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Abstract. We examine whether the Painlevé property is necessary for the integrability of
partial differential equations (PDEs). We show that in analogy to what happens in the case
of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through
linearisation, which do not possess the Painlevé property. The same question is addressed
in a discrete setting where we show that there exist linearisable lattice equations which do
not possess the singularity confinement property (again in analogy to the one-dimensional
case).
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The Painlevé property has been quintessential in the domain of integrable systems. While the
modern era of integrability was spurred by the derivation (or rediscovery in some cases [1])
of evolution equations integrable by spectral methods (S-integrable systems in the Calogero
terminology [2]), the Painlevé approach has almost from the outset become an unmatched inte-
grability test leading to the discovery of a slew of new integrable systems. The conjecture [3],
formulated by Ablowitz and Segur (in collaboration with one of us, A.R.) and which came to be
known as the ARS conjecture, states that: “Every ordinary differential equation which arises as
a reduction of a completely integrable partial differential equation is of Painlevé type (perhaps
after a transformation of variables)”. This conjecture was soon improved thanks to Weiss and
collaborators who managed to treat partial differential equations directly, without the constraint
of considering reductions [4].

We can illustrate the situation through the classical example of the modified-KdV equation:

ut = uxxx − 6u2ux.

We expand the solution around a singularity manifold φ(x, t) (the calculations are very simple
so there is no need to use the simplifying Kruskal ansatz [5]). We find the expansion

u = ±
(
φx/φ− φxxφ

−1
x /2 + ((φxxx − φt)φ−2

x /6− φ2
xxφ

−3
x /4)φ+ c2φ

2 + c3φ
3 + · · ·

)
which is obviously singlevalued, and possesses the full complement of integration constants,
satisfying thus the Painlevé property.

The discrete analogue of the Painlevé property is singularity confinement. As conjectured [6]
by two of the authors (B.G and A.R.) in collaboration with V. Papageorgiou “any singularity
spontaneously appearing in an integrable discrete system must disappear after a few iteration

mailto:tamizh@yahoo.com
mailto:grammaticos@univ-paris-diderot.fr
mailto:ramani@cpht.polytechnique.fr
http://www.emis.de/journals/SIGMA/2007/073/


2 K.M. Tamizhmani, B. Grammaticos and A. Ramani

steps”. (The fact that singularity confinement does not suffice as a discrete integrability criterion
and must be complemented by the finiteness of the Nevanlinna order [7] of the solution has been
discovered in [8] and was amply commented in several publications [9, 10]). The discrete analogue
of the mKdV equation

xm+1,n+1 = xm,n
xm+1,n − cxm,n+1

cxm+1,n − xm,n+1
,

where c is a constant, has a singularity whenever, due to specific initial conditions, x vanishes
or becomes infinite. However this singularity disappears in the next iteration step and does not
propagate at all: it is immediately confined.

An impressive number of examples have by now established the fact that both partial
differential and difference equations integrable through spectral methods possess the Painlevé
property, (or equivalently, have confined singularities). These results can be extended in a
straightforward way to the case of ordinary equations (both differential and difference ones, this
last family encompassing q-difference equations as well). This is a quite natural result since
many ordinary equations can be obtained as reductions of partial ones. However it is in the
domain of ordinary equations that exceptions to the reciprocal of the above statement have
been obtained. Indeed, we found in [11] that there exist equations which are integrable through
linearisation and which do not possess the Painlevé property. This is true both in the continuous
and the discrete case. We shall illustrate this through two examples.

We start from the linear equation

tx′′ + (at− 1/2)x′ + btx

x′′ + ax′ + bx
= K (1)

and take its derivative so as to eliminate K, obtaining a third order equation. Next we show
that the same third order equation can be obtained if we start from the nonlinear equation

x′′x′ + 2ax′2 + 3bx′x+ (2ab− b′)x2 = M (2)

and take its derivative so as to eliminate M . Here a and b are not free. We have b = a2 − a′/2
and a satisfying the equation

a′′′ = 6a′′a+ 7a′2 − 16a′a2 + 4a4

which is equation XII in the Chazy classification [12]. So, equation (2) is integrable by lin-
earisation through equation (1). It is straightforward to show that (2) violates the Painlevé
property. Solving it for x′′, we find terms proportional to x2/x′ (and 1/x′) which were shown
to be incompatible with the Painlevé property [13].

A caveat is in order at this point. While there exist large classes of linearisable equations
without the Painlevé property, there does also exist a family of linearisable equations which do
satisfy the Painlevé criterion. The best known example of equations belonging to this class are
the Riccati equation and its higher order analogues [14].

We turn now to an example of a discrete equation and examine the mapping

xn+1 = axn−1
xn − a

xn − 1
. (3)

As shown in [15], two singularities exist when either x = 1 or x = a. The first singularity is
confined leading to a finite singularity pattern {1,∞, a}. The second singularity never confines
unless a = 1 (in which case the mapping is trivial) or a is a cubic root of unity (with the resulting
mapping being periodic with period six).
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On the other hand, (3) is linearisable. Indeed, introducing yn = xnxn−1 − xn − axn−1 we
reduce (3) to the linear mapping yn+1 = ayn.

Of course the remark concerning the existence of linearisable systems with the Painlevé
property has its analogue here for linearisable mappings with confined singularities: all mappings
of the “projective” family fall into this class [16].

It is thus natural given the results presented above on PDE’s integrable through spectral
methods which possess the Painlevé property, and linearisable ODE’s without it, to wonder
whether linearisable PDE’s without the Painlevé property may exist. Calogero has stressed the
importance of the existence of PDE’s integrable by methods different from the spectral ones. He
has dubbed the members of this class C-integrable systems. So, quite understandably, we sought
linearisable PDE’s among the lengthy list of C-integrable systems established by Calogero [17].
We shall not go into a fully detailed analysis of the equations of the Calogero classification, but
present just the outcome of our investigation. It turned out that the C-integrable equations
presented by Calogero can be shown to belong to one of two classes.

The first class comprises equations which can be reduced to a linear one thanks to some
transformation involving the integral of the variable of the nonlinear equation. A typical example
is:

ut − uxxx = 3uxxu2 + 9u2
xu+ 3uxu4 (4)

that is linearised to

vt − vxxx = 0

through

v(x, t) = u(x, t) exp
∫ x

u(x′, t)2dx′. (5)

Of course, the fact that the integral of u2 appears in the transformation is not creating problems.
As a matter of fact, it is possible to rewrite (5) as

vx
v

=
ux
u

+ u2 =
wx
2w

+ w

which is just a Riccati equation for w = u2. Quite expectedly, equation (4) (and others, similar
to it) possess the Painlevé property.

The second class of the C-integrable systems of Calogero comprises equations which are
obtained from some other integrable (sometimes linear) equations through hodograph transfor-
mations. The prototypical equation of this class is the Dym equation [2]

ut = u3uxxx

which is related to the KdV equation. Equations of this class quite often possess the ‘weak’
Painlevé property. This is the case for the Dym equation. The expansion around a singularity
manifold φ(x, t) is

u0φ(x, t)2/3 +
∞∑
p=1

upφ(x, t)(p+2)/3.

Moreover, there exist equations in the Calogero list of C-integrable PDE’s belonging to the class
of solvable through hodograph transformations which do not satisfy the Painlevé property at
all. An example of such an equation is ut = f(ux)/uxx + g(ux) + uh(ux), where f , g and h are
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arbitrary functions. However due to the very special nature of the hodograph transformation
we consider that such examples do not constitute a satisfactory answer to our quest.

So the question remains: do linearisable PDE’s without the Painlevé property exist? The
answer to this question is an unqualified “yes”. Let us construct a specific example. We shall
adopt the construction we follow for the derivation of the Burgers’ equation. For the latter,
we start from a linear equation vt + vxx = 0 and obtain a nonlinear one through a Cole–Hopf
relation vx + uv = 0. In order to derive the equation we are seeking, we start from a nonlinear,
linearisable (Riccati) equation in one variable vt+v2 = 0 and couple it through a Cole–Hopf like
relation to another variable in a new direction ux+uv = 0. Eliminating v we obtain a nonlinear
equation for u:

uuxt − uxut − u2
x = 0. (6)

This is obviously a linearisable equation since its solution proceeds through the solution of one
linearisable equation and a linear one, in cascade. The solution of this equation does not possess
the Painlevé property. Instead of performing a standard Painlevé analysis let us profit from the
fact that the solution of (6) can be explicitly constructed. Solving the equation for v we find
v = (t− φ(x))−1. Next we integrate for u and obtain log u = −

∫
(t− φ(x))−1dx. A singularity

will appear in the expansion of u whenever we have x = ξ such that φ(ξ) = t. We solve for ξ
and find ξ = ψ(t) (where ψ is the inverse function of φ). Expanding φ(x) around ξ we have
φ(x) = φ(ξ) + (x − ξ)φ′(ξ) + · · · and the integration for u can be performed order by order.
We find u ∝ (x− ψ(t))ψ

′(t) + · · · . Thus, since the exponent ψ′(t) ≡ 1/φ′(ψ(t)) is arbitrary, the
solution does not possess the Painlevé property.

Equation (6) may be easily generalised. The principle remains the same. One starts from
a linearisable equation in one independent and one dependent variable, say v(t). If, for instance,
we take for v a higher-order projective equation, we are guaranteed that the solution for v
will satisfy the Painlevé property. Next we couple this equation to a linear PDE of the form
f(v)ux + g(v)ut + h(v)u = 0, where f , g, and h can be taken as inhomogeneous linear functions
of v. Eliminating v one obtains an equation for u which is linearisable and can be shown to
violate the Painlevé property, the exponent of the leading singular term being again an arbitrary
function of t.

We now turn to the case of a lattice linearisable equation. We start with a simple homographic
mapping (the index m is dummy at this level)

vm,n+1 + 1 +
1

vm,n
= 0

and couple it to a linear equation

um+1,n − um,nvm,n = 0.

Eliminating v we find for u the equation

um+1,n+1um+1,n + um,n+1um+1,n + um,num,n+1 = 0. (7)

While this equation is linearisable, it does not have confined singularities. Indeed, if at some
lattice position we have um,n = 0 (which is perfectly possible given the appropriate initial
conditions) iterating (7) we find that uk,n = 0 for all k ≥ m. On the other hand, since (7)
is linearisable, we expect the growth of the sequence of its iterates to be linear. This turns
out to be indeed the case. Taking initial conditions u0,0 = const, u0,n = a(n) + b(n)p/q,
um,0 = c(m) + f(m)r/s (with a, b, c, f arbitrary functions of their argument) and computing
the global homogeneous degree dm,n in p, q, r, s, we find that dm,n = m+ 2 for m > 0.
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Generalising (7) is quite straightforward. It suffices to start from a linearisable equation for
v of higher order (of which several examples do exist). Next we couple v to a linear equation of
the form f(vm,n)um+1,n + g(vm,n)um,n+1 + h(vm,n)um,n = 0 where f , g, h are first degree in v,
and using the first equation we eliminate v. We surmise that the equation for u will in general
have unconfined singularities. However this has to be examined on a per case basis since there
does not seem to exist a general argument for the singularity structure of the final equation.

The results we presented above can be further generalised. As a matter of fact, we do not
have to take for the first equation one that satisfies the Painlevé property, or possesses confined
singularities. It suffices that it be linearisable for our construction to go through (although here
the Painlevé property, continuous or discrete, would be already violated at the first step). For
the continuous case, we start from a linearisable equation in one dimension

vtt = (vt − 1)/v (8)

which is linearisable through the system vt = yv + 1, yt + y2 = 0. The general solution of (8) is
v = (c1(x) + log(t+ c2(x))(t+ c2(x)), which clearly violates the Painlevé property. (A singular
solution for (8) also exists: v = t+ c2(x)). Next we couple the equation for v to an equation for
u through ux − uv = 0 and obtain

uxtt = uxt

(
2
ut
u

+
u

ux

)
+
uttux
u

− 2
uxu

2
t

u2
− ut −

u2

ux

which is linearisable without having the Painlevé property. Turning to the discrete case we
consider the one-dimensional mapping (again, the index m is dummy at this level)

ym,n+1 = ym,n + y2
m,n/ym,n−1 (9)

which is obtained from the linearisable system zn+1 = zn + 1 and yn+1 = znyn. The solution
of (9) is A(m)Γ(n+c(m)) ≡ B(m)(−1)n/Γ(1−n−c(m)) with πA(m) = B(m) sin(c(m)π). This
solution is regular unless c(m) is an integer. If c(m) = N , an integer, the first expression, with
nonzero A, has poles on a half-infinite line n ≤ −N , and is regular for n > −N . The second
expression, for finite B, is regular for n ≤ −N and zero for n > −N . In both cases we have
a typical nonconfined singularity. Coupling equation (9) with xm+1,n − ym,nxm,n = 0 leads to

xm+1,n+1xm+1,n−1x
2
m,n = xm+1,n−1xm+1,nxm,n+1xm,n + x2

m+1,nxm,n+1xm,n−1.

Again, we have a linearisable equation with unconfined singularities. Many more examples can
be explicitly constructed underlining the fact that there exist linearisable PDE’s which do not
satisfy the Painlevé property.
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