′)2 − w′

z
+

(w − 1)2

z2

(
αw +

β

w

)
+

γw

z
+

δw(w + 1)

w − 1
.

The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and

their colleagues whilst studying which second order ordinary differential equations of

the form

(1.5) w′′ = F (z, w, w′) ,

where F is rational in w′ and w and analytic in z, have the property that the solutions

have no movable branch points, i.e. the locations of multi-valued singularities of any of

the solutions are independent of the particular solution chosen and so are dependent

only on the equation; this is now known as the Painlevé property (cf. [34]). The

Painlevé equations can be thought of as nonlinear analogues of the classical special

functions. Indeed Iwasaki, Kimura, Shimomura and Yoshida [35] characterize the

Painlevé equations as “the most important nonlinear ordinary differential equations”

and state that “many specialists believe that during the twenty-first century the Pain-

levé functions will become new members of the community of special functions” (see

also [14, 75]). The general solutions of the Painlevé equations are transcendental in

the sense that they cannot be expressed in terms of known elementary functions and

so require the introduction of a new transcendental function to describe their solution

(cf. [34, 75]).

Although first discovered from strictly mathematical considerations, the Painlevé

equations have arisen in a variety of important physical applications including sta-

tistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field

theory, general relativity, nonlinear optics and fibre optics. Further the Painlevé equa-

tions have attracted much interest since they also arise as reductions of the soliton

equations which are solvable by inverse scattering (cf. [1], and references therein, for

further details).

Vorob’ev [79] and Yablonskii [80] expressed the rational solutions of PII (1.1)

in terms of the logarithmic derivative of certain special polynomials which are now
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SPECIAL POLYNOMIALS AND THE PAINLEVÉ EQUATIONS 23

known as the Yablonskii–Vorob’ev polynomials (see §2 below). Okamoto [60] derived

analogous special polynomials related to some of the rational solutions of PIV, these

polynomials are now known as the Okamoto polynomials (see §4.2 below), which

have been generalised by Noumi and Yamada [58] so that all rational solutions of

PIV can be expressed in terms of the logarithmic derivative of special polynomials

(see §4.3 below). Umemura [77] derived associated analogous special polynomials

with certain rational and algebraic solutions of PIII, PV and PVI which have similar

properties to the Yablonskii–Vorob’ev polynomials and the Okamoto polynomials (see

also [56, 81]). Subsequently there have been several studies of special polynomials

associated with the rational solutions of PII [26, 38, 40, 68], the rational and alge-

braic solutions of PIII [39, 59], the rational solutions of PIV [26, 41, 58], the rational

solutions of PV [51, 57] and the algebraic solutions of PVI [45, 44, 50, 69, 70]. Many

of these papers are concerned with the combinatorial structure and determinant rep-

resentation of the polynomials, often related to the Hamiltonian structure and affine

Weyl symmetries of the Painlevé equations. Typically these polynomials arise as the

“τ -functions” for special solutions of the Painlevé equations and are generated through

nonlinear, three-term recurrence relations which are Toda-type equations that arise

from the associated Bäcklund transformations of the Painlevé equations. Additionally

the coefficients of these special polynomials have some interesting, indeed somewhat

mysterious, combinatorial properties (cf. [56, 75, 77]).

Clarkson and Mansfield [22] investigated the locations of the zeroes of the

Yablonskii–Vorob’ev polynomials in the complex plane and showed that these zeroes

have a very regular, approximately triangular structure (see also [15]). An earlier

study of the distribution of the zeroes of the Yablonskii–Vorob’ev polynomials is

given by Kametaka, Noda, Fukui, and Hirano [42] — see also [35, p. 255, p. 339].

The structure of the zeroes of the polynomials associated with rational and algebraic

solutions of PIII is studied in [17], which essentially also have an approximately

triangular structure, and with rational solutions of PIV in [16], which have an ap-

proximate rectangular and combinations of approximate rectangular and triangular

structures. The term “approximate” is used since the patterns are not exact triangles

and rectangles since the zeroes lie on arcs rather than straight lines.

In this paper we review the studies of special polynomials associated with rational

solutions of PII, PIII and PIV in §§2–4, respectively, and special polynomials associ-

ated with algebraic solutions of PIII and PV in §5 and §6, respectively. Further we

discuss the rational solutions of the Hamiltonian systems associated with PII, PIII and

PIV, respectively. In particular, it is shown that the associated special polynomials,

which are defined by differential-difference equations, also satisfy fourth order, bilinear

ordinary differential equations. This is analogous to classical orthogonal polynomi-

als, such as Hermite, Laguerre and Jacobi polynomials, which satisfy linear ordinary
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24 P.A. CLARKSON

differential, difference and differential-difference equations (cf. [3, 7, 71]), and so pro-

vides further evidence that the Painlevé equations are nonlinear special functions. In

§7 we discuss the interlacing of the roots of these special polynomials in the complex

plane. In §8 we discuss our results and pose some open questions.

2. Special Polynomials Associated with Rational Solutions of PII

Rational solutions of PII, for α = n ∈ Z, can be expressed in terms of the log-

arithmic derivative of special polynomials which are defined through a second or-

der, bilinear differential-difference equation, see equation (2.2) below. These special

polynomials were introduced by Vorob’ev [79] and Yablonskii [80], now known as

the Yablonskii–Vorob’ev polynomials, which are given in the following theorem (see

also [26, 68, 75, 78]).

Theorem 2.1. — Rational solutions of PII exist if and only if α = n ∈ Z, which are

unique, and have the form

(2.1) wn = w(z; n) =
d

dz

{
ln

[
Qn−1(z)

Qn(z)

]}
,

for n ≥ 1, where the polynomials Qn(z) satisfy the differential-difference equation

(2.2) Qn+1Qn−1 = zQ2
n − 4

[
QnQ′′

n − (Q′
n)

2
]
,

with Q0(z) = 1 and Q1(z) = z. The other rational solutions of PII are given by

w0 = 0 and w−n = −wn.

The Yablonskii–Vorob’ev polynomials Qn(z) are monic polynomials of degree
1
2n(n + 1) with integer coefficients. It is clear from the recurrence relation (2.2)

that the Qn(z) are rational functions, though it is not obvious that in fact they are

polynomials since one is dividing by Qn−1(z) at every iteration. Hence it is somewhat

remarkable that the Yablonskii–Vorob’ev polynomials are polynomials. A list of the

first few Yablonskii–Vorob’ev polynomials and plots of the locations of their zeros in

the complex plane are given in [22]. A plot of the roots of Q25(z) in the complex

plane is given in Figure 2. The interlacing of the roots of these special polynomials

in the complex plane is discussed in §7.

It is well-known that PII can be written as the Hamiltonian system [60]

(2.3) q′ =
∂HII

∂p
= p − q2 − 1

2z, p′ = − ∂HII

∂q
= 2qp + α + 1

2 ,

where the (non-autonomous) Hamiltonian HII(q, p, z; α) is given by

(2.4) HII(q, p, z; α) = 1
2p2 − (q2 + 1

2z)p − (α + 1
2 )q.
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Figure 2.1. Roots of the Yablonskii–Vorob’ev polynomial Q25(z)

Eliminating p in (2.3) then q = w satisfies PII, whilst eliminating q yields

(2.5) pp′′ = 1
2

(
dp

dz

)2

= 1
2 (p′)2 + 2p3 − zp2 − 1

2 (α + 1
2 )2,

which is known as P34, since it is equivalent to equation XXXIV of Chapter 14 in [34].

The Hamiltonian function σ(z; α) = HII(q, p, z; α), where p and q satisfy (2.3), satisfies

the second order, second degree equation [36, 60]

(2.6) (σ′′)2 + 4(σ′)3 + 2σ′(zσ′ − σ) = 1
4 (α + 1

2 )2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



26 P.A. CLARKSON

Equation (2.6), which was first derived by Chazy [12] and rederived by Bureau [10, 9,

11], is equation SD-I.d in the classification of second order, second degree equations by

Cosgrove and Scoufis [23] and arises in various applications including random matrix

theory (cf. [24, 73]). Conversely if σ(z; α) is a solution of (2.6), then

(2.7) q(z; α) =
4σ′′(z; α) + 2α + 1

8σ′(z; α)
, p(z; α) = −2σ′(z; α).

are solutions of (2.3) [60]. The relationship between the Hamiltonian function and

associated τ -functions is, up to a multiplicative constant, given by [60]

σn = σ(z; n) =
d

dz
ln τn,

where τn satisfies the Toda equation

(2.8) τnτ ′′
n − (τ ′

n)2 = Cτn+1τn−1,

with C a constant. Solutions of (2.2) and (2.8) are related by τn = Qn exp(−z3/24),

with C = − 1
4 , and so rational solutions of (2.6) have the form

(2.9) σn = − 1
8z2 +

d

dz
lnQn.

Using this Hamiltonian formalism for PII, it can be shown that the Yablonskii–

Vorob’ev polynomials Qn(z) satisfy an fourth order bilinear ordinary differential equa-

tion and a fourth order, second degree, hexa-linear (i.e. homogeneous of degree six)

difference equation (see also [15]). Differentiating (2.6) with respect to z yields

(2.10) σ′′′ + 6 (σ′)
2

+ 2zσ′ − σ = 0,

and then substituting (2.9) into (2.10) yields the fourth order, bilinear equation

(2.11) QnQ′′′′
n − 4Q′

nQ′′′
n + 3 (Q′′

n)
2 − z

[
QnQ′′

n − (Q′
n)

2
]
− QnQ′

n = 0.

We remark that substituting (2.9) into (2.6) yields the third order, second degree,

quad-linear (i.e. homogeneous of degree four) equation

Q2
n (Q′′′

n )
2

+ Q′′′
n

[
4 (Q′

n)
3 − 6QnQ′

nQ′′
n − 1

2Q3
n

]
+ 4Qn (Q′′

n)
3

− (Q′′
n)

2
[
3 (Q′

n)
2

+ zQ2
n

]
+ 1

2QnQ′
nQ′′

n(4zQ′
n − Qn)

− (Q′
n)

3
(zQ′

n − Qn) + 1
2zQ3

nQ′
n − 1

4n(n + 1)Q4
n = 0.

(2.12)

Additionally Qn satisfies the fourth order, second degree, hexa-linear difference equa-

tion

16(2n + 1)4Q6
n − 8(2n + 1)2(Qn+2Q

3
nQ2

n−1 + 2Q3
n+1Q

3
n−1 + Qn−2Q

3
nQ2

n+1

− 4zQ2
n+1Q

2
nQ2

n−1) + (Qn+2Q
2
n−1 − Q2

n+1Qn−2)
2 = 0

(2.13)

(see [15] for details). Hence the Yablonskii–Vorob’ev polynomials Qn satisfy nonlinear

ordinary differential equations (2.11) and (2.12), the difference equation (2.13) as well
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as the differential-difference equation (2.2); see [15] for further differential-difference

equations satisfied by the Yablonskii–Vorob’ev polynomials.

It seems reasonable to expect that the ordinary differential equations (2.11)

and (2.12) will be useful for proving properties of the Yablonskii–Vorob’ev polyno-

mials since there are more techniques for studying solutions of ordinary differential

equations than for difference equations or differential-difference equations. For

example, suppose we seek a polynomial solution of (2.12) with α = n in the form

Qn(z) = zr + ar−1z
r−1 + · · · + a1z + a0,

where is has been assumed, without loss of generality, that the coefficient of zr is unity

since (2.11) is homogeneous. Then it is easy to show that necessarily r = 1
2n(n + 1),

which is a simple proof of the degree of Qn(z). Similarly it is straightforward to show

using (2.11) that ar−3j−1 = 0 and ar−3j−2 = 0 and to derive recurrence relations for

the coefficients ar−3j . Kaneko and Ochiai [43] derive formulae for the coefficients of

the lowest degree term of the Yablonskii–Vorob’ev polynomials; the other coefficients

remain to be determined, which is an interesting problem.

3. Special Polynomials Associated with Rational Solutions of PIII

3.1. Rational solutions and Bäcklund transformations of PIII. — In this

section we consider the generic case of PIII when γδ 6= 0, then we set γ = 1 and

δ = −1, without loss of generality (by rescaling w and z if necessary), and so consider

(3.1) w′′ =
(w′)2

w
− w′

z
+

αw2 + β

z
+ w3 − 1

w
.

The location of rational solutions for the generic case of PIII given by (3.1) is stated

in the following theorem due to Gromak, Laine and Shimomura [32, p. 174] (see

also [52, 54]).

Theorem 3.1. — Equation (3.1), i.e. PIII with γ = −δ = 1, has rational solutions if

and only if α + εβ = 4n, with n ∈ Z and ε = ±1. Generically, except when α and

β are both integers, these rational solutions have the form w = Pn2(z)/Qn2(z), where

Pn2(z) and Qn2(z) and polynomials of degree n2 with no common roots.

We remark that the rational solutions of the generic case of PIII (3.1) lie on the

lines α + εβ = 4n in the α-β plane, rather than isolated points as is the case for PIV.

The Bäcklund transformations of PIII are described in the following theorem due

to Gromak [28, 29] (see also [52, 54] and the references therein).
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28 P.A. CLARKSON

Theorem 3.2. — Suppose w = w(z; α, β, 1,−1) is a solution of PIII, then wj =

wj(z; αj , βj , 1,−1), j = 1, 2, . . . , 6, are also solutions of PIII where

w1 =
zw′ + zw2 − βw − w + z

w(zw′ + zw2 + αw + w + z)
, α1 = α + 2, β1 = β + 2,(3.2a)

w2 = − zw′ − zw2 − βw − w + z

w(zw′ − zw2 − αw + w + z)
, α2 = α − 2, β2 = β + 2,(3.2b)

w3 = − zw′ + zw2 + βw − w − z

w(zw′ + zw2 + αw + w − z)
, α3 = α + 2, β3 = β − 2,(3.2c)

w4 =
zw′ − zw2 + βw − w − z

w(zw′ − zw2 − αw + w − z)
, α4 = α − 2, β4 = β − 2.(3.2d)

w5 = −w, α5 = −α, β5 = −β(3.2e)

w6 = 1/w, α6 = −β, β6 = −α.(3.2f)

3.2. Associated special polynomials. — Umemura [77], see also [17, 39, 81],

derived special polynomials associated with rational solutions of PIII, which are de-

fined in Theorem 3.3; though these are actually polynomials in 1/z rather than poly-

nomials in z. Further Umemura states that these “polynomials” are the analogues of

the Yablonskii–Vorob’ev polynomials associated with rational solutions of PII and the

Okamoto polynomials associated with rational solutions of PIV.

Theorem 3.3. — Suppose that Tn(z; µ) satisfies the recursion relation

(3.3) zTn+1Tn−1 = −z

[
Tn

d2Tn

dz2 −
(

dTn

dz

)2
]
− Tn

dTn

dz
+ (z + µ)T 2

n ,

with T−1(z; µ) = 1 and T0(z; µ) = 1. Then

(3.4) wn(z; µ) ≡ w(z; αn, βn, 1,−1) =
Tn(z; µ − 1)Tn−1(z; µ)

Tn(z; µ)Tn−1(z; µ − 1)
,

satisfies PIII, with αn = 2n + 2µ − 1 and βn = 2n− 2µ + 1.

The “polynomials” Tn(z; µ) are rather unsatisfactory since they are polynomials

in ξ = 1/z rather than polynomials in z, which would be more natural. However it

is straightforward to determine a sequence of functions Sn(z; µ) which are generated

through an equation that are polynomials in z. These are given in the following

theorem, proved in [17, 37], which generalizes the work of Kajiwara and Masuda

[39].

Theorem 3.4. — Suppose that Sn(z; µ) satisfies the recursion relation

(3.5) Sn+1Sn−1 = −z

[
Sn

d2Sn

dz2 −
(

dSn

dz

)2
]
− Sn

dSn

dz
+ (z + µ)S2

n,
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with S−1(z; µ) = S0(z; µ) = 1. Then

wn = w(z; αn, βn, 1,−1) = 1 +
d

dz

{
ln

[
Sn−1(z; µ − 1)

Sn(z; µ)

]}
≡ Sn(z; µ − 1)Sn−1(z; µ)

Sn(z; µ)Sn−1(z; µ − 1)
,

(3.6)

satisfies PIII with αn = 2n + 2µ − 1 and βn = 2n − 2µ + 1 and

ŵn = w(z; α̂n, β̂n, 1,−1) = 1 +
d

dz

{
ln

[
Sn−1(z; µ)

Sn(z; µ − 1)

]}
≡ Sn(z; µ)Sn−1(z; µ − 1)

Sn(z; µ − 1)Sn−1(z; µ)
,

(3.7)

satisfies PIII with α̂n = −2n + 2µ − 1 and β̂n = −2n− 2µ + 1.

The rational solutions of PIII defined by (3.6) and (3.7) can be generalized using

the Bäcklund transformation (3.2e) to include all those described in Theorem 3.1

satisfying the condition α+β = 4n. Rational solutions of PIII satisfying the condition

α − β = 4n are obtained by letting w → iw and z → iz in (3.6) and (3.7), and then

using the Bäcklund transformation (3.2e).

We remark that the polynomials Sn(z; µ) and Tn(z; µ), defined by (3.5) and (3.3),

respectively, are related through

(3.8) Sn(z; µ) = zn(n+1)/2Tn(z; µ).

Also the polynomials Sn(z; µ) have the symmetry property

(3.9) Sn(z; µ) = Sn(−z;−µ).

Plots of the roots of the polynomials Sn(z; µ) for various µ are given in [17].

Initially for µ sufficiently large and negative, the 1
2n(n+1) roots form an approximate

triangle with n roots on each side. Then as µ increases, the roots in turn coalesce

and eventually for µ sufficiently large and positive they form another approximate

triangle, similar to the original triangle, though with its orientation reversed. It is

straightforward to determine when the roots of Sn(z; µ) coalesce using discriminants

of polynomials. Suppose that f(z) = zm + am−1z
m−1 + · · · + a1z + a0 is a monic

polynomial of degree m with roots α1, α2, . . . , αm, so f(z) =
∏m

j=1(z −αj). Then the

discriminant of f(z) is

(3.10) Dis(f) =
∏

1≤j<k≤m

(αj − αk)2.

Hence the polynomial f has a multiple root when Dis(f) = 0. It is straightforward

to show that

Dis(S3(z; µ)) = 31255µ6(µ2 − 1)2,

Dis(S4(z; µ)) = 32752077µ14(µ2 − 1)6(µ2 − 4)2,

Dis(S5(z; µ)) = 366545728µ26(µ2 − 1)14(µ2 − 4)6(µ2 − 9)2,

Dis(S6(z; µ)) = −31475807631111µ44(µ2 − 1)26(µ2 − 4)14(µ2 − 9)6(µ2 − 16)2.
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Thus S3(z; µ) has multiple roots when µ = 0,±1, S4(z; µ) when µ = 0,±1,±2,

S5(z; µ) when µ = 0,±1,±2,±3, and S6(z; µ) when µ = 0,±1,±2,±3,±4. In all cases

the multiple roots occur at z = 0. This naturally leads to the following conjecture.

Conjecture 3.5([6]). — The polynomial Sn(z; µ) has multiple roots at z = 0 when

µ = 0,±1,±2, . . . ,±(n − 2).

3.3. Hamiltonian theory for PIII. — The Hamiltonian associated with PIII is

[36, 60] (see also [25])

(3.11) HIII = p2q2 − zpq2 − (β − 1)pq + zp + 1
2 (β − 2 − α) zq,

and so from Hamilton’s equations we have

zq′ = 2pq2 − zq2 − (β − 1)q + z, zp′ = −2p2q + 2zpq + (β − 1)p − 1
2 (β − 2 − α) z.

(3.12)

Setting q = w and eliminating p in this system yields PIII (3.1). Next, define the

auxiliary Hamiltonian function σ by

(3.13) σ = 1
2HIII + 1

2pq + 1
8 (β − 2)2 − 1

4z2,

where p and q satisfy the Hamiltonian system (3.12). Then σ satisfies the second

order, second degree equation given by

(3.14) (zσ′′ − σ′)
2

+ 4 (σ′)
2
(zσ′ − 2σ) + 4zλ1σ

′ − z2 (zσ′ − 2σ + 2λ0) = 0,

with λ1 = − 1
4α(β−2) and λ0 = 1

8α2 + 1
8 (β−2)2 [36, 60]. Conversely if σ is a solution

of (3.14) then

(3.15) q =
2zσ′′ + 2(1 − β)σ′ − αz

z2 − 4 (σ′)
2 , p = σ′ + 1

2z,

are solution of (3.12). Due to the relationship between the Hamiltonian and the

τ -function (see [60]), it can be shown that solutions of (3.14) have the form

σ(z) = z
d

dz
ln

{
z1/8 exp(1

8z2)τn(z)
}

= 1
4z2 + 1

8 + z
d

dz
ln τn(z)

where τn satisfies the Toda equation (2.8), with ′ ≡ z
d

dz
. Hence, since τn(z) =

exp
(
− 1

4z2 − µz
)
Sn(z; µ), then rational solutions of (3.14) have the form

(3.16) σn(z; µ) = − 1
4z2 − µz + 1

8 + z
d

dz
lnSn(z; µ),

with λ1 = µ2 − (n + 1
2 )2 and λ0 = µ2 + (n + 1

2 )2.

Using this Hamiltonian formalism for PIII, it can be shown that the polynomials

Sn(z; µ) satisfy an fourth order bilinear ordinary differential equation and a sixth

order, hexa-linear difference equation [17]. Multiplying (3.14) by 1/z2 and the differ-

entiating with respect to z yields

(3.17) z2σ′′′ − zσ′′ + 6z (σ′)
2 − 8σσ′ + σ′ − 1

2z3 + 2zλ1 = 0.
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Then substituting (3.16) and λ1 = µ2 − (n + 1
2 )2 into this yields the fourth order,

bilinear equation

z2
[
SnS′′′′

n − 4S′
nS′′′

n + 3 (S′′
n)

2
]

+ 2z (SnS′′′
n − S′

nS′′
n)

− 4z(z + µ)
[
SnS′′

n − (S′
n)

2
]
− 2SnS′′

n + 4µSnS′
n = 2n(n + 1)S2

n.
(3.18)

As for the case for the ordinary differential equations satisfied by the Yablonskii–

Vorob’ev polynomials, i.e. equations (2.11) and (2.12), it seems reasonable to expect

that the ordinary differential equation (3.18) will be useful for the derivation of prop-

erties of the polynomials Sn(z; µ). For example, using (3.18) it is straightforward to

show that the polynomials Sn(z; µ) has degree 1
2n(n + 1).

4. Special Polynomials Associated with Rational Solutions of PIV

4.1. Rational solutions and Bäcklund transformations for PIV. — Rational

solutions of PIV (1.3) are classified in the following theorem due to Lukashevich [47],

Gromak [31] and Murata [53] (see also [8, 32, 78]).

Theorem 4.1. — PIV has rational solutions if and only if either

(4.1) α = m, β = −2(2n− m + 1)2,

or

(4.2) α = m, β = −2(2n− m + 1
3 )2,

with m, n ∈ Z. Further the rational solutions for these parameter values are unique.

Some simple rational solutions of PIV are

(4.3) w1(z;±2,−2) = ±1/z, w2(z; 0,−2) = −2z, w3(z; 0,− 2
9 ) = − 2

3z.

It is known that there are three families of unique rational solutions of PIV, which have

the solutions (4.3) as the simplest members. These are summarized in the following

theorem due to Bassom, Clarkson and Hicks [8] (see also Murata [53] and Umemura

and Watanabe [78]).

Theorem 4.2. — There are three families of rational solutions of PIV, which have the

forms

w1(z; α1, β1) = p1,n−1(z)/q1,n(z),(4.4a)

w2(z; α2, β2) = −2z + p2,n−1(z)/q2,n(z),(4.4b)

w3(z; α3, β3) = − 2
3z + p3,n−1(z)/q3,n(z),(4.4c)
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where pj,n(z) and qj,n(z), j = 1, 2, 3, are polynomials of degree n, and

(α1, β1) =
(
±m,−2(1 + 2n + m)2

)
, n ≤ −1, m ≥ −2n,(4.5a)

(α2, β2) =
(
m,−2(1 + 2n + m)2

)
, n ≥ 0, m ≥ −n,(4.5b)

(α3, β3) =
(
m,− 2

9 (1 + 6n − 3m)2
)
,(4.5c)

with m, n ∈ Z.

The three families given in this theorem are known as the “−1/z hierarchy”, the

“−2z hierarchy”and the “− 2
3z hierarchy”, respectively (see [8] where the terminology

was introduced). The “−1/z hierarchy” and the “−2z hierarchy” form the set of

rational solutions of PIV with parameter values given by (4.1) and the“− 2
3z hierarchy”

forms the set with parameter values given by (4.2). The rational solutions of PIV with

parameter values given by (4.1) lie at the vertexes of the “Weyl chambers” and those

with parameter values given by (4.2) lie at the centres of the “Weyl chamber” [78].

The Bäcklund transformations of PIV are described in the following theorem due

to Lukashevich [47], Gromak [30, 31] (see also [8, 32]).

Theorem 4.3. — Let w0 = w(z; α0, β0) and w±
j = w(z; α±

j , β±
j ), j = 1, 2, 3, 4, be

solutions of PIV with

α±
1 = 1

4

(
2 − 2α0 ± 3

√
−2β0

)
, β±

1 = − 1
2

(
1 + α0 ± 1

2

√
−2β0

)2

,(4.6a)

α±
2 = − 1

4

(
2 + 2α0 ± 3

√
−2β0

)
, β±

2 = − 1
2

(
1 − α0 ± 1

2

√
−2β0

)2

,(4.6b)

α±
3 = 3

2 − 1
2α0 ∓ 3

4

√
−2β0, β±

3 = − 1
2

(
1 − α0 ± 1

2

√
−2β0

)2

,(4.6c)

α±
4 = − 3

2 − 1
2α0 ∓ 3

4

√
−2β0, β±

4 = − 1
2

(
−1 − α0 ± 1

2

√
−2β0

)2

.(4.6d)

Then

T ±
1 : w±

1 =
w′

0 − w2
0 − 2zw0 ∓

√−2β0

2w0
,(4.7a)

T ±
2 : w±

2 = − w′
0 + w2

0 + 2zw0 ∓
√−2β0

2w0
,(4.7b)

T ±
3 : w±

3 = w0 +
2

(
1 − α0 ∓ 1

2

√
−2β0

)
w0

w′
0 ±

√−2β0 + 2zw0 + w2
0

,(4.7c)

T ±
4 : w±

4 = w0 +
2

(
1 + α0 ± 1

2

√−2β0

)
w0

w′
0 ∓

√
−2β0 − 2zw0 − w2

0

,(4.7d)

valid when the denominators are non-zero, and where the upper signs or the lower

signs are taken throughout each transformation.
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4.2. Okamoto polynomials. — In a comprehensive study of the fourth Painlevé

equation PIV, Okamoto [60] (see also [26, 41, 58]) defined two sets of polynomials

analogous to the Yablonskii–Vorob’ev polynomials, which are defined in Theorems 4.4

and 4.5 below. These have been scaled compared to Okamoto’s original definition,

where the polynomials are monic, so that they are for the standard PIV.

Theorem 4.4. — Suppose Qn(z) satisfies the recursion relation

(4.8) Qn+1Qn−1 = 9
2

[
QnQ′′

n − (Q′
n)

2
]

+
[
2z2 + 3(2n− 1)

]
Q2

n,

with Q0(z) = Q1(z) = 1. Then

(4.9) wn = w(z; αn, βn) = − 2
3z +

d

dz

{
ln

[
Qn+1(z)

Qn(z)

]}
,

for n ≥ 0, satisfies PIV with (αn, βn) = (2n,− 2
9 ).

Theorem 4.5. — Suppose Rn(z) satisfies the recursion relation

(4.10) Rn+1Rn−1 = 9
2

[
RnR′′

n − (R′
n)

2
]

+ 2(z2 + 3n)R2
n,

with R0(z) = 1 and R1(z) =
√

2 z. Then

(4.11) ŵn = w(z; α̂n, β̂n) = − 2
3z +

d

dz

{
ln

[
Rn+1(z)

Rn(z)

]}
,

for n ≥ 0, satisfies PIV with (α̂n, β̂n) = (2n + 1,− 8
9 ).

The polynomials Qn(z) are polynomials of degree n(n− 1), in fact they are monic

polynomials in ζ =
√

2 z with integer coefficients, which is the form in which Okamoto

[60] originally defined these polynomials. Further the polynomials Qn(z) are even

polynomials, i.e. monic polynomials in ζ2 = 2z2 of degree 1
2n(n−1). The polynomials

Rn(z) are polynomials of degree n2, in fact they are monic polynomials in ζ = 2z

with integer coefficients, which is the form in which Okamoto [60] originally defined

these polynomials. In [16] plots of the locations of the zeros, in the complex plane,

for the Okamoto polynomials Qn(z) = 0, defined by (4.8), and Rn(z) = 0, defined

by (4.10), are given. These both take the form of two“triangles”with the polynomials

Rn(z) having an additional row of zeros on a straight line, the real axis, between the

two “triangles”. The term “triangles” is used since the zeros lie on arcs, rather than

straight lines and so are only approximately triangular.

4.3. Generalized Hermite polynomials and generalized Okamoto polyno-

mials. — Noumi and Yamada [58] generalized the results of Okamoto [60] described

above and introduced the generalized Hermite polynomials Hm,n(z), which are defined

in Theorem 4.6, and the generalized Okamoto polynomials Qm,n(z), which are defined

in Theorem 4.7. Noumi and Yamada [58] expressed both the generalized Hermite

polynomials and the generalized Okamoto polynomials in terms of Schur functions

related to the so-called modified Kadomtsev-Petviashvili (mKP) hierarchy. Kajiwara
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and Ohta [41] also expressed rational solutions of PIV in terms of Schur functions by

expressing the solutions in the form of determinants.

Theorem 4.6. — Suppose Hm,n(z) satisfies the recurrence relations

2mHm+1,nHm−1,n = Hm,nH ′′
m,n −

(
H ′

m,n

)2
+ 2mH2

m,n,(4.12a)

2nHm,n+1Hm,n−1 = −Hm,nH ′′
m,n +

(
H ′

m,n

)2
+ 2nH2

m,n,(4.12b)

with H0,0 = H1,0 = H0,1 = 1 and H1,1 = 2z, then

w(I)
m,n =

d

dz

{
ln

(
Hm+1,n

Hm,n

)}
,(4.13a)

w(II)
m,n = − d

dz

{
ln

(
Hm,n+1

Hm,n

)}
,(4.13b)

w(III)
m,n = −2z +

d

dz

{
ln

(
Hm,n+1

Hm+1,n

)}
,(4.13c)

where w
(J)
m,n = w(z; α

(J)
m,n, β

(J)
m,n) for J=I,II,III, is a solution of PIV, respectively for

α(I)
m,n = 2m + n + 1, β(III)

m,n = −2n2,(4.14a)

α(II)
m,n = −(m + 2n + 1), β(I)

m,n = −2m2,(4.14b)

α(III)
m,n = n − m, β(II)

m,n = −2(m + n + 1)2(4.14c)

The rational solutions of PIV defined by (4.13) include all the solutions in the

“−1/z” and “−2z” hierarchies, as is easily verified by comparing the parameters

in (4.14) with those in (4.5a) and (4.5b). Further they are the set of rational so-

lutions of PIV with parameter values given by (4.1). The rational solutions of PIV

generated by the generalized Hermite polynomials Hm,n(z) are special cases of the

special function solutions, often called one-parameter families of solutions, which are

expressible in terms of parabolic cylinder functions Dν(ξ), or a special case of the

Whittaker functions Mκ,µ(ζ) and Wκ,µ(ζ) (cf. [16]; see, for example, [3, §19.12] for

the relationship between parabolic cylinder functions and Whittaker functions).

Plots of the locations of the zeros of the polynomials Hm,n(z) for various choices of

m and n, are given in [16]. These plots, which are invariant under reflections in the

real and imaginary z-axes, take the form of m×n “rectangles”, though these are only

approximate rectangles as can be seen by looking at the actual values of the zeros. A

plot of the complex roots of the generalized Hermite polynomial H20,20(z) is given in

Figure 4.3.

Theorem 4.7. — Suppose Qm,n(z) satisfies the recurrence relations

Qm+1,nQm−1,n = 9
2

[
Qm,nQ′′

m,n −
(
Q′

m,n

)2]
+

[
2z2 + 3(2m + n − 1)

]
Q2

m,n,(4.15a)

Qm,n+1Qm,n−1 = 9
2

[
Qm,nQ′′

m,n −
(
Q′

m,n

)2]
+

[
2z2 + 3(1 − m − 2n)

]
Q2

m,n,(4.15b)
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Figure 4.1. Roots of the generalized Hermite polynomial H20,20(z)

with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√

2 z, then

w̃(I)
m,n = − 2

3z +
d

dz

{
ln

(
Qm+1,n

Qm,n

)}
,(4.16a)

w̃(II)
m,n = − 2

3z − d

dz

{
ln

(
Qm,n+1

Qm,n

)}
,(4.16b)

w̃(III)
m,n = − 2

3z +
d

dz

{
ln

(
Qm,n+1

Qm+1,n

)}
,(4.16c)

where w̃
(J)
m,n = w(z; α̃

(J)
m,n, β̃

(J)
m,n) for J=I,II,III, are solutions of PIV, respectively for

α̃(I)
m,n = 2m + n, β̃(I)

m,n = −2(n − 1
3 )2,(4.17a)

α̃(II)
m,n = −(m + 2n), β̃(II)

m,n = −2(m − 1
3 )2,(4.17b)

α̃(III)
m,n = n − m, β̃(III)

m,n = −2(m + n + 1
3 )2.(4.17c)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



36 P.A. CLARKSON

The rational solutions of PIV defined by (4.16) include all the solutions in the

“− 2
3z” hierarchy, as is easily verified by comparing the parameters in (4.17) with

those in (4.5c). Further they are the set of rational solutions of PIV with parameter

values given by (4.2).

Examples of generalized Okamoto polynomials and plots of the locations of their

complex roots are given in [16]. Plots of the complex roots of the generalized Okamoto

polynomials Q10,10(z) and Q−8,−8(z) are given in Figures 4.3 and 4.3, respectively.

The roots of the polynomial Qm,n(z), with m, n ≥ 1, take the form of m×n“rectangle”

with an “equilateral triangle”, which have either m − 1 or n − 1 roots, on each of its

sides. The roots of the polynomial Q−m,−n(z), with m, n ≥ 1, take the form of m×n

“rectangle” with an “equilateral triangle”, which now have either m or n roots, on

each of its sides. These are only approximate rectangles and equilateral triangles as

can be seen by looking at the actual values of the roots. We remark that as for the

generalized Hermite polynomials above, the plots are invariant under reflections in

the real and imaginary z-axes.

Due to the symmetries

Qn,m(z) = exp(− 1
2πidm,n)Qm,n(iz),(4.18a)

Q1−m−n,n(z) = exp(− 1
2πidm,n)Qm,n(iz),(4.18b)

where dm,n = m2 + n2 + mn − m − n is the degree of Qm,n(z), the roots of the

polynomials Q−m,n(z) and Qm,−n(z), with m, n ≥ 1 take similar forms as these

polynomials they can be expressed in terms of QM,N(z) and Q−M,−N(z) for suitable

M, N ≥ 1. Specifically, the roots of the polynomial Q−m,n(z), with m ≥ n ≥ 1, has

the form of a n × (m − n + 1) “rectangle” with an “equilateral triangle”, which have

either n− 1 or n−m− 1 roots, on each of its sides. Also the roots of the polynomial

Q−m,n(z) with n > m ≥ 1, has the form of a m × (n − m − 1) “rectangle” with an

“equilateral triangle”, which have either m or n − m − 1 roots, on each of its sides.

Further, we note that Q−m,m(z) = Qm,1(z) and Q1−m,m(z) = Qm,0(z), for all m ∈ Z,

where Qm,0(z) and Qm,0(z) are the original polynomials introduced by Okamoto [60].

Analogous results hold for Qm,−n(z), with m, n ≥ 1.

4.4. Hamiltonian Theory PIV. — The Hamiltonian for PIV is [60]

(4.19) HIV(q, p, z; θ0, θ∞) = 2qp2 − (q2 + 2zq + 2θ0)p + θ∞q,

then from Hamilton’s equation we have

(4.20) q′ =
∂HIV

∂p
= 4qp−q2−2zq−2θ0, p′ = −∂HIV

∂q
= −2p2+2pq+2zp−θ∞.

Eliminating p in (4.20), then q = w satisfies PIV with (α, β) =
(
1 − θ0 + 2θ∞,−2θ2

0

)
,

and eliminating q in (4.20), then w = −2p satisfies PIV with (α, β) = (−1 + 2θ0 −
θ∞,−2θ2

∞). The Hamiltonian function σ(z; θ0, θ∞) = HIV(q, p, z; θ0, θ∞) satisfies

(4.21) (σ′′)
2 − 4 (zσ′ − σ)

2
+ 4σ′ (σ′ + 2θ0) (σ′ + 2θ∞) = 0.
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Figure 4.2. Roots of the generalized Okamoto polynomial Q10,10(z)

This equation is equivalent to equation SD-I.c in the classification of second order, sec-

ond degree ordinary differential equations with the Painlevé property due to Cosgrove

and Scoufis [23], an equation first derived and solved by Chazy [12] and rederived by

Bureau [10, 9, 11]. It was also derived by Jimbo and Miwa [36] and Okamoto [60]

in a Hamiltonian description of PIV. Further equation (4.21) arises in various appli-

cations including random matrix theory (cf. [24, 72]). Conversely, if σ is a solution

of (4.21), then

(4.22) q = −σ′′ − 2zσ′ + 2σ

2(σ′ + 2θ∞)
, p =

σ′′ + 2zσ′ − 2σ

2(σ′ + 2θ0)
,

are solutions of (4.20).

Due to the relationship between the Hamiltonian function σ and the associated

τ -functions given by [60]

(4.23)
d

dz
ln τ(z; θ0, θ∞) = σ(z; θ0, θ∞),
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Figure 4.3. Roots of the generalized Okamoto polynomial Q
−8,−8(z)

then it can be shown that rational solutions of (4.21) have the form

hm,n =
d

dz
lnHm,n, θ0 = −n, θ∞ = m,(4.24a)

σm,n = 4
27z3 − 2

3 (m − n)z +
d

dz
lnQm,n, θ0 = −n + 1

3 , θ∞ = m − 1
3 ,(4.24b)

where Hm,n(z) are the generalized Hermite polynomials and Qm,n(z) the generalized

Okamoto polynomials.

Using this Hamiltonian formalism for PIV, it can be shown that the generalized

Hermite polynomials Hm,n(z) and generalized Okamoto polynomials Qm,n(z), which

are defined by differential-difference equations, also satisfy fourth order bilinear ordi-

nary differential equations and homogeneous difference equations [18]. Differentiating

(4.22) with respect to z yields

(4.25) σ′′′ + 6 (σ′)
2 − 4(z2 + 2θ0 + 2θ∞)σ′ + 4zσ + 8θ0θ∞ = 0.
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Then substituting (4.24) into (4.25) yields the fourth order, bilinear equations

Hm,nH ′′′′
m,n − 4H ′

m,nH ′′′
m,n + 3

(
H ′′

m,n

)2

− 4(z2 + 2n − 2m)
[
Hm,nH ′′

m,n −
(
H ′

m,n

)2
]

+ 4zHm,nH ′
m,n − 8mnH2

m,n = 0,

(4.26)

Qm,nQ′′′
m,n − 4Q′

m,nQ′′′
m,n + 3

(
Q′′

m,n

)2
+ 4

3z2
[
Qm,nQ′′

m,n −
(
Q′

m,n

)2
]

+ 4zQm,nQ′
m,n − 8

3 (m2 + n2 + mn − m − n)Q2
m,n = 0.

(4.27)

As for the case for the ordinary differential equations satisfied by the Yablonskii–

Vorob’ev polynomials, i.e. equations (2.11) and (2.12), it seems reasonable to expect

that the ordinary differential equations (4.26) and (4.27) will be useful for the deriva-

tion of properties of the generalized Hermite and generalized Okamoto polynomials.

For example, using (4.26) and (4.27) it is straightforward to show that the polynomials

Hm,n(z) and Qm,n(z) have degree mn and m2 + n2 + mn − m − n, respectively.

5. Special Polynomials Associated with Algebraic Solutions of PIII

In this section we consider the special case of PIII when either (i), γ = 0 and

αδ 6= 0, or (ii), δ = 0 and βγ 6= 0. In case (i), we make the transformation

(5.1) w(z) = (2
3 )1/2u(ζ), z = (2

3 )3/2ζ3,

and set α = 1, β = 2µ and δ = −1, with µ an arbitrary constant, without loss of

generality, which yields

(5.2)
d2u

dζ2 =
1

u

(
du

dζ

)2

− 1

ζ

du

dζ
+ 4ζu2 + 12µζ − 4ζ4

u
.

In case (ii), we make the transformation

(5.3) w(z) = (3
2 )1/2/u(ζ), z = (2

3 )3/2ζ3,

and set α = 2µ, β = −1 and γ = 1, with µ an arbitrary constant, without loss

of generality, which again yields (5.2). The scalings in (5.1) and (5.3) have been

chosen so that the associated special polynomials are monic polynomials. We remark

that equation (5.2) is of type D7 in the terminology of Sakai [67], and we shall

refer to it as P
(7)
III . Further, Ramani et al. [64] argue that P

(7)
III (5.2) should be

considered as a different canonical form from PIII with γδ 6= 0, which is of type D6 in

Sakai’s classification since (i), the structure of the Bäcklund transformation is quite

different with a different associated Weyl group as shown below, (ii), there are no

solutions expressible in terms of classical special functions, and (iii), the coalescence

limit of P
(7)
III yields PI, whereas the coalescence limit of PIII with γδ 6= 0 yields PII.

Tsuda, Okamoto and Sakai [74] state that “from the viewpoint of algebraic geometry

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



40 P.A. CLARKSON

and of Hamiltonian structure, it is necessary and quite natural to study these cases

separately”.

Rational solutions of (5.2) correspond to algebraic solutions of PIII with γ = 0 and

αδ 6= 0, or δ = 0 and βγ 6= 0. Lukashevich [46, 48] obtained algebraic solutions of

PIII, which are classified in the following theorem.

Theorem 5.1. — Equation (5.2) has rational solutions if and only if µ = n, with n ∈ Z.

These rational solutions have the form u(ζ) = Pn2+1(ζ)/Qn2(ζ), where Pn2+1(ζ) and

Qn2(ζ) and monic polynomials of degree n2 + 1 and n2, respectively.

Proof. See Gromak, Laine and Shimomura [32, p. 164] (see also [28, 52, 54]).

A straightforward method for generating rational solutions of (5.2) is through the

Bäcklund transformation

(5.4) uµ±1 =
ζ3

u2
µ

± ζ

2u2
µ

duµ

dζ
− 3(2µ± 1)

2uµ
,

where uµ is the solution of (5.2) for parameter µ, using the “seed solution” u0(ζ) = ζ

for µ = 0 (see Gromak, Laine and Shimomura [32, p. 164] — see also [28, 52, 54]).

Therefore the transformation group for (5.2) is isomorphic to the affine Weyl group

A
(1)
1 , which also is the transformation group for PII [60, 76, 78]; the transformation

group for PIII with γδ 6= 0 is isomorphic to the affine Weyl group B
(1)
2 .

5.1. Associated special polynomials. — Ohyama [59] derived special polynomi-

als associated with the rational solutions of (5.2). These are essentially described in

Theorem 5.2 below, though here the variables have been scaled and the expression of

the rational solutions of (5.2) in terms of these special polynomials is explicitly given.

Theorem 5.2. — Suppose that Rn(ζ) satisfies the recursion relation

(5.5) 2ζRn+1Rn−1 = −Rn
d2Rn

dζ2 +

(
dRn

dζ

)2

− Rn

ζ

dRn

dζ
+ 2(ζ2 − n)R2

n,

with R0(ζ) = 1 and R1(ζ) = ζ2. Then

(5.6) un(ζ) =
Rn+1(ζ)Rn−1(ζ)

R2
n(ζ)

≡ ζ2 − n

ζ
− 1

2ζ2

d

dζ

{
ζ

d

dζ
lnRn(ζ)

}
,

satisfies (5.2) with µ = n. Additionally u−n(ζ) = −iun(iζ).

Plots of the locations of the roots of the polynomials Rn(ζ) are given in [17]. These

plots show that the locations of the poles also have a very symmetric, regular structure

and take the form of two “triangles” in a “bow-tie” shape. A plot of the complex roots

of R20(ζ) is given in Figure 5.1.
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Figure 5.1. Roots of the polynomial R20(ζ)

5.2. Hamiltonian theory for P
(7)
III . — A Hamiltonian associated with P

(7)
III (5.2)

is [59, 67]

(5.7) H
(7)
III (p, q; κ) = p2q2 + 6(κ − 1

2 )pq − 2ζ3(p + q),

and so from Hamilton’s equations we have

ζ
dq

dζ
= 2pq2 + 6(κ − 1

2 )q − 2ζ3, ζ
dp

dζ
= −2p2q − 6(κ − 1

2 )p + 2ζ3.(5.8)

Setting p = u and eliminating q in this system yields P
(7)
III (5.2) with µ = κ, whilst

setting q = u and eliminating p yields (5.2) with µ = κ − 1, and so p = uµ and

q = uµ−1. Now define the auxiliary Hamiltonian function

(5.9) σ = 1
6H

(7)
III (p, q; µ) + 1

2pq + 3
2µ2 = 1

6p2q2 − 1
3 (p + q)ζ3 + µpq + 3

2µ2,

where p and q satisfy (5.8). Then σ satisfies the second order, second degree equation

(5.10)

(
ζ
d2σ

dζ2 − 5
dσ

dζ

)2

+ 4

(
dσ

dζ

)2 (
ζ
dσ

dζ
− 6σ

)
− 48µζ5 dσ

dζ
= 16ζ10.

Conversely, if σ is a solution of (5.10), then

p = − 1

2ζ2

dσ

dζ
, q = ζ2

[
ζ
d2σ

dζ2 + (6µ − 5)
dσ

dζ
+ 4ζ5

] /(
dσ

dζ

)2

,

are solutions of (5.8). Since p = uµ and q = uµ−1, where uµ satisfies (5.2), then

rational solutions of the Hamiltonian system (5.8) with κ = n have the form

(5.11) pn(ζ) =
Rn+1(ζ)Rn−1(ζ)

R2
n(ζ)

, qn(ζ) = pn−1(ζ) =
Rn(ζ)Rn−2(ζ)

R2
n−1(ζ)

.
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It is straightforward to show, using the relationship between solutions of (5.8) and

(5.10) together with (5.5), that rational solutions of (5.10) with µ = n have the form

σn = 1
6p2

nq2
n − 1

3 (pn + qn)ζ3 + npnqn + 3
2n2 = − 1

2ζ4 + nζ2 − 3
2n + 1

6 + ζ
d

dζ
lnRn.

(5.12)

Using this Hamiltonian formalism for P
(7)
III , it can be shown that the polynomials

Rn(ζ) satisfy an fourth order bilinear ordinary differential equation and a fifth order,

tri-linear difference equation [17]. Dividing (5.10) by ζ10, setting µ = n and then

differentiating with respect to ζ yields the third order equation

(5.13) ζ2 d3σ

dζ3 − 9ζ
d2σ

dζ2 + 6ζ

(
dσ

dζ

)2

+ (25 − 24σ)
dσ

dζ
= 24nζ5.

Substituting (5.12) into this equation yields the fourth order, bilinear equation

ζ3

[
Rn

d4Rn

dζ4 − 4
dRn

dζ

d3Rn

dζ3 + 3

(
d2Rn

dζ2

)2
]
− 6ζ2

(
Rn

d3Rn

dζ3 − dRn

dζ

d2Rn

dζ2

)

− 12ζ(ζ4 − 3n − 1)

[
Rn

d2Rn

dζ2 −
(

dRn

dζ

)2
]
− 9ζ

[
Rn

d2Rn

dζ2 +

(
dRn

dζ

)2
]

+ 3(12ζ4 − 16nζ2 + 12n + 7)Rn
dRn

dζ
− 24nζ[(n + 3)ζ2 − 3n − 1]R2

n = 0.

(5.14)

Additionally Rn(ζ) satisfies the fifth order, tri-linear difference equation

(5.15) Rn+2R
2
n−1 + Rn−2R

2
n+1 = 2ζ3R3

n − 6nRn+1RnRn−1

(see [17] for details).

As for the ordinary differential equations satisfied by the special polynomials as-

sociated with rational solutions of PII–PIV, it seems reasonable to expect that the

ordinary differential equation (5.14) will be useful for the derivation of properties of

the polynomials Rn(ζ).

6. Special Polynomials Associated with Algebraic solutions of PV

It is well-known that there is a relationship between solutions of PIII

(6.1)
d2v

dζ2 =
1

v

(
dv

dζ

)2

− 1

ζ

dv

dζ
+

av2 + b

ζ
+ cv3 +

d

v
,

where a, b, c and d are arbitrary constants, in the generic case when cd 6= 0 (then we

set c = 1 and d = −1, without loss of generality), and solutions of the special case

of PV (1.4) with δ = 0 and γ 6= 0 [29] (see also [32]). This is given in the following

theorem.
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Theorem 6.1. — Suppose that v = v(ζ; a, b, 1,−1) is a solution of PIII and

(6.2) η(ζ) =
dv

dζ
− εv2 +

(1 − εa)v

ζ
,

with ε2 = 1. Then

(6.3) w(z; α, β, γ, δ) =
η(ζ) − 1

η(ζ) + 1
, z = 1

2ζ2,

satisfies PV with

(6.4) (α, β, γ, δ) = ((b − εa + 2)2/32,−(b + εa − 2)2/32,−ε, 0).

Making the change of variables w(z) = u(ζ), with z = 1
2ζ2, in PV with δ = 0 yields

(6.5)
d2u

dζ2 =

(
1

2u
+

1

u − 1

)(
du

dζ

)2

− 1

ζ

du

dζ
+

4(u − 1)2

ζ2

(
αu +

β

u

)
+ 2γu.

Algebraic solutions of PV with δ = 0 and γ 6= 0 are equivalent to rational solutions

of (6.5) and so henceforth we shall only discuss rational solutions of (6.5). These are

obtained by substituting the rational solutions of PIII, which are classified in Theorem

3.1, into equations (6.2) and (6.3). Consequently we have the following classification

of rational solutions for equation (6.5); for details see [32, §38], also [52, 54].

Theorem 6.2. — Necessary and sufficient conditions for the existence of rational so-

lutions of (6.5) are either

(6.6) (α, β, γ) = (1
2µ2,− 1

8 (2n − 1)2,−1),

or

(6.7) (α, β, γ) = (1
8 (2n − 1)2,− 1

2µ2, 1),

where n ∈ Z and µ is arbitrary.

We remark that the solutions of (6.5) satisfying (6.6) are related to those satisfying

(6.7) by the Bäcklund transformation for PV given by the transformation

(6.8) S̃ : w̃(z̃) = 1/w(z), z̃ = z, (α̃, β̃, γ̃, δ̃) = (−β,−α,−γ, δ).

Thus we shall be concerned only with rational solutions of (6.5) satisfying (6.6).

As shown above, there are special polynomials associated with the rational solutions

of PIII given in Theorem 3.1. Finally rational solutions of (6.5) are obtained by

substituting the rational solutions of PIII given by (3.6) into (6.2) and (6.3). Hence,

in the case when ε = 1, rational solutions of (6.5) have the form

un(ζ; µ) =
ζv′n(ζ; µ) − ζv2

n(ζ; µ) − 2(n + µ)vn(ζ; µ) − ζ

ζv′n(ζ; µ) − ζv2
n(ζ; µ) − 2(n + µ)vn(ζ; µ) + ζ

,

with vn(ζ; µ) given by (3.6). Consequently we obtain the following result.
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Theorem 6.3([21]). — Suppose that Sn(ζ; µ) satisfies the recursion relation (3.5) with

S−1(ζ; µ) = S0(ζ; µ) = 1. Then, for n ≥ 1, the rational solution

(6.9) un(ζ; µ) =
Sn(ζ; µ)Sn−2(ζ; µ)

µSn−1(ζ; µ + 1)Sn−1(ζ; µ − 1)
,

satisfies (6.5) with parameters given by (6.6).

It is straightforward to any specific value of n that (6.9) satisfies (6.5) with pa-

rameters given by (6.6). However, at present, Theorem 6.3 should be regarded as a

conjecture rather than a theorem since we do not yet have a proof.

7. Interlacing of roots?

An important, well-known property of classical orthogonal polynomials, such as

the Hermite, Laguerre or Legendre polynomials whose roots all lie on the real line, is

that the roots of successive polynomials interlace (cf. [3, 7, 71]). Thus for a set of

orthogonal polynomials ϕn(z), for n = 0, 1, 2, . . . , if zn,m and zn,m+1 are two succes-

sive roots of ϕn(z), i.e. ϕn(zn,m) = 0 and ϕn(zn,m+1) = 0, then ϕn−1(ζn−1) = 0 and

ϕn+1(ζn+1) = 0 for some ζn−1 and ζn+1 such that zn,m < ζn−1, ζn+1 < zn,m+1. An

interesting question is whether there are analogous results for the special polynomials

Pn(z) associated with rational solutions of the Painlevé equations. Clearly there are

notable differences since the special polynomials Pn(z) are polynomials with complex

roots whereas classical orthogonal polynomials ϕn(z) have real roots. The pattern of

the roots of the special polynomials are highly symmetric and structured, suggesting

that they have interesting properties. An particularly intriguing question is whether

there there is any “interlacing of roots” (in the complex plane), analogous to that

for classical polynomials (on the real line); though we do not expect any specific re-

lationship between the roots of the special polynomials with roots of any classical

polynomial. Further it is necessary to define what is meant by “interlacing of roots in

the complex plane”. There have been some preliminary numerical investigations using

MAPLE of the “interlacing of roots” of the special polynomials associated with ratio-

nal solutions of PII [22], algebraic solutions of PIII [17] and rational solutions of PIV

[18]. These studies give experimental evidence which suggests that there is structure

to the relative positions of the roots. A plot of the roots of the Yablonskii–Vorob’ev

polynomials Q25(z), denoted by •, and Q26(z), denoted by ◦, are given in Figure 7.

Some properties of the roots of the Yablonskii–Vorob’ev polynomials Qn(z) are

given in the following theorems.

Theorem 7.1. — For every positive integer n, the polynomial Qn(z) has simple roots.

Further the polynomials Qn(z) and Qn+1(z) do not have a common root.

Proof. — See Fukutani, Okamoto and Umemura [26].
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Figure 7.1. Roots of the Yablonskii–Vorob’ev polynomials Q25(z) (•) and

Q26(z) (◦)

Theorem 7.2. — The polynomial Qn(z) is divisible by z if and only if n ≡ 1 mod 3.

Further Qn(z) is a polynomial in z3 if n 6≡ 1 mod 3 and Qn(z)/z is a polynomial in

z3 if n ≡ 1 mod 3.

Proof. — See Taneda [68].

Theorem 7.3. — The real roots of the Yablonskii–Vorob’ev polynomials Qn−1(z) and

Qn+1(z) interlace.

Proof. — Suppose that a and b are successive real roots of Qn−1(z), i.e. Qn−1(a) =

Qn−1(b) = 0, with Qn−1(z) > 0 for a < z < b, so that Q′
n−1(a) > 0 and Q′

n−1(b) < 0;

the case when Qn−1(z) < 0 for a < z < b, so that Q′
n−1(a) < 0 and Q′

n−1(b) > 0, is
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treated analogously. It is known that Qn(z) satisfies

(7.1) Q′
n+1Qn−1 − Qn+1Q

′
n−1 = (2n + 1)Q2

n,

(cf. [26, 43, 68]). Evaluating this at z = a yields

(7.2) Qn+1(a)Q′
n−1(a) = (2n + 1)Q2

n(a).

We know from Theorem 7.1 that Qn(z) and Qn−1(z) have no common roots and the

roots of Qn−1(z) are simple. Hence if Qn−1(a) = 0 then Qn(a) 6= 0 and Q′
n−1(a) 6= 0

and so from (7.2) we have

(7.3) Qn+1(a) = (2n + 1)Q2
n(a)/Q′

n−1(a) > 0.

Similarly by setting z = b in (7.1) gives

(7.4) Qn+1(b) = (2n + 1)Q2
n(b)/Q′

n−1(b) < 0.

Therefore Qn+1(ξ) = 0 for some ξ ∈ (a, b) and hence between any two real roots of

Qn−1(z) there is a real root of Qn+1(z). Similarly it can be shown that between any

two real roots of Qn+1(z) there is a real root of Qn−1(z).

The plots of the roots of the Yablonskii–Vorob’ev polynomials Qn(z) suggest the

following conjecture.

Conjecture 7.4. — The Yablonskii–Vorob’ev polynomials Q2n−1(z) and Q2n(z) have

n real roots.

We feel that this “interlacing of roots” for the special polynomials warrants further

analytical and numerical studies, though we shall not pursue these questions any

further here.

Another indication that the Yablonskii–Vorob’ev polynomials are special is given

by studying their discriminants, which are defined by (3.10).

Theorem 7.5. — The discriminant of the Yablonski-Vorob’ev polynomial Qn(z) is

given by

|Dis(Qn)| = 2m(m2−1)(m+2)/6
m∏

j=1

(2j + 1)(2j+1)(m−j)2 ,

where Dis(Qn) < 0 if and only n = 2 mod 4.

Proof. — See Roberts [65], whose results have to be scaled.

Roberts [65] also derives expressions for the discriminants for the generalized Her-

mite polynomials Hm,n(z) and the generalized Okamoto polynomials Qm,n(z). These

results show that the discriminants are expressed as products of small integers to large

powers.
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8. Discussion

In this paper we have studied properties of special polynomials associated with

rational solutions of PII, PIII and PIV and algebraic solutions of PIII and PV, which

are related to rational solutions of PIII. In particular the zeroes of these polynomials

have a very symmetric, regular structure. Further using the Hamiltonian formalism for

PII–PIV, it is shown that these special polynomials, which are defined by second order

bilinear differential-difference equations, which are equivalent to the Toda equation,

also satisfy fourth order bilinear ordinary differential equations and homogeneous

difference equations. It seems reasonable to expect that these ordinary differential

equations will be useful in proving properties of the associated polynomials since

there are more techniques for studying solutions of ordinary differential equations

rather than differential-difference equations Regular, symmetric structures also arise

for the roots of special polynomials associated with rational solutions of the equations

in the PII hierarchy [22]. This seems to be yet another remarkable property of the

Painlevé equations.

Open questions related to special polynomials associated with solutions of the

Painlevé equations discussed in this paper include the following.

1. What is the structure of the roots of the special polynomials associated with

rational and algebraic solutions of PVI and rational solutions of the discrete

Painlevé equations? It should be noted that most of these special polynomials

have yet to be derived.

2. What is the structure of the roots of special polynomials associated with ratio-

nal solutions of soliton equations? Airault, McKean and Moser [5] studied the

motion of the poles of rational solutions of the Korteweg-de Vries (KdV) equa-

tion and a related many-body problem; see also [2, 4, 13]. Subsequently there

has been studies of other soliton equations, including the Boussinesq equation

[27], the classical Boussinesq system [66], the Kadomtsev-Petviashvili equation

[62, 63] and the nonlinear Schrödinger (NLS) equation

(8.1) iut = uxx − 2|u|2u,

[33, 55]. A recent study of the roots of special polynomials associated with

rational and rational-oscillatory solutions of the NLS equation (8.1) is given in

[20], which includes some new rational-oscillatory solutions that are expressed

in terms of the generalized Okamoto polynomials.

3. Do these special polynomials have applications, for example in numerical analy-

sis? The classical orthogonal polynomials, such as Hermite, Laguerre, Legendre

and Tchebychev polynomials which are associated with rational solutions clas-

sical special functions, play an important role in a variety of applications (cf.

[7, 71]). Hence it seems probable that the polynomials discussed here which are
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associated with rational solutions of nonlinear special functions, i.e. the Painlevé

equations, will also arise in variety of applications.
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equation, J. Comp. Appl. Math. 178 (2005), p. 111–129.

[20] , Special polynomials associated with rational solutions of the defocusing non-
linear Schrödinger equation and the fourth Painlevé equation, Europ. J. Appl. Math.
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[37] K. Kajiwara – On a q-difference Painlevé III equation: II. Rational solutions, J. Nonl.
Math. Phys. 10 (2003), p. 282–303.

[38] K. Kajiwara & T. Masuda – A generalization of determinant formulae for the solu-
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p. 37–65.

[55] A. Nakamura & R. Hirota – A new example of explode-decay solitary waves in
one-dimension, J. Phys. Soc. Japan 54 (1985), p. 491–499.

[56] M. Noumi, S. Okada, K. Okamoto & H. Umemura – Special polynomials associated
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SPECIAL POLYNOMIALS AND THE PAINLEVÉ EQUATIONS 51
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[75] H. Umemura – Painlevé equations and classical functions, Sugaku Expositions 11

(1998), p. 77–100.

[76] , On the transformation group of the second Painlevé equation, Nagoya Math.
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Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3 (1959), p. 30–35.
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