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STABILITY OF QUANTUM HARMONIC OSCILLATOR

UNDER TIME QUASI-PERIODIC PERTURBATION

by

Wei-Min Wang

Abstract. — We prove stability of the bound states for the quantum harmonic os-

cillator under non-resonant, time quasi-periodic perturbations by proving that the

associated Floquet Hamiltonian has pure point spectrum.

Résumé (Stabilité de l’oscillateur harmonique quantique sous lesperturbations quasi-
périodiques)

Nous démontrons la stabilité des états bornés de l’oscillateur harmonique sous les

perturbations non-résonantes, quasi-périodiques en temps en démontrant que l’ha-

miltonien Floquet associé a un spectre purement ponctuel.

The stability of the quantum harmonic oscillator is a long standing problem since

the establishment of quantum mechanics. The Schrödinger equation for the harmonic

oscillator in R
n (in appropriate coordinates) is the following:

(1) −i ∂
∂t
ψ =

1

2

n
∑

i=1

(− ∂2

∂x2
i

+ x2
i )ψ,

where we assume

(2) ψ ∈ C1(R, L2(Rn))

for the moment. We start from the 1 dimensional case, n = 1. (1) then reduces to

(3) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ.

The Schrödinger operator

(4) H =
1

2
(− d2

dx2
+ x2)
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c© Séminaires et Congrès 15, SMF 2007



254 W.-M. WANG

is the 1-d harmonic oscillator. Since H is independent of t, it is amenable to a spectral

analysis. It is well known that H has pure point spectrum with eigenvalues

(5) λn = 2n+ 1, n = 0, 1...,

and eigenfunctions (the Hermite functions)

(6) hn(x) =
Hn(x)√

2nn!
e−x2/2, n = 0, 1...

where Hn(x) is the nth Hermite polynomial, relative to the weight e−x2

(H0(x) = 1)

and

(7)

∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx =
√
πδmn

Using (5-7), the normalized L2 solutions to (1) are all of the form

(8) ψ(x, t) =

∞
∑

n=0

anhn(x)ei λn
2 t (

∑

|an|2 = 1),

corresponding to the initial condition

(9) ψ(x, 0) =

∞
∑

n=0

anhn(x) (
∑

|an|2 = 1).

The functions in (8) are almost-periodic (in fact periodic here) in time with frequencies

λn/4π, n = 0, 1...

Equation (3) generates a unitary propagator U(t, s) = U(t− s, 0) on L2(R). Since

the spectrum of H is pure point, ∀u ∈ L2(R), ∀ε, ∃R, such that

(10) inf
t
‖U(t, 0)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖

by using eigenfunction (Hermite function) expansions. The harmonic oscillator (4)

is an integrable system. The above results are classical. It is natural to ask how

much of the above picture remains under perturbation, when the system is no longer

integrable. In this paper, we investigate stability of the 1-d harmonic oscillator under

time quasi-periodic, spatially localized perturbations. To simplify the exposition, we

study the following “model” equation:

(11) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2

ν
∑

k=1

cos(ωkt+ φk)ψ,

on C1(R, L2(R)), where

(12) 0 < δ � 1, ω = {ωk}ν
k=1 ∈ [0, 2π)ν, φ = {φk}ν

k=1 ∈ [0, 2π)ν , h0(x) = e−x2/2.

In particular, we shall study the validity of (10) for solutions to (11), when U is the

propagator for (11). The method used here can be generalized to treat the equation

(13) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ + δV (t, x),

where V is C∞
0 in x and analytic, quasi-periodic in t.
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The perturbation term, O(δ) term in (11) is motivated by the nonlinear equation:

(14) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ +Mψ + δ|ψ|2ψ (0 < δ � 1),

where M is a Hermite multiplier, i.e., in the Hermite function basis,

M = diag (Mn), Mn ∈ R,(15)

Mu =

∞
∑

n=0

Mn(hn, u)hn, for all u ∈ L2(R).(16)

Specifically, (11) is motivated by the construction of time quasi-periodic solutions to

(14) for appropriate initial conditions such as

(17) ψ(x, 0) =

ν
∑

i=1

cki
hki

(x).

In (11), for computational simplicity, we take the spatial dependence to be |h0(x)|2
as it already captures the essence of the perturbation in view of (14, 17, 6). The

various computations and the Theorem extend immediately to more general finite

combinations of hk(x).

The Floquet Hamiltonian and formulation of stability. — It follows from [32, 33]

that (11) generates a unique unitary propagator U(t, s), t, s ∈ R on L2(R), so that

for every s ∈ R and

(18) u0 ∈ H2 = {f ∈ L2(R)|‖f‖2
H2 =

∑

|α+β|≤2

‖xα∂β
xf‖2

L2 <∞},

(19) u(·) = U(·, s)u0 ∈ C1(R, L2(R)) ∩ C0(R, H2)

is a unique solution of (11) in L2(R) satisfying u(s) = u0.

When ν = 1, (11) is time periodic with period T = 2π/ω. The 1-period propagator

U(T + s, s) is called the Floquet operator. The long time behavior of the solutions to

(11) can be characterized by means of the spectral properties of U(T + s, s) [14, 21,

34]. Furthermore the nature of the spectrum of U is the same (apart from multiplicity)

as that of the Floquet Hamiltonian K [31]:

(20) K = iω
∂

∂φ
+

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2 cosφ

on L2(R) ⊗ L2(T), where L2(T) is L2[0, 2π) with periodic boundary conditions.

Decompose L2(R) into the pure point Hpp and continuous Hc spectral subspaces

of the Floquet operator U(T + s, s):

(21) L2(R) = Hpp ⊕ Hc.

We have the following equivalence relations [14, 34]: u ∈ Hpp(U (T + s , s)) if and

only if ∀ε > 0, ∃R > 0, such that

(22) inft‖U(t, s)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖;
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and u ∈ Hc(U (T + s , s)) if and only if ∀R > 0,

(23) limt→±∞
1

t

∫ t

0

dt′‖U(t′, s)u‖2
L2(|x|≤R) = 0.

(Needless to say, the above statements hold for general time periodic Schrödinger

equations.)

When ν ≥ 2, (10) is time quasi-periodic. The above constructions extend for small

δ, cf. [1, 12, 22] leading to the Floquet Hamiltonian K:

(24) K = i

ν
∑

k=1

ωk
∂

∂φk
+

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2

ν
∑

k=1

cosφk

on L2(R)⊗L2(Tν), cf. [7]. This is related to the so called reducibility of skew product

flows in dynamical systems, cf. [12]. We note that the Hermite-Fourier functions:

(25) e−in·φhj(x), n ∈ Z
ν , φ ∈ T

ν , j ∈ {0, 1...}
provide a basis for L2(R) ⊗ L2(Tν).

We say that the harmonic oscillator H is stable if K has pure point spectrum.

Let s ∈ R. This implies (by expansion using eigenfunctions of K) that given any

u ∈ L2(R), ∀ε > 0, ∃R > 0, such that

(26) inft‖U(t, s)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖, a.e.φ,

cf. [7, 22]. So (10) remains valid and we have dynamical stability. We now state the

main results pertaining to (11).

Theorem. — There exists δ0 > 0, such that for all 0 < δ < δ0, there exists Ω ⊂
[0, 2π)ν of positive measure, asymptotically full measure:

(27) mes Ω → (2π)ν as δ → 0,

such that for all ω ∈ Ω, the Floquet Hamiltonian K defined in (24) has pure point spec-

trum: σ(K) = σpp. Moreover the Fourier-Hermite coefficients of the eigenfunctions

of K have subexponential decay.

As an immediate consequence, we have

Corollary. — Assume that Ω is as in the Theorem. Let s ∈ R. For all ω ∈ Ω, all

u ∈ L2(R), all ε > 0, there exists R > 0, such that

(28) inft‖U(t, s, φ)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖, a.e.φ,
where U is the unitary propagator for (11).

We note that this good set Ω of ω is a subset of Diophantine frequencies. This

is typical for KAM type of persistence theorem. Stability under time quasi-periodic

perturbations as in (11) is, generally speaking a precursor for stability under nonlinear

perturbation as in (14) (cf. [7, 6]), where M plays the role of ω and varies the

tangential frequencies. The above Theorem resolves the Enss-Veselic conjecture dated

from their 1983 paper [14] in a general quasi-periodic setting.
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A sketch of the proof of the Theorem. — Instead of working withK defined on L2(R)⊗
L2(Tν) directly, it is more convenient to work with its unitary equivalentH on `2(Zν×
{0, 1...}), using the Hermite-Fourier basis in (25). We have

(29) H = diag (n · ω + j +
1

2
) +

δ

2
W ⊗ ∆

on `2(Zν × {0, 1...}), where W acts on the j indices, j = 0, 1, 2...,

(30) Wjj′ ∼
1√
j + j′

e
− (j−j′)2

2(j+j′) for j + j′ � 1;

∆ acts on the n indices, n ∈ Z
ν ,

(31) ∆nn′ = 1, |n− n′|`1 = 1, ∆nn′ = 0, otherwise.

The computation of W involves integrals of products of Hermite functions. We

will explain shortly this computation, which is independent from the main thread of

construction.

The principal new feature here is that W is long range. The jth row has width

O(
√

j ) about the diagonal element Wjj . It is not and cannot be approximated by a

convolution matrix. The potential x2 breaks translational invariance. The annihila-

tion and creation operators of the harmonic oscillator a = 1√
2
( d

dx +x), a∗ = 1√
2
(− d

dx +

x), satisfying [a, a∗] = 1, are generators of the Heisenberg group. So (19) presents a

new class of problems distinct from that considered in [2, 3, 4, 7, 6, 13, 24, 26].

The proof of pure point spectrum of H is via proving pointwise decay of the finite

volume Green’s functions: (HΛ−E)−1, where Λ are finite subsets of Z
ν ×{0, 1...} and

Λ ↗ Z
ν ×{0, 1...}. We need decay of the Green’s functions at all scales, as assuming

E an eigenvalue, a priori we do not have information on the center and support of its

eigenfunction ψ. The regions Λ where (HΛ − E)−1 has pointwise decay is precisely

where we establish later that ψ is small there.

For the initial scales, the estimates on GΛ(E) = (HΛ−E)−1 are obtained by direct

perturbation theory in δ for 0 < δ � 1. For subsequent scales, the proof is a multiscale

induction process using the resolvent equation. Assume we have estimates on GΛ′ for

cubes Λ′ at scale L′. Assume Λ is a cube at a larger scale L, L� L′. Intuitively, if we

could establish that for most of Λ′ ⊂ Λ, GΛ′(E) has pointwise decay, then assuming

we have some a priori estimates on GΛ(E), we should be able to prove that GΛ(E)

also has pointwise decay.

There are “two” directions in the problem, the higher harmonics direction n and

the spatial direction j. The off-diagonal part of H is Toeplitz in the n direction,

corresponding to the discrete Laplacian ∆. Since the frequency ω is in general a

vector (if ν ≥ 2), n · ω does not necessarily → ∞ as |n| → ∞. So the n direction is

non-perturbative. We use estimates on GΛ′ and semi-algebraic techniques as in [5, 7]

to control the number of resonant Λ′, where GΛ′ is large, in Λ.
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In the j direction, we do analysis, i.e., perturbation theory. This is the new feature.

From (29) and Schur’s lemma, ‖W ⊗∆‖ = O(1 ). So the `2 norm of the perturbation

does not decay (relative to eigenvalue spacing) in j. However when δ = 0, H is

diagonal with eigenvalues n · ω + j and eigenfunctions δn,j , the canonical basis for

`2(Zν × {0, 1...}). We have

(32) ‖[W ⊗ ∆]δn,j‖ = O(
1

j 1/4
) (j ≥ 1 ),

which decays in j.

This is intuitively reasonable, as W stems from a spatially localized perturbation

from (11). As j increases, The Hermite functions hj become more extended, cf. (6).

So the effect of the spatial perturbation should decrease as j increases.

Assuming ω is Diophantine:

(33) ‖n · ω‖T ≥ c

|n|α (c > 0, n 6= 0, α > 2ν),

where ‖ · ‖T is the distance to the nearest integer, this enables us to preserve local

eigenvalue spacing for Λ which are appropriately proportioned in n, j. This in turn

leads to decay of Green’s functions. Combining the estimates in the n and j directions,

we obtain estimates on the Green’s function at the larger scale L.

Integrals of products of Hermite functions. — From (24, 29), computation of W

involves computing the following integrals:

(34)

∫ ∞

−∞
h2

0(x)hm(x)hn(x)dx

(35) =
1√

2n+mm!n!

∫ ∞

−∞
e−2x2

H2
0 (x)Hm(x)Hn(x)dx, m, n = 0, 1...,

where Hm, Hn are respectively the mth, nth Hermite polynomial, H0(x) = 1.

Let

(36) I =

∫ ∞

−∞
e−2x2

H2
0 (x)Hm(x)Hn(x)dx.

The idea is to view e−x2

H2
0 (x) as e−x2

H0(
√

2x), i.e., the 0th Hermite function relative

to the weight e−2x2

and to use the generating function of Hermite polynomials to

reexpress

(37) Hm(x)Hn(x) =

m+n
∑

`=0

a`H`(
√

2x).

We then have

(38) I = a0

∫

[H0(
√

2x)]2e−2x2

dx = a0

√

π/2
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using (7), recovering an apparently classical result, which could be found in e.g.,

[18, 28]. More generally, we are interested in computing

(39) I =

∫ ∞

−∞
e−2x2

Hp(x)Hq(x)Hm(x)Hn(x)dx, p, q, m, n = 0, 1...

which are needed for the nonlinear equation or if we consider more general perturba-

tions of the harmonic oscillator. Following the same line of arguments, we decompose

Hp(x)Hq(x) into

(40) Hp(x)Hq(x) =

p+q
∑

`=0

b`H`(
√

2x).

Combining (23) with (25), and assuming (without loss of generality), p+ q ≤ m+ n,

we then have

(41) I =

p+q
∑

`=0

a`b`c`,

where c` =
∫ ∞
−∞[H`(

√
2x)]2e−2x2

dx.

The computation for general p, q is technically more involved and is carried out in

[30]. Unlike the special case p = q = 0, we did not find the corresponding result for

general p, q in existing literature.

The computation of I in (39) is exact, reflecting the integrable nature of the quan-

tum harmonic oscillator. The proof of the theorem is, however, general. It is ap-

plicable as soon as the kernel W satisfies (30). Following the precedent discussion

on I for general p, q, and using properties of Hermite series (cf. [29] and references

therein), one should be able to extend the Theorem to V , which are C∞
0 in x and

analytic quasi-periodic in t, leading to perturbation kernels in the Hermite-Fourier

basis satisfying conditions similar to (30) in the j direction and exponential decay

condition in the n direction.

When the perturbation V is independent of time and is a 0th order symbol, satis-

fying

(42) |dαV | ≤ Cα(1 + |x|)−α, α = 0, 1...

the corresponding Schrödinger equation has been studied in e.g., [27, 23, 35], where

it was shown that certain properties of the harmonic oscillator equation extend to the

perturbed equation. The spectral property needed for the construction here is more

detailed and stringent. Hence it is reasonable to believe that the set of potentials V

will be more restrictive than that in (42)

Some perspectives on the Theorem. — The Theorem shows that for small δ, there

is a subset Ω ⊂ [0, 2π)ν of Diophantine frequencies of positive measure, such that if

ω ∈ Ω, then (10) is satisfied. Hence spatially localized solutions remain localized for

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



260 W.-M. WANG

all time. It is natural to ask what happens if the forcing frequencies ω are in the

complement set, ω ∈ Ωc.

If ω is rational, the perturbing potential V is bounded and has sufficiently fast

decay at infinity, it is known from general compactness argument [14] that the Floquet

Hamiltonian has pure point spectrum. In our example, this can be seen as follows.

In (11) restricting to periodic perturbation (ν = 1), it is easy to see that for

(43) ∀ω, A = (nω + j + z)−1W ⊗ ∆, where =z = 1 is compact.

We remark that (43) holds for all scalar ω.

Assume ω is rational: ω = p/q, (q 6= 0). SinceH0 = nω+j has pure point spectrum

(with infinite degeneracy) and the spacing between different eigenvalues is 1/q, (43)

implies that H has pure point spectrum. When ω is irrational, H0 typically has dense

spectrum. No conclusion can be drawn from (43).

If V is unbounded, we have a different situation. The results in [20, 19] combined

with [34] show that for the following unbouded time periodically perturbed harmonic

oscillator:

(44) i
∂u

∂t
=

1

2
(−∆ + x2)u + 2ε(sin t)x1u+ µV (t, x)u, x = (x1, ...xn) ∈ R

n

where V (t, x) is a real valued smooth function of (t, x), satisfying

(45)

V (t+ 2π, x) = V (t), |V (t, x)| . |x| as x→ ∞, |∂α
xV (t, x)| ≤ Cα, |α| ≥ 1,

the solutions diffuse to infinity as t→ ∞. More precisely, for all u0 ∈ L2(Rn)∩H2(Rn),

for any R > 0, the solution ut satisfies

(46) lim
T→±∞

1

T

∫ T

0

dt‖ut‖L2(|x|≤R) = 0.

In (44), ν = 1 (periodic), ω = 1 , ω ∈ Ωc, (46) is an opposite of (10). However the

perturbation is unbounded. Moreover the proof in [19] uses in an essential way that

the potential is linear at infinity, hence positivity of the commutator: [ d
dx1

, x1] = 1.

In the exactly solvable case where the time periodic perturbations is quadratic in

the spatial coordinates, it is known that the Floquet Hamiltonian exhibits a transition

between pure point and continuous spectrum as the frequency is varied [8]. The

perturbation there is again unbounded.

Some related results. — To our knowledge, when ω ∈ Ω is nonresonant, there were

no results in the literature on the perturbed harmonic oscillator equation of type (11),

even in the time periodic case, i.e., ω ∈ [0, 2π). The main difficulties encountered by

the traditional KAM method seem to be (i) the eigenvalue spacing for the unperturbed

operator does not grow, λk+1 − λk = 1, (ii) the perturbation W in the Hermite basis

has slow decay (30).

When the eigenvalue spacing for the unperturbed operator grows: |Ej+1 − Ej | >
jβ (β > 0), which corresponds to a potential growing faster than quadratically at
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infinity, and when the perturbation is periodic in time, related stability results were

proven in [11]. In [9], under time periodic perturbation and replacing W in (30)

by a faster decaying kernel, hence decaying norm in j, which no longer corresponds

to the physical case of harmonic oscillator under time periodic, spatially localized

perturbation, stability results were also proven. Both papers used some modified

KAM method.

Motivation for studying (11). — As mentioned earlier, the motivation for analyzing

(11) partly comes from the nonlinear equation (14). In [2, 3, 4, 13], time quasi-

periodic solutions were constructed for the nonlinear Schrödinger equation in R
d with

Dirichlet or periodic boundary condition

(47) i
∂

∂t
ψ = (−∆ +M)ψ + δ|ψ|2pψ, (p ∈ N

+; 0 < δ � 1)

whereM is a Fourier multiplier; see [24, 26] for the Dirichlet case in R with a potential

in place of M . In [6], time quasi-periodic solutions were constructed for the nonlinear

random Schrödinger equation in Z
d

(48) i
∂

∂t
ψ = (−ε∆ + V )ψ + δ|ψ|2pu, (p ∈ N

+ ; ε, 0 � δ � 1),

where V = {vj}j∈Zd is a family of random variables.

The proofs in [2, 3, 4, 6] use operator method, which traces its origin to the

study of Anderson localization [15]. This method was first applied in the context of

Hamiltonian PDE in [10]. The proofs in [13, 24, 26] use KAM type of method.

In (47) (specializing to 1-d), the eigenvalues of the linear operator are n2, so En+1−
En ∼ n, the eigenfunctions einx, however, are extended: |einx| = 1 for all x. Let us

call this case A, where there is eigenvalue separation. In (48), the eigenvalues of

the linear operator form a dense set, the eigenfunctions, on the other hand are not

only localized but localized about different points in Z
d from Anderson localization

theory, see e.g., [16, 17]. This is case B, where there is eigenfunction separation.

The existence of time quasi-periodic solutions, i.e., KAM type of solutions in A is a

consequence of eigenvalue separation; while in B, eigenfunction separation.

Equation (11) and its nonlinear counterpart

(49) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ +Mψ + δ|ψ|2pψ, (p ∈ N

+; 0 < δ � 1),

where M is a Hermite multiplier, stand apart from both (47, 48). It is neither A, nor

B. There is eigenvalue spacing, but it is a constant: λn+1 − λn = 1. In particular, it

does not grow with n. The eigenfunctions (Hermite functions) hn are“localized”about

the origin. But they become more extended as n increases because of the presence

of the Hermite polynomials, cf. (6). This in turn leads to the long range kernel W

in (30) and long range nonlinearity in (49) in the Hermite function basis, cf. [30].
From the KAM perspective a la Kuksin, this is a borderline case, where Theorem 1.1

in [25] does not apply. The more recent KAM type of theorem in [13] does not apply
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either, because W is long range and not close to a Toeplitz matrix (cf. (30)) for the
reasons stated earlier. These are the features which make (11, 49) interesting from a
mathematics point of view, aside from its apparent relevance to physics.
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