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Abstract. The KdV equation is used as an example to illustrate the relation between
the restricted flows and the soliton equation with self-consistent sources. Inspired by the
results on the Bäcklund transformation for the restricted flows (by V.B. Kuznetsov et al.), we
constructed two types of Darboux transformations for the KdV equation with self-consistent
sources (KdVES). These Darboux transformations are used to get some explicit solutions of
the KdVES, which include soliton, rational, positon, and negaton solutions.

Key words: the KdV equation with self-consistent sources; restricted flows; Lax pair; Dar-
boux transformation; soliton solution

2000 Mathematics Subject Classification: 35Q51; 35Q53; 37K10

1 Introduction

The nonlinear evolution equation with sources has many applications in physics, such as hydro-
dynamics, plasma physics, solid state physics (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). Some
(1 + 1)-dimensional systems of this kind can be written in bi-Hamiltonian form by changing the
role of x and t [12, 13]. In recent years, certain equations with self-consistent sources have been
studied by the inverse scattering method [1, 3, 5, 6], Darboux transformation [7, 8], and Hirota
method [9, 10, 11]. Several types of solutions have been obtained.

In early works on soliton equations with self-consistent sources (SESCSs), since the Lax
pairs of these systems were not obtained explicitly, the use of the inverse scattering method
was complicated and needed special skills [1]. Because the restricted flows of soliton equations
are just the stationary problems of SESCSs and the Lax pairs of restricted flows can always
be deduced from the adjoint representation of soliton equations [14], a natural and simple way
to deduce the auxiliary linear problems of SESCSs was discovered [4], and then a systematical
approach to solve SESCSs by inverse scattering method was developed [5, 6].

The Hirota method has been used to construct several types of solutions for some SESCSs
[9, 10]. Recently, X.B. Hu and his colleagues developed a new procedure to construct some
systems with self-consistent sources (see, e.g., [11]). Especially, some discrete systems with
sources were studied there.

Darboux transformation is a powerful tool to construct some solutions of the differential
equations [15]. Some SESCSs have been studied by Darboux transformation (see [7, 8] and the
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references therein). In [7], the KdV equation with self-consistent sources (KdVES) is studied
by the generalized binary Darboux transformation, whose reduction to the form of Darboux
transformation for the original KdV equation (without source) is not explicit. Some soliton,
positon, and negaton solutions of the KdVES are obtained in [7]. W.X. Ma introduced com-
plexiton solution to some soliton equations and showed that the complexiton solution of the
KdVES can be obtained by Darboux transformation [8]. Notice the close relation between the
restricted flows and the SESCSs, and stimulated by the study on the Bäcklund transformations
for the restricted flows, which were studied on the basis of Darboux–Crum transformation by
V.B. Kuznetsov et al. [16, 17, 18], two types of Darboux transformations for the KdVES are
constructed in this paper. The first type of Darboux transformation is not a binary Darboux
transformation, but it also enables us to obtain the soliton and rational solutions of the KdVES.
The second type of Darboux transformation enables us to obtain the positon and negaton solu-
tions of the KdVES. Some special cases of the solutions of the KdVES obtained in this paper
reduce to some known solutions in other papers [5, 7].

The paper is organized as follows. In Section 2, the restricted flows of the KdV hierarchy and
the KdV hierarchy with self-consistent sources are constructed. In Section 3, the Lax pair for
the restricted flows and the auxiliary linear problems for the KdVES are deduced. In Section 4,
two types of Darboux transformations for the KdVES are constructed, then some solutions of
the KdVES are obtained. Finally, we summarize the main results of this paper in Section 5.

2 The restricted flows and the KdVES

Consider the Schrödinger equation

φxx + (λ+ u)φ = 0, (2.1)

where φ and u are functions of x and t, λ is a spectral parameter. Equation (2.1) can be written
in the matrix form(

φ
φx

)
x

= U

(
φ
φx

)
, U =

(
0 1

−λ− u 0

)
. (2.2)

The adjoint representation of (2.2) reads [19]

Vx = [U, V ] ≡ UV − V U. (2.3)

Set

V =
∞∑
i=0

(
ai bi
ci −ai

)
λ−i.

Equation (2.3) yields

a0 = b0 = 0, c0 = −4, a1 = 0, b1 = 4, c1 = −2u,

a2 = ux, b2 = −2u, c2 =
1
2
(uxx + u2), . . . ,

and in general for k = 1, 2, . . . ,

ak = −1
2
bk,x, bk+1 = Lbk = −1

2
Lk−1u, ck = −1

2
bk,xx − bk+1 − bku, (2.4)

where

L = −1
4
D2 − u+

1
2
D−1ux, D =

∂

∂x
, DD−1 = D−1D = 1.
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Set

V (n) =
n+1∑
i=0

(
ai bi
ci −ai

)
λn+1−i +

(
0 0

bn+2 0

)
,

and take(
φ
φx

)
tn

= V (n)(u, λ)
(

φ
φx

)
. (2.5)

Then the compatibility condition of equations (2.2) and (2.5) gives rise to the KdV hierarchy

utn = D
δHn

δu
≡ −2bn+2,x, n = 0, 1, . . . ,

where Hn = 4bn+3

2n+3 . We have

δλ

δu
= φ2, Lφ2 = λφ2. (2.6)

The high-order restricted flows of the KdV hierarchy consist of the equations obtained from
the spectral problem (2.1) for N distinct λj and the restriction of the variational derivatives for
conserved quantities Hn and λj [4]

δHn

δu
− 2

N∑
j=1

δλj

δu
≡ −2bn+2 − 2

N∑
j=1

φ2
j = 0, (2.7)

φj,xx + (λj + u)φj = 0, j = 1, . . . , N,

where n = 0, 1, . . ..
The KdV hierarchy with self-consistent sources is given by[4]

utn = D

δHn

δu
− 2

N∑
j=1

δλj

δu

 ≡ D

−2bn+2 − 2
N∑

j=1

φ2
j

 , (2.8)

φj,xx + (λj + u)φj = 0, j = 1, . . . , N,

where λj are distinct.
In this paper, we concentrate on the case n = 1 and denote t ≡ t1, the equation (2.8) gives

the KdV equation with self-consistent sources (KdVES)

ut = −(6uux + uxxx)− 2
∂

∂x

N∑
j=1

φ2
j , (2.9a)

φj,xx + (λj + u)φj = 0, j = 1, . . . , N. (2.9b)

3 The Lax pair for the restricted flows and that for the KdVES

Set Φ = (φ1, . . . , φN )T . According to equations (2.4), (2.6) and (2.7), we denote

ãi = ai, b̃i = bi, c̃i = ci, i = 0, 1, . . . , n+ 1,

b̃n+2+i = −〈ΛiΦ,Φ〉, i = 0, 1, 2, . . . ,

ãn+2+i = −1
2
b̃n+2+i,x = 〈ΛiΦ,Φx〉,
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c̃n+2+i = −1
2
b̃n+2+i,xx − b̃n+3+i − b̃n+2+iu = 〈ΛiΦx,Φx〉.

Then

N (n) ≡
(
A(n) B(n)

C(n) D(n)

)
= λn+1

∞∑
k=0

(
ãk b̃k
c̃k −ãk

)
λ−k

=
n+1∑
k=0

(
ak bk
ck −ak

)
λn+1−k +

N∑
j=1

1
λ− λj

(
φjφj,x −φ2

j

φ2
j,x −φjφj,x

)
,

also satisfies the adjoint representation (2.3), i.e.

N (n)
x = [U,N (n)]. (3.1)

In fact equation (3.1) gives rise to the Lax representation of the restricted flow (2.7).
Since the high-order restricted flows (2.7) are just the stationary equations of the KdV

hierarchy with self-consistent sources (2.8), it is obvious that the zero-curvature representation
for the KdV hierarchy with self-consistent sources (2.8) is given by

Utn −N (n)
x + [U,N (n)] = 0,

with the auxiliary linear problems(
ψ
ψx

)
x

= U

(
ψ
ψx

)
,

(
ψ
ψx

)
tn

= N (n)

(
ψ
ψx

)
,

or equivalently

ψxx + (λ+ u)ψ = 0, (3.2a)

ψtn = A(n)ψ +B(n)ψx =
n+1∑
l=0

(alψ + blψx)λn+1−l +
N∑

j=1

1
λ− λj

φj(φj,xψ − φjψx). (3.2b)

In particular, the system (3.2) for n = 1 gives the auxiliary linear problem for the KdVES (2.9)

ψxx + (λ+ u)ψ = 0, (3.3a)

ψt = uxψ + (4λ− 2u)ψx +
N∑

j=1

1
λ− λj

φj(φj,xψ − φjψx). (3.3b)

The compatibility condition of (3.3a) and (3.3b) gives the KdVES (2.9) under the assump-
tion (2.9b).

4 The Darboux transformation for the KdVES

The Bäcklund transformation for the restricted flows of KdV hierarchy (2.7) has been studied by
Kuznetsov et al. [16, 17, 18]. These transformations can be extended to construct the Darboux
transformation for the KdVES. Two types of Darboux transformations and some solutions for
the KdVES will be constructed in this section.

In the following, we use W (g1, . . . , gm) to denote the Wronskian determinant for functions
g1(x), g1(x), . . . , gm(x), i.e.,

W (g1, g2, . . . , gm) =

∣∣∣∣∣∣∣∣
g1 g2 · · · gm

∂xg1 ∂xg2 · · · ∂xgm

· · · · · · · · · · · ·
∂m−1

x g1 ∂m−1
x g2 · · · ∂m−1

x gm

∣∣∣∣∣∣∣∣ .
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4.1 First type of Darboux transformation for the KdVES

Proposition 1. Suppose u, φ1, . . . , φN , is a solution of the KdVES (2.9), ψ, u, φ1, . . . , φN , sa-
tisfy the linear problem (3.3). If the functions f(x, t, λN+1) and g(x, t, λN+1) are two solutions
of (3.3) with λ = λN+1 (where λN+1 6= λj for j = 1, . . . , N), and W (f, g) 6= 0, then the following
functions satisfy the linear problem (3.3) (with N replaced by N + 1)

ψ̃ =
W (S, ψ)

S
, ũ = u+ 2∂2

x lnS, (4.1)

φ̃j =
1√

λj − λN+1

W (S, φj)
S

, j = 1, . . . , N, φ̃N+1 =

√
Ct

W (f, g)
W (S, f)

S
,

where S = C(t)f(x, t, λN+1) + g(x, t, λN+1), C(t) is a differentiable function of t, and Ct = dC
dt .

Proof. It can be proved by direct computation. �

It is easy to check that φ̃j (j = 1, . . . , N + 1) in (4.1) satisfies (2.9b) under the assumption
in Proposition 1. That means, we can use the Darboux transformation (4.1) (with C(t) being
variant in t) to obtain a solution of the KdVES (2.9) with N replaced by N + 1. If we fix
the function C(t) in (4.1) to be a constant, then the Darboux transformation (4.1) for the case
N = 0 reduces to the Darboux transformation for the original KdV equation (without source).

4.1.1 Soliton solution

It is easy to see that the KdVES (2.9) with N = 1 and λ1 = 0 has the following solution

u = 0, φ1 = η(t).

With the above u and φ1, we take two solutions of (3.3) for λ = −k2 (where k > 0) as

f = exp(kx− a(t)), g = exp(−kx+ a(t)),

where a(t) is a differentiable function of t and

da

dt
= 4k3 − η(t)2

k
. (4.2)

Then use the Darboux transformation (4.1) with C(t) = exp(−2z(t)), where z(t) is a differen-
tiable function of t, we get a solution of the KdVES (2.9) with N = 2

ũ = 2k2 sech2(kx− a(t)− z(t)), φ̃1 = −η(t) tanh(kx− a(t)− z(t)), (4.3)

φ̃2 =

√
k
dz

dt
sech (kx− a(t)− z(t)),

where a(t) is given by (4.2). The velocity of propagation of this soliton solution can be modified
by the choice of the function z(t) [1, 5]. This phenomena is different with the case of the original
KdV equation where the velocity is proportional to the amplitude of soliton. One should notice
that |φ̃1| → |η(t)| when |x| → ±∞, this kind of source is studied less in the references. In
addition, if we set η(t) ≡ 0, the solution (4.3) reduces to the soliton solution obtained in some
other papers [1, 5].
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4.1.2 Rational solution

The KdVES (2.9) with N = 0 has a trivial solution u = 0. Take two solutions of (3.3) with
u = 0 and λ = 0 as follows

f = 1, g = x,

then use the Darboux transformation (4.1), we get a solution of the KdVES (2.9) with N = 1

ũ =
−2

(x+ C(t))2
, φ̃1 =

−
√
Ct

(x+ C(t))
.

It is a rational solution, and the poles of the solution are variant with respect to the choice of
function C(t).

4.2 Second type of Darboux transformation for the KdVES

In the following, we will construct another type of Darboux transformation for the KdVES (2.9),
which enables us to obtain positon and negaton solutions of the KdVES (2.9).

Proposition 2. Suppose u, φ1, . . . , φN , is a solution of the KdVES (2.9), ψ, u, φ1, . . . , φN , sa-
tisfy the linear problem (3.3). If the functions f(x, t, λN+1) and g(x, t, λN+1) are two solutions
of (3.3) with λ = λN+1 (where λN+1 6= λj for j = 1, . . . , N), and W (f, g) 6= 0), then the
following functions satisfy the linear problem (3.3) (with N replaced by N + 1)

Ψ̃ =
W (g, T,Ψ)
W (g, T )

, ũ = u+ 2∂2
x lnW (g, T ), (4.4)

φ̃j =
1

λj − λN+1

W (g, T, φj)
W (g, T )

, j = 1, . . . , N, φ̃N+1 =

√
Ct

W (f, g)
W (g, T, f)
W (g, T )

,

where T = C(t)f(x, t, λN+1) + ∂N+1g(x, t, λN+1) and C(t) is a differentiable function of t.

Proof. It can be proved by direct computation. �

It is easy to check that φ̃j (j = 1, . . . , N + 1) in (4.4) satisfies (2.9b) under the assumption
in Proposition 2. That means, we can use the Darboux transformation (4.1) (with C(t) being
variant in t) to obtain a solution of the KdVES (2.9) with N replaced by N + 1.

4.2.1 Positon solution

The KdVES (2.9) with N = 1 and λ1 = 0 has a trivial solution

u = 0, φ1 =

√
dη(t)
dt

,

where η(t) is a differentiable function of t. With the above u and φ1, we take two solutions
of (3.3) for λ = k2 (where k > 0) as

f = cos Θ, g = sinΘ, Θ = kx+ 4k3t− η(t)
k

+ b(k),

where b(k) is a differentiable function of k. By using the Darboux transformation (4.4), we get
a solution of KdVES (2.9) with N = 2

ũ =
32k2(2k2γ cos Θ− sinΘ) sinΘ

(4k2γ − sin(2Θ))2
, (4.5)
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φ̃1 =
−√ηt(4k2γ + sin(2Θ))

4k2γ − sin(2Θ)
, φ̃2 =

4k
√
kCt sinΘ

4k2γ − sin(2Θ)
,

where

γ = C(t) +
1
2k
∂kΘ.

This is a positon solution (see [7] and the references therein). If we set φ1 = 0, then the
solution (4.5) reduces to the one given in [7].

4.2.2 Negaton solution

The KdVES (2.9) with N = 1 and λ1 = 0 has a trivial solution

u = 0, φ1 =

√
dη(t)
dt

,

where η(t) is a differentiable function of t. With the above u and φ1, we take two solutions
of (3.3) for λ = −k2 (where k > 0) as

f = cosh Θ, g = sinh Θ, Θ = kx− 4k3t+
η(t)
k

+ b(k),

where b(k) is a differentiable function of k. By using the Darboux transformation (4.4), we get
a solution of KdVES (2.9) with N = 2

ũ =
8k2(2k2γ coshΘ + sinhΘ) sinhΘ

(2k2γ + sinhΘ cosh Θ)2
, (4.6)

φ̃1 =
√
ηt(−2k2γ + sinhΘ cosh Θ)

2k2γ + sinhΘ cosh Θ
, φ̃2 =

2k
√
kCt sinhΘ

2k2γ + sinhΘ cosh Θ
,

where

γ = C(t)− 1
2k
∂kΘ.

This is a negaton solution (see [7] and the references therein). If we set φ1 = 0, then the
solution (4.6) reduces to the one given in [7] (notice that there is a typo in the expression of
negaton solution (4.2b) in [7]).

5 Conclusion

The KdV equation is used as an example to illustrate the relation between the restricted flows
and the soliton equation with self-consistent sources (SESCSs). Since the restricted flows is just
the stationary problem of the SESCSs and the Lax pair of the restricted flows can always be
deduced from the adjoint representation of soliton equations, the auxiliary linear problem for
the SESCSs can be easily obtained. Stimulated by the study on the Bäcklund transformation
for the restricted flows (by Kuznetsov et al.) [16, 17, 18], two types of Darboux transformations
for the KdVES are constructed in this paper. The first type of Darboux transformation is not
a binary one, whose reduction relation to the form of Darboux transformation for the original
KdV equation is shown. By the two types of Darboux transformation, some explicit solutions
for the KdVES are obtained, which include soliton, rational, positon, and negation solutions. It
is possible to construct complexiton solution of the KdVES by the Darboux transformation in
this paper, we will study it in detail in the future work.
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This paper is submitted to the memorial volume for Vadim B. Kuznetsov. Dr. Kuznetsov was
an expert in integrable systems. One of the authors (R.L. Lin) visited him at Leeds in 2002 at his
invitation. R.L. Lin was deeply impressed that he was so kindly to help the younger researchers.
As we know, he kept close contact with some Chinese researchers and he visited another author
(Y.B. Zeng) at Tsinghua University in 2002. Also, he applied some financial aid to help several
Chinese researchers to work in Leeds. Vadim left, but his smile is left in our memory.
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