Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 001, 24 pages      arXiv:1301.0838      https://doi.org/10.3842/SIGMA.2014.001

On Classification of Finite-Dimensional Superbialgebras and Hopf Superalgebras

Said Aissaoui a and Abdenacer Makhlouf b
a) Université A-Mira, Laboratoire de Mathématiques Appliquées, Targa Ouzemmour 06000 Béjaia, Algeria
b) Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 4, rue des Frères Lumière F-68093 Mulhouse, France

Received February 08, 2013, in final form December 23, 2013; Published online January 02, 2014

Abstract
The purpose of this paper is to investigate finite-dimensional superbialgebras and Hopf superalgebras. We study connected superbialgebras and provide a classification of non-trivial superbialgebras and Hopf superalgebras in dimension n with n≤4.

Key words: superalgebra; superbialgebra; Hopf superalgebra; classification.

pdf (416 kb)   tex (28 kb)

References

  1. Abe E., Hopf algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge, 1980.
  2. Andruskiewitsch N., About finite dimensional Hopf algebras, in Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., Vol. 294, Amer. Math. Soc., Providence, RI, 2002, 1-57.
  3. Andruskiewitsch N., Angiono I., Yamane H., On pointed Hopf superalgebras, in New developments in Lie theory and its applications, Contemp. Math., Vol. 544, Amer. Math. Soc., Providence, RI, 2011, 123-140, arXiv:1009.5148.
  4. Andruskiewitsch N., Etingof P., Gelaki S., Triangular Hopf algebras with the Chevalley property, Michigan Math. J. 49 (2001), 277-298, math.QA/0008232.
  5. Andruskiewitsch N., Schneider H.J., On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010), 375-417, math.QA/0502157.
  6. Armour A., The algebraic and geometric classification of four dimensional super-algebras, Master Thesis, Victoria University of Wellington, 2006.
  7. Armour A., Chen H.X., Zhang Y., Classification of 4-dimensional graded algebras, Comm. Algebra 37 (2009), 3697-3728.
  8. Beattie M., Dăscălescu S., Hopf algebras of dimension 14, J. London Math. Soc. 69 (2004), 65-78, math.QA/0205243.
  9. Beattie M., Dăscălescu S., Grünenfelder L., On the number of types of finite-dimensional Hopf algebras, Invent. Math. 136 (1999), 1-7.
  10. Beattie M., García G.A., Classifying Hopf algebras of a given dimension, in Hopf Algebras and Tensor Categories, Contemp. Math., Vol. 585, Amer. Math. Soc., Providence, RI, 2013, 125-152, arXiv:1206.6529.
  11. Cheng Y.L., Ng S.H., On Hopf algebras of dimension 4p, J. Algebra 328 (2011), 399-419.
  12. Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203-242, hep-th/9808042.
  13. Deguchi T., Fujii A., Ito K., Quantum superalgebra Uqosp(2,2), Phys. Lett. B 238 (1990), 242-246.
  14. Dekkar K., Makhlouf A., Bialgebra structures of 2-associative algebras, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), 137-151.
  15. Etingof P., Gelaki S., The classification of finite-dimensional triangular Hopf algebras over an algebraically closed field of characteristic 0, Mosc. Math. J. 3 (2003), 37-43.
  16. Fukuda N., Semisimple Hopf algebras of dimension 12, Tsukuba J. Math. 21 (1997), 43-54.
  17. Gabriel P., Finite representation type is open, in Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Lecture Notes in Math., Vol. 488, Springer, Berlin, 1975, 132-155.
  18. Gould M.D., Zhang R.B., Bracken A.J., Quantum double construction for graded Hopf algebras, Bull. Austral. Math. Soc. 47 (1993), 353-375.
  19. Guichardet A., Groupes quantiques. Introduction au point de vue formel, Savoirs Actuels, InterEditions, Paris, 1995.
  20. Holtkamp R., Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), 368-383.
  21. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  22. Kreimer D., On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), 303-334, q-alg/9707029.
  23. Kulish P.P., Reshetikhin N.Y., Universal R-matrix of the quantum superalgebra osp(2|1), Lett. Math. Phys. 18 (1989), 143-149.
  24. Majid S., Cross products by braided groups and bosonization, J. Algebra 163 (1994), 165-190.
  25. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  26. Makhlouf A., Degeneration, rigidity and irreducible components of Hopf algebras, Algebra Colloq. 12 (2005), 241-254, math.RA/0211187.
  27. Makhlouf A., Algèbre de Hopf et renormalisation en théorie quantique des champs, in Théorie Quantique des Champs: Méthodes et Applications, Editors T. Boudjedaa, A. Makhlouf, Travaux en Cours, Hermann, Paris, 2007, 191-242.
  28. Masuoka A., Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995), 361-373.
  29. Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
  30. Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Conference Board of the Mathematical Sciences, Washington, DC, 1993.
  31. Montgomery S., Classifying finite-dimensional semisimple Hopf algebras, in Trends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), Contemp. Math., Vol. 229, Amer. Math. Soc., Providence, RI, 1998, 265-279.
  32. Natale S., Hopf algebras of dimension 12, Algebr. Represent. Theory 5 (2002), 445-455.
  33. Ng S.H., Non-semisimple Hopf algebras of dimension p2, J. Algebra 255 (2002), 182-197, math.QA/0110223.
  34. Scheunert M., Zhang R.B., Integration on Lie supergroups: a Hopf superalgebra approach, J. Algebra 292 (2005), 324-342, math.RA/0012052.
  35. Shnider S., Sternberg S., Quantum groups. From coalgebras to Drinfel'd algebras. A guided tour, Graduate Texts in Mathematical Physics, Vol. 2, International Press, Cambridge, MA, 1993.
  36. Ştefan D., The set of types of n-dimensional semisimple and cosemisimple Hopf algebras is finite, J. Algebra 193 (1997), 571-580.
  37. Ştefan D., Hopf algebras of low dimension, J. Algebra 211 (1999), 343-361.
  38. Williams R.E., Finite dimensional Hopf algebras, Ph.D. Thesis, The Florida State University, 1988.
  39. Zhu Y., Hopf algebras of prime dimension, Int. Math. Res. Not. 1994 (1994), 53-59.

Next article   Contents of Volume 10 (2014)